
IACOB, C. and FAILY, S. 2018. Redesigning an undergraduate software engineering course for a large cohort. In 
Proceedings of the 40th ACM/IEEE international conference on software engineering: software engineering education 
and training (ICSE-SEET 2018), 27 May - 3 June 2018, Gothenburg, Sweden. New York: ACM [online], pages 163-171. 

Available from: https://doi.org/10.1145/3183377.3183381 

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Redesigning an undergraduate software 
engineering course for a large cohort. 

IACOB, C. and FAILY, S. 

2018 

https://doi.org/10.1145/3183377.3183381


Redesigning an Undergraduate Soware Engineering Course for
a Large Cohort

Claudia Iacob
School of Computing

University of Portsmouth
Portsmouth, United Kingdom

iacob@port.ac.uk

Shamal Faily
Department of Computing and Informatics

Bournemouth University
Poole, United Kingdom

sfaily@bournemouth.ac.uk

ABSTRACT
Teaching Software Engineering on an undergraduate programme is
challenging, particularly when dealing with large numbers of stu-
dents. On one hand, a strong understanding of software and good
programming skills are prerequisites. On the other hand, the scale
of the projects developed as part of undergraduate programmes
do not always make the need for engineering obvious. Encourag-
ing teamwork when students have little professional experience
also adds to the level of complexity when delivering material. In
this paper, we present a study on the redesign of a second year
undergraduate course on Software Engineering for a large cohort.

CCS CONCEPTS
• Applied computing → Collaborative learning; • Software and
its engineering→ Contextual software domains; Software design
engineering;

KEYWORDS
Software engineering, teamwork, education

ACM Reference Format:
Claudia Iacob and Shamal Faily. 2018. Redesigning an Undergraduate Soft-
ware Engineering Course for a Large Cohort. In ICSE-SEET’18: 40th Interna-
tional Conference on Software Engineering: Software Engineering Education
and Training Track, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3183377.3183381

1 INTRODUCTION
Teaching Software Engineering (SE) as part of a second year un-
dergraduate course at university is a challenging task for several
reasons; these range from the nature of the topic, to the background
and experience of the students. SE, as a discipline, emphasises the
processes and methods put in place to develop complex software.
It requires a deep understanding of the nature of software, and
good programming skills. The need for structured processes and
methods becomes obvious only after one has experienced the de-
velopment process of a complex system. Reaching the second year,
most students have only been exposed to developing toy software

systems, or solving independent exercises. Consequently, the ratio-
nale for imposing a cumbersome and lengthy process for solving
what appears to be a simple problem may not be entirely obvious.

For most second year students, software artefacts are analogous
with source code, leading to the misconception that software devel-
opment in general is equivalent to coding. The challenge of making
students look beyond this, and encouraging them to document ev-
ery step of the process is non-trivial. It requires building the context
that will expose students to the real-world consequences of hacking
rather than engineering software. However, the level of complexity
of any second year assignment can rarely reach the state where
such consequences are immediately obvious.

A crucial component of software development today is team
work, and this needs to be reected in the design of Software Engi-
neering courses. However, working as part of a team is, for many
second year students, a completely new experience, and comes
with its share of challenges, e.g. dividing and synchronising work
among members of the team, intra-team communication, sched-
uling team work around deadlines, and managing risks. Finding
the balance between the right design of the team work element
and managing the challenges teamwork brings requires signicant
planning. Moreover, growing cohort sizes in Software Engineering
units means that any course innovation is risky, particularly given
the lack of study examples from which best practice or lessons
learned can be drawn.

For the past three years, we have delivered a Software Engineer-
ing course for second year undergraduates. This is a mandatory
course for almost all undergraduates in the year, and – to ensure the
degree programme meets the standards set for national accredita-
tion – needs to include a team-based coursework project. As Table
1 illustrates, enrolment for this course has increased annually, and
the growing number of students has brought additional challenges:

C1: Ensuring consistency in assessing individual coursework
reports and marks,

C2: Managing teamwork across an increasing number of teams,
C3: Ensuring interactivity and student engagement,
C4: Providing students with comprehensive feedback on their

work,
C5: Supporting students in developing the skills required for

completing various phases of software development.
To meet these challenges, we present a study on the redesign of

an undergraduate Software Engineering course for a large cohort.
The redesign took place during the 2016/2017 academic year, and
we redesigned the course around the following six principles:

P1: Freedom of choice. Teams had the total freedom over the
development of their coursework project (C3).

https://doi.org/10.1145/3183377.3183381


ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Claudia Iacob and Shamal Faily

Table 1: Student enrolment, Student feedback response, Coursework mean mark (standard deviation), Exam mean mark
(standard deviation)

Year Enrolment Responses Coursework Exam

2014/2015 142 30 (21.1%) 39 (20.2) 46.2 (13.2)
2015/2016 177 93 (52.5%) 40.8 (19.2) 55.5 (10.8)
2016/2017 191 44 (23%) 54.2 (17.5) 43.4 (14.5)

P2: Focused assignments. Teams were required to submit spe-
cic deliverables focused on each stage of the coursework project
(C1, C3).

P3: Peer assessment. Teams were fully involved in assessing
each others work (C1, C2, C4).

P4: Relatable resources.Demos of software development tools
were made available (C5).

P5: Software Engineering immersion. Practical sessionswere
designed to simulate real-world phases of software development
(C5).

P6:Mediationnot confrontation. All conicts that arosewithin
the teams were resolved by the course coordinator through media-
tion (C2).

We provide an overview of the Software Engineering course
in Section 2. We detail the changes applied to the course during
the redesign in Section 3, before presenting the results obtained
in Section 4. We discuss the changes as they were perceived by
students in Sections 5, and describe the related work that motivated
our approach in Section 6. We conclude with the main take-home
points in Section 8.

2 COURSE STRUCTURE AND CONTENT
The redesigned course is an undergraduate introductory course
in Software Engineering. The aim of the course is to familiarise
undergraduate students with the technical and process problems
encountered in developing large scale and diverse software systems.
As prerequisite for the course enrolment, all students would have
had to pass an undergraduate level course on programming. The
course was scheduled over two teaching blocks (TT1 and TT2).
Each teaching block contains 12 weeks, with one reading week
designed for independent study scheduled during each teaching
block.

2.1 Before Redesign
During the rst two years, the course was organised around weekly
one-hour lectures, and fortnightly one-hour practical sessions. The
assessment consisted of a written exam, and a group coursework
project; each contributed 50% of the nal mark. The project asked
students to work in teams to develop a specic software application.
All teams worked on the same application. A brief description of
this application was provided and examples of this included a Gantt
chart management application (2015/2016), and an appointment
scheduler (2014/2015).

The coursework was designed around three submissions: 1) a
team presentation of the project idea and a team project plan report
(mid TT1), weighting 10% of the coursework mark), 2) an individual
reective report describing personal reections on the project and

the process followed, and the student’s contribution to the project
(end TT2), weighting 70% of the coursework mark, and 3) a team
live demonstration of the system (end TT2), weighting 20% of the
coursework mark.

The lectures covered a single topic each week. These topics in-
cluded Lifecycle models, Requirements elicitation and specication,
Prototyping, Estimates, Design (TB1), and Object-oriented SE, Doc-
umentation standards, Conguration management, Development
environments, Project management, Software quality, SE for Em-
bedded, real-time, and web systems (TB2). All practical sessions
were designed to discuss coursework progress, and were organised
as talk shops around each team’s work on the coursework, com-
mon concerns across teams, and tips on techniques tried for various
phases of the development process. Given that all teams worked
on developing the same software system, all students could relate
to the issues brought up by each team.

2.2 After Redesign
The third year of running this course saw a signicant overhaul due
to the increasing number of students enrolled in the course. The
course remained a 24 week course, split into two teaching blocks
with one reading week scheduled during each teaching block. The
reading week was designed for students to catch up with reading
and work on the coursework. Oce hours were scheduled during
these weeks, and students were encouraged to use these hours to
clarify any issues with the coursework or the teamwork.

The assessment criteria remained unchanged, with the nal
mark being calculated as the average of the exam mark and a group
project coursework mark. The coursework asked students to work
in teams and develop a medium size software system. As opposed
to the previous two years, each team got to work on a dierent
system with no two teams developing the same application. Other
coursework related changes incorporated in the redesigned course
included: dening precise deliverables and corresponding marking
schemes, designing all deliverables as group submissions, and al-
lowing students to choose the system they want to develop. These
changes are detailed in Section 3.

A one hour lecture and a one hour tutorial were scheduled every
week. The lectures were split into 4 clusters, as follows:

1) Cluster 1 (the rst half of TB1) covered Software Development
Lifecycle Models (week 1.1) and Requirements engineering (weeks
1.4 and 1.5),

2) Cluster 2 (the second half of TB1) covered software design
(weeks 1.8-1.10),

3) Cluster 3 (the rst half of TB2) covered software implementa-
tion (weeks 2.1-2.4), and



Redesigning an Undergraduate Soware Engineering Course for a Large CohortICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Redesigned course structure and content: weekly lecture and practical topics

Week Lecture Practical
1.1 Introduction to Software Engineering Coursework introduction
1.2 Software Development Lifecycle Models Project planning and management talk shop
1.3 London Ambulance Service (case study) [10] Coursework review
1.4 Requirements engineering I (Elicitation) Peer review assessment session
1.5 Requirements engineering II (Specication and Validation) Coursework review
1.6 Software Engineering in the car industry (case study) Requirements engineering session
1.7 Reading week
1.8 Software design I (Architectural design) Coursework review
1.9 Software design II (Architectural design) Architectural design session
1.10 Software design I (System modeling) Coursework review
1.11 Agile Software Development Coursework review
1.12 Software Design for Security (case study) Peer review assessment session
2.1 Software implementation I (Software Conguration Management) Coursework review
2.2 Software implementation II (Code documentation) Coursework version control setup
2.3 Software implementation III (Design Patterns) Coursework code documentation
2.4 Open source Development Design patterns talk shop
2.5 Software Engineering for game development Peer review assessment session
2.6 Reading week
2.7 Testing I (Development testing) Peer review assessment session
2.8 Testing II (TDD and Automated Testing) Exam preparation quiz
2.9 Testing II (Usability evaluation) Usability evaluation talk shop
2.10 Software evolution and maintenance Peer review assessment session
2.11 Software Engineering for mobile apps (case study) Exam preparation quiz
2.12 Revision lecture Mock exam

4) Cluster 4 (the second half of TB2) covered software testing
and maintenance (weeks 2.7-2.10) (Table 2).

The end of each cluster was marked by lectures dedicated to
discussing a Software Engineering related case study (weeks 1.6,
1,.11, 1.12, 2.5, 2.11).

The redesigned version of the course introduced ve types of
practicals: 1) coursework reviews, 2) peer review assessment ses-
sions, 3) exam preparation sessions, 4) talk shops, and 5) SE task
simulation sessions around key tasks in Software Engineering (re-
quirements engineering, architectural design, code documentation).
The coursework reviews practicals followed the template of the rst
two years, and were designed as discussions around each team’s
progress on the coursework. The talk shops sessions consisted of
open discussions around SE topics not covered by the lectures,
but theoretical in nature. The exam preparation sessions were de-
signed as quizzes focused on key theoretical SE concepts, such as
requirements, architectural patterns, testing strategies, or software
development lifecycle models. The peer review assessment sessions
and the SE task simulation sessions are presented in detail in Section
3.

3 CHANGES APPLIED TO THE COURSE
3.1 Realistic Deliverables (P1, P2)
The redesigned course aimed to replicate real-world software devel-
opment scenarios by exposing students to the processes, methods,
and tools software engineers use in their day-to-day work. Students
were required to work in teams to develop a medium-sized software

system of their choice. The cohort was divided into 38 teams of 5-6
students. The teams were decided by the course coordinator, and
remained constant throughout the development process. All team
members were encouraged to contribute to all steps in the develop-
ment. There were no restrictions imposed in terms of methods or
tools to be used, but the students had to ensure that the following
six deliverables were completed and submitted on time (Table 3):

1) Project Proposal and Plan (PPP) describing the need for the
system they decided to develop, and a detailed plan of the proposed
development process.

2) System Requirements Specication Document (SRS) de-
scribing the methodology used for eliciting and specifying user
and system requirements, and reecting on the analysis of the user
requirements leading to the set of system requirements.

3) Design Documentation (Design) translating the solution
proposed for the system into design models. The teams could use
any modelling tool or language, but had to include use case and
sequence diagrams, architectural models, and user interface design
models.

4) Prototype demo (Demo) consisting of a 3-5 minute video
demonstration of the system. The working features of the system
needed to be demonstrated, while the features not yet implemented
needed to be demonstrated using story boards, or mock-ups.

5) Testing Documentation (Test) including a full description
of the unit, component, and system testing of the system under de-
velopment together with the description of the usability evaluation
process used to evaluate the system.



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Claudia Iacob and Shamal Faily

6) Final Submission (Final) reecting on the process followed,
the decisions taken along the way, the issues encountered and
the workarounds employed, and a critical analysis of the applied
methods, tools, and processes. A demo of the system developed had
to be submitted as part of the nal submission. Additionally, the
source code accompanying the system developed had to be made
available on GitHub.

Methods, tools, and techniques for tackling common software de-
velopment problems were introduced during the lectures. However,
students were free to select which ones to apply in their work on the
coursework. For example, in terms of version control management,
the lecture described and demoed GitHub; some teams, however,
decided to use other version control systems, such as BitBucket.
Similarly, while the lectures described interviews, focus groups,
ethnography as methods for requirements elicitation, teams were
free to choose the method(s) they wanted to use for eliciting the
requirements for the systems they were developing.

The deliverableswere spread over the academic year, withmonthly
deadlines; all submissions were of group authorship. Students had
the option of identifying individual contributions to the work, ei-
ther by naming the authors of each section in the deliverable, or
evaluating individual contributions in terms of percentages. Due
to the specic nature of the deliverables, precise marking schemes
dened for each ensured a higher level of consistency in marking
(Table 3). Real-world examples were provided for each deliverable
to expose students to the structure and content of such documents.
Although their complexity was high, the examples helped students
develop the analytical skills required for critically evaluating soft-
ware documentation.

3.2 Software Engineering Tasks Simulations
(P5)

Hands-on sessions around core course concepts, namely require-
ments engineering, architectural design, and code documentation,
were developed to simulate typical Software Engineering tasks.
Each session lasted for one hour. The cohort was divided into 10
groups, and each session was organised separately for each group.
Below, we describe these sessions in more detail.

3.2.1 Requirements Engineering. The practical session on Re-
quirements Engineering (RE) addressed the misconception that RE
is a limited exercise in describing a minimal system aim, broadly
describing system features, and hinting at elements of a system’s
user interfaces. We designed a role-playing exercise to give students
a short, sharp introduction to the dierent phases of RE. Students
acted as developers for a mobile app start-up company. Their in-
vestors see an opportunity for developing a diary app for a very
inuential, but very secretive group of users. These users were
extreme characters [3], which exhibited hidden character traits, and
added an extra dimension to the challenge of eliciting requirements
that meet their expectations. As part of the development team, they
were given access to representative users. The exercise was further
organised into four steps.

1) Familiarisation. Students were divided into two groups, A
and B. Each group was briefed on the target end-user they rep-
resented. Acting as their respective target end-users, namely the
Queen and a double agent, the groups agreed on the functionality

they expected from the app. Students were forbidden from revealing
their role outside the group to avoid issues with bias, i.e. students
in Group A thinking they implicitly understood Group B extreme
character user requirements.

2) Elicitation. Each groupwas further divided into 2 sub-groups:
A1 and B2 were the interviewers and A2 and B1 were the intervie-
wees. Interviewers acted as requirements analysts, while intervie-
wees acted as the user they represented based on the brief. Group
A1 interviewed group B1, while group B2 interviewed group A2.
Instructions on interviewing were provided to all groups.

3) Specication. Students returned to their initial two groups.
Each group specied the requirements elicited during the previous
step. Students could use any requirements specication technique
they felt was best suited, but the specication needed to be agreed
by the whole team.

4) Validation. Students returned to the groups formed for the
Elicitation step, namely A1, A2, B1, B2. This time, A2 and B1 acted
as interviewers and A1 and B2 acted as interviewees. Interview-
ers acted as requirements analysts validating the specied require-
ments, while interviewees acted as the user they represented. Group
A2 interviewed group B2, while group B1 interviewed group A1.

We describe the session in detail together with its evaluation in
[6].

3.2.2 Architectural Design. Architectural design in Software En-
gineering proved to be one of the most challenging topics. Students
had previously only developed small programs, web sites, or simple
mobile apps. The need for designing and documenting the architec-
ture of such systems based on guidelines and design patterns was
seen as an unnecessary complication. The benets of reasoning
around software architectural design are only made apparent when
(re)engineering a complex, large-scale system. However, such sys-
tems are not easily accessible and fully understanding how they
work and how they are being developed requires more time and
resources that an introductory course in Software Engineering can
aord.We addressed this problem by providing students with a high
level description of an air trac control (ATC) system [2] explaining
the goals of the system, the type of information it needs to operate,
the types of outputs it produces, its main software components and
the ways these components communicate, and a graphical repre-
sentation of the architectural model of the system. Four categories
of problems were described for the system in its current architec-
ture; some of these problems had simple solutions, others needed a
complete redesign of the system and its architecture. All problems
were described in detail, and examples of potential consequences
provided. The exercise was designed around three stages.

1) Recognition. Students were asked to recognise the architec-
tural pattern used in designing the system’s architecture. Working
in pairs, they discussed the relationship between the problems iden-
tied for the system and its architecture, with the aim of identifying
those elements of the architectural model leading to or exacerbating
the problems identied.

2) Creation. Working in pairs, students chose a dierent ar-
chitectural pattern from a list, and redesigned the ATC system’s
architecture to follow that pattern. Students were provided with a
brief of the pattern chosen, and comparative discussion of the two
patterns was encouraged.



Redesigning an Undergraduate Soware Engineering Course for a Large CohortICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Marking scheme for all coursework deliverables: Deliverable, Task to complete as part of the deliverable, Percentage
contribution to coursework mark

Deliverable Task Mark

PPP

Describe project organisation (1%)

5%
Produce risk analysis (1%)
Identify the resource requirements for the project (1%)
Breakdown work into tasks (1%)
Schedule project (1%)

SRS

Describe the need for the system and the context of its development (2%)

20%
Describe the process used for eliciting requirements (5%)
Provide an overview of the high-level user requirements for the system (3%)
Document the functional (user and system) requirements of the system (5%)
Document 3 types of non-functional requirements of the system (5%)

Design

Provide use case modelling for at least 5 scenarios (6%)

20%Provide sequence diagram modelling for at least 5 scenarios (6%)
Provide system architecture: representation and architectural patterns used (6%)
Provide at least 4 mockups for the system’s UI (2%)

Demo
Provide an overview of the prototype’s capabilities (2%)

10%Walk through the prototype’s capabilities (6%)
Provide voice-over/annotation highlights (2%)

Test

Provide details on the design of each of the testing phases: unit, component, and system testing (5%)

20%Provide details on the testing process followed: set up, testing values, issues encountered, tools used (5%)
Describe the results of the testing process (5%)
Provide details on the process followed for evaluating the usability of the system (5%)

Final

Make source code available on GitHub together with running instructions document (8%)

25%Provide a demo of your nal product: walkthrough of all capabilities of the system, voice-over/annotations (5%)
Provide evidence of system documentation (2%)
Provide a retrospective account of the project (10%)

3) Critique. Students swapped the architectural model they
redesigned for the ATC system with another pair, and critically
evaluated each other’s results. They were asked to decide the extent
the architectural model reviewed addresses the issues identied for
the system.

The session exposed students to an interesting but complex,
large-scale system theywere unfamiliar with, provided the rationale
for reasoning about software architectural design, and helped them
develop critical skills in making sense of and reengineering existing
architectural models.

3.2.3 Code Documentation. Motivating students to document
their code is dicult for several reasons. First, when coding, stu-
dents are focused on getting the code right at that moment, and
lack a long term view of how the code they write will be used
by their peers in the future. Second, being exposed only to small,
low-complexity systems, students fail to see the rationale behind
making their code understandable to others. Finally, when they do
comment their code, students rarely use best practice guidelines for
improving the quality of those comments. To address these prob-
lems, we created an exercise asking students to clone an existing
medium-sized open source software system with all its comments
removed, document the code, and submit the changes made to the
code back to the version control system. Students were issued with
a set of guidelines on how to write high quality code comments.
The exercise brief was made available online, and a deadline for the

code contributions to be submitted to the version control system
was set. Students could complete the exercise anytime before the
deadline, and the most relevant and meaningful comments were
then merged into the main repository.

3.3 Case Study Exercises (P4, P5)
As discussed in Section 1, one of the main challenges in teaching
Software Engineering to undergraduates is making the need for
software processes and documentation obvious. We addressed this
by including open discussions around Software Engineering case
studies. The case studies discussed were of two types:

1) Consequential: aiming to identify the consequences of not
following a process when developing software, not documenting the
simplied process followed, and not involving all the stakeholders
in the process, eg. [10]. The discussion focused on the costs of
overlooking the process in Software Engineering and the necessity
of method in developing complex software systems.

2) Exploratory: portraying the specics of Software Engineer-
ing in various industries, e.g. the car industry, the video game
industry, and the mobile apps industry. The discussion focused
on identifying, for each SE tasks - i.e. planning, analysis, design,
implementation, testing, maintenance - the elements specic to the
particular industry, the ways in which they compare to other in-
dustries, and the interplay between other disciplines and Software
Engineering.



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Claudia Iacob and Shamal Faily

Using these two types of case studies had two benets. First,
the consequential case studies illustrated the context around the
software being developed, identifying the implications of “writing
code” to the practice of Software Engineering. Second, Software
Engineering today takes many shapes and forms; therefore, the
exploratory case studies developed a more holistic understanding
of the types of methods, tools, and processes software engineers
use to develop a diverse range of software.

3.4 Software Engineering Tool Demos (P4)
Ensuring students can condently use software development sup-
port tools is vital. However, that is dicult to achieve without a
trial and error process on the students’ part, and that is dicult to
run for a large cohort. To address this issue, we provided students
with video tool demos, allowing them to rewind and replicate them
in their own time. We looked at four classes of tools: a) Congura-
tion management and version control (submitting a pull request in
GitHub, committing changes to a repository, cloning an existing
repository, managing conictual commits); b) Source code docu-
mentation (generating a project’s documentation and browsing an
existing project’s documentation); c) Unit testing (setting up a test
case, and running a test suite for a project); and d) Continous inte-
gration (TravisCI-GitHub integration capabilities). All video demos
were made publicly available, and incorporated in the teaching
material presented during lectures and tutorials.

3.5 Peer-review Assessments (P3, P5)
As a tool consistently used in all aspects of Software Engineering,
we incorporated peer-reviews in the redesign of the course. For each
submission described in Section 3.1 (except for the Final Submis-
sion), a one-hour practical session was devoted to its peer-review.
Each team was provided with the deliverable submitted by another
team, and all teams were provided with an assessment scheme to
guide the review process. The assessment scheme was based on
the marking scheme used in the formal assessment process, but
was augmented to encourage discussion. The lecturer running the
peer-review sessions acted as moderator, asking probing questions
when needed, and steering the conversation to areas not considered
by the students. Students had the option to engage in a dialogue
with the teams whose work they were reviewing, and all took up
this opportunity.

For the rst submission, teams were reluctant to express any
criticism, and tended to provide generic comments on the work
reviewed (eg. “this is good”, “it covers most points”). However,
engagement increased during later submissions, with students re-
ning and deepening their criticism for the work under review.
For example, during the Design Documentation peer-review ses-
sions, some students required evidence for component selection
decisions, and commented on the justication for selecting partic-
ular architectural styles based on the number of users expected.
In addition to the peer-review sessions, all teams were provided
with a breakdown of each submission’s mark together with the
lecturer’s comments on how the submission was judged against
each marking criterion. The feedback was mostly a summary of the
points discussed during the peer review session, with an emphasis
on the take-home points for each submission.

3.6 Drop-in Mediation Sessions (P6)
In addition to the lectures and practicals described in Table 2, drop-
in mediation sessions were scheduled as weekly two hour dedicated
sessions to be used by teams when reaching a state of conict or
deadlock. The sessions were informal and required all members of
the team to be present. Some of the issues encountered included:
a member of the team not meeting deadlines, or not attending
meetings, teams not being able to reach a denitive decision on
parts of the development process, or teams not reaching agreement
on the division of work.

4 RESULTS
We compared the student feedback and student performance for
the course for the year it underwent redesign (2016/2017) and the
two previous years (2015/2016 and 2014/2015).

Student Feedback. All student feedback was provided at the
end of the academic year, with students providing both qualitative
and quantitative feedback. In terms of qualitative feedback, students
report on the aspects they mostly enjoyed about the course, and
on the aspects of the course needing improvement. In terms of
quantitative feedback, students were asked to rate their level of
agreement on a scale from 1 (strongly disagree) to 5 (strongly agree)
with the following statements:

S1: The course makes a positive contribution to my overall
course;

S2: I am clear about what I need to do to be successful in this
course;

S3: Lecturers are good at explaining things on this course;
S4: Lecturers use of the Virtual Learning Environment (VLE)

helped me to learn;
S5: I am able to communicate with lecturers teaching on this

course when I need to;
S6: The workload for this course is manageable;
S7: Assessment arrangements and marking criteria are fair;
S8: I have had opportunities to get feedback on my work during

this course;
S9: Feedback on my work during this course helps me clarify

things I do not understand.
The structure of the survey is unchanged across the three years

we compared. The number of respondents varied throughout the
years, with 44 (23%) answers for 2016/2017. This quantitative feed-
back is summarised in Figure 1.

Assessing the course structure and contribution focused on ve
themes: a) VLE (S4), b) clarity of the assessment process and course
goals (S2), c) student-lecturer communication (S5), d) clarity of
the teaching process (S3), and e) course contribution (S1). The
redesigned course scored higher on all aspects. Several changes
contributed to these results, including: a) incorporating demos of
SE tools in the teaching material, b) dening focused assignments
specications, and providing clear marking schemes for each of the
assignments, and c) incorporating hands-on practical sessions and
case study discussions. On the topic of the coursework workload
(S6), the redesigned course scored lower. We expected that, giving
the students the freedom to work on the project of their choice, they
would nd the work more manageable. However, due to the extent
of the changes incorporated in the redesign of the coursework (i.e.



Redesigning an Undergraduate Soware Engineering Course for a Large CohortICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 1: Feedback on course contribution
(S1),communication (S2-S5), workload (S6), work feed-
back (S7-S9),

students were required to work as a team throughout the year and
deliver evidence of the progress of their work monthly), this was
not the case.

Student feedback on the feedback students received for their
work was covered by three of the questions in the survey, with the
focus on the marking criteria (S7), opportunities to get feedback on
work (S8), and the quality of feedback received (S9). The redesigned
version of the course scored higher than the previous year on all
aspects. The peer-review assessment contributed signicantly to
these results, as these were seen as an opportunity to get feedback
on their work from both their peers and the lecturer. Moreover,
given the informal aspect of these sessions, students did not feel
constrained or intimidated from asking their peers for clarication
or debating some of the points they did not agree with.

Student Performance. No signicant dierence was noticed
in terms of the mean of the marks and standard deviation (Table
1). We are satised with this performance given the signicance of
the redesign and the increase in the cohort size.

5 DISCUSSION AND LESSONS LEARNED
This section discusses how the changes were perceived by students,
and how they addressed the challenges depicted for the course.

Ensuring consistency in assessing coursework andmarks.
The mark assigned for the coursework was worth 50% of the nal
mark for the course. Some students believed this was unfair given
the teamwork element of the coursework, and given the imposition
of teams (“Group coursework worth 50% is unfair when groups are
randomly chosen” ). The suggestion was to design a smaller-scale
teamwork element as part of the coursework, and assign this a lower
weight. Being given the opportunity to assess other teams’s work
and have their work assessed by others was particularly appreciated
by students. This gave them assurance that all work was marked
consistently and transparently, across teams.

Managing teamwork for a large number of teams. Students
enjoyed the freedom of choosing and customising the systems they
developed and the process used. They also appreciated working as
part of a team, and trying to decipher each teammate’s interests,
and strengths & weaknesses (“Developing a product by working with
others by focusing on strengths and weaknesses” ). Students found
the team sizes described in Section 3.1 to be too big to be ecient,
suggesting a maximum team size of 4 students (“This course should
have groups of 4 or 3 as less people will develop a better quality of
work and ensure everyone has equal say and role to produce better
results plus be able to have everyone work in a group” ). Students
were encouraged to be proactive in managing the team; instead of
designating one project manager across the project, they would
take turns in acting as project managers for various phases in the
development process. However, for large groups this did not always
work, with students feeling that getting 6 students to organise in the
absence of a clearly designated team leaderwas too great a challenge
(“Our group for the coursework is too big (6 people). Without a project
manager it makes it very dicult to organise everyone” ).

All teamswere formed by taking into consideration other courses
students were enrolled on, with the aim of having a diverse repre-
sentation of skills and knowledge. Additionally, the aim of keeping
the process as realistic as possible was achieved by assigning stu-
dents to teams, and not allowing students to form teams themselves.
This, however, was a source of discontent among students, with
many preferring to work in teams decided by themselves (“Groups
should be chosen for group coursework by us as some teams do not
work well”, “Unfair mix of people. Maybe consider some element of
allowing students to pick team members” ), leading in some cases to
an overall lack of enthusiasm for the course as a whole (“Choose
groups for work. Groups tend to be unenthusiastic because of this” ).
The sentiment was that teams would have performed better had
the option of choosing their peers been available (“Choosing our
own groups for coursework, I probably would have achieved better.
I know it is similar to real life scenarios, but those who don’t work
wouldn’t be in a job” ). Students felt that not all of their peers were
equally motivated to contribute to the coursework and, in those
instances, the team was at an disadvantage without an obvious and
immediate solution (“No choice of teams, teams with known issues
with individuals at an immediate disadvantage” )).

Students felt that more intervention from the course coordina-
tor on handling out-of-the-ordinary situations was needed, with
mediation considered too mild to make a signicant dierence
(“Better solutions for when group mates don’t do work” ). Students
felt the need for an authority to decide on issues they struggled
to nd consensus on, or to intervene when team members were
not actively contributing (“Potential better handling and monitoring
of potential group work coursework or tasks” ). The expectation for
the course coordinator to intervene in situations where the team
was not working well were not entirely met based on the student
feedback (“Teams should not be forced upon. If it must then there
should be some reassurance available or some fall back option where
if nobody contributes, you don’t fail along with them. Bad idea!” ).

Ensure student engagement and interactivity. Students found
the redesigned course well structured, with the lectures covering
topics relevant to their course and career interests (“The course is
very well structured, the syllabus makes sense regarding what we



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden Claudia Iacob and Shamal Faily

learn” ). The interplay between practical case study discussions and
theoretical topics was particularly appreciated. The structure of the
coursework and the schedule for all deliverables worked well for
the students. Although the coursework workload increased signif-
icantly, spreading the deliverables over the whole year appeared
to make the workload manageable (“Coursework is well spread over
the year” ). With monthly deliverables, students were given enough
time to work on each submission. At the same time, students kept
engaged with the course, avoiding the situation where a large de-
liverable is due only at the end of the year (“Work is due in chunks
rather than all at once” ).

Providing all students with comprehensive feedback. The
peer-review sessions were introduced not only as a means of for-
mative assessment, but also as a vehicle for developing critical
thinking for software documentation and code. The student feed-
back on these sessions was positive, with the feedback and session
frequency considered helpful ("Frequent feedback which helps me
know where I need to improve" or “Seminars are very useful, espe-
cially the coursework feedback sessions” ). Many students suggested
scheduling these sessions prior to deadlines, to give students the
opportunity to incorporate the comments received into their sub-
missions. The sessions also engendered a community feeling within
the teams; this corroborates with previous work examining peer
testing practices in Software Engineering projects [1], although
that study considered the review of code-level artifacts only, rather
than the broader range of Software Engineering artifacts reviewed
for this course.

Supporting students in developing the skills required in
SE. The re-designed lectures focused less on theoretical aspects of
Software Engineering and more on real-world practices, process
and tools used by professionals, and the characteristics of Software
Engineering in various industries, such as game development, mo-
bile app engineering, and the car industry. This exposure to the
real world was valued by the student as good preparation for their
future careers (“Tie-ins to real world problems and case studies to
prepare us for after university”, “I am able to learn new and interesting
things which will help me in career aspects” ).

Students found the interactive sessions described in Section 3.2
helpful by making it easier to grasp to concepts and apply them to
their work (“The practical lessons are useful and helped me to learn
a lot more easily”, “Tutorials are useful for examples of areas covered
in lectures” ). They also felt that the they were designed as realis-
tic, meaningful exercises (“Lectures and practicals are meaningful
and helpful” ). Students also appreciated putting into practice the
concepts discussed during lectures and tutorials, and using their
coursework as a test bed (“Understanding the dierent methods of
implementing plans and requirements into a current project” ). Due
to the collaborative nature of the coursework, students developed
the soft skills required for working as part of a team (“Also it has
improved my communication skills with other students” ).

6 RELATEDWORK
Related work in the teaching of Software Engineering mostly fo-
cuses either on specic educational aspects, such as the design of
team projects, peer-review exercises, and the role of educational

methods such as “the ipped classroom” [12], or on teaching fo-
cused topics in Software Engineering, such as software architecture
or requirements engineering [9]. There are few studies describing
year-long experiences running programming and object-oriented
courses, in situ changes, and their impact on student experience
and performance, and guidelines on managing the challenges posed
by teaching programming as part of the undergraduate curriculum
[7, 8].

Robillard [13] takes a practical approach to teaching Software
Engineering by designing the unit as a project course with teachers
acting as supervisors or clients. Paez [12] use the ipped classroom
approach with good results for small size classrooms (i.e. 20 stu-
dents), but no evidence is provided for using the approach on a
large cohort. Nordio et al [11] describe some of the scaleability
challenges teaching software engineering where distributed soft-
ware development is used as a case study; their course was designed
around four phases of development, namely requirements, interface
specication, implementation, and testing. The course design was
used across 4 years, with annual increases in student performance.
Garousi at al. [4] note that peer review exercises are rarely used
in educational contexts and, when used, they tend to be limited to
engineering courses. The authors describe their experience with
using such exercises as part of a software engineering course where
students were asked to nd defects in their peers’ code submissions.
The accuracy of the peer reviews was determined by the instructor.
Based on this trial, the authors ask for more evidence of peer review
usage in education (particularly with large classes), emphasising the
advantages and the challenges they bring. Gehringer [5] describe
Peer Grader, a system designed to support peer review exercises for
students. The tool facilitates a semi-automatic peer review process
where students are able to review and grade each others work.

7 LIMITATIONS AND FUTUREWORK
The redesign of the course comes with a set of limitations. First,
we did not put in place a mechanism for monitoring and, possi-
bly, predicting the time allocated to solving conicts within teams
for both the students and the course coordinator. Based on our
experience running this course, we expect such considerations to
make a positive impact on the overall team experience. Logging all
reported conicts and documenting the mediation strategies and
resolution procedures for all of them could, potentially, lead to a
valuable resource that can be shared across future cohorts.

Second, the redesign does not formally dene a process for docu-
menting the consequences of conicts within teams on the overall
performance of the teams. Such follow-up strategies could help
better predict the outcome of various types of conicts, and allow
early intervention by the course coordinator. This can prove partic-
ularly helpful when working with large cohorts as it would help
the course coordinator prioritise issues and their resolution.

8 CONCLUSIONS
In this paper, we present a study on the redesign of a year-long
Software Engineering course for a large cohort. Based on our re-
sults, we recommend a number of changes that have been posi-
tively received by our students. These include: keeping students
in the loop throughout assessment and marking by having them



Redesigning an Undergraduate Soware Engineering Course for a Large CohortICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

peer-review each others’ work, setting up mediation sessions for
managing teamwork dynamics, providing students with the free-
dom of choice with respect to the process and tools they use, but
ensuring focused assignments with precise marking schemes. Re-
source management needs to be reconsidered for large cohorts to
support playback and independent trial and error exercises. Build-
ing the much needed software engineering skills for a large cohort
requires scalable exercises able to simulate real world software
engineering tasks. Taking inspiration from Interaction Design [3]
and Software Architecture [2], we have designed such exercises
to teach requirements engineering, architectural design, and code
documentation.

REFERENCES
[1] Nicole Clark. 2004. Peer Testing in Software Engineering Projects. In Proceedings

of the Sixth Australasian Conference on Computing Education - Volume 30 (ACE
’04). Australian Computer Society, Inc., 41–48.

[2] Jackson D. and J. Chapin. 2000. Redesigning air trac control: an exercise in
software design. IEEE Software 17 (2000). Issue 3.

[3] J. P. Djajadiningrat, W. W. Gaver, and J. W. Fres. 2000. Interaction relabelling and
extreme characters: methods for exploring aesthetic interactions. In Proceedings
of the 3rd conference on Designing Interactive Systems. ACM, 66–71.

[4] Vahid Garousi. 2010. Applying Peer Reviews in Software Engineering Education:
An Experiment and Lessons Learned. IEEE Transactions on Education 53, 2 (2010).

[5] Edward F. Gehringer. 2001. Electronic Peer Review and Peer Grading in Computer-
Science Courses. SIGCSE technical symposium on Computer Science Education 33,
1 (2001).

[6] Claudia Iacob and Shamal Faily. 2017. Using Extreme Characters to Teach Re-
quirements Engineering. In Proceedings of 30th IEEE Conference on Software
Engineering, Education, and Training. IEEE, 107–111.

[7] Erkki Kaila, Einari Kurvinen, Erno Lokkila, and Mikko-Jussi Laakso. 2016. Re-
designing an Object-Oriented Programming Course. ACM Transactions on Com-
puting Education 16, 4 (2016).

[8] Linda Marshall, Vreda Pieterse, Lisa Thompson, and Dina Venter. 2016. Explo-
ration of Participation in Student Software Engineering Teams. ACM Transactions
on Computing Education 16, 2 (2016).

[9] Sandeep Mitra. 2014. Using UML Modeling to Facilitate Three-Tier Architecture
Projects in Software Engineering Courses. ACM Transactions on Computing
Education 14, 3 (2014).

[10] Erich Musick. 2006. The 1992 London Ambulance Service Computer Aided
Dispatch System Failure. Formal Methods (2006).

[11] Martin Nordio, Carlo Ghezzi, Bertrand Meyer, Elisabetta Di Nitto, Giordano
Tamburrelli, Julian Tschannen, Nazareno Aguirre, and Vidya Kulkarni. 2011.
Teaching software engineering using globally distributed projects: the DOSE
course. Community Building Workshop on Collaborative Teaching of Globally
Distributed Software Development (2011).

[12] Nicolás Martín Paez. 2017. A Flipped Classroom Experience Teaching Software
Engineering. IEEE/ACM 1st International Workshop on Software Engineering
Curricula for Millennials (2017).

[13] Pierre N. Robillard. 1996. Teaching Software Engineering through a Project-
Oriented Course. 9th Conference on Software Engineering Education (1996).


	coversheet_template
	IACOB 2018 Redesigning an undergraduate software



