FAILY, S. and LYLE, J. 2013. Guidelines for integrating personas into software engineering tools. In Proceedings of the
5th ACM SIGCHI symposium on engineering interactive computing systems (EICS 2013), 24-27 June 2013, London, UK.
New York: ACM [online], pages 69-74. Available from: https://doi.org/10.1145/2494603.2480318

Guidelines for integrating personas into software
engineering tools.

FAILY, S. and LYLE, J.

2013

mAl R This document was downloaded from @ @
https://openair.rgu.ac.uk

@RGU

https://doi.org/10.1145/2494603.2480318

Guidelines for Integrating Personas into Software
Engineering Tools

Shamal Faily
Department of Computer Science
University of Oxford, Oxford OX1 3QD, UK
firstname.lastname @cs.ox.ac.uk

ABSTRACT

Personas have attracted the interest of many in the usability
and software engineering communities. To date, however,
there has been little work illustrating how personas can be
integrated into software tools to support these engineering
activities. This paper presents four guidelines that software
engineering tools should incorporate to support the design
and evolution of personas. These guidelines are grounded in
our experiences modifying the open-source CAIRIS Require-
ments Management tool to support design and development
activities for the EU FP7 webinos project.

Author Keywords
Personas; Design Rationale; CAIRIS; CAQDAS; XML

ACM Classification Keywords
H.5.2 User Interfaces: User-centered design

General Terms
Human Factors; Design.

INTRODUCTION

Personas — behavioural specifications that embody the goals
and needs of archetypical users — have been a popular tech-
nique in user-centered design practice since they were first
introduced over 10 years ago [4]. Personas were introduced
to deal with developer biases arising from the word user.
Such biases lead programmers to bend and stretch assump-
tions about what users should do. By building systems with
only specific users in mind, d evelopers only h ave to focus
on those requirements necessary to keep these users happy.
The idiosyncratic detail associated with personas also makes
them communicative to a variety of different technical and
non-technical stakeholders.

In recent years, interest in personas and the personification of
archetypical users has extended to the software engineering
communities. For example, Constantine [3] describes how
models of user roles, which are analogous to personas, can
drive visual interface design, while Roberts [17] claims that

John Lyle
Department of Computer Science
University of Oxford, Oxford OX1 3QD, UK
firstname.lastname @cs.ox.ac.uk

personas can supplement UML models by contextualising de-
scriptions of user roles. Surprisingly, however, despite sev-
eral proposals for integrating personas methodologically with
software engineering [1, 2, 15], there has been little work de-
scribing how software engineering tools should be augmented
to support their creation, usage, and on-going maintenance.
We believe this is unfortunate. From a user-centered design
perspective, it may be acceptable to create and use personas
without the use of software. However, from an engineer-
ing perspective, personas may be intricately woven into the
traceability of different models, and justify design decisions
at many levels of abstraction. Failure to properly specify, val-
idate, or maintain personas may lead to precisely the sort of
problems they were originally designed to address. Conse-
quently, while personas are not rigorously specified, they are
still models that contribute to the engineering of interactive
systems.

It seems reasonable that personas be accorded the same level
of tool-support as other software design models. However,
to date, the focus of software engineering tools has been to
support the design and development of software, not user-
centered design artifacts like personas. This means we need
to understand how personas can be integrated into software
tools to ensure they help, rather than hinder, software engi-
neering practice.

In this paper, we present four guidelines that enable software
engineering tools to support the creation, use, and on-going
evolution of personas. After describing the related work that
motivated our work, we briefly introduce the open-source
CAIRIS software tool, and the EU FP 7 webinos project that
formed our context of study. We then present four guidelines
based on our experiences using personas to support the de-
sign and development of the webinos platform. We conclude
by discussing some of the consequences of our work.

RELATED WORK

Despite their value in supporting the design and development
process, there is a surprising lack of both literature and soft-
ware tools for supporting the creation, analysis, and on-going
management of personas. One of the few current examples
of software for persona creation and management is Persona
[13] from Mariner Software. This tool manages information
about personas, and predicts their behaviour. However, the
tool itself is designed to support creative writing so some of
its capabilities, such as re-using hero and villain archetypes,
are of limited use to software design. Moreover, while the

tool’s capabilities for exploring persona relationships may
have some value when designing collaborative systems, en-
gineers may prefer to focus on explicit aspects of these inter-
actions using more formal, UML based models.

The software engineering community have long argued that
personas can be used to bridge usability and software en-
gineering processes. For example, recent work by Schnei-
dewind et al. [18] argued that personas can support all stages
of the requirements engineering process, from requirements
elicitation with use cases through to requirements validation.
This is made possible because the purposes of personas, such
as modelling and prioritising, align with different require-
ments engineering activities that require insights about users.
However, while personas help support these activities, their
effect may be marred without effective tool-support. For ex-
ample, Schneidewind et al. claim that personas help prioritise
requirements because they help understand the requirements
of use case actors. However, the needs of personas may con-
flict, and such conflicts may not be immediately obvious from
descriptions and use cases alone. It is, therefore, necessary to
view the different relationships personas have with different
design models, and ensure both personas and associated mod-
els are shared between team members and other stakeholders.

One of the few examples of software that integrates personas
with different software design models is CAIRIS (Computer
Aided Integration of Requirements and Information Security)
[6]. CAIRIS is an open-source Requirements Management
tool that was initially designed to support the specification of
interactive secure systems. In addition to managing require-
ments models such as use cases and goal models, CAIRIS
also manages the data associated with several security and
usability engineering models, such as risks, scenarios, and
personas. CAIRIS complements the use of specific security,
requirements, and usability engineering techniques. If these
techniques were properly applied, then models arising from
them could be directly entered or imported into CAIRIS. The
implications of personas in a system’s design would then be
amenable to some automated analysis. For example, [7] il-
lustrates how the alignment between personas, scenarios, and
risk analysis models can be used to visualise both the security
and usability impact of different scenarios to personas.

As a product of ‘autobiographical’ design research [16],
CAIRIS had previously been used in several projects where
a single designer was responsible for eliciting all of the data
managed by the tool. However, on larger projects, design-
ers collecting data may not be the same people responsible
for building or using personas. In such situations, designers
may be uncomfortable using personas if the data upon which
they are based is unavailable. For example, in a recent study
examining how designers use personas, Matthews et al. [14]
found that many designers find personas too abstract, and in-
stead prefer using the data upon which these are based. Such
data allows designers to make their own sense of user data.
This suggests that if software tools are to adequately support
personas, they also need to support the qualitative data anal-
ysis processes that create them. However, to date, Computer
Aided Qualitative Data Analysis (CAQDAS) software tools,

techniques, and general insights for carrying out qualitative
data analysis, e.g. [11] remain largely restricted to academic
researchers rather than software engineers.

INTEGRATING PERSONAS INTO WEBINOS

To understand how personas can be integrated into software
tools, we customised CAIRIS for the EU FP 7 webinos
project [22]. This project integrated the use of personas with
its design and development activities.

webinos is a software infrastructure (webinos) for running
web applications across different device platforms [10]. The
project team was drawn from 24 organisations across Eu-
rope, including universities, network providers, handset and
car manufacturers, mobile software houses and market ana-
lysts.

To understand the expectations of prospective webinos users
and application developers, ten personas was created. These
personas were created by a team of five designers, drawn from
across the webinos consortium; this team was responsible for
not only creating the personas, but also maintaining them
throughout the life of the project. To create the personas,
the designers elicited factoids about prospective users from
a variety of data sources. Affinity diagramming was used to
categorise these factoids into clusters of potential behaviour.
These clusters were structured using argumentation models
[19] to motivate individual persona characteristics. More in-
formation about process used to create these personas, and the
personas themselves, can be found in [20]. Once the personas
had been created, the designers entered the persona argumen-
tation structures and narratives into CAIRIS. These designers
were also responsible for maintaining the personas through-
out the project.

In addition to personas, scenarios were also created by project
team members to envisage how webinos might be used, and
describe some of the unintended consequences that might
arise as a result. The design team incorporated and, where
necessary, revised these scenarios based on the different per-
sonas. These scenarios were then entered into CAIRIS, to-
gether with related use cases and requirements for different
functional areas of webinos [21].

As the project progressed, personas were used to motivate
more detailed design and implementation activities. Personas
played an important role in supporting an architectural risk
analysis of the webinos software platform [9], and were used
by developers to motivate new feature requests, e.g. [12].
When necessary, new personas were also created. For ex-
ample, one persona was created for a 5 year old child to un-
derstand how he might interact with a webinos-enabled travel
game for young children.

GUIDELINES
Based on our experiences customising CAIRIS for webinos,
we have elicited the following four guidelines for developers
wishing to integrate personas into their own software engi-
neering tools.

e Make persona characteristics explicit
Software Engineering tools should make the rationale for

persona characteristics available from the interfaces where
persona narratives are displayed.

e [ntegrate qualitative data analysis
Software Engineering tools should provide the analytical
support necessary to create and maintain personas.

e Facilitate persona interchange
Software Engineering tools should serialise personas in a
format that encourages interchange and maintenance by
developers that may be using different tools.

e Revision control personas
Software Engineering tools should facilitate the revision
control of personas.

We motivate and demonstrate these guidelines in the follow-
ing sub-sections.

Make persona characteristics explicit

Personas were a new concept to most people on the project,
with some developers being hesitant to trust what they con-
sidered to be fictional narratives. This meant that the analy-
sis underpinning the personas needed to provide rationale for
their descriptions, at the point when this rationale might be
needed.

We believed that aligning the narrative of persona characteris-
tics with their argumentation models would provide this miss-
ing rationale. However, questions about these characteristics
and their validity still arose when interacting with personas
using CAIRIS. To address this, we decided to link context-
specific argumentation models within the persona dialog con-
trols. Each persona dialog contained folders for the persona’s
activities, attitudes, aptitudes, motivations, and skills; these
were based on behavioural variable types suggested by [5].
We added a context-sensitive menu to each folder to allow
the visualisation of all the characteristic argumentation mod-
els associated each behavioural variable type.

Figure 1 illustrates the visualisation of the argument under-
pinning the persona characteristic ‘Contextual variety encour-
ages rather than discourages user-centeredness’. Based on
Toulmin’s model of argumentation, the white boxes act as the
grounds for the characteristic’s claim, while the blue boxes
act as warrants connecting the grounds to the characteristic.
The link to the data source document is indicated by the grey
boxes linking the grounds and warrant objects. Finally, the
dotted box shows a qualifying term indicating how confident
the analyst is about this characteristic.

Applying this guideline helped the team identify personas
that were overly general or ambiguous. In a number of cases,
we identified personas that were built incorrectly by develop-
ers and analysts, who wrote the person narratives before fol-
lowing the argumentation process; this effectively bypassed
the prescribed processes for creating personas. The argumen-
tation model visualisation was useful in spotting and correct-
ing such personas by drawing attention to the fallacies under-
pinning the personas’ characteristics and, together with the

* *

Characteristic 5 @ 1
#I ‘-|* Code T Quotation

1.7

14 . 1¢

1. Internal
Persona Document

Figure 2. Meta-model of a persona’s qualitative data analysis elements

personas’ designers, walking through how the prescribed pro-
cess — and the argumentation models in particular — iden-
tified these fallacies, while also eliciting new characteristics
about the persona.

Integrate qualitative data analysis

The argumentation models provided some assurance about
a persona’s characteristics, but useful insights which arose
while creating the personas were lost once the personas were
created. To capture such insights, it is not enough for tools
for interact with persona data - they need to support the an-
alytical processes necessary to create and maintain them as
well.

The Persona Case framework set out in [8] provided an ap-
proach for qualitatively analysing this data and, based on this
analysis, developing new persona characteristics. This frame-
work, however, assumed that a dedicated CAQDAS tool was
available to carry out this analysis. Unfortunately, financial
constraints meant that the potential commercial tools could
not be used, and no suitable open-source alternative was
available. Consequently, we decided to update CAIRIS to
incorporate all the elements necessary to support qualitative
data analysis while conforming to the framework described

by [8].

To examine the efficacy of this integration, we used CAIRIS
and the Persona Case framework to augment an existing per-
sona with new characteristics. This persona (Jimmy) was
based on application developer, which was a key audience
for webinos. The empirical data upon which Jimmy’s charac-
teristics were based were collected was selected during three
focus group sessions organised for potential webinos appli-
cation developers. Focus group participants were recruited
based on characteristics they shared with Jimmy.

The class diagram in Figure 2 shows the concepts incorpo-
rated into CAIRIS’ data model and interfaces. The focus
group reports were imported into CAIRIS as internal docu-
ments. The reports were qualitative coded, and text segments
were annotated as quotations that were categorised accord-
ing to a specific categorical code. Alternatively, where text
segments raised particular questions or insights then these
could be annotated with memos. Conceptual relationships
between codes could be modelled, where each relationship
corresponded to a persona characteristic. The Persona Case
framework requires the quotations associated with each code
to be both further categorised and labelled according to the
role it plays in each characteristic’s argumentation model.

=

E[6]]

] s (= B (@
G @l &6 a8

Persona Behaviour Type

Characteristic

[simmy v [

v | |contextual variety encourages rather than discourages usercenteredhesﬁ‘ v |

JimmyAmbiesense

Preferential stakeholders

| Resource-driven thinking

Milestone contexts

Activity location contexts |

| JimmyOxford

| Contexts overwhelming

Role as context

JimmyPolito

Layout

|Hwerarchical

Figure 1. Visual model of a persona characteristic’s grounding

&y =]

context possibilities (5) i} facilitating insecurity (3)

“Charact sristic

[Ccntex‘(ual variety leads to inappropriate use cases]

Qualifier

[Posswbly]
context possibilities facilitating insecurity

Element Type Element Type
Context-driven users grounds Preference deduction grounds
Contexts overwhelming grounds Categorisation indifference grounds
Immediacy preference warrant Inappropriate behaviour easier grounds

Milestone contexts warrant

Activity location contexts warrant

Characteristic Type

[Comtex‘tual | hd ‘

| Update H Close ‘

Figure 3. Details of qualitative grounding of a persona characteristic

To support the specification of this information, interfaces
were added not only for adding and managing codes, quota-
tions, and code relationships but also, as Figure 3 shows, the
role each quotation played in a characteristic’s argumentation
model.

Facilitate persona interchange

Making CAIRIS available to everyone on the project made
model interchangeability a concern. CAIRIS facilitated
model interchange using XML; models would be exported
to XML on one running instance of CAIRIS, and imported
on another. Due to the complexity of the underlying CAIRIS
database, which contained over 320 tables, the webinos mod-

els were spread across multiple XML documents; each doc-
ument was structured according to a Document Type De-
scription (DTD). These DTDs structured elements accord-
ing to different model categories. For example, requirements
model elements were structured according to a ‘goals’ DTD,
while usability model elements such as personas and scenar-
ios were structured based on a ‘usability DTD’. Because there
were dependencies between different XML documents that
could not be easily resolved, these needed to be imported into
CAIRIS in a particular order to ensure referential integrity in
the database was maintained.

Developers were comfortable using XML to exchange mod-
els, but not all developers wanted to use CAIRIS. CAIRIS,
however, played an important role is analysing the impact
of different models on persona characteristics and vice-versa.
Therefore, to ensure that team members would maintain per-
sonas, model interchangeability had to be supported at the
level of personas, rather than at the coarse grained levels of
the DTD. To do this, we modified the DTD for CAIRIS ‘us-
ability’ elements to make the exchange of personas easier.
An excerpt of the revised usability DTD is visualised in Fig-
ure 4. Class names correspond with element names, and the
left-right order in the diagram indicates the order of elements
within the DTD. Our aim in modifying this DTD was to allow
personas and all their supplemental data to be externalised in
a single XML document. We also wanted to make the struc-
ture of these documents as close as possible to CAIRIS’ con-
ceptual model of personas. This meant that, while the DTD
was sub-optimal when compared to XML schema validation,
it was easier for most team members to understand and main-
tain.

We believe this approach to persona interchange was success-
ful because, while CAIRIS was only consistently used by a

usability

persona document_reference external_document persona_characteristic
+ name: String + name: String + name: String + persona: String
+ type: (Primary | Secondary) + document: String + version: String + behavioural_variable:
+ image: String + contributor: String + date: String (activities | attitudes |
+ activities: String + excerpt: String + authors: String aptitudes | motivations | skill)
+ attitudes: String + description: String + qualifier: String

+ aptitudes: String
+ motivations: String
+ skills: String

+ definition: String
4

* *

[grounds | [rebuttal |
[+ reference: String | , | [+ reference: String |

warrant

+ reference: String

Figure 4. Class diagram of persona DTD structure

few team members, the personas still continued to be main-
tained and used. This is because scripts were created to ex-
port the CAIRIS models to the project wiki for easy viewing.
If changes were necessary, the XML models could be edited
directly using simple text editors.

Revision control personas

The interchangeability of personas raised questions about
how they should be treated with respect to other design mod-
els. We were concerned not only with the traceability of per-
sonas with other models, but also how these would be main-
tained as webinos’ design evolved. This was particularly im-
portant when personas were used to discuss implementation
specific features, e.g. [12]. Consequently, if personas were
to be accorded the same consideration as other models by the
project team they would need to be placed under revision con-
trol. This is because the other design models were already un-
der revision control and made openly available as a GitHub
project [23].

We implemented this guideline in two ways. First, as de-
scribed in the previous section, each persona and its asso-
ciated qualitative data was stored in a single XML docu-
ment. However, because some persona argumentation ele-
ments were used to ground multiple personas, importing in-
dividual persona XML files would lead to the import of du-
plicate data, thereby breaking the CAIRIS database’s entity
integrity. Therefore, the import logic was modified to ensure
such duplicates would not be added. Second, the persona files
were stored in a single directory on GitHub, and the model
build script was revised to import each individual persona into
the CAIRIS database. This meant personas would be kept in
one place for ease of access, and any syntactical errors in the
XML documents, or referential integrity errors resulting from
problematic traceability links, could be addressed while mod-
els were being imported into CAIRIS.

CONCLUSION

In this paper, we illustrated how personas could be better sup-
ported with software engineering tools, and presented four
guidelines based on our experiences modifying CAIRIS for

the webinos project. As a result, we believe this paper makes
three important contributions.

First, we have drawn attention to the need for tool-support
for personas, and discussed the consequences of this need
remaining unaddressed. We hope others in the community
share our concerns and will be inspired to join us by continu-
ing work in this area.

Second, we have provided practical examples of how soft-
ware tools can be augmented to better support personas when
engineering interactive systems. The need for supporting per-
sona interchangeability and revision control may seem self-
evident, but our work has demonstrated how such guidelines
can be implemented. We are conscious of the limitations of
these guidelines, which are grounded only in the experiences
in a single project. However, as a large-scale project, we be-
lieve that these experiences can be generalised.

Third, we believe these guidelines raise broader methodologi-
cal questions. For example, our approach for revision control-
ling personas was appropriate for webinos as all source data
had been anonymised. However, such an approach may not
be appropriate when working with sensitive data that needs
to be anonymised or access controlled. While such concerns
are orthogonal to this paper, provisioning CAIRIS for the
creation and maintenance of personas highlighted issues that
might otherwise have remained unaddressed.

ACKNOWLEDGMENTS

The research described in this paper was funded by EPSRC
EUSTACE project (R24401/GA001), and EU FP7 webinos
project (FP7-ICT-2009-05 Objective 1.2).

REFERENCES
1. Behrenbruch, K., Atzmiiller, M., Evers, C., Schmidt, L.,
Stumme, G., and Geihs, K. A personality based design
approach using subgroup discovery. In Proceedings of
the 4th international conference on Human-Centered
Software Engineering, HCSE’12, Springer-Verlag
(Berlin, Heidelberg, 2012), 259-266.

2. Castro, J. W., Acuna, S. T., and Juristo, N. Integrating
the personas technique into the requirements analysis

10.

11.

12.

13.

activity. In Proceedings of the 2008 Mexican
International Conference on Computer Science, IEEE
Computer Society (2008), 104-112.

. Constantine, L. Users, Roles, and Personas. In The

persona lifecycle: keeping people in mind throughout
product design, J. Pruitt and T. Adlin, Eds. Morgan
Kaufmann, 2006, ch. 8, 498-519.

. Cooper, A. The Inmates Are Running the Asylum: Why

High Tech Products Drive Us Crazy and How to Restore
the Sanity (2nd Edition). Pearson Higher Education,
1999.

. Cooper, A., Reimann, R., and Cronin, D. About Face 3:

The Essentials of Interaction Design. John Wiley &
Sons, 2007.

. Faily, S. CAIRIS web site.

http://github.com/failys/CAIRIS, March 2013.

. Faily, S., and Fléchais, I. Towards tool-support for

Usable Secure Requirements Engineering with CAIRIS.
International Journal of Secure Software Engineering 1,
3 (July-September 2010), 56-70.

. Faily, S., and Fléchais, 1. Persona cases: a technique for

grounding personas. In Proceedings of the 29th
international conference on Human factors in
computing systems, ACM (2011), 2267-2270.

. Faily, S., Lyle, J., Namiluko, C., Atzeni, A., and

Cameroni, C. Model-driven architectural risk analysis
using architectural and contextualised attack patterns. In
Proceedings of the Workshop on Model-Driven Security,
ACM (2012), 3:1-3:6.

Fuhrhop, C., Lyle, J., and Faily, S. The webinos project.
In Proceedings of the 2 1st international conference
companion on World Wide Web, WWW ’12 Companion,
ACM (New York, NY, USA, 2012), 259-262.

Lewins, A., and Silver, C. Using software in qualitative
research : a step-by-step guide. SAGE, Los Angeles,
2007.

Lyle, J. JIRA Issue WP-596: Single authentication for
peer-to-peer service sharing.
http://jira.webinos.org/browse/WP—596,2012
November.

Mariner Software. Persona. http:
//www.marinersoftware.com/products/persona,

March 2013.

14.

15.

17.

18.

19.

20.

21.

22.

23.

Matthews, T., Judge, T., and Whittaker, S. How do
designers and user experience professionals actually
perceive and use personas? In Proceedings of the 2012

ACM annual conference on Human Factors in
Computing Systems, CHI *12, ACM (2012), 1219-1228.

Moundalexis, M., Deery, J., and Roberts, K. Integrating
human-computer interaction artifacts into system
development, vol. 5619 LNCS. Springer, 2009.

. Neustaedter, C., and Sengers, P. Autobiographical

design in hci research: designing and learning through
use-it-yourself. In Proceedings of the Designing
Interactive Systems Conference, DIS *12, ACM (2012),
514-523.

Roberts, D. Coping with complexity. In
Human-Centered Software Engineering: Integrating
Usability in the Software Development Lifecycle,

A. Seffah, J. Gulliksen, and M. C. Desmarais, Eds.
Springer, 2005, ch. 11, 201-217.

Schneidewind, L., Horold, S., Mayas, C., Kromker, H.,
Falke, S., and Pucklitsch, T. How personas support
requirements engineering. In Usability and Accessibility
Focused Requirements Engineering (UsARE), 2012 First
International Workshop on (2012), 1-5.

Toulmin, S. The uses of argument, updated ed.
Cambridge University Press, 2003.

webinos Consortium. User expectations on privacy and
security.
http://webinos.org/content/webinos—-User_
Expectations_on_Security and Privacy_vl.pdf,

February 2011.

webinos Consortium. Updates on Requirements and
available Solutions.
http://www.webinos.org/wp-content/uploads/2012/
09/Updates_on_Requirements_and_available_
Solutions_vl.1l_public.pdf, August 2012.

webinos Consortium. webinos web site.
http://webinos.org, March 2012.

webinos Consortium. webinos design data repository.

https://github.com/webinos/webinos—design—-data,
March 2013.

http://github.com/failys/CAIRIS
http://jira.webinos.org/browse/WP-596
http://www.marinersoftware.com/products/persona
http://www.marinersoftware.com/products/persona
http://webinos.org/content/webinos-User_Expectations_on_Security_and_Privacy_v1.pdf
http://webinos.org/content/webinos-User_Expectations_on_Security_and_Privacy_v1.pdf
http://www.webinos.org/wp-content/uploads/2012/09/Updates_on_Requirements_and_available_Solutions_v1.1_public.pdf
http://www.webinos.org/wp-content/uploads/2012/09/Updates_on_Requirements_and_available_Solutions_v1.1_public.pdf
http://www.webinos.org/wp-content/uploads/2012/09/Updates_on_Requirements_and_available_Solutions_v1.1_public.pdf
http://webinos.org
https://github.com/webinos/webinos-design-data

	coversheet_template
	FAILY 2013 Guidelines for integrating personas
	Introduction
	Related Work
	Integrating personas into webinos
	Guidelines
	Make persona characteristics explicit
	Integrate qualitative data analysis
	Facilitate persona interchange
	Revision control personas

	Conclusion
	Acknowledgments
	REFERENCES

