FAILY, S. 2005. Does object-oriented domain analysis work? Requirements quarterly, 37, pages 10-11.

Does object-oriented domain analysis work?

FAILY, S.

2005

mAl R This document was downloaded from

@RGU https://openair.rgu.ac.uk




RQ37 (September 2005)
Page 10

RE-Papers

Does Object-Oriented Domain Analysis
Work?

Shamal Faily, LogicaCMG Space & Defence
Division, shamal.faily@logicacmg.com

The Rational Unified Process (RUP) [5], the Rapid
Object-Oriented Process for Embedded Systems
(ROPES) [2] and other OO approaches propose Use
Case driven analysis as a mechanism for capturing
requirements and deriving object models.

B. Douglass’ Real Time UML [3] describes how “later
analysis decomposes the system into ... objects”.
Beyond discussion of a number of common object
identification strategies, such as noun-phrase
underlining and key concept identification, only lip-
service is paid to what has been described as the
Fundamental Difficulty (FD) of Object Oriented
Domain Analysis (OODA).

The Fundamental Difficulty was defined by Svetinovic
et al (at RE’05 in Paris, see the reports in this issue)
[7] as the difficulty of identifying system domain
concepts as Objects (which some might think pretty
central to the OODA enterprise - Ed.). A study of
undergraduate projects, documented by Svetinovic
using these techniques, found that object models of the
same system often differed drastically in terms of

10

concepts identified, while software concepts were often
specified at inconsistent abstraction levels.

These observations raise the concern that OODA may
be incorrectly applied by many practitioners.
Microsoft’s Steve McConnell [6] argues that most
practitioners neither have the benefit of a Software
Engineering education, nor do they have ready access
to evaluations of the myriad of available tools and
techniques.

Managing the abstraction problems

Software Engineers will appreciate the difficulty of
working at multiple levels of abstraction whilst
evaluating or developing Object Oriented software,
even for solutions within a well-known problem
domain. Could the results presented by Svetinovic
indicate cognitive overload, caused by the combination
of trying to understand the problem space and
conceptualising this within the object metaphor?

A cost-effective remedy might be to focus on key
Object-Oriented concepts, in practice, using an OO
Programming Language such as Python or Smalltalk.
Many people, myself included, commonly use Python
to prototype concepts and ideas which can be
eventually implemented in other languages, such as
C++.

By using OO Programming to test one's own ideas
and explore how idioms and patterns can work



Requirements Quarterly
The Newsletter of the BCS RESG

together, one can appreciate some of the beauty and
elegance of solving problems with the object
metaphor. Students and practitioners alike should then
be more confident and better prepared to abstract the
problem space more accurately.

A Reality Check

If transforming domain concepts to objects were
purely a visualisation task, a good argument would
still exist for OODA. Unfortunately, the more one
looks at the grey area between the problem and
solution spaces, the less good the argument seems.

For example, Concept Identification by noun-phrase
analysis, using scenarios, depends on the quality of the
scenario text. But even if the scenarios were initially
well-written, what may they be like after repeated and
possibly biased editing?

Tool-support can help; promising approaches such as
Metamorphosis [1] are likely to evolve to support
OODA.

But Open-Source tool support in this area is scarce;
COTS tool support is costly; and research approaches
have had only a limited outing within industry.
Worse, the combination of domain and engineering
knowledge necessary to make OODA work remains
scarce.

Since few people in industry will want to volunteer
their own projects as a proving ground even for
suitably risk-mitigated OODA approaches, we may
have to accept that progress will be slow.

A way forward?

Fortunately, there are other ways to explore the
problem space besides OODA, including traditional
approaches like context analysis, and modern ones like
goal modelling.

Also, because of the increasing ubiquity and maturity
of OO and its applications within the solution space,
Software Engineers are well positioned to apply
Objects in the problem space.

Hawthorne [4] has suggested that continuing trends
such as the move of software development off-shore to
the lowest-cost location of the day and growing reliance
on COTS/Open Source components willforce

11

RQ37 (September 2005)
Page 11

Software Engineers to apply their architectural
expertise within problem-space areas, ie in the domain
of the Requirements Engineer.

We should not necessarily abandon OODA; many
industrial projects have used it successfully. But
perhaps we should drop OODA for now, until we can
better mitigate the concept identification risk?

And, what about a head-to-head comparison between
OODA and other approaches? Such a study could help
determine where the Fundamental Difficulty lies.

In conclusion

I hope that this short discussion of OODA will
provoke reflection on the value of applying the object
metaphor within Requirements Engineering.

At the least, OODA needs a health-warning on its
cellophane wrapper.

References

[1] Diaz, 1., Pastor, O., Matteo, A., Modeling
Interactions using Role-Driven Patterns, Proceedings
of RE’05, Paris, IEEE

[2] Douglass, B., Doing Hard Time: Developing Real-
Time Systems with UML, Objects, Frameworks, and
Patterns, 1999, Addison-Wesley

[3] Douglass, B., Real Time UML, 2004, Addison-
Wesley

[4] Hawthorne, M. J., Perry, D. E., Software
Engineering Education in the Era of Outsourcing,
Distributed Development, and Open Source Software:
Challenges and Opportunities, Proceedings of ICSE
2005, ACM

[5] Kruchten, P., The Rational Unified Process, 1999,
Addison-Wesley

[6] McConnell, S., Code Complete, 2004, Microsoft
Press

[7] Svetinovic, D., Berry, D, M., Godfrey, M.,
Concept Identification in Object-Oriented Domain
Analysis: Why Some Students Just Don't Get It,
Proceedings of RE’05, Paris, IEEE

© 2005 Shamal Faily



	coversheet_template
	FAILY 2005 Does object-oriented domain



