FAILY, S. and IACOB, C. 2017. Design as code: facilitating collaboration between usability and security engineers using
CAIRIS. In Proceedings of the 4th Workshop on evolving security and privacy requirements engineering (ESPRE 2017),
part of the 25th IEEE international requirements engineering conference workshops (REW 2017), 4-8 September
2017, Lisbon, Portugal. Los Alamitos: IEEE Computer Society [online], pages 76-82. Available from:
https://doi.org/10.1109/REW.2017.23

Design as code: facilitating collaboration
between usability and security engineers using
CAIRIS.

FAILY, S. and IACOB, C.

2017

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works.

SEE TERMS OF USE IN BOX ABOVE

DISTRIBUTED UNDER LICENCE

mAl R This document was downloaded from

https://openair.rgu.ac.uk

@RGU

https://doi.org/10.1109/REW.2017.23

Design as Code: Facilitating Collaboration between
Usability and Security Engineers using CAIRIS

Shamal Faily
Bournemouth University
Poole, UK
sfaily @bournemouth.ac.uk

Abstract—Designing usable and secure software is hard with-
out tool-support. Given the importance of requirements, CAIRIS
was designed to illustrate the form tool-support for specifying
usable and secure systems might take. While CAIRIS supports
a broad range of security and usability engineering activities,
its architecture needs to evolve to meet the workflows of these
stakeholders. To this end, this paper illustrates how CAIRIS and
its models act as a vehicle for collaboration between usability and
security engineers. We describe how the modified architecture of
CAIRIS facilitates this collaboration, and illustrate the tool using
three usage scenarios.

Index Terms—CAIRIS; SaaS; Security; Usability; Personas;
Threat Modeling; KAOS; Risks; DevOps.

I. INTRODUCTION

Security by Design entails designing security into software
up-front. However, designing for use is important when de-
signing for security; unusable software is likely to be insecure
as errors or violations may expose exploitable vulnerabilities.
While simple in theory, Security by Design is difficult to
achieve as functionality and productivity always takes prece-
dence. Moreover, due to the bounded rationality bias, decision
making around design is limited by incomplete or inaccurate
information, and limits in time and resources for considering
all possibilities associated with a given design option [1].

Tool-support can deal with the bounded rationality by
helping automate the elicitation, analyses, and management of
information used to create models for design and engineering.
Requirements are focal point when designing software for
security and usability [2], but to evolve Security & Privacy
Requirements Engineering, software tools need to support not
only requirement specifications, but other forms of associated
data [3]. Without this information, stakeholders may find it
difficult to validate a design, or the analysis upon which design
decisions have been made.

Because no one tool facilitates the specification of usable
and secure systems, we developed CAIRIS (Computer Aided
Integration of Requirements and Information Security) to
illustrate the form tool support for requirements, security, and
usability engineering might take [4]. One of the main features
of CAIRIS is its ability to not only specify elements of a
system, but also the environments within which systems might
be situated. This allows users to compare and contrast the
impact that changes to a context of use might have on a
system’s usability and security.

Claudia Iacob
University of Portsmouth
Portsmouth, UK
iacob@port.ac.uk

In addition to supporting requirements engineers, we have
found that CAIRIS has the potential for broader use supporting
interaction design and security engineering. For example, in
the study described in [5], CAIRIS was used to specify context
of use descriptions, persona and attacker persona development,
requirements sense-making activities, and architectural risk
analysis. The study also illustrated how subjecting design
models to version control and build processes, and making
them publicly available via github increased project devel-
opers’ engagement with regards to maintaining requirements,
security, and architectural design models. Such behaviours
complement DevOps practices that emphasise collaboration
between design, development, and operations teams via au-
tomated processes that consider “infrastructure-as-code” [6].
However, in this study, CAIRIS was used by designers who
each had a working knowledge of requirements engineering,
security engineering, and user-centred design. In the wider
world, many project teams have practitioners with individual
expertise in only one, and occasionally two, of these areas.
While practitioners with expertise in one area might appreciate
the capabilities offered by CAIRIS, they are unlikely to expend
effort learning a tool that might impact their current processes,
tools, and workflows. There is, therefore, a need to evolve
the design of CAIRIS to better facilitate collaboration by
encompassing not only security requirements engineering,
but also tool and process interoperability with security and
usability engineering.

In recent years, one of the drivers for interoperability in
software design and engineering has been the growth in
Software-as-a-Service (SaaS) platforms. SaaS is a cloud-based
delivery model where a software application is offered as
a managed service [7]. Such platforms allow applications
to be accessible via modern web browsers running on any
platform. Porting CAIRIS to a SaaS platform helps achieve
our goals for process and tool interoperability in three ways.
First, CAIRIS would no longer require its users to be co-
located, so security, software, and usability engineers could
independently elicit their design elements based on the input
from others. Second, CAIRIS users can use not only any
operating system, desktop environment, and tool chain they
wish, they can potentially extend CAIRIS or other tools using
web service APIs. Finally, as an open-source project, the
design and evolution of CAIRIS would benefit from a growing

community of developers with the knowledge and expertise to
leverage web and cloud platforms.

To explore these possibilities, this paper presents CAIRIS
as a vehicle for collaboration between usability and security
engineers. We present the revised CAIRIS architecture in
Section II, before describing how it facilitates workflows in
usability and security engineering in Section III. After walking
through a number of usage scenarios in Section IV, we
conclude by discussing related tools, and some implications
of our work on CAIRIS in Sections V and VI respectively.

II. ARCHITECTURE

CAIRIS was developed in Python, MySQL stored proce-
dures, and JavaScript. The source code has been released under
an Apache Software License, and is freely available from
GitHub [8]. Unlike the original iteration of CAIRIS, which
is a single-user Linux-based desktop application, CAIRIS was
re-designed to be used by multiple users simultaneously, using
a modern web browser on any mobile or desktop operating
system.

CAIRIS services run on a single machine, virtual machine,
or Docker container. Like the desktop version of CAIRIS,
the data for a single CAIRIS project is stored in a MySQL
database; its database schema is based on the IRIS meta
model [2]. When exported, each database is serialised as an
XML model file based on a public Document Type Definition
(DTD). However, different aspects of a CAIRIS model, such as
goals, usability, and architecture, can be exported to individual
XML models conforming to specific DTDs.

Although the architecture of CAIRIS builds on the design
of the original desktop application, it differs in a number of
ways described below.

A. Multi-user support

The CAIRIS desktop application dealt with multiple users
via database locking. With very limited state information held
in the desktop application at a given time, this is an effective
solution when a small number of desktop clients interact with
a single CAIRIS database.

In the new architecture, a single CAIRIS server might
support a larger number of users. CAIRIS services interact
with CAIRIS databases via a proxy object associated with
each user session. These services are provided to clients via
Flask [9]. Flask-Security [10] is used to provide authentication
services, and Apache mod_wsgi-express [11] hosts the web
interfaces that client applications communicate with. These
open-source software components were selected as they have a
usage track record in multi-user SaaS applications, and benefit
from an active community of maintainers in the event of
unforeseen bugs and compatibility issues in the future.

B. User Interface Design

Although based on the desktop version of CAIRIS, the
interface design of CAIRIS was modified to reflect the dif-
ferent stakeholders that might use it. The interface design of
the CAIRIS desktop tool assumed a user primarily interested

in requirements management. As such, the user interface was
based on a spreadsheet metaphor, where requirements were en-
tered into a table, but additional design elements were entered
into modal dialog boxes. In contrast, although tables are still
used to edit requirements, requirements no longer dominate the
CAIRIS user interface. The home screen of the CAIRIS GUI
acts as a data dashboard, and the menu options have been
re-organised to group functionality into the areas that would
be primarily used by requirements engineers (Requirements),
security engineers (Risk), and interaction designers (UX).

C. Model management and design build processes

CAIRIS model files might contain all or part of not only
the system being specified, but also elements of its context
of use, or potential threat models. Such model files allow for
different configurations of a system or its environment to be
incrementally added by different design stakeholders.

Although the desktop application supports multiple versions
of a single requirement, it can also be useful to version other
CAIRIS model elements as well. Supporting versioning for
each model element would not only be disruptive to the current
CAIRIS architecture, but could have a negative impact on
performance given the database changes required. However,
based on our experiences using CAIRIS in [5], the easiest
and most effective way of providing highly granular version
control to a CAIRIS model file is to add it to a version control
system such as git. Because the model files are text based,
modern version control systems are adept at keeping track of
model changes and their impact.

This form of data interchange is illustrated by the specifica-
tion of the webinos platform in GitHub [12]. This repository is
a collection of CAIRIS models of software requirements, per-
sona specifications, architectural models, and attack patterns;
it also contains model data in other text file and spreadsheet
formats. A build script is used to convert non-CAIRIS model
data into CAIRIS models, incrementally import the different
models into CAIRIS, and export model data from CAIRIS
into different representation formats. The failure of CAIRIS
model “build” processes might occur because of some design
model inconsistency. Identifying inconsistencies at this stage
reduces the risk of errors or ambiguity being introduced into
downstream design and development activities.

D. CAIRIS APIs

The CAIRIS desktop tool facilitates data interchange via
a collection of import and export scripts; these convert data
from various sources into CAIRIS model files, and export
CAIRIS data back to other formats. Although these scripts
are still available to the CAIRIS server, the server exposes
a collection of web services, which are accessible via HTTP-
based RESTful APIs. Once authenticated, these APIs are used
both by the CAIRIS GUI, and other web application clients.
The APIs are used to create, read, update, and delete CAIRIS
model elements, retrieve visual models, import models into
CAIRIS, and export models and documentation from CAIRIS.

E. Visual Model Generation

One of the features of CAIRIS is the ability to automati-
cally generate visual models based on data within a CAIRIS
database. Rather than specification documents being the sole
means of information exchange about a system design, the
impact of a design change can be observed in real time, e.g.
the impact of changing an asset property to related risks, or
the impact a risk countermeasure might have on the security
and usability of an emerging design.

CAIRIS currently supports 12 different visual models, and
each model view displays a sub-set of elements associated
with different aspects of the IRIS meta-model [2], e.g. risk
views, task views, etc. Visual models are based on Graphviz
[13] models of nodes and edges. The declarative data that
feeds into this model is based on the results of a CAIRIS
database query on the elements associated with a particular
model view based on the IRIS meta-model. Based on this, a
representation of this model is built up with information about
how the model should be laid out on screen. Using components
from the Pycairo and XDot open source packages, this data
is rendered in SVG, which can be displayed in most modern
web browsers running the CAIRIS GUL

F. Documentation Generation

CAIRIS can automatically generate readable specification
documentation based on the contents of a CAIRIS database.
Documentation generation is a two-step process. The first step
involves rendering the CAIRIS model as XML conforming
to the DocBook standard [14]; the chapters of this document
conform to the Volere Requirements Specification Template
[15]. The second step involves taking the generated, machine-
readable DocBook file, together with the various graphic files
for the visual models as input, and using DocBook to LaTeX
conversion tools to create a human readable output format; the
formats currently supported by CAIRIS are RTF and PDF.

III. FACILITATING USABILITY AND SECURITY
ENGINEERING WORKFLOWS

To support collaboration, CAIRIS needs to facilitate rather
than inhibit good practice for usability and security engineer-
ing. To this end, we describe how CAIRIS supports typical
early stage usability and security engineering activities.

A. Persona Creation

Because potential vulnerabilities and threats can be identi-
fied during empirical data collection, persona development is
useful when designing for security [16]. The data collection
and analysis carried out also identifies tensions faced by users
interacting with security mechanisms [17].

We devised a tool-supported workflow for the elicitation
and creation of personas and their grounding; this is illustrated
by the video in [18]. The workflow is driven by the Persona
Helper [19] tool: a Chrome extension developed to illustrate
the use of the CAIRIS web services API. The Persona Helper
allows users to create factoids based on highlighted text on a
web page.

Once factoids have been elicited, affinity diagramming is
typically carried out by designers to group factoids to dis-
cover persona characteristics. Previous work described how
structuring these groups as argumentation models provides
assurances about the processes and data used to build personas
[20]. To tool-support the processes for grouping factoids, and
deriving persona characteristics using argumentation models,
we created the ability to export factoid data to and from
Trello: an online tool for creating online cards that users
can then group [21]; this was made possible via the use of
the Trello API. Factoids are exported from CAIRIS as cards,
which can be grouped in the same way as factoids in affinity
diagrams, and annotated to indicate the contribution made to
each persona characteristic. We also added functionality to
automatically generate persona characteristics in CAIRIS from
imported Trello boards.

This workflow makes it possible for a scribe to either
capture affinity diagrams as they are created, or for the Trello
board to be used for online affinity diagramming if designers
are not co-located.

B. Threat Modelling

1) Data Flow Diagrams: Many approaches to threat mod-
elling begin with some form of system decomposition activity.
Several approaches to security and privacy threat modelling
[22][23] prescribe the use of Data Flow Diagrams (DFDs);
these are graphical models that model the flow of information
(data flows) between external human or system actors external
to the system (entities), activities that manipulate data (pro-
cesses), and persistent data storage (data stores).

As part of our work, we introduced the concept of data
flows to the CAIRIS meta-model. To capture the security
implications of data flows, each data flow in CAIRIS carries
one or more information assets. We also aligned pre-existing
elements of the meta-model to correspond with DFD elements.
System, hardware, or people assets in CAIRIS were aligned
with the entities, use cases were aligned with processes, and
information assets were aligned with data stores.

2) Attack Trees: Attack trees are a formal, methodical way
of describing the security of systems [24]. As one of the most
commonly used threat modelling techniques, they are used
by security engineers as a lightweight ideation technique for
modelling attacks to find their root causes; they are typically
created using a paper and pen, or a whiteboard. However,
once the insights have been drawn from the attack trees
and incorporated into other design models, they are largely
forgotten.

CAIRIS supports KAOS goal and obstacle models [25],
where goals model requirements the system needs to specify,
and obstacles are conditions that prevent goals from being
achieved. Because obstacle models are represented using the
same top-down approach notation as attack trees, they are a
good candidate for representing the attacks.

We developed functionality for importing attack trees
marked up in DOT [26] into CAIRIS. When these are im-
ported into a specific environment, generated obstacles can be

associated with risk analysis elements; this makes it possible to
see how goals are obstructed, and how obstacles are resolved
as risks are mitigated.

IV. USAGE SCENARIOS

We now present three usage scenarios to demonstrate how
CAIRIS supports security and usability engineering. The con-
text for these scenarios is the design of a new control system
for a hypothetical water company. Collaborating on the design
and engineering of this system is an interaction designer
(Alice), and a security engineer (Bob).

Although not explicitly mentioned in the scenarios, both
Alice and Bob interact with the same version controlled
CAIRIS model; once they have made changes to their model,
they commit their changes to make them available to the wider
project team. Even though Alice and Bob work with the same
model, they are not using the same instance of CAIRIS. Alice
relies on a CAIRIS instance running on a Docker container
hosted by her laptop, whereas Bob uses an instance of CAIRIS
hosted by a cloud-based service provider.

A. Creating Assured Personas

To understand the user goals of people using the new
control system, Alice interviewed several plant operators.
Once anonymised, Alice rendered her interview transcripts as
HTML pages, before opening them up in Google Chrome. She
then connected her Persona Helper extension to CAIRIS, and
coded her transcripts for factoids. She used CAIRIS to export
the factoids into Trello in readiness for affinity diagramming
with two of her colleagues. Unfortunately, her colleagues were
not in the office that day, but they agreed to use Trello to
affinity diagram online while talking on Skype. Once affinity
diagramming had concluded, and all factoids were annotated,
she exported the Trello board to CAIRIS to generate persona
characteristics; she then entered narrative text describing the
persona into CAIRIS based on these characteristics. Finally,
to quickly share both the persona and the latest system
design with colleagues and the security team, she generated
a specification document based on the latest version of the
CAIRIS model (Figure 1).

B. Discovering Risks from Attackers and Threat Models

A team of penetration testers were scheduled to evaluate
the new control system by probing its network infrastructure.
Bob wanted the environment to be resistant to intrusive probes
of the system for vulnerabilities before this testing took place.
To help others understand more about these testers, he decided
to create a sketch of a potential penetration tester to illustrate
his goals and motivations, and carried out threat modelling to
understand how — based on the penetration tester’s capabilities
and motivations — such probing might be made possible.

Bob and his colleagues in the security team drew an attack
tree to model this threat. Once complete, Bob marked up the
attack tree in DOT; the Graphviz rendered tree is shown in
Figure 2 (left). Bob noted that detecting application scans is
a new requirement the infrastructure needs to support, but

ACME Water Personas 11/31

5.3.2.13 Rick Argumentation Model

5.3.2.13.1 Activities

:

Rick Activities Assumptions Model

Fig. 1. Generated requirements specification document, which includes
persona definitions and underpinning argumentation models

he would need to consider the implications that incomplete
Intrusion Detection System (IDS) rules might have.

Bob imported the attack tree into CAIRIS to generate a
new KAOS obstacle model. He defined a threat in CAIRIS
to summarise how the penetration tester might enumerate
the system (Enumeration), and a new vulnerability based on
incomplete IDS rules (Incomplete Intrusion Detection rules),
which he linked to the appropriate leaf node of the obstacle
model (Incomplete IDS ruleset). As the threat could exploit
the vulnerability in the same context of use, he captured
this as a risk (System enumeration). CAIRIS automatically
rated the risk based on the likelihood of the threat (Probable),
severity of the vulnerability (Critical), and security properties
the penetration tester aims to compromise; the algorithm for
rating risk in CAIRIS is described in more detail in [4]. Before
the risk could be confirmed, Bob was required to write a
misuse case scenario contextualising the risk and its supporting
elements; this helped Bob confirm the analysis contributing to
the risk was sound, and provided additional rationale for others
wishing examine his reasoning.

Enumeration

[Query Enterprise SCADA nelworkj (Pull data from STCS rmurcesj [Collec\ data from SCADA wmksmionsj [Culle:l data from plant operalors}

Fuzz STCS

(Fuzz web appsj (Pmbe STCS applimlinm) (the ICT nppllcanom) (Dump password hashes)

Detect application scans

Incomplete IDS ruleset

Keylog credentials

Collecs o plnaperss Pl rom STCS s

one < [in] ®

A CARIS

A Assets

Asset @

STCS Appiication

Significance | Criicality | Interfaces
STCS Application
Tags @

Shortcode @ stes

Type @ Software

+ |Environment @

|

— | Night +[Property ® |Value |Rationale

—[integrity High | Water treatment process could be compromised by corrupted or non-available software.

STCS unavailabilty is disruptive to daytime operations, bt — in the event of failure — PLCs and

| Avaiabity | Medium | y,or gevices can be manualy controlled.

— | Accountabilty | Low | Applications are maintained under support contracts.

Fig. 3. Editing assets

Bob devised a solution for mitigating this risk. When details
of this risk mitigation were added to CAIRIS, the goal model
was automatically updated to indicate the leaf obstacle was
resolved, as illustrated in Figure 2 (right).

C. Contextualising the Implication of Security and Usability
Design Decisions

While creating and analysing personas, Alice and her team
created two environments in CAIRIS based on the two main
contexts of use associated with the new control system: these
relate to operations during normal working hours (Day), and
out-of-hours operations (Night). Bob used CAIRIS to elicit
assets of value to the water company associated with the new
control system (Figure 3). Because threats and vulnerabilities
might differ based on these contexts, he indicated the security
properties needing to be protected in each context. Bob used
this information to help elicit risks.

germaneriposte.org:7071/api/attackers/name/Ben

Fig. 4. Visualising a task’s security impact

In parallel to this, Alice elicited tasks that the personas
created would carry out. For example, she used CAIRIS to
provide details of how one of the personas deals with a
broken instrument alarm; this included a narrative scenario
contextualising how the persona carries out the task, and a list
of assets associated with the task.

When Alice visualised the Broken Instrument Alarm task
in context (Figure 4), she noted risks (red ellipses) that may
impact the task (the blue ellipse). By clicking on nodes in the
model, Alice obtained details of these risks, including details
of potential attackers. This allowed her to review the rationale
behind the models created by Bob.

Together Bob and Alice sat down to model data flows
between elements associated with this task (Figure 5). The
task description guided Alice in sketching the DFD, while Bob

failure event
alarm notification

Suppress alarm
anomaly notes
-

Fig. 5. DFD illustrating the data flow associated with fixing a broken
instrument.

N SCADA Workstation
alarm override

manual alarm override

Plant Staff’

Works Diary

contributed by clarifying the information carried in each data
flow, and checking that the entities/data stores and processes
corresponded with assets and use cases in the existing design
model. Once complete, Bob identified obstacles associated
with the obstruction of security properties in each DFD
element, to form the basis of additional attack tree modelling
by his team.

V. RELATED TOOLS

CAIRIS is unique in its support for modelling from a
security, usability, and software engineering perspective. There
are, however, several other tools that support modelling within
each area.

A range of commercial tools support the elicitation and
management of risk, but comparatively few support the mod-
elling of threats that feed into a risk analysis. Of the tools
which are available, the two most notable are the CORAS
tool [27] and IriusRisk [28]. CORAS is an open source tool
supporting the creation of risk related models associated with
the CORAS method; these models support participative risk
analysis workshops. IriusRisk is a commercial SaaS platform
for capturing and visualising the impact of threats on software
architectures.

Several tools allow designers to draw data flow diagrams
to support threat modelling, e.g. [29][30]. Given the impor-
tance of threat modelling, future work will explore concept
alignment between CAIRIS and such tools, and prototype im-
port/export tools to evaluate the potential of threat modelling
tool interoperability.

While there are various tools for supporting task analysis
and modelling, tool support for personas is currently limited to
SaaS tools or templates the facilitate their specification rather
than elicitation, e.g. [31].

The dominant software engineering tool for supporting
KAOS goal and obstacle modelling is Objectiver [32]. This is
a commercial desktop product, but is currently being extended
to support web services [33].

CAIRIS was not designed to compete with tools like those
mentioned above. It does, however, illustrate how complemen-
tary “best of breed” tools might be used together, and the form
that process and data interoperability might take.

VI. CONCLUSION

This paper presented CAIRIS as a vehicle for collaboration
between usability and security engineers. We presented the
main features of CAIRIS, before presenting usage scenarios
that illustrate how security and usability engineers might use
the tool. In doing so, we also show how CAIRIS models
afford opportunities for tool-supported automation, where pro-
cesses for managing and provisioning of machine-readable
early-stage design models — Design as Code — can lead to
collaboration between usability and security engineers.

The usage scenarios show how CAIRIS facilitates typical
security and usability engineering activities, and helps inter-
action designers understand the design rationale of security
engineers, and vice versa. Implicit in these scenarios is the
need for precision. Alice and Bob need to be precise when
directly and indirectly specifying security model elements in
CAIRIS, e.g. the rationale behind asset security properties,
and the information carried in each data flow. Such precision is
needed to facilitate traceability, and automation of the analysis
and generation of CAIRIS models. Such precision should
be welcomed rather than considered a distraction, given the
potential of ambiguity for undermining requirements and other
design models. We accept that ambiguity can be a resource
for design [34], but the scenarios also show that precision
need not interfere with ideation when designers from different
backgrounds work together.

Although explicitly designed to support the IRIS framework
[35], the usage scenarios suggest CAIRIS is evolving to
become methodology agnostic. For example, the activities
carried out by Bob in Section IV-C are not incompatible with
STRIDE [22], or even LINDDUN [23] if the goals pertained to
privacy rather than security. Moreover, CAIRIS was recently
used by students to help complete coursework assignments
for a unit on ‘Security by Design’ at Bournemouth University.
The assignment brief did not mandate the use of any particular
methodology, but CAIRIS was found to support students using
SQUARE [36], and elements of STRIDE. A more detailed
evaluation of the use of CAIRIS to support different Security
& Privacy Requirements Engineering approaches will be the
subject of future work.

REFERENCES

[1] H. A. Simon, “Rational decision making in business organizations,” The
American Economic Review, vol. 69, no. 4, pp. 493-513, sep 1979.

[2] S. Faily and I. Fléchais, “A Meta-Model for Usable Secure Requirements
Engineering,” in Proceedings of the 6th International Workshop on
Software Engineering for Secure Systems. IEEE Computer Society,
2010, pp. 126-135.

[3] R. Darimont and C. Ponsard, “Supporting quantitative assessment of
requirements in goal orientation,” in Proceedings of the 23rd IEEE
International Requirements Engineering Conference, 2015, pp. 290-291.

[4] S. Faily and I. Fléchais, “Towards tool-support for Usable Secure Re-
quirements Engineering with CAIRIS,” International Journal of Secure
Software Engineering, vol. 1, no. 3, pp. 56-70, July-September 2010.

[5] S. Faily, J. Lyle, L. Fléchais, and A. Simpson, “Usability and Security by
Design: A Case Study in Research and Development,” in Proceedings
of the NDSS Workshop on Usable Security. Internet Society, 2015.

[6] G. Kim, K. Behr, and G. Spafford, The Phoenix Project: A Novel About
IT, DevOps, and Helping Your Business Win. 1T Revolution Press,
2014.

[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

B. Wilder, Cloud Architecture Patterns. O’Reilly, 2012.

S. Faily, “CAIRIS GitHub site,” http://github.com/failys/CAIRIS, July
2017.

A. Ronacher, “Flask website,” http://flask.pocoo.org, December 2016.
M. Wright, “Flask-Security website,” https://pythonhosted.org/
Flask-Security, June 2017.

G. Dumpleton, “mod_wsgi-express PyPI site,” https://pypi.python.org/
pypi/mod_wsgi, March 2017.

webinos Consortium, “webinos design data repository,” https://github.
com/webinos/webinos-design-data, March 2013.

AT&T, “Graphviz web site,” http://www.graphviz.org, June 2012.
DocBook Technical Committee, “DocBook Schema Specification,” http:
/Iwww.docbook.org/schemas/5x, 2008.

J. Robertson and S. Robertson, “Volere Requirements Specification Tem-
plate: Edition 14 - January 2009,” http://www.volere.co.uk/template.htm,
2009.

S. Faily and I. Fléchais, “Barry is not the weakest link: eliciting secure
system requirements with personas,” in Proceedings of the 24th BCS
Interaction Specialist Group Conference. British Computer Society,
2010, pp. 124-132.

S. Faily and I. Fléchais, “User-centered information security policy
development in a post-stuxnet world,” in Proceedings of the 6th In-
ternational Conference on Availability, Reliability and Security, 2011,
pp- 716-721.

S. Faily, “Creating Personas using the Persona Helper, CAIRIS, and
Trello,” http://dx.doi.org/10.13140/RG.2.2.29180.54403, March 2017.
——, “Persona Helper Chrome extension,” https://github.com/failys/
persona_helper, April 2017.

S. Faily and I. Fléchais, “The secret lives of assumptions: Developing
and refining assumption personas for secure system design,” in Proceed-
ings of the 3rd Conference on Human-Centered Software Engineering,
vol. LNCS 6409. Springer, 2010, pp. 111-118.

Fog Creek Software, “Trello website,” https://trello.com, April 2017.
A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Sons, 2014.

(23]

[24]
[25]

[26]
[27]
[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

K. Wuyts, “Privacy Threats in Software Architecture,” Ph.D. dissertation,
KU Leuven, 2015.

B. Schneier, “Attack Trees,” Dr. Dobb’s Journal, 1999.

A. van Lamsweerde, Requirements Engineering: from system goals to
UML models to software specifications. John Wiley & Sons, 2009.
E. R. Gansner, “The DOT Language,” http://www.graphviz.org/doc/Dot.
ref, February 2002.

M. S. Lund, B. Solhaug, and K. Stglen, Model-Driven Risk Analysis:
The CORAS Approach. Springer, 2010.

Continuum Security, “IriusRisk - Threat Modeling Tool,” https://www.
continuumsecurity.net/threat-modeling-tool/, April 2017.

Microsoft Corporation, “Microsoft Threat Modeling Tool 2016,”
https://www.microsoft.com/en-us/download/details.aspx?id=49168, Oc-
tober 2015.

Mozilla, “SeaSponge website,” http://mozilla.github.io/seasponge, April
2015.

Fake Crow, “User Persona Creator,” https://xtensio.com/user-persona/,
March 2017.

Respect-IT, “Objectiver web page,” http://www.objectiver.com, June
2013.

R. Darimont, W. Zhao, C. Ponsard, and A. Michot, “A Modular Require-
ments Engineering Framework for Web-based Toolchain Integration,” in
Proceedings of the 24th IEEE Requirements Engineering Conference,
2016.

W. W. Gaver, J. Beaver, and S. Benford, “Ambiguity as a resource for
design,” in CHI ’03: Proceedings of the SIGCHI conference on Human
factors in computing systems. New York, NY, USA: ACM, 2003, pp.
233-240.

S. Faily, “A framework for usable and secure system design,” Ph.D.
dissertation, University of Oxford, 2011.

N. R. Mead, E. D. Hough, and T. R. S. II, “Security Quality Re-
quirements Engineering (SQUARE) Methodology,” Carnegie Mellon
Software Engineering Institute, Tech. Rep. CMU/SEI-2005-TR-009,
2005.

	coversheet_template
	FAILY 2017 Design as code

