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Abstract. Data flow diagrams (DFDs) are popular for sketching sys-
tems for subsequent threat modelling. Their limited semantics make rea-
soning about them difficult, but enriching them endangers their simplic-
ity and subsequent ease of take up. We present an approach for reasoning
about tainted data flows in design-level DFDs by putting them in con-
text with other complementary usability and requirements models. We
illustrate our approach using a pilot study, where tainted data flows were
identified without any augmentations to either the DFD or its comple-
mentary models.

1 Introduction

Data Flow Diagrams (DFDs) are useful as a sketch that explores how a system
and its elements might be exploited; their simplicity makes it possible for differ-
ent people with different levels of expertise to contribute to the security analysis
of a system as it is evolves.

As DFDs become more critical to security design practices, so too is the need
to reason about their properties using software tools. Limitations around cog-
nitive ability, expertise and time constrain the effectiveness of modellers when
scaling up or making decisions around DFDs [16]. However, their limited seman-
tics makes reasoning with DFDs alone difficult; this leads to an inherent trade-off
between using easy to adopt notations and those that afford automated reasoning
but are more elaborate [17].

Data flows are analogous with information flows. Information flow analysis
(like taint analysis) is a long established technique for reasoning about the in-
teractions of data within entities, and their impact on security as the data flows
through the system [4,23]. Unfortunately, visual inspection alone is insufficient
for spotting potential issues with data inside data flows. Formal policy specifi-
cations and binary instructions provide the context necessary to reason about



tainted information flows, but DFDs lack this level of precision. The options are
either (i) adding additional information to the diagram itself, or (ii) providing
context via other models aligned with DFDs. In the related work, the first route
has been extensively explored [20,19], so this paper takes the less followed second
path. Usability models could play a particularly important role in providing such
context. For example in [7], usability models describe the main tasks performed
by a software system, and the roles associated to those tasks. The models relate
to the overall goals and requirements of the system. Just as DFDs provide early
insights into how systems might be exploited, usability models indicate where
interaction problems might subsequently facilitate exploitation. These different
models might be produced independently and, with inter-operable tools, we can
reason about the security impact these models have on DFDs, and vice-versa.

Contribution. In this short paper, we present an approach for identifying
potential taint in design-level DFDs. Our guiding principle is that, to encourage
adoption, DFDs should be no more graphically complex than they currently are.
Instead, we should leverage the alignment between DFDs and other usability and
requirements models. We present the related work upon which our approach is
based in Section 2 before presenting the key concepts and algorithms in our
approach in Section 3. We illustrate our approach in Section 4 by using it to
identify pre-process and post-process taint in a critical infrastructure pilot study,
before discussing the implications of this work in Section 5.

2 Related Work and Background

2.1 Reasoning about Data Flow Diagrams in Threat Modelling

Data Flow Diagrams (DFDs) graphically model flows of information (data flows)
between human or system actors external to a system (entities), activities that
manipulate data (processes), and persistent data storage (data stores) [24]. This
notation is often extended with trust boundaries: dotted boxes encompassing
DFD elements operating at the same level of privilege. Trust boundaries help
identify data flows that cross privilege levels [15].

DFDs have overlapping functions. Diane (a diagram creator) creates a DFD
that diagrammatically represents her mental model. On viewing the DFD, Elaine
(an engineer) internalises this mental model and requests changes. Dialogue
around their differences subsequently brings both mental models closer together.
Francis (a formal modeller) crafts a structured representation of a system, from
which subsequent reasoning can be performed. This relationship between a men-
tal model, a diagram, and a formal model has not been well explored.

Tuma et al. [21] first examined the potential of using information flow analysis
to reason about DFDs. They extended the DFD notation by labelling data flows
with assets and their security properties, indicating the source and target of
assets, including domain properties and assumptions from the KAOS modelling
language [12]. In later work, Tuma et al. [19] further illustrate the potential
for using DFDs for design-level information flow analysis. In their approach, a



domain specific language is used to model DFDs annotated with security labels.
The model is subsequently rendered as a graph and statically analysed.

Antigac et al. [1] examined how certain properties of a DFD can be hotspots
for further investigation. For example, a usage hotspot corresponds with 3 DFD
elements: data flow d into process p, process p, and data flow d ′ from p. Anti-
gac et al. showed how such hotspots bridge the gap between different models,
and provide a basis for subsequent model transformation without fundamentally
changing the visual semantics of DFDs.

2.2 Security and Software Design Meta-models

Meta-models specify how model concepts are associated. In doing so, they guide
analysts in collecting and analysing model data, and guide tool builders in con-
structing tools to support them. The software engineering community has ex-
amined the relationship between software and requirement modelling approaches
and security, as summarised by [14]. These approaches do not, however, account
for the role played by usability data and models. The IRIS (Integrating Re-
quirements and Information Security) meta-model was devised to provide
guidance on how early-stage design concepts from usability as well as security
and requirements engineering might be aligned [7]. A sub-set of the IRIS concepts
relevant to this paper is provided in Figure 1.
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Fig. 1. A UML class diagram showing the IRIS concepts related to threat modelling
(red), usability (blue) and requirements modelling (grey)

Coles et al. [2] demonstrated how use cases and assets provide the concepts
necessary to threat model with data flow diagrams, and how – in addition to
modelling system goals – the KAOS modelling language [12] is also suitable for
modelling attack trees as obstacles. To make attacker assumptions more explicit,



IRIS supports the specification of attackers. Attackers need not be intrinsically
malicious, but they will have some motivations as drivers for carrying out an
attack, and capabilities that provide the knowledge and resources necessary to
mount and sustain any threat. IRIS draws its taxonomy of motivations from
[13], and capabilities from [10]. An additional motivation of productivity was
also added to better reflect non-malicious attackers who intentionally or unin-
tentionally commit harm to get their job done.

To leverage the outputs of user research in security design, two popular us-
ability modelling concepts are supported by IRIS. Personas are specifications
of archetypical user behaviour [3]; they not only capture user goals and expec-
tations, but their construction and usage helps elicit security requirement [8].
Tasks are narrative scenarios that describe both the personas and the broader
system – including use cases – in context.

3 Approach

Our approach focuses on how tainted data flows cast doubt on the safety of the
data they carry. Unlike traditional taint analysis on program source code, the
origins of data flow taint in our approach could be human error resulting from
human entities and processes, or issues resulting from the DFDs and associated
specifications. These problems could have an indeterminate impact on affected
endpoints, thereby warranting further investigation. Aligning DFDs with usabil-
ity and requirements models provides context to assist such an investigation.

Assuming the pre-requisite models exist, our approach validates them using
the analysis checks described in Section 3.2. Because of its alignment with the
DFD concepts as shown in Figure 1, our approach relies on the IRIS meta-model.
DFD processes are analogous with use cases, and actors in use cases could be
human or system entities. DFDs directly link to usability models because use
cases, as processes, put tasks in context. DFDs are also indirectly linked because
roles constituting use case actors are also fulfilled by personas – who interact in
tasks – putting these roles in context.

3.1 Dataflow specification

DFDs are graphs, but can be specified as a set of data flow types. In our approach,
a data flow consists of a label, names of the DFD elements data flows from and
to, and the types of these elements, where NODE is either an entity , a process,
or a datastore. Data flows also specify the information assets (as DATA) they
carry. Using Z [22], we can express a data flow formally, where the predicate part
of the schema contains the well-formedness constraints:



DataFlow
label, from, to : STRING
fromType, toType : NODE
assets : PDATA

assets 6= ∅
((fromType = entity) ∧ (toType = process)) ∨
((fromType = process) ∧ (toType = entity)) ∨
((fromType = datastore) ∧ (toType = process)) ∨
((fromType = process) ∧ (toType = datastore)) ∨
((fromType = process) ∧ (toType = process))

3.2 Pre-Process and Post-Process analysis

For each entity in the DFD, our approach first visits the entity’s data flows using
the dataFlows recursive graph traversal function described in Algorithm 1. The
function populates a persistent array of unique data flow sequences (allSeqs),
and a persistent set of previously visited DFD elements (visited).

Algorithm 1: Identification of data flows
Input : currentNode - NODE , prefix - seqDataFlow
Data: allSeqs - seq(seqDataFlow), visited - PNODE , nodeFlows - ranNode ↔ DataFlow

1 Function dataFlows(currentNode, prefix) is
2 visited.add(currentNode);
3 dfs ← nodeFlows currentNode;
4 if dfs = ∅ then
5 if prefix.length > 0 then
6 allSeqs.append(prefix);
7 end
8 else
9 while df ← dfs do

10 newPrefix ← prefix ;
11 newPrefix .append(df );
12 if df .to ∈ visited then
13 allSeqs.append(newPrefix);
14 else
15 dataFlows df .to newPrefix ;
16 end
17 end
18 end
19 return;
20 end

Each sequence in allSeqs is then enumerated to identify and log potential
data pre-process and post-process taint as described in Algorithm 2. The types
mentioned in the algorithm can be found in Figure 1, with the exception of
VALUE , where VALUE ::= Low | Medium | High.

Pre-process taint checks (lines 3–15) identify instances where means, motives,
and opportunity are present for human errors and violations. The checks are per-
formed on data flows going from human entities to processes contextualised as
tasks; these processes are use cases linked to tasks as indicated in Figure 1. Tasks
become a possible source of human error when three conditions hold. First, roles
fulfilled by personas in a task are shared with roles fulfilled by attackers. Second,



Algorithm 2: Taint analysis
Input : dfSeq - seqDataFlow
Data: contextualisedTask - ran UseCase ↔ Task , taskAsset - ran Task ↔ Asset,

personaRoles - ran Persona ↔ Role, taskPersonas - ran Task ↔ Persona,
roleAttackers - ran Role ↔ Attacker , allAttackerRoles - ran roleAttackers∼,
attackerMotivation - ranAttacker ↔ Motivation, attackerCapability -
ranAttacker ↔ Capability, taskDemand - ranTask ↔ Value, goalConflict -
ranTask ↔ Value, processExceptions - ranUseCase ↔ Obstacle, obstructedGoals -
ranObstacle ↔ Goal, obstacleAssets - ranObstacle ↔ Asset, nameToProcess -
String 7→ UseCase, logPreProcessTaint - logs taint to process resulting from named
task, logPostProcessTaint - logs taint to process resulting from named obstructed goal

1 Function analyseDataFlows(dfSeq) is
2 while df ← dfSeq do

/* Check for pre-process taint */
3 if df .fromType = entity ∧ df .toType = process ∧ df .fromName ∈ Role then
4 while t ← contextualisedTask (nameToProcess df .toName) do
5 if df .assets ∩ taskAssets t then
6 while r ← (personaRoles (taskPersonas t) ∩ allAttackerRoles) do
7 while a ← roleAttackers r do
8 if (Productivity ∈ attackerMotivation a) ∧ (Low Time ∈

attackerCapability a) ∧ ( (taskDemand t ∩
{Medium,High}) ∨ (goalConflict t ∩ {Medium,High}) )
then

9 logPreProcessTaint (nameToProcess df .toName) t;
10 end
11 end
12 end
13 end
14 end
15 end

/* Check for post-process taint */
16 if df .fromType = process then
17 while o ← processExceptions df .fromName do
18 if (obstacleAssets o ∩ df .assets) 6= ∅ then
19 while g ← obstructedGoals o do
20 if isObstacleObstructed o = true then
21 logPostProcessTaint (nameToProcess df .fromName) g;
22 end
23 end
24 end
25 end
26 end
27 end
28 return;
29 end



attackers have a non-malicious motive and are constrained in the means avail-
able; we define such attackers as motivated by productivity and, as a capability,
a limited amount of time. Finally, affected tasks are demanding to the affected
personas, or in tension with their personal goals.

Post-process taint checks (lines 16–26) identify instances where exceptions re-
sulting from processes are unresolved, and these exceptions impact information
flowing from processes. Exceptions are modelled as obstacles obstructing one or
more system goals operationalised as the affected processes. An obstacle impacts
an out-going data flow if assets associated with the obstacle intersect with in-
formation assets in the data flow. An exception is unresolved if these obstacles
are not resolved by another goal, as determined by the isObstacleObstructed
function defined in Algorithm 3. It begins by determining whether the input
obstacle has been resolved by another goal. After evaluating whether the obsta-
cle has been resolved, the check enumerates both obstacles that are or-refined
and and-refined. In the case of or-refined obstacles, an obstruction on any of
the refined obstacles is enough to consider the obstacle obstructed. Conversely,
in the case of and-refined obstacles, an obstruction is present only if all refined
obstacles are obstructed.

Algorithm 3: isObstacleObstructed check
Data: resolvedObstacles - ranObstacle ↔ Goal, orRefinedObstacles -

ranObstacle ↔ Obstacle, andRefinedObstacles - ranObstacle ↔ Obstacle
Input : o - the obstacle name
Output: isObstructed - indicates if obstacle o is obstructed

1 Function isObstacleObstructed(o) is
2 ros ← resolvedObstacles o;
3 if ros 6= ∅ then
4 isObstructed ← false;
5 else
6 obs ← orRefinedObstacles o;
7 while oro ← obs do
8 isObstructed ← isObstacleObstructed oro;
9 if isObstructed = true then

10 break;
11 end
12 end
13 obs ← andRefinedObstacles o;
14 while aro ← obs do
15 isObstructed ← isObstacleObstructed aro;
16 if isObstructed = false then
17 break;
18 end
19 end
20 end
21 return isObstructed;
22 end

3.3 Implementation

We have demonstrated the feasibility of our approach by implementing it in
CAIRIS release 2.3.3. CAIRIS (Computer-Aided Integration of Requirements



and Information Security) is an open-source software platform for eliciting, spec-
ifying and validating secure and usable system specifications [6] developed as an
exemplar for IRIS tool-support.

CAIRIS models, once imported into the platform, are implemented as re-
lational databases. Graphical models in CAIRIS are automatically generated
using a pipeline process, where a declarative model of graph edges is generated
by CAIRIS; this is processed and annotated by graphviz [5] before being subse-
quently rendered as SVG. SQL stored procedures implement a suite of security
and privacy model validation checks. Algorithms 1 - 3 were implemented as SQL
stored procedures; these are executed during a normal model-validation check.
No changes were made to pre-existing visual models and the IRIS meta-model.

4 Pilot Study: Modifying telemetry outstation software

We used our approach to identify process taint in a partial specification of a
software repository for industrial control software. While based on a hypothet-
ical water treatment company, this anonymised specification is drawn from a
more complete specification model created for a UK water treatment company.
The CAIRIS model5 of this partial specification consists of 1 attacker, 1 role, 1
persona, 1 task, 1 use case, 28 goals, 17 obstacles, 58 goal and obstacle associa-
tions, 11 assets, 11 asset associations, and 7 data flows. Creation of the model is
not the subject of this paper, but further details of how the broader model was
created are provided in [9].

The specification captures the system goals and complementary model ele-
ments associated with modifying software running on telemetry outstations. Such
outstations provide the means for remotely monitoring and controlling physical
infrastructure such as water pumps. Malicious tampering of such outstations
contributed to the well publicised Maroochy Water Breach [18].

Dataflow Assets
job Job
software (to Sandbox) Telemetry Software File
software (from Sandbox) Telemetry Software File
updated software Telemetry Software File
current software Telemetry Software File
alarm Alarm
update Software Change
Table 1. Dataflows and assets

Id Sequence Pre-
Proc.

Post-
Proc.

1 〈job, alarm〉 7 7
2 〈job, update〉 7 X
3 〈job,updated

software,current
software〉

7 X

4 〈job,software,
software〉

7 X

5 〈current
software〉

X X

Table 2. Dataflow sequences and results of pre-
process and post-process taint checks

Our pilot study considers the impact of human error by an overworked techni-
cian focusing on the intricate task of updating software on telemetry outstations
5 Available from https://doi.org/10.5281/zenodo.3872071

https://doi.org/10.5281/zenodo.3872071


(Outstation update). This task puts in context the use case Modify Telemetry
Software as shown in Figure 2 (top), which is carried out by an instrument tech-
nician persona (Barry). Details of how the persona and tasks were constructed
are described in more detail in [8]. The task model provided the context nec-
essary to model the DFD generated by CAIRIS in Figure 2 (bottom). Table 1
specifies the assets carried in each data flow.

Technician Laptop

Modify Telemetry Software

Sandboxsoftware

Telemetry Outstation

updated software

Telemetry Network

alarm

Software Repository

update

software

current software

Technician job

Persona Role

Use caseAsset

Task

Process

Entity

Data store
Data flow

Trust boundary

Fig. 2. Usability model (top) and DFD (bottom) of Modify Telemetry Software gen-
erated by CAIRIS

Not shown in the visible models is an attacker (Unintentional Barry). This
attacker’s motivation and resources are specified as ‘Productivity’ and ‘Low Re-
sources/Personnel and Time’ to reflect non-malicious intent and a busy schedule.
The task model also indicates the assets that Barry directly or indirectly inter-
acts with in completing this task. The relationship between these and other
assets associated with the specification are shown in Figure 3 (right).



Upload Telemetry Software

Upload Site Program

Raise Change Alarm

Generate PTF

Commit Telemetry Software Changes

Modify Telemetry Software

Unavailable software repository No alarm sent

Goal

Obstacle

And refinement

Use case 

Persona

Asset

Fig. 3. Complementary KAOS goal model (left) and UML class diagram-based asset
(right) model generated by CAIRIS

On performing a model validation check, five unique sequences of data flows
were generated as shown in Table 2. The check indicates pre-process taint associ-
ated with sequences 1, 2, 3, and 4 resulting from the flow between the technician
and the process. This was due to the job flow carrying alarm information associ-
ated with the task and the potential for error. The task narrative describes how
Barry needs to raise an alarm to validate the setup is correct; the alert draws
attention to the implications of not safeguarding this information asset.

The model validation check also indicates post-process taint associated with
Sequence 1; this outgoing process flow carries alarm information. An exception is
associated with the second step of the process, where the system sends a change
alarm. As a cut of the goal model in Figure 3 (left) shows, the associated obstacle
remains unresolved and, although not visible, the obstacle is concerned with the
alarm asset carried in job.

5 Discussion and Conclusion

This short paper showed how, by putting DFDs in context, we can identify
process taint without changing any DFD semantics. CAIRIS demonstrates the
feasibility of our approach, but it could be adapted to any inter-operable combi-
nation of tools. Solutions for resolving the problems are not prescribed besides
changing the attacker model and tasks, or resolving exceptions. However, by
indicating otherwise invisible problems, our approach sheds light on why prob-
lems exists, and how a system or its context of use might need to change to
address them. This approach is contingent on specifications containing the con-
cepts in Figure 1 that might be created before, during, or after DFD creation.
Small or poorly resourced teams may lack the resources to maintain such models



given the user research investment required. However, this approach does allow
human factor experts to become more engaged with threat modelling. We are
currently working with system engineering teams with such expertise to evaluate
the impact this approach has on increasing such engagement.

A threat to validity is the small size of the pilot study specification. However,
we have also evaluated our approach using a more complex military medical
evaluation system model described in [11] consisting of 10 attackers, 14 roles, 9
personas, 12 tasks, 29 use cases, 46 goals, 25 obstacles, 167 goal and obstacle
associations, 82 assets, 388 asset associations, and 134 data flows. No differences
in model validation performance were noted for this larger model, but a detailed
evaluation of this and other larger models will be the subject of future work.

Our approach only considers non-malicious attackers engaging in difficult
tasks. However, Algorithm 2 can be extended to consider alternative attacker and
task attributes corresponding with different means, motives, and opportunities.
For example, an inside attacker might be motivated by improved esteem or thrill
seeking, and participate in tasks with differing levels of goal conflict.
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