
FAILY, S., POWER, D. and FLÉCHAIS, I. 2016. Gulfs of expectation: eliciting and verifying differences in trust
expectations using personas. Journal of trust management [online], 3, article number 4. Available from:

https://doi.org/10.1186/s40493-016-0025-9

This document was downloaded from
https://openair.rgu.ac.uk

Gulfs of expectation: eliciting and verifying
differences in trust expectations using personas.

FAILY, S., POWER, D. and FLÉCHAIS, I.

2016

https://doi.org/10.1186/s40493-016-0025-9

Journal of Trust ManagementFaily et al. Journal of Trust Management (2016) 3:4
DOI 10.1186/s40493-016-0025-9

RESEARCH Open Access

Gulfs of expectation: eliciting and
verifying differences in trust expectations
using personas
Shamal Faily1*, David Power2 and Ivan Fléchais2

*Correspondence:
sfaily@bournemouth.ac.uk
1Department of Computing &
Informatics, Bournemouth
University, Poole, UK
Full list of author information is
available at the end of the article

Abstract
Personas are a common tool used in Human Computer Interaction to represent the
needs and expectations of a system’s stakeholders, but they are also grounded in large
amounts of qualitative data. Our aim is to make use of this data to anticipate the
differences between a user persona’s expectations of a system, and the expectations
held by its developers. This paper introduces the idea of gulfs of expectation – the gap
between the expectations held by a user about a system and its developers, and the
expectations held by a developer about the system and its users. By evaluating these
differences in expectation against a formal representation of a system, we demonstrate
how differences between the anticipated user and developer mental models of the
system can be verified. We illustrate this using a case study where persona
characteristics were analysed to identify divergent behaviour and potential security
breaches as a result of differing trust expectations.

Keywords: Security, Usability, Personas, CSP, Trust

Introduction
When building usable software, it is accepted that both the gap between the user’s goals
and the means to achieve it (the gulf of execution), and the gap between software’s rep-
resentative state and the user’s ability to perceive it (the gulf of evaluation) should be as
narrow as possible [1]. However, for critical concerns such as software security, we believe
that the expectations of those who use it, and those who develop it need to be aligned as
well. Developers cannot directly perceive the models and metaphors users build to make
sense of how their software works, and neither can users directly perceive how much
trust to place in the developers’ design and the software’s ability to help satisfy their goals,
or provide an accurate representation of its state. We focus specifically on security since
it is an area of system design that requires a very clear understanding from users about
the capabilities of the software and the consequences of decisions, and for which users
have significant prior experiences and expectations. Consequently, we argue that there is
a need to capture the differences in expectations between users and developers, but in
such a way that security does not get in the way of building software, or understanding
the user experiences associated with it.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40493-016-0025-9-x&domain=pdf
mailto: sfaily@bournemouth.ac.uk
http://creativecommons.org/licenses/by/4.0/

Faily et al. Journal of Trust Management (2016) 3:4 Page 2 of 22

To attend to user experiences, it is common to build usability design artefacts such
as personas: narrative descriptions of fictional users that embody some user behaviour.
This behaviour is identified by qualitatively analysing data collected during interviews
or ethnographic research. Personas provide insights to developers about hard to reach
users they might otherwise never meet [2]. Using the persona’s narrative descrip-
tion, a designer may hypothesise a persona as suitable for an activity; such an activity
might entail multiple personas either directly or indirectly collaborating with each
other. However, other insights may be hidden in the persona description or related
artefacts. When carefully identified and analysed, we can uncover instances where
users and developers hold different expectations about how they trust the system
to behave.
Because of the volume of data underpinning personas, we cannot rely on casual inspec-

tion alone to find such breaches of trust: a structured approach, supported by software
tools, is preferable. Ideally, such an approach would allow us to automatically verify for-
mal models of the personas in order to identify potential breaches of trust. While there
has been interest in the use of such models to formalise human behaviours, these simplify
the notion of artifacts like personas to a collection of attributes, rather than analysing
actual personas [3]. Unfortunately, given that personas are grounded in qualitative data,
devising formal models that model checkers can verify is difficult.
In this paper, we present the idea of the gulf of expectation. We define this as the gap

between a user’s expectations of a system and its developers, and the expectations held
by the developer about the system and its users. To understand this gap, we describe
how qualitative data analysis techniques and formal specification languages can be used
together to evaluate the implications of differing trust expectations between a system’s
user community and its developers; these differing expectations can be used to identify
precise differences between stakeholders’ mental models of a system and its formal spec-
ification. We describe the related work upon which gulfs of expectation are grounded
before presenting the main features of an approach that demonstrates this. We illustrate
its use using a case study example, before discussing the implications and limitations of
this work.

Related work
Personas

Personas are detailed description of imaginary people that embody shared assumptions
about users of a product, data regarding users of a product, or both [4]. Unlike taskmodels
which focus on modelling activities that humans undertake, personas are concerned with
their needs and expectations.
Personas were first introduced by Cooper [5] as a means for dealing with program-

mer biases arising from the word user. These biases lead to programmers introducing
assumptions causing users to bend and stretch to meet these needs; Cooper called this
phenomenon ‘designing for the elastic user’; his solution was to design for a single user
representing the target segment of the system or product being designed. This approach
brings two benefits. First, designers only have to focus on those requirements necessary
to keep the target persona happy. Second, the idiosyncratic detail associated with per-
sonas makes them communicative to a variety of stakeholders. Since their initial proposal
over a decade ago, personas have now become a mainstay in User Experience practice,

Faily et al. Journal of Trust Management (2016) 3:4 Page 3 of 22

with articles, book-chapters, and even a book [4] devoted to the subject of developing and
applying them to support interaction design.
Personas have also been useful for engaging stakeholders in quality concerns like secu-

rity [2], and the analysis that contributes to their creation complements security analysis
by identifying opportunities for both use and misuse [6]. A visual illustration of the role
personas can play in design for security can be seen in [7].
Personas help describe the impact of human factors when imagining how a system

might be used; knowing these behaviours can be useful when prioritising features or look-
ing for innovative ideas. However, many insights that might lead to innovation may not
have been obvious when originally creating personas. Such insights may be locked in
the empirical data upon which the artifacts are based, and may not emerge by simply
presenting them to stakeholders, or writing them into a scenario.

Deriving persona trust characteristics using grounded theory

Qualitative data analysis techniques have been shown to be effective at making sense of
the data upon which personas are based. A leading approach for qualitative data analysis
is Grounded Theory; this is a qualitative data analysis technique for generating theory
from observed real-world phenomena [8]. These theories, and the sense-making activities
associated with carrying them out, form the rawmaterial that subsequent design activities
can build upon.
Grounded Theory involves the application of three coding activities. To help make ini-

tial sense of the data, open coding is carried out to initially categorise themes arising in
the data. The analytic tool of sensitising questions is used to help the researcher to see
process, variation, and so on, and to make connections between concepts. Axial coding
involves crosscutting, or relating, concepts to each other; this activity goes hand-in-hand
with, rather than separately following, open coding [8]. Causes, conditions, contexts, and
consequences are identified, mapped using semantic relationships, and structured into
categories; this leads to new insights into the source material, and guides subsequent
coding activities. During selective coding, emergent categories are organised around a
central, core category according to specific criteria, such as ensuring the central category
is abstract, it appears frequently in the data, it is logical and consistent with the data, and
the concept grows with depth and explanatory power as other categories are related to it.
Grounded Theory is not traditionally construed as a design technique per se, but it has

been used for theory-building in security and privacy research. For example, Adams [9]
used Grounded Theory to induce a method of user perceptions of privacy from empirical
data, and Fléchais [10] used Grounded Theory to induce and refine a model of the factors
affecting the design of secure systems, based on empirical data gathered from several
different case studies.
One of the barriers to exploring the efficacy of this technique is a lack of understanding

between qualitative data analysis research concepts and usability design concepts. With-
out this understanding, it is difficult to envisage how tool support might help both design
and research activities. The Persona Case framework (illustrated in Fig. 1) was designed
to surmount this barrier by illustrating how qualitative models can be used to systemati-
cally derive personas [11]. This involves treating a design problem as a research problem,
and devising research questions to characterise it. Qualitative research is then conducted
to collect empirical data from the user population of concern; this might include running

Faily et al. Journal of Trust Management (2016) 3:4 Page 4 of 22

Fig. 1 The contribution of Grounded Theory to personas (taken from [11])

interviews, or some form of ethnographic study. The qualitative data collected is then
coded and analysed using Grounded Theory to develop a conceptual model that tackles
the research problem. Using models based Toulmin’s Model of Argumentation [12], each
relationship from this conceptual model is structured to motivate and justify a persona’s
characteristic.
Recent work has illustrated how the Persona Case framework can be used to elicit trust

characteristics from pre-existing personas [13]. These are useful for understanding the
expectations about a system that personas of users expect to hold, or personas of devel-
opers expect users to satisfy. These characteristics describe the attributes of personas
that lead them to behave in a trustworthy manner (intrinsic trust), and attributes of the
context that motivate persona trustworthy behaviour (contextual trust). The work builds
on Riegelsberger’s framework for trust in technology-mediated interactions [14] to sup-
port a grounded theory analysis of trust factors influencing a particular user population.
The research questions that drive the coding process are motivated by this framework,
and include questions about intrinsic and contextual trust properties. The Persona Case
framework is then used to derive intrinsic or contextual trust characteristics from each
relationship in the grounded theory model.

Modelling and analysing users and systems with formal methods

While personas and their trust characteristics can identify the trust expectations an
archetypical system user or system developer might have, it may not be apparent what the
impact of expectation clashesmight be in terms of system behaviour. Consequently, it may
not be apparent that undesirable outcomes, ranging from unexpected system behaviour
through to inconsistent use of security mechanisms, result from these clashes.
Formal methods can help identify such clashes. As the design of trustworthy sys-

tems requires input from stakeholders from different disciplines, formal methods allow
contributions from these different disciplines to be represented in forms that can be

Faily et al. Journal of Trust Management (2016) 3:4 Page 5 of 22

understood properly and contextually by all stakeholders in the design process; it does
this by providing rules about how to describe and reason about people and systems.
Moreover, if models of users and the interacting system can be described precisely,
claims about how easy activities are for users can be assessed, or how trustworthy
a system is given their expectations. Assessing these claims is particularly important
when complex interactions between system elements are difficult to make sense of,
and lead to emergent behaviour that may be obvious when carrying out normal testing
activities.
Dix has identified several kinds of formal methods for HCI, the most dominant classes

being usermethods that encompassmodels for analysing interaction, and systemmethods
that model the system the user interacts with. The contribution that failures in human-
automation interaction have made to aviation accidents [15], has led to innovation in a
variety of different user methods for observing and analysing how users carry out tasks
to achieve their goals, together with methods for modelling the outcomes of this research
[16]. Although the task analysis carried out by designers to create such models can be
time consuming, task analysis and modelling are still frequently used by human factors
researchers, particularly those working in regulated domains like aviation and maritime.
However, despite work on adapting task modelling techniques to support the engineering
of interactive systems, e.g. [17–20], they can be problematic when considering their design
for two reasons.
First, task analysis and task modelling were devised to evaluate human performance

associated with some design in context. As such, one needs to design and implement
the system before analysing and modelling how a human user interacts with it. Such sys-
tems are usually highly complex, and the role of the human is limited to those activities
necessary to support them. In contrast, humans play a more instrumental role in many
software systems we encounter on a day-to-day basis, such as desktop productivity tools
or mobile apps; their context of use also affords greater creativity and unpredictabil-
ity. While we might envisage how humans use such systems, the cost of analysing and
formally modelling their use as tasks would be exorbitant.
Second, while task models of envisaged systems appear useful for modelling tasks

at a high level of abstraction, they are ineffective if tasks are accomplished in dif-
ferent ways without significant differences in effective performance; Diaper [21] illus-
trates this by providing examples from Air Traffic Control where, at a high level,
tasks frequently appear brief and routine, whereas at lower levels are much more
elaborate.
Because of the way that behavioural nuances are manifested, modelling user interac-

tions in system terms provide a means for identifying erroneous or suspicious behaviour
on an a priori basis [22, 23]. In their review of formal verification techniques for Human-
Automation Interaction, Bolton et al. [15] describe two dominant strategies for eliciting
differences in modes of behaviour using system based formal methods.
The first strategy involves the use of theorem proving, where theories are built and

proven to verify a system’s correctness. This strategy was used by Masci et al. [24],
who used PVS to support a field study into the social aspects of cognition by different
participants. PVS (Prototype Verification System) is a framework for constructing spec-
ifications in higher-order logic that can be subject to theorem proving [25]. Masci et al.
analysed different information resources and developing theories that explained physi-

Faily et al. Journal of Trust Management (2016) 3:4 Page 6 of 22

cal and social work activities. While such a strategy appears to complement the activities
associated with user experience research, automating this strategy can be difficult due to
the expressive nature of the logics used.
The second strategy entails the use of model checking, where formal models are ver-

ified to see if they satisfy desired properties encapsulated within a specification. Bolton
[20] demonstrated such an approach using Enhanced Operator Function Model with
Communications (EOFMC) tomodel human-human protocols. The instantiated EOFMC
task model was translated into SAL, and input into the SAL-SMC model checker to find
countere xamples associated with potential miscommunication.

Introducing CSP and FDR

One problem associated with both of the above strategies, which arguably stymies the
broader take-up of formal methods, is the creation of verifiable specifications of peo-
ple and systems. In the examples described by Masci et al. and Bolton, specifications
were created by analysing pre-existing system documentation and case data. However,
in a real design setting, the available qualitative data may not be in such a digestible
format.
While it is usually employed as a specification language for verifying concurrent pro-

tocols, CSP (Communicating Sequential Processes) has also been used for modelling
patterns of interaction at higher levels of abstraction. CSP is a language for describing
observable behaviour [26]. Components representing designs or properties are repre-
sented using processes, and processes and behaviours are described in terms of events.
Although the process algebra used to model behaviours in CSP can be expressive,
most models can be specified using only the Stop, prefix, external, and internal choice
operators.
CSP is also augmented with a language of data-types, and parameters can be used

to represent state information or identify instances of generic processes. If processes
share parameterised events, these are expressed as channels. Channels include parameter
values, separated by ‘ . ’, representing the data being passed.
The below specification (taken from [27]) illustrates the use of CSP to model theDining

Philosopher’s problem [28].

N = 8

PHILNAMES = {0..N-1}

FORKNAMES = {0..N-1}

channel thinks, sits, eats, getsup : PHILNAMES

channel picks, putsdown : PHILNAMES.FORKNAMES

-- A philosopher thinks, sits down, picks up two forks,

-- eats, puts down forks and gets up, in an unending

-- cycle.

PHIL(i) =

thinks.i -> sits!i -> picks!i!i ->

picks!i!((i+1)%N) -> eats!i -> putsdown!i!((i+1)%N) ->

putsdown!i!i -> getsup!i -> PHIL(i)

Faily et al. Journal of Trust Management (2016) 3:4 Page 7 of 22

Behaviours can also be described using traces, which are sequences of events that may
be performed. In large models, we are interested in sequences of events that lead to fail-
ures. Using the FDR (Failure-Divergence Refinement) model checker [29], it is possible to
carry out a refinement check of one specification against the properties of another. Refine-
ment check failures lead to traces that provide evidence of divergences, where undefined
behaviour might arise following a particular point.
A more thorough description of CSP and FDR is beyond the scope of this paper, but a

more detailed introduction to both is provided by [30].

Using CSP and qualitative data analysis to derive formal specifications

CSP is precise enough for its specifications to be formally checked, yet also expressive
enough to deal with some nuances of human interactions. For example, Buth [31] used
CSP, together with the FDR model checker to compare mental and system models asso-
ciated with an aircraft’s autopilot system, and evaluate whether the mental models were
valid refinements of the system’s specification. CSP has also be used to verify instance-
based behavioural models such as use cases [32] and scenarios [33], and reasoning about
interactions between multiple human actors; this was demonstrated by Jirotka and Luff,
who used CSP to model work practices associated with shares trading [34].
If it were possible to derive and express characteristics suggesting the mental state of

personas using CSP, it would be possible to use refinement checking to anticipate their
likely behaviour, investigate whether this behaviour satisfies a system’s safety and live-
ness properties, or is free from divergent behaviour. This would help to highlight patterns
of behaviour that betray the trust placed by the developer (through the system design)
on the user. While there is no obvious means for deriving such characteristics, Jirotka
and Luff [34] indicate how this may be possible. Specifically, to elicit the CSP events and
processes associated with a financial trading floor, Jirotka and Luff carried out qualita-
tive data analysis of video transcripts; this involved summarising segments of text using
categories, and drawing relationships between these categories to not only make sense
of these categories, but identify hitherto invisible themes within the transcripts them-
selves. The categories elicited formed the basis of candidate CSP events and processes.
As they began to make more sense of this data, they were able to perceive how such inter-
actions might be formalised. Moreover, undertaking this formal analysis complemented
the qualitative data analysis by providing an even better understanding of the original
transcripts.

Exploiting gulfs of expectation
Our work aims to identify gulfs of expectation where a system’s users have different trust
expectations about a system than its developers, where both users and designers are mod-
elled as personas. With careful analysis of descriptions of these expectations, we can elicit
more precise, fine-grained models of behaviour implied by a persona. When refinement
checked against a precise system specification, we demonstrate how failures verify the
presence of these gulfs. This general approach is visualised in Fig. 2.
We identify gulfs of expectation by developing persona characteristics about intrinsic

and contextual trust, and closely aligning the methods and tools for creating these char-
acteristics with approaches that can formally model and evaluate them. To do this, we
align the qualitative data analysis concepts associated with the Persona Case framework

Faily et al. Journal of Trust Management (2016) 3:4 Page 8 of 22

Fig. 2 Approach for eliciting and verifying gulfs of expectation

[11] with those associated with a CSP specification, thereby creating a means of creating
CSP specifications that formally describe persona behaviour.
To facilitate the required alignment of qualitative data analysis and formal modelling,

we rely on tools that integrate the qualitative data analysis of persona data into the tools
used to create and manage them [35]. CAIRIS (Computer Aided Integration of Require-
ments and Information Security) [36] is an illustration of such a tool. CAIRIS is an
open-source security design tool for specifying usable and secure systems. CAIRIS was
developed to better understand the form that software tools for designing usable and
secure software systems might take, and was designed with extensibility in mind. CAIRIS
has been used to import data from sources ranging fromwiki pages and spreadsheets [37],
to open source repositories about attack patterns [38]. The tool has also been validated
using several real-world projects, e.g. [6, 39].
Besides providing assurance about the origin of persona characteristics, CAIRIS also

allows insights that might otherwise be lost when exporting data out of Computer Aided
Qualitative Data Analysis Software (CAQDAS) into tools used by software designers. To
exploit gulfs of expectation, we further extend CAIRIS with additional qualitative data
analysis functionality, and the ability to specify CSP processes that suggest potential gulfs
of expectation.
We have also created a simple interface between CAIRIS and FDR; this facilitated the

refinement checking of implied persona behaviour specifications against system specifi-
cations. Failures and divergences resulting from the model checking process verify the
presence of gulfs of expectation; they highlight mismatches between persona trustworthi-
ness, and the expectations set in a system specification about what users associated with
the personas should do.
To exploit gulfs of expectation, we have extended the Persona Case framework and

CAIRIS in three main areas.

Codes and code books

As indicated earlier, when undertaking a qualitative data analysis, segments of text
(quotations) are characterised with one or more codes. Codes are words that cap-
ture a summative, salient, essence-capturing and/or evocative attribute for a portion of
language-based or visual data [40]. The codes of particular interest to us concern events.

Faily et al. Journal of Trust Management (2016) 3:4 Page 9 of 22

These correspond to CSP events: codes characterising interaction for processes, be these
processes within a system specification, or processes implied from persona behaviour.
Codes are stored in a code book database, which is maintainable by team members.

Based on the guidelines proposed by [41] for maintaining codes, each entry contains a full
description, an inclusion criteria for when text should and should not be categorised with
the code, and an example of some text categorised by the code.

Extensions for CSP

To capture the elements of gulfs of expectation, we need to associate a number of concepts
with those used to specify CSP descriptions. The conceptual relationships are illustrated
in the UML class diagram shown in Fig. 3.
Implied specifications need to be created of untrustworthy behaviour that personas

might exhibit. These specifications contain descriptions of one or more implied processes.
Implied processes are CSP process descriptions that formally specify some interaction
between a persona and its environment, but this interaction is only implied by the per-
sona. Although this behaviour is summarised narratively, it is formally specified using a
CSP process description. The process description incorporates channels that are based
on event codes.
The model described in Fig. 3 was implemented in CAIRIS by augmenting its database

structure to include additional tables and relationships corresponding with the diagram’s
classes and associations respectively.
Implied processes describe behaviour motivated by a persona’s code network. These

code networks are derived from the qualitative model constructed from the grounded
theory analysis upon which personas are based. However, they also incorporate the
event codes that form the basis of the implied process channel. The code network usu-
ally corresponds with the conceptual model relationships underpinning a single persona
characteristic. However given that, like CSP processes, personas interact with a broader
environment, the network may include relationships with other codes as well.

Fig. 3 Model of implied behaviour

Faily et al. Journal of Trust Management (2016) 3:4 Page 10 of 22

Model checking implied specifications to verify gulfs of expectation

The implied processes can be combined into a single formal CSP implied specifica-
tion for an activity corresponding to a system of interest. The combination of these
processes into a single model is performed by a Java application, which interfaces to
FDR.
Using FDR, we verify this generated model against the system specification to identify

whether mistrusting behaviour in the implied process violates the system specifica-
tion. If it does, allowable event traces that violate the system are output. These traces
demonstrate failures that provide evidence of gulfs of expectation.

Case study: exploiting gulfs of expectation to identify security vulnerabilities
We now present an example of how gulfs of expectation can be elicited and exploited
to identify failures leading to security problems. We consider an activity within a
system’s context of use, where the activity entails installing and configuring webinos
supported software applications. webinos is a federated, open-source communications
platform designed to support web applications running consistently and securely across
mobile, PC, home media, and in-car systems [42]. We chose an example based on
webinos as much of the design data upon which the webinos architecture is based is
publicly available [43]; this data includes personas that motivated the webinos plat-
form, and use cases specifying how users should interact with applications using
webinos.
The software application being installed is an in-car travel game for children called

“Kids in Focus”; the game is used by a user persona (Helen), and created by an applica-
tion developer persona (Jimmy). Helen and Jimmy are described in more detail in [44].
The game allows Helen’s son (Eric) to play an online card game with Helen’s grandfather
(Peter) at home. This application was designed to demonstrate how webinos can facilitate
secure communications between an in-car telematics system and a home network. How-
ever, for this example, we will explore how the characteristics of Helen and Jimmy might
lead to a security breach when installing and running this game, arising out of different
trust expectations.
We begin by modelling a simple system specification for installing Kids in Focus on

a tablet owned by Eric. The SYSTEM process uses the pick and verify channels to
represent the downloading of an application and its subsequent validation. As we are only
concerned with legitimate applications for this analysis, the system will always respond
with yes.

datatype User = helen

datatype App = kif

datatype Device = ericsTablet

datatype Response = yes | no

channel pick : User.App.Device

channel verify : User.App.Device.Response

SYSTEM = pick?u?a?d -> verify.u.a.d.yes -> SYSTEM

We also refined a pre-existing webinos scenario called "Unsafe application install" to
consider how Helen might install a webinos application.

Faily et al. Journal of Trust Management (2016) 3:4 Page 11 of 22

Having just chatted to some of her friends on the phone to arrange a meet-up after
work, Helen realises she isn’t very happy with her current diary arrangements, and
the need to synchronise between her phone, tablet, and laptop.
On her way to work one morning, Helen browses the app store and discovers a
webinos app that allows her to keep all of her diaries in sync automatically. Helen
assumes this might simply be a cloud-based scheduler, but because she is on the
train and doesn’t have a huge amount of time before her train pulls in, she decides
to download and setup this app on her tablet now, as it appears to be quite small.
Helen started up the app for the first time, expecting to have to install existing data
from her phone’s calendar. She wasn’t disappointed, but first Helen was asked to
walkthrough several webinos dialogues asking her to setup things called “personal
devices” and “personal zones”. Helen didn’t know anything about what these were
so, because he was on the go, clicked through every dialog box until the app started
up.

Although not explicitly described in this scenario, Jimmy is an invisible collaborator by
developing the functionality necessary to install the software.

Eliciting trust characteristics

We elicited trust characteristics for the pre-existing Helen and Jimmy personas by car-
rying out qualitative data analysis of pre-existing data; this data was collected during
workshops attended by prospective users and developers. The attendees were recruited
based on shared characteristics with the Helen and Jimmy personas, and the workshop
considered how the participants made access control decisions. Further details about this
study can be found in [45].
The workshop reports were subject to a grounded theory analysis, and Riegelsberger’s

framework was used to develop a series of sensitising questions to help variate and make
connections between the different codes. To illustrate these, Fig. 4 shows the questions
used to code Helen workshop reports.

Fig. 4 Sensitising questions used to analyse reports from Helen workshops

Faily et al. Journal of Trust Management (2016) 3:4 Page 12 of 22

Fig. 5 Grounded theory models upon which Helen and Jimmy trust characteristics are based

From the grounded theory analysis, 57 and 37 quotations were elicited based on the
Helen and Jimmy focus group reports respectively; these quotations were based on 26
codes. Figure 5 shows conceptual models generated by CAIRIS based on this analysis,
and from which code networks will be based; the numbers associated with each node
correspond with the number of quotations categorised with each code.
Relationship within the conceptual models form the basis of individual trust character-

istic. For example, Fig. 6 illustrates how the trust characteristic Knowing the user increases
tendency to trust them is a synopsis of the code relationship between the role possibilities
and emergent trust codes.
Narrative descriptions summarising these characteristics from both personas are pro-

vided below.

Fig. 6 Trust characteristic for Jimmy

Faily et al. Journal of Trust Management (2016) 3:4 Page 13 of 22

• Helen Trust Characteristics

– Intrinsic Trust: Helen’s concern about her family can sometimes cloud her
judgement or lead her to make access control decisions that, in the cold light
of day, might not be best for her or Eric. On a good day, however, Helen has
an eye for seeing intricacies in contexts, and appreciating the sort of things
that strangers might want to take advantage of.

– Contextual Trust: Thinking explicitly about how her family interacts with
technology helps Helen think about how to access control data associated
with these interactions. Also, because small details complicate her thought
process, Helen uses things like sketches and abstractions to support the access
control decision making process.

• Jimmy Trust Characteristics

– Intrinsic Trust: Jimmy uses his standard design and development tools and
processes to model and make sense of security issues. Sometimes he finds
thinking about security tedious, and will re-use settings and designs
where he thinks this is appropriate. This seems more efficient than
thinking deeply about intricate details. Although the different ways his
software might be used can be overwhelming, thinking about them gets
him thinking about what some of his target users might go through when
setting up and running his applications. At times, however, this appreciation
can lead him to make decisions which err too much towards their freedom of
action rather than the best decision given their implicit security and privacy
expectations.

– Contextual Trust: Thinking about the many different contexts can be taxing,
particularly given the tools available to Jimmy are not a perfect fit for this job.
Unfortunately, different contexts are not Jimmy’s only worry. The problems
associated with things like categorising and structuring security information,
and the discussions sometimes Jimmy has to have with colleagues, means
making any sort of security design decision can take forever. These
considerations mean that, in the cold light of day, Jimmy is forced to make
decisions that might lead to inappropriate user behaviours. This causes some
angst when having to trade-off user freedom with what he considers an
appropriate level of security when deciding default settings.

Eliciting candidate gulfs of expectation from trust characteristics

Once tentative trust characteristics are available, gulfs of expectation can be identified
when the conventional use of a specified system is challenged. These instances constitute
system mistrust as the positive estimation of trust by a trustee is either intentionally or
unintentionally betrayed [46]. These instances are found by verbalising potential cases of
mistrust, formalising them as CSP descriptions and, based on insights arising from this
formalisation exercise, re-coding the qualitative data based on any events introduced to
the shared code book.
Eliciting the trust characteristics suggested candidate implied processes for both Helen

and Jimmy, as described below.

Faily et al. Journal of Trust Management (2016) 3:4 Page 14 of 22

Helen

Helen appears to have a propensity for dropping or ignoring steps when making access
control decisions for multiple family members at the same time. This can be contextu-
alised by clicking through dialog boxes when responding to install wizards requesting
permissions for different family members when setting up communication links for the
Kids in Focus application.
When considering how such behaviour might be formalised, channels were introduced

to consider how Helen might pick permissions for Kids in Focus, and what the implica-
tions for these might be. As these channels were introduced, the events associated with
them were added to the codebook, and the workshop reports were re-coded with these in
mind.
Eventually, this additional qualitative data analysis led to the introduction of a new

trust characteristic indicating that for access controls decisions, the more distant a fam-
ily member is, the more variable the result of the decision will be. The qualitative model
underpinning this characteristic in CAIRIS is shown in the upper portion of Fig. 7. In this
model, cyan nodes correspond with codes derived from the grounded theory analysis,
and grey nodes correspond with inferred event codes.

Jimmy

The trust characteristic for Jimmy suggests that he might make spurious and unpre-
dictable access control decisions when thinking about variations to user contexts of use.
For example, thinking about the devices that Kids in Focus might run on, and where these
devices are confuses Jimmy; this may lead him to specify a random default value. Jimmy
does, however, believe he has a good understanding of his user community and, when
deciding access control defaults, believes his users should be afforded freedom of action
rather than constraints.

Fig. 7 Trust characteristic derived from Helen mistrust analysis

Faily et al. Journal of Trust Management (2016) 3:4 Page 15 of 22

Developing implied processes from gulfs of expectation

For this example, we consider the elicitation of implied processes based on the previ-
ously described trust characteristics for Helen and Jimmy. These elicited characteristics
informed thinking about ways of formalising this behaviour, leading to implied processes
for HELEN and JIMMY. In these processes, we model the way that Helen goes through
the process of picking an application and running it with a given set of permissions, and
Jimmy assumes a user would go through the same process.
To simplify the example, the permissions have been reduced to three possible values:

tooLittle, justRight, and tooMuch; these represent the permissions granted relative
to those needed for the application to run successfully. Likewise, the result of running
the program can have one of four possible values which represent the program crashing
(crash), the program running with limited functionality limited, the program running
with full functionality (full), and the program communicating private information about
the user (breach).
In addition to the channels used by the SYSTEM process three additional channels

are used. The requested channel represents the permissions requested by an appli-
cation and the run channel represents the permissions that the user has chosen to run
the application with. When the application has been run the result is shown on the res
channel.

Helen implied processes

To represent Helen’s propensity for dropping or ignoring steps when making access con-
trol decisions, we have modelled three separate behaviours dependent on the device that
is being used.
When using Eric’s tablet (ERICS_{T}ABLET), she is always cautious and tends to refuse

permissions if she is too busy to think about them. Likewise, when using her own laptop
(HELENS_{L}APTOP) she tends to allow whatever permissions are requested as she wants
her applications to work first time. Only in the more relaxed environment of interacting
with her father’s television (PETERS_{T}V) does she fully consider the permissions she is
setting.

datatype Permission =

tooLittle | justRight | tooMuch datatype Result =

crash | limited | full | breach datatype Response = yes | no

datatype Device =

ericsTablet | petersTV | helensLaptop

channel requested : User.App.Device.Permission

channel run: User.App.Device.Permission

channel res : User.App.Device.Result

HELEN = let

SELECT =

ERICS_TABLET |~| PETERS_TV |~| HELENS_LAPTOP

ERICS_TABLET =

([] a : App @ (pick.helen.a.ericsTablet ->

((verify.helen.a.ericsTablet.yes ->

Faily et al. Journal of Trust Management (2016) 3:4 Page 16 of 22

requested.helen.a.ericsTablet?p ->

run.helen.a.ericsTablet.tooLittle ->

res.helen.a.ericsTablet?r -> SELECT) []

(verify.helen.a.ericsTablet.no ->

SELECT))))

PETERS_TV =

([] a : App @ (pick.helen.a.petersTV ->

((verify.helen.a.petersTV.yes ->

requested.helen.a.petersTV?p ->

run.helen.a.petersTV.justRight ->

res.helen.a.petersTV?r -> SELECT) []

(verify.helen.a.petersTV.no ->

SELECT))))

HELENS_LAPTOP =

([] a : App @ (pick.helen.a.helensLaptop ->

((verify.helen.a.helensLaptop.yes ->

requested.helen.a.helensLaptop?p ->

run.helen.a.helensLaptop.p ->

res.helen.a.helensLaptop?r -> SELECT) []

(verify.helen.a.helensLaptop.no ->

SELECT)))) within

SELECT

Figure 8 shows a CAIRIS user interface for this implied process. As the UI shows, not
only is the CSP specification specified, but also a short textual summary of the process,
and its corresponding code network. Both the summary and the qualitative model help
analysts make sense of the relationship between the model and the formal CSP speci-
fication. As this example suggests, the relationship between Helen and her family is an
important facet of this implied process, so the code network extends the code relationship
associated with the trust characteristic by including the ’family rules’ code.

Fig. 8 Implied Process summary and specification derived from Helen’s ‘Family permissions are more
variable for distance relatives’ trust characteristic

Faily et al. Journal of Trust Management (2016) 3:4 Page 17 of 22

Jimmy implied process

As for the analysis of Helen, reflecting on Jimmy’s behaviour led to thinking about the
considerations that might lead to access control decisions. When recoding the Jimmy
transcripts with this in mind, this led to the additional trust characteristic shown in Fig. 9.
To represent Jimmy’s spurious decisionmaking when confused by contextual possibilities,
and his tendency to give users more freedom of action than they legitimately need, we
specified the implied process description for JIMMY below.

JIMMY = ([] d : Device , u : User @

((pick.u.kif.d ->

requested.u.kif.d?p -> JIMMY) []

(run.u.kif.d.tooLittle ->

res.u.kif.d.crash -> JIMMY) []

(run.u.kif.d.justRight ->

res.u.kif.d.full -> JIMMY) []

(run.u.kif.d.tooMuch ->

res.u.kif.d.breach -> JIMMY)))

Refinement checking implied processes to verify gulfs of expectation

The HELEN and JIMMY processes were combined and imported into FDR using the
CAIRIS-FDR interface, and an implied specification generated.
In this example, there is a single user process and a single application process. In a more

general analysis there could be a number of each type of process. The processes USERS
and APPS represent the interleaving of these two types of processes.
The US process is the composition of the USERS and SYSTEM process where events on

the pick and verify channels are synchronised. Similarly, UA is the composition of the
US and APPS process where events on the pick, requested, run and res channels
are synchronised.

Fig. 9 Trust characteristic derived from Jimmy mistrust analysis

Faily et al. Journal of Trust Management (2016) 3:4 Page 18 of 22

USERS = HELEN APPS = JIMMY

US = USERS [| {| pick , verify |} |] SYSTEM UA =

US [| {| pick , requested , run , res |}

|] APPS

In the system specification, two of the possible results represent error cases, these are
crash and breach. To test for these error cases, we perform two separate trace refine-
ment checks against processes that can perform any event apart from either crashes or
breaches.

RUN(s) = [] e : s @ e -> RUN(s) NO_CRASH =

diff(Events, { res.u.a.d.crash |

u <- User, a <- App , d <- Device}) NO_BREACH =

diff(Events, { res.u.a.d.breach |

u <- User, a <- App , d <- Device})

assert RUN({NO}_CRASH) [T= UA assert RUN(NO_BREACH) [T= UA

The output of the application is a number of traces that verify the presence of gulfs of
expectation; these detail the sequence of events that led to the error condition.
There are two traces that result in the application crashing.
In the first of these Helen tries to install and run the Kids in Focus application on her

laptop. Helen believed that the system would allow her to do this, but, due to an error in
Jimmy’s coding, the application fails to request all the permissions needed to successfully
run the application. As Helen is likely to accept the default permissions when using her
laptop, she fails to spot the missing permissions and the application crashes.

pick.helen.kif.helensLaptop

verify.helen.kif.helensLaptop.yes

requested.helen.kif.helensLaptop.tooLittle

run.helen.kif.helensLaptop.tooLittle

res.helen.kif.helensLaptop.crash

Another example of an application crashing takes place when Helen installs Kids in
Focus on Eric’s tablet. This time the error is not caused by Jimmy’s coding, which requests
the correct permissions for the application to run, but by changes in Helen’s expectations
between specifying permissions for the application and installing it. As Helen is very con-
cerned about the privacy of Eric, she has denied some of the permissions needed for the
application to run correctly; this has caused the application to crash.

pick.helen.kif.ericsTablet

verify.helen.kif.ericsTablet.yes

requested.helen.kif.ericsTablet.justRight

run.helen.kif.ericsTablet.tooLittle

res.helen.kif.ericsTablet.crash

The final trace results in a leaking of confidential information. This is similar to the first
trace in that the application requests the wrong permissions due to a coding error. This

Faily et al. Journal of Trust Management (2016) 3:4 Page 19 of 22

time the application requests too many permissions, including ones that result in Helen’s
private data beingmade public. As the system’s state is based on Jimmy’s expectations that
users should have all the freedom of action they need, this results in a breach of Helen’s
privacy.

pick.helen.kif.helensLaptop

verify.helen.kif.helensLaptop.yes

requested.helen.kif.helensLaptop.tooMuch

run.helen.kif.helensLaptop.tooMuch

res.helen.kif.helensLaptop.breach

Discussion and limitations
While the example presented is very constrained, we believe the approach described
can be adapted to incorporate gulfs of expectation associated with more than two per-
sonas. This is particularly useful in critical systems where some level of assurance is
needed about the trustworthiness of personas to undertake certain activities. For exam-
ple, if we consider the activities carried out by the named traders in the dealing activities
described in [34] then, assuming these traders were personas and narrative information
about these personas was available, we might identify situations within which these activ-
ities may fail to be performed, or the implications of replacing one persona with another
are identified which are not as expected. Moreover, when multiple designers are con-
currently engaged in specifying both the system and persona-derived refinements, even
trivial failures such as these may not be immediately apparent until a refinement check
takes place.
While the broader concept of gulfs of expectation does not have to rely on formal meth-

ods, our approach for eliciting and exploiting gulfs of expectation relies on elements of
qualitative data analysis and formal modelling in CSP. But rather than these quantita-
tive and qualitative activities being in tension with one another, they are self-supporting.
Developing a shared codebook is not incompatible with the activities for eliciting mem-
bers of a CSP alphabet, and while abductive reasoning helps make sense of the causes of
divergent behaviour, formally specifying this behaviour also helps make sense of the qual-
itative models. As a result, we believe the self-supporting nature of our approach has the
potential to make both qualitative data analysis and formal specification languages more
accessible to designers.Moreover, bymarrying this approachwith tool-support and build-
ing both qualitative data analysis and model checking capabilities into CAIRIS, divergent
behaviour can be analysed at any time, rather than at fixed stages in the design process.
A limitation of our work is that no summative usability evaluation was carried out

on the changes made to CAIRIS UIs to support our approach. As a result, questions
remain about whether the approach might unduly influence the qualitative coding pro-
cess itself. Additionally, the study described was undertaken by analysts familiar with
grounded theory, persona creation, and CSP – a skills combination not readily available
in many engineering contexts where this approach might be useful. However, CSP does
have a relatively simple notation, and complex process descriptions can be constructed
from fragments of smaller, easier to understand specifications. Moreover, by making the
codes, persona-based relationships, and the relationships underpinning each CSP frag-
ment visible, we have somemeans for identifying undue biases that might creep into both
the qualitative and formal analysis.

Faily et al. Journal of Trust Management (2016) 3:4 Page 20 of 22

The aim of this research was to explore whether it was possible to a priori explore
whether persona descriptions might be analysed to uncover possible system security
breaches arising from usability problems. Our research shows that this is indeed possible
by exploring differences in the expectations held by different personas about the sys-
tem behaviour, however more work is clearly needed to streamline this process, explore
if it can be applied to concerns other than security, and apply it to more complex
scenarios.

Conclusion
This paper has introduced the idea of the gulf of expectation. In doing so, we have
demonstrated an approach for eliciting and formally verifying differing trust expectation
associated with this gulf. As a corollary, we make two contributions.
First, we have shown that formal specifications that characterise different aspects of

persona behaviour can be derived using the same qualitative data analysis techniques that
created them. By model checking these specifications of persona behaviour with system
specifications, we can conduct an a priori evaluation of the trust implications of a sys-
tem. Previously, such an evaluation would have been possible only by using personas as a
basis of selecting human participants when carrying out a summative evaluation of high
fidelity prototypes or, as suggested by [3], as part of a more involved, layered approach for
evaluating a system’s assurance. Our work does not replace the need for such user testing
or socio-technical design approaches, but it does illustrate how such evaluations can be
carried out formatively, comparatively quickly, and during the early stages of a system’s
design.
Second, we developed extensions to existing software tools to provide a basis for

model-checking persona behaviour. We acknowledge that the software tools described
are limited, in that systematic automation is currently limited only to the categorisation of
qualitative models, the specification of elicited CSP descriptions, and the combination of
these descriptions into a single CSP specification of implied persona behaviour. Nonethe-
less, our work takes a step towards formally and economically validating usability claims
that could hitherto only be evaluated by exhaustive user testing.

Acknowledgements
The research described in the paper was funded by the EPSRC EUSTACE project (R24401/GA001).

Authors’ contributions
SF conceived and design the approach, designed and implemented the CAIRIS modifications necessary to support the
approach, and led work on the validating case study DP contributed to the model of implied behavior, developed the
CAIRIS-FDR bridge, and elicited the implied processes in the case study IF participated in the design of the approach, and
helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computing & Informatics, Bournemouth University, Poole, UK. 2Department of Computer Science,
University of Oxford, Oxford, UK.

Received: 24 June 2015 Accepted: 21 July 2016

References
1. Norman DA (1988) The Design of Everyday Things. 1st edn. Basic Books, New York
2. Faily S, Fléchais I (2010) Barry is not the weakest link: eliciting secure system requirements with personas. In: Proceedings

of the 24th BCS Interaction Specialist Group Conference. BCS ’10. British Computer Society, Swindon. pp 124–132

Faily et al. Journal of Trust Management (2016) 3:4 Page 21 of 22

3. Johansen C, Jøsang A (2015) Probabilistic modelling of humans in security ceremonies. In: Garcia-Alfaro J,
Herrera-Joancomartí J, Lupu E, Posegga J, Aldini A, Martinelli F, Suri N (eds). Data Privacy Management, Autonomous
Spontaneous Security, and Security Assurance. Lecture Notes in Computer Science. Springer, Cham, Switzerland
Vol. 8872. pp 277–292

4. Pruitt J, Adlin T (2006) The Persona Lifecycle: Keeping People in Mind Throughout Product Design. Elsevier,
San Francisco

5. Cooper A (1999) The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore
the Sanity (2nd Edition). Pearson Higher Education, Indianapolis

6. Faily S, Fléchais I (2011) User-centered information security policy development in a post-stuxnet world. In:
Proceedings of the 6th International Conference on Availability, Reliability and Security, Vienna. pp 716–721

7. Vallindras A, Faily S (2015) Designing Security through Personas. https://vimeo.com/shamalfaily/dstp. Accessed 22
July 2016

8. Corbin JM, Strauss AL (2008) Basics of Qualitative Research : Techniques and Procedures for Developing Grounded
Theory. 3rd edn. Sage Publications, Inc., Los Angeles

9. Adams A (2001) Users’ perceptions of privacy in multimedia communications. PhD thesis. University College London
10. Fléchais I (2005) Designing secure and usable systems. PhD thesis. University College London
11. Faily S, Fléchais I (2011) Persona cases: a technique for grounding personas. In: Proceedings of the 29th International

Conference on Human Factors in Computing Systems. ACM, Vancouver. pp 2267–2270
12. Toulmin S (2003) The Uses of Argument. updated edn. Cambridge University Press
13. Faily S, Fléchais I (2014) Eliciting and Visualising Trust Expectations using Persona Trust Characteristics and Goal

Models. In: Proceedings of the 6th International Workshop on Social Software Engineering. SSE 2014. ACM, Hong
Kong. pp 17–24

14. Riegelsberger J, Sasse MA, McCarthy JD (2005) The mechanics of trust: A framework for research and design. Int J
Hum Comput Stud 62(3):381–422

15. Bolton ML, Bass EJ, Siminiceanu RI (2013) Using formal verification to evaluate human-automation interaction: A
review. Syst, Man, Cybernet: Syst IEEE Trans 43(3):488–503

16. Diaper D, Stanton N (2004) The Handbook of Task Analysis for Human-computer Interaction. Lawrence Erlbaum,
Mahwah

17. Palanque P, Basnyat S (2004) Task patterns for taking into account in an efficient and systematic way both standard
and erroneous user behaviours. In: Johnson C. W., Palanque P. (eds). Human Error, Safety and Systems Development.
IFIP International Federation for Information Processing. Springer, Boston Vol. 152. pp 109–130

18. Jenkins DP, Stanton NA, Salmon PM, Walker GH (2009) Cognitive Work Analysis: Coping with Complexity. Ashgate,
Farnham

19. Paternò F, Santoro C, Spano LD (2012) Improving support for visual task modelling. In: Winckler M, Forbrig P,
Bernhaupt R (eds). Human-Centered Software Engineering. Lecture Notes in Computer Science. Springer, Berlin
Vol. 7623. pp 299–306

20. Bolton M, Bass E (2013) Evaluating human-human communication protocols with miscommunication generation
and model checking. In: Brat G, Rungta N, Venet A (eds). NASA Formal Methods. Lecture Notes in Computer Science.
Springer, Berlin Vol. 7871. pp 48–62

21. Diaper D, Stanton NA (2004) Wishing on a sTAr: The Future of Task Analysis. In: Diaper D, Stanton NA (eds). The
Handbook of Task Analysis for Human-Computer Interaction. Lawrence Erlbaum Associates. Chap. 30, Mahwah.
pp 603–619

22. Harrison MD, Thimbleby H (1990) Formal Methods in Human-computer Interaction, Vol. 2. Cambridge University
Press, Cambridge

23. Thimbleby H (2007) Press On: Principles of Interaction Programming. MIT Press, Cambridge
24. Masci P, Curzon P, Furniss D, Blandford A (2013) Using PVS to support the analysis of distributed cognition systems.

Innovations in Systems and Software Engineering 11(2):113–130
25. Owre S, Rajan S, Rushby JM, Shankar N, Srivas M (2005) PVS: Combining Specification, Proof Checking, and Model

Checking. In: Computer Aided Verification. Springer, London. pp 411–414
26. Hoare CAR (1985) Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
27. University of Oxford (2015) FDR 3 website. https://www.cs.ox.ac.uk/projects/fdr/. Accessed 22 July 2016
28. Anonymous (2016) Dining Philosopher’s Problem. https://en.wikipedia.org/wiki/Dining_philosophers_problem.

Accessed 22 July 2016
29. (2005) FDR 2 User Manual. Formal Systems (Europe) Limited, Oxford UK
30. Gibson-Robinson T, Armstrong P, Boulgakov A, Roscoe AW (2014) FDR3— A Modern Refinement Checker for CSP.

In: Tools and Algorithms for the Construction and Analysis of Systems, Berlin. pp 187–201
31. Buth B (2004) Analysing Mode Confusion: An Approach Using FDR2. In: Heisel M, Liggesmeyer P, Wittmann S (eds).

Computer Safety, Reliability, and Security, 23rd International Conference. Springer, Berlin Vol. LNCS 3219. pp 101–114
32. Nogueira S, Sampaio A, Mota A (2008) Guided Test Generation from CSP Models. In: Proceedings of the 5th

International Colloquium on Theoretical Aspects of Computing. Springer, Berlin. pp 258–273
33. Carter J, Gardner WB (2008) Converting scenarios to CSP traces with Mise en Scene for requirements-based

programming. Innov Syst Softw Eng 4(1):45–70
34. Jirotka M, Luff P (2002) Representing and modeling collaborative practices for systems development. In: Dittrich Y,

Floyd C, Klischewski R (eds). Social Thinking–Software Practice. MIT Press, Cambridge
35. Faily S, Lyle J (2013) Guidelines for integrating personas into software engineering tools. In: Proceedings of the 5th

ACM SIGCHI Symposium on Engineering Interactive Computing Systems. EICS ’13. ACM, London. pp 69–74
36. Faily S (2016) CAIRIS web site. http://cairis.org. Accessed 22 July 2016
37. Faily S, Lyle J, Paul A, Atzeni A, Blomme D, Desruelle H, Bangalore K (2012) Requirements sensemaking using

concept maps. In: Proceedings of the 4th International Conference on Human-Centered Software Engineering.
Springer, Berlin. pp 217–232

https://vimeo.com/shamalfaily/dstp
https://www.cs.ox.ac.uk/projects/fdr/
https://en.wikipedia.org/wiki/Dining_philosophers_problem
http://cairis.org

Faily et al. Journal of Trust Management (2016) 3:4 Page 22 of 22

38. Faily S, Lyle J, Namiluko C, Atzeni A, Cameroni C (2012) Model-driven architectural risk analysis using architectural and
contextualised attack patterns. In: Proceedings of theWorkshop onModel-Driven Security. ACM, Innsbruck. pp 3–136

39. Faily S (2015) Engaging stakeholders during late stage security design with assumption personas. Inform Comput
Secur 23(4):435–446

40. Saldaña J (2009) The Coding Manual for Qualitative Researchers. Sage, San Diego
41. MacQueen KM, McLellan E, Kay K, Milstein B (1998) Codebook development for team-based qualitative analysis.

Field Methods 10(2):31–36
42. Fuhrhop C, Lyle J, Faily S (2012) The webinos project. In: Proceedings of the 21st International Conference

Companion on World Wide Web. WWW ’12 Companion. ACM, Lyon. pp 259–262
43. webinos Consortium (2013) webinos design data repository. https://github.com/webinos/webinos-design-data.

Accessed 22 July 2016
44. webinos Consortium (2013) webinos personas. https://github.com/webinos/webinos-design-data/tree/master/

personas. Accessed 22 July 2016
45. Faily S, Lyle J, Fléchais I, Atzeni A, Cameroni C, Myrhaug H, Göker A, Kleinfeld R (2014) Authorisation in Context:

Incorporating Context-Sensitivity into an Access Control Framework. In: Proceedings of the 28th British HCI Group
Annual Conference on People and Computers. British Computer Society, Swindon. pp 189–194

46. Marsh S, Dibben MR (2005) Trust, untrust, distrust and mistrust – an exploration of the dark(er) side. In: Proceedings
of the Third International Conference on Trust Management. iTrust’05. Berlin. pp 17–33

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://github.com/webinos/webinos-design-data
https://github.com/webinos/webinos-design-data/tree/master/personas
https://github.com/webinos/webinos-design-data/tree/master/personas

	coversheet_template
	FAILY 2016 Gulfs of expectation
	Abstract
	Keywords

	Introduction
	Related work
	Personas
	Deriving persona trust characteristics using grounded theory
	Modelling and analysing users and systems with formal methods
	Introducing CSP and FDR
	Using CSP and qualitative data analysis to derive formal specifications

	Exploiting gulfs of expectation
	Codes and code books
	Extensions for CSP
	Model checking implied specifications to verify gulfs of expectation

	Case study: exploiting gulfs of expectation to identify security vulnerabilities
	Eliciting trust characteristics
	Eliciting candidate gulfs of expectation from trust characteristics
	Helen
	Jimmy

	Developing implied processes from gulfs of expectation
	Helen implied processes
	Jimmy implied process

	Refinement checking implied processes to verify gulfs of expectation

	Discussion and limitations
	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

