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Abstract 7 
8 

The accurate prediction of the fluid dynamics and hydraulics of the axial or helical flow of non-Newtonian drilling 9 
fluids in the annuli is essential for the determination and effective management of wellbore pressure during drilling 10 
operations. Previous studies have shown that the pressure losses and fluid velocity distributions in the annuli are 11 
highly influenced by the rheological properties of the fluid, inner pipe rotary speed and eccentricity. However, 12 
many studies in literature have developed or applied theoretical models that were either only valid for Newtonian 13 
annuli flows or have not considered the combined effect of the fluid rheological parameters with the inner pipe 14 
rotary speed and eccentricity when calculating the frictional annuli pressure losses for non-Newtonian shear 15 
thinning fluids. Furthermore, there have been inconsistencies in the description of the effect of inner pipe rotation 16 
on the pressure losses experienced for both Newtonian and non-Newtonian flows in concentric and eccentric 17 
annuli. In this study, an analytical and numerical approach were carried out to investigate and evaluate the 18 
hydrodynamic behaviour of the axial and helical isothermal flow of Newtonian and non-Newtonian fluids through 19 
the annuli. Techniques of computational fluid dynamics for fully developed steady-state fluid flow were applied 20 
to obtain detailed information of the flow field in the annuli. New analytical and numerical models were developed 21 
to obtain the fluid velocity and viscosity field distribution and determine the frictional pressure gradient for 22 
laminar and turbulent flows in the concentric and eccentric annuli with and without inner pipe rotation and were 23 
compared and validated favourably with models previously presented in literature. Results showed that for a fully 24 
developed flow of non-Newtonian shear thinning fluids, if the fluid flowrate is kept constant, an increase in inner 25 
pipe rotation leads to a decrease in the axial frictional pressure gradient when the pipe is rotating on its axis. For 26 
annuli flows of non-Newtonian fluids, the effect of inner pipe rotation on the axial pressure gradient is dependent 27 
on the fluid flowrate and at high fluid flowrates, the influence of the inner pipe rotation on the fluid hydraulics 28 
decreases. In general, for shear thinning non-Newtonian fluids, pipe rotation can improve the fluid flow in the 29 
region of lower flow in the eccentric annuli. Unlike the flow of Newtonian fluids through the annuli, the friction 30 
geometry parameter and thus the friction factor is highly influenced by the rheological parameters of the fluid, the 31 
fluid flowrate, inner pipe rotary speed and eccentricity.  32 

33 
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Highlights 37 
38 

 Friction geometry parameter is dependent on fluid rheology and pipe rotation.39 
 Inner pipe rotation influences axial velocity fields in the eccentric annuli.40 
 Eccentricity leads to a decrease in frictional pressure losses.41 
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1.0 Introduction 42 
43 

The prediction of the pressure losses for helical flow in the concentric and eccentric annuli is required in order to 44 
achieve an effective wellbore pressure management system during drilling operations. Several studies have 45 
reported that the variations in the wellbore eccentricity, fluid rheology, annular geometry and drillpipe rotation 46 
speed strongly influences the pressure gradient for fluid flow through the annuli. However, there is no rigorous 47 
method available to perform annuli flow hydraulic calculations for non-Newtonian fluids, while simultaneously 48 
accounting for the combined effect of the important and influential drilling parameters. Although field and 49 
laboratory results have shown that the pressure losses in the wellbore can be significantly affected by the rotation 50 
of the drillpipe (Ahmed and Miska, 2008), the effects of the drillpipe rotation is usually not taken into 51 
consideration when performing predictive calculations (Hemphill, 2015). Furthermore, for helical flow of 52 
Newtonian and non-Newtonian fluids through the annuli, the knowledge of the effect of the inner pipe rotation 53 
on the frictional pressure gradient has not been conclusively agreed upon in literature. For instance, while some 54 
studies reported that the increase in the inner pipe rotation speed increases the pressure gradient, others have 55 
reported that the annuli pressure gradient decreases with an increase in the inner pipe rotation speed. Thus, the 56 
actual effect of drillpipe rotation on wellbore hydraulics is to an extent not a certitude. 57 

58 
In a study performed by Kelessidis et al. (2006), it was concluded that the accurate prediction of the distribution 59 
of the velocity fields and pressure drop for fluid flow through the annulus can be significantly affected by the 60 
rheological parameters of the drilling fluid. They showed that the impact of the model can be significant for 61 
pressure loss estimation for the flow of non-Newtonian fluids in drill pipes and concentric annuli. McCann et al. 62 
(1995) carried out a study to investigate the effects of pipe rotation, fluid properties and eccentricity on the 63 
pressure loss for flow of fluids through the annuli. Experimental tests were performed with a maximum pipe 64 
rotation speed of 900 rpm, a maximum flowrate of 12 gpm and conclusions were drawn that the pressure loss 65 
decreases with an increase in the pipe rotation speed for laminar flow conditions and increased with an increase 66 
in the pipe rotation speed for the turbulent flow conditions. They compared their results to hydraulic friction factor 67 
models from literature and reported a favourable match for conditions without pipe rotation. However, since the 68 
hydraulic models did not account for the effects of eccentricity and pipe rotation, they recommended that hydraulic 69 
models should be developed to accurately determine the pressure losses for laminar and turbulent flow in the 70 
concentric and eccentric annuli with pipe rotation. Nouri et al. (1997) performed an experimental study of the 71 
effect of pipe rotation on Newtonian and non-Newtonian fluid flow through the concentric and eccentric annulus 72 
and concluded that the flow resistance increased with an increase in pipe rotation by more than 30% at the lowest 73 
Reynolds number but at the higher Reynolds number, the flow resistance was largely unaffected. Wei et al. (1998) 74 
investigated the effects of drillpipe rotation on the frictional pressure losses for laminar, helical flow of Power 75 
law fluids through a theoretical study and developed flow models for concentric and eccentric pipe configurations 76 
with the assumption that the pipe rotates about its axis. They concluded that the shear-thinning effect induced by 77 
pipe rotation results in a reduction of the frictional pressure loss in both concentric and eccentric annuli 78 
configurations. However, they reported that the effect of the pressure reduction was more pronounced in the 79 
concentric annuli. Ooms et al. (1999) carried out a numerical, analytical and experimental study to investigate the 80 
influence of drillpipe rotation on drilling hydraulics and concluded that for laminar flow through an eccentric 81 
annulus, the inertial effect induced by the pipe rotation increases the axial pressure drop. They inferred that the 82 
magnitude of this increase was dependent on the annular gap width, the eccentricity, and the Taylor number of 83 
the flow. Sunthankar et al. (2003) in an experimental study of the flow of an aerated mud though an inclined 84 
annulus, reported that drillpipe rotation had no significant effect on the pressure losses for air-water fluid mixtures. 85 
However, they reported that the pressure losses experienced by the flow of air-aqueous polymer decreased with 86 
an increase in the drillpipe rotation and a more significant pressure loss was experienced by the of air-aqueous 87 
polymer fluid flows in comparison to that of the air-water fluids. Pereira et al. (2007) performed numerical 88 
computational fluid dynamics (CFD) simulations to study the flow of non-Newtonian fluids through a horizontal 89 
concentric and eccentric annulus. They reported a decrease in the pressure loss with an increase in the pipe rotation 90 
for both the concentric and eccentric annulus. However, it was mentioned that the effect of pipe rotation was more 91 
significant at lower fluid flowrates and that reduction of the pressure loss with rotation was more evident in the 92 
eccentric cases than the concentric cases. Ahmed and Miska (2008) theoretically and experimentally investigated 93 
the laminar flow of Herschel-Buckley fluids in the concentric and eccentric annuli with inner pipe rotation. They 94 
compared the model predicted to the experimentally measured pressure losses and concluded that for the flow of 95 
shear thinning fluids in highly eccentric annuli, the inertial effects dominate the effect of shear thinning which 96 
results in an increase in the annuli pressure loss with an increase in inner pipe rotation. However, the theoretical 97 
model developed was only valid for concentric annuli flow of non-Newtonian fluids. Duan et al. (2008) pointed 98 
out that inner pipe rotation influences the velocity distribution and axial pressure drop in the annulus. They 99 
concluded that an increase in drillpipe rotation slightly increased the pressure drop in the concentric annuli. 100 
Ozbayoglu and Sorgun (2009) investigated the effects of pipe rotation on the frictional pressure losses experienced 101 
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by the flow of non-Newtonian fluids in the annuli. They reported that an increase in the pipe rotational speed led 102 
to a corresponding increase in the frictional pressure losses in the annuli and that after a certain pipe rotation 103 
speed, there is no influence of the pipe rotation on the pressure loss. They suggested the use of friction factors 104 
equations that are functions of the axial and rotational Reynolds number for the calculation of pressure losses in 105 
the annuli. Bui (2012) in an attempt to investigate the effect of tool joint and pipe rotation on pressure loss 106 
performed numerical CFD simulations for the flow of an incompressible Yield Power Law fluid in both pipe and 107 
concentric and eccentric annuli at different pipe rotary speeds. They analysed the numerical results of their 108 
velocity and pressure profiles and reported that they observed an increase in pressure drop at low pipe rotary 109 
speeds followed by a decrease in pressure drop as the pipe rotary speed was increase. Erge et al. (2014a, 2014b) 110 
carried out an analysis of the results of their theoretical model prediction and experimental data and concluded 111 
that for the flow of Yield Power Law fluids through the annuli, the frictional pressure losses can either increase 112 
or decrease with an increase in the drillpipe rotary speed. They pointed out that for turbulent flows, the effect of 113 
the drillpipe rotation is insignificant and also stated that the reason most field measurements show an increase in 114 
the annuli pressure losses is because of dominant inertial effects. Viera et al. (2014) presented results obtained 115 
from an experimental and numerical CFD simulation for the pressure drop of non-Newtonian aqueous solutions 116 
of xanthan gum (XG) and carboxymethylcellulose (CMC) fluid flow through a concentric and eccentric annulus. 117 
Their results showed that for a concentric annulus, the pressure drop was slightly reduced with an increase in pipe 118 
rotation speed. However, the reverse effect of inner pipe rotation was reported to take place in the eccentric 119 
annulus where an increase in pressure drop occurred with inner pipe rotation of up to 200 rpm. In a CFD study 120 
which examined the effects of drillpipe rotation on cuttings transport in complex wellbores, Sun et al. (2014) 121 
concluded that the increase in pipe rotation can significantly increase the tangential velocity of the drilling fluid 122 
and at low and medium flowrates, can significantly reduce the cuttings volume and decrease the pressure loss in 123 
the annuli. Bicalho et al. (2016) performed CFD simulations and experimental studies to analyse the pressure 124 
gradient and velocity distribution for the flow of various concentrations of aqueous XG solutions through a 125 
partially obstructed annulus, with or without inner cylinder rotation. They mentioned that for the fluid with 0.5% 126 
of XG, a decrease in the pressure loss with an increase in the inner pipe rotation was observed. Ferroudji et al. 127 
(2021) studied the influence of inner pipe orbital motion on the frictional pressure drop for the annuli flow of non-128 
Newtonian fluids under the laminar and turbulent flow regimes. They reported that their results showed that the 129 
impact of the orbital motion on the frictional pressure drop of the inner pipe was dependent on the Reynolds 130 
number of the flow. However, they concluded that eccentricity decreases the pressure drop and although the 131 
increase in orbital motion is severe on the frictional pressure loss, there is a certain speed after which the frictional 132 
pressure loss starts to decrease due to the shear thinning properties of the fluid 133 

134 
Although many other studies been done to investigate the effect of pipe rotation and eccentricity on the pressure 135 
loss for flow through the annuli (Ahmed et al., 2010; Escudier et al., 2002; Podryabinkin et al., 2013; Saasen, 136 
2014), it is quite clear that the effect of inner pipe rotation on the annuli pressure loss has been quite conflicting. 137 
While some studies have reported a decrease in annuli pressure loss due to pipe rotation, others have reported an 138 
increase or both an increase and decrease in annuli pressure due to pipe rotation. Although pipe rotation has been 139 
reported in many studies to significantly improve cuttings transport (Busch and Johansen, 2020; Erge and van 140 
Oort, 2020; Huque et al., 2020; Peden et al., 1990; Sanchez et al., 1999) the prediction of the direct effect of the 141 
pipe rotation on the concentric or eccentric annuli pressure loss is highly required to control and maintain wellbore 142 
pressures.  Caetano et al. (1992) presented friction factor equations for axial steady-state annuli flows, expressed 143 
as a function of the annuli friction geometry parameter and determined from the solution of the continuity 144 
equation, equation of motion and the Fanning equation. Although these equations were derived for fully developed 145 
Newtonian annuli flows, some studies have applied them when mathematically modelling non-Newtonian annuli 146 
flows (Ibarra et al., 2019; Lage and Time, 2002). However, the Caetano et al. (1992) friction factors equations 147 
cannot be applied to address the effect of the inner pipe rotation on non-Newtonian annuli fluid flows. Over the 148 
years, many mathematical modelling performed for single-phase and two-phase fluid flow in the annuli, have 149 
either applied friction factor equations valid for Newtonian annuli flows when dealing with Newtonian fluids, or 150 
have applied Newtonian or non-Newtonian friction factor equations that have not taken into consideration the 151 
combined effect of the fluid rheology, the eccentricity and the effect of the inner pipe rotation when dealing with 152 
non-Newtonian fluid flow through the annuli (Fan et al., 2009; Hasan and Kabir, 1992; Kelessidis and Dukler, 153 
1989; Metin and Ozbayoglu, 2009; Omurlu and Ozbayoglu, 2006). Due to the complexity of the solution of non-154 
Newtonian flow in the eccentric annuli, early theoretical methods where the annulus is modelled as a slit of 155 
variable height, by an infinite number of concentric annuli with variable outer radii, or by expressing the annuli 156 
in the bi-polar coordinate system in order to derive equations for the velocity profiles and pressure gradient to 157 
flowrate relationships (Haciislamoglu and Langlinais, 1990; Iyoho and Azar, 1981; Luo and Peden, 1990; Uner 158 
et al., 1988). Thus, a rigorous treatment of the annuli flow field is possible to develop hydraulic models that can 159 
be applied to predict the pressure losses for flow of non-Newtonian fluids in the concentric and eccentric annuli 160 
with inner pipe rotation. In order to establish a relaible method that can be applied to predict the pressure loss for 161 
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the flow non-Newtonain flows through the annuli with or without inner pipe rotation, it is important that the 162 
combined effect of the flow geometric sizes, pipe diameter ratio, eccentricity and importantly the rheological 163 
characsteristic and paramters of the fluids be adequately taken into account. The direct application of methods 164 
developed for the annuli flow of Newtonian fluids or non-Newtonian fluids that neglects one or more of these 165 
important parmaters may generate erroneous results.  166 
 167 
In this study, the combined effect of the eccentricity and inner pipe rotation on the flow dynamics and hydraulics 168 
of Newtonian and shear thinning non-Newtonian fluid flow through the annuli was investigated. The motivation 169 
of this work was to establish new methods that can be applied to obtain the relevant details of the flow fields and 170 
predict the pressure gradient for the flow of  Newtonian, Power law, Bingham plastic and Herschel-Bulkley fluids 171 
in the concentric and eccentric annuli with or without inner pipe rotation, thereby providing a solution to the 172 
conflicting issues about the hydraulics of helical flows present in literature.  173 
 174 
New analytical and numerical models were developed for the prediction of the friction geometry parameter and 175 
frictional presure gradient in the annuli for axial and helical flows of both Newtonian and non-Newtonian fluids 176 
in the concentric and eccentric annuli. The newly presented analytical models can be applied to predict the friction 177 
factor for both laminar and tubulent flows in the concentric and eccentric annuli, with or without inner pipe 178 
rotation. The output of this study provides valuable findings that can be applied to achieve an effective wellbore 179 
pressure management system during drilling as well as other industries where there are operations involving 180 
annular flows.   181 
 182 

2.0 Analytical model development  183 
 184 
2.1 Fluid rheology model 185 
 186 
A general fluid rheology model that can be used to describe the shear stress to shear rate relationship for the flow 187 
of Newtonian, Power law, Bingham plastic and Herschel-Bulkley fluids is expressed as: 188 
 189 
  190 
τ =  τ∈+ ∈ γn (Eq.1) 

 191 

The viscosity or apparent viscosity of the fluids may then be expressed as: 192 

 193 

μa = 
τ∈

γ
+ ∈ γn−1 (Eq.2) 

 194 
The variables  τ∈, ∈, and n are the yield stress, consistency index, and flow behaviour index of the drilling fluid. 195 
Table 1 shows the rheology model input constants for both the Newtonian and non-Newtonian fluids. 196 
 197 
Table 1:Variables for the generalised rheology model 198 

Fluid rheology type τ∈ ∈ n 

Newtonian τ∈ = 0 ∈ =  μ n = 1 

Power law (shear thinning)  τ∈ = 0 ∈ =  K n < 1 

Bingham plastic τ∈ = τ𝑦  ∈ =  μp n = 1 

Herschel-Bulkley (shear thinning) τ∈ = τo ∈ =  K n < 1 

 199 
Considering the generalised rheology model of the fluids given in Eq. 1, the generalised Reynolds number for the 200 
Newtonian, Power law, Bingham plastic and Herschel-Bulkley fluids can be derived and expressed as follows: 201 
 202 
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ReGen = 
ρVaDh

τ∈Dh

12Va
+ ∈ (

2m + 1
3m

)
n

(
12Va

Dh
)

n−1 (Eq.3) 

 203 

m =  
n ∈  (

12Va

Dh
)

n

τ∈+ ∈  (
12Va

Dh
)

n (Eq.4) 

The details of the derivation procedure of Equation 3 and 4 is provided in Appendix C. 204 
 205 
2.2 Helical flow of fluids in the annuli 206 
 207 
When the drillpipe is rotated, the drilling fluid would experience a multi-directional shear force that creates the 208 
helical movement of the fluid. Thus, the shear stress to shear rate relationship, which is the fluid rheology model, 209 
must be represented in a tensor form. The magnitude of the shear rate for a multi-directional shear flow can be 210 
expressed in the cylindrical coordinate system as: 211 
 212 

 213 

|γ2| =  2 [(
∂vr

∂r
)

2

+ (
1

r

∂vθ

∂θ
+

vr

r
)

2

+ (
∂vz

∂z
)

2

] + 

 

 

(
1

r

∂vz

∂θ
+

∂vθ

∂z
)

2

+ [
1

r

∂vr

∂θ
+ r

∂

∂r
(
vθ

r
)]

2

+ (
∂vz

∂r
+

∂vr

∂z
)

2

 

 

(Eq.5) 

 214 
Unlike the concentric annuli, the velocity distribution of the helical flow in the eccentric annuli varies in the radial 215 
and angular directions, making the theoretical solution for the annuli flow of non-Newtonian fluids relatively very 216 
complex. Assuming that the flow is fully developed, the governing equations for helical fluid flow in the eccentric 217 
annuli can be solved using the same method of that of the concentric annuli. This can be done by applying the 218 
concept of an infinite subdivision of the flow field of the helical flow in eccentric annuli (Hai-qiao and Ji-zhou, 219 
1994). Thus, it can be convenient to express the magnitude of the fluid shear rate in the helical concentric and 220 
eccentric annuli as: 221 
 222 
 223 

|γ| =   √(r
∂ω

∂r
)

2

+ (
∂vz

∂r
)

2

 
(Eq.6) 

 224 
where, vθ = ωr 225 
 226 
Similarly, the magnitude of the shear stress for the helical flow of fluids can be expressed as:  227 

 228 
|𝜏| =   √τzr

2 + τθr
2 (Eq.7) 

 229 
Adopting the form of the Newtonian model, the axial and tangential shear stresses may be expressed in form of 230 

their velocity gradients as: 231 

 232 

τθr = μa (r
∂ω

∂r
) 

(Eq.8) 

 233 
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τzr = −μa (
∂vz

∂r
) 

(Eq.9) 

 234 

Thus, the apparent viscosity of the fluids in the annuli with inner pipe rotation can be expressed as follows: 235 

 236 

μa = 
τ∈

|γ|
+ ∈ |γ|n−1 (Eq.10) 

 237 

μa = 
τ∈

|√(r
∂ω
∂r

)
2

+ (
∂vz

∂r
)

2

|

+ ∈ |√(r
∂ω

∂r
)

2

+ (
∂vz

∂r
)

2

|

n−1

 (Eq.11) 

 238 

 239 

Using Equations 8 and 9, the apparent viscosity equation can be further simplified to yield: 240 

 241 

μa =

[
 
 
 
 
  ∈ |τθr

2 + τzr
2|

n−1
2

1 − 
τ∈

|τθr
2 + τzr

2|
1
2 ]
 
 
 
 
s

 (Eq.12) 

where s = 1 n⁄  242 

 243 
Figure 1 shows the shape of the velocity profile for a fully developed annuli flow of non-Newtonian drilling fluids 244 
that possess a yield stress. For fluids with a yield stress to flow through the annuli, the axial pressure force must 245 
produce a shear stress that exceeds the yield stress τ∈. Thus, as the fluid flows through the annuli, there is a region 246 
of the fluid that does not shear and the fluid elements in this region, move at the local maximum velocity.  247 

 248 
Figure 1: Annuli velocity profile 249 

 250 

This unsheared region of the fluid is referred to as the unsheared plug. In the derivation of the shear stress and 251 
velocity profiles, the points that mark the boundaries of the unsheared plug in the radial direction are signified as 252 
the points r =  ra and r =  rb as shown in Figure 1. For the Herschel-Bulkley drilling fluid the shear stress at point 253 
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r =  ra is equal to the negative value of the yield stress τzr =  −τ∈ = −τo while the shear stress at the point r =254 
 rb is equal to the positive value of the yield stress τzr = +τ∈ = +τo. Likewise, for the Bingham plastic fluid, 255 
the shear stresses at the points r =  ra and r =  rb are equal to the negative and positive value of the Bingham 256 
yield stress respectively τzr =  −τ∈ = −τy and τzr = +τ∈ = +τy. The Power law fluid does not possess a yield 257 
stress and hence does not have the region of an unsheared plug in the annuli. In the axial velocity profile of the 258 
Power law fluid, the local maximum velocity exists at the point ra = rb and the shear stress at this point is zero 259 
τzr = τ∈ = 0. The width of the unsheared plug can be determined by considering a force balance of the pressure 260 
force being equal to the shear force in the region of the plug. The pressure force acts on the cross-sectional area 261 
of the plug, while the shear force, which is equal to the yield stress times the surface area of the plug, acts on the 262 
inner and outer surfaces of the plug. Performing this force balance over a differential length ∂z of the plug, yields 263 
the equation for the width of the plug as: 264 
 265 

π(rb
2 − ra

2)
∂P

∂z
∂z =  2π(rb + ra)τ∈ ∂z 

(Eq.13) 

 266 

 267 

rb − ra =
 2τ∈

∂P
∂z

 (Eq.14) 

 268 

τ∈ = 
1

2

∂P

∂z
(rb − ra) 

(Eq.15) 

 269 
 270 
It is obvious that the width of the plug depends on just the axial pressure gradient and the yield stress of the fluid 271 
and is independent of the size of the annuli. However, in an eccentric annulus, the width of the unsheared plug 272 
and the position of the local maximum velocity varies across the angular direction of the annuli. Thus, the points 273 
r =  ra and r =  rb are a function of the angle θ hence the shear stress and velocity profiles vary across the angular 274 
direction of the annuli and are direct functions of the angle θ. To account for this phenomenon, the annuli can be 275 
represented by an infinite number of concentric annuli with variable outer radii r2

e (Luo and Peden, 1990). The 276 
outer radius of the eccentric annulus is a function of the angle θ and the eccentricity e and can be determined with 277 
the following equations: 278 
 279 

r2
e = de cos θ + √r2

2 − (de sin θ)2  
(Eq.16) 

 280 

de = (r2 − r1)e (Eq.17) 

 281 
 282 
Considering a steady-state isothermal laminar flow of incompressible fluids through the annuli, the governing 283 
equations of motion can be integrated to yield the equations for the axial τzr and tangential τθr shear stresses in 284 
the cylindrical coordinates as: 285 
 286 
 287 
 288 

τzr =
∂P

∂z

r

2
 +  

Cz

r
 

(Eq.18) 

 289 
 290 
 291 

τθr =
Cω

r2
 

 

(Eq.19) 

 292 
 293 
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The constants Cz and Cω in the axial and tangential shear stress equations are constants of integration. The axial 294 
shear stress profile at a given angular position in the annuli may be obtained by applying the boundary conditions 295 
to Equation 18 that τzr = −τ∈ at r =  ra and inserting Equation 15 to the result to yield: 296 
 297 

τzr(θ, r) =
1

2

∂P

∂z
 [(r −

ra
2

r
)  −  

ra(rb − ra)

r
]      r1 ≤ r ≤ ra 

(Eq.20) 

 298 
 299 
Similarly, from the boundary condition that τzr = +τ∈ at r =  rb, the axial shear stress profile is  300 
 301 

τzr(θ, r) =
1

2

∂P

∂z
 [(r −

rb
2

r
)  +  

rb(rb − ra)

r
]      rb ≤ r ≤ r2

e 
(Eq.21) 

 302 
 303 
 304 
where ra = f(θ, e) and rb = f(θ, e). 305 
 306 
 307 
Substituting the axial and tangential shear stress equations into the Equation 12 yields the equation for the annuli 308 
viscosity profile as: 309 
 310 
 311 
 312 

μa(θ, r) =

[
 
 
 
 
 
 
 

  ∈ |(
Cω

r2 )
2

+ (
1
2

∂P
∂z

 [(r −
ra

2

r
)  −  

ra(rb − ra)
r

]      )
2

|

n−1
2

1 − 
τ∈

|(
Cω

r2 )
2

+ (
1
2

∂P
∂z

 [(r −
ra

2

r
)  − 

ra(rb − ra)
r

]      )
2

|

1
2

]
 
 
 
 
 
 
 
s

 
(Eq.22) 

 313 
 314 
Inserting the shear stress profile equations into the Equation 9 and integrating the results with the appropriate 315 
boundary conditions produces the velocity profile equation for fluid flow in the concentric and eccentric annulus, 316 
with or without drillpipe rotation. In the region of  r1 ≤ r ≤ ra, the axial velocity of the fluid increases with an 317 
increase in r, so the axial velocity gradient can either be greater than or equal to 0, ∂vz ∂r⁄ ≥ 0. Conversely, in 318 
the region of rb ≤ r ≤ r2

e, the axial velocity gradient is either zero or a negative value as the fluid velocity 319 
decreases with an increase in r. In the region of the maximum axial velocity or the plug region ra ≤ r ≤ rb, the 320 
axial velocity gradient is equal to zero ∂vz ∂r⁄ = 0. The velocity gradients or shear rate equations are thereby 321 
given as: 322 
 323 
 324 
 325 
∂vz

∂r
=   

1

2μa(θ, r)

∂P

∂z
 [(

ra
2

r
− r) + 

ra(rb − ra)

r
]    r1 ≤ r ≤ ra   

(Eq.23) 

 326 
 327 
 328 
∂vz

∂r
=   0    ra ≤ r ≤ rb   

(Eq.24) 

 329 
 330 
 331 
∂vz

∂r
=   

1

2μa(θ, r)

∂P

∂z
 [(r −

rb
2

r
) + 

rb(rb − ra)

r
]    rb ≤ r ≤ r2

e   
(Eq.25) 

 332 
 333 
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Integrating Equation 23 and applying the no-slip boundary condition that vz(θ, r) = 0, at the drillpipe wall r =334 
 r1 yields the axial velocity profile: 335 
 336 
 337 

vz(θ, r) =   
1

2

∂P

∂z
∫  

1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
]   dr  

r

r1

r1 ≤ r ≤ ra   (Eq.26) 

 338 
 339 
Similarly, integrating the Equation 25 while applying the no-slip boundary condition that vz(θ, r) = 0, at the 340 
drillpipe wall r =  r2

e yields: 341 

vz(θ, r) =   
1

2

∂P

∂z
∫  

1

μa(θ, r)
[(r −

rb
2

r
) + 

rb(rb − ra)

r
]   dr  

r2
e

r

rb ≤ r ≤ r2
e   (Eq.27) 

 342 
 343 
In the region ra ≤ r ≤ rb,  vz(θ, r) =   vz(θ, ra) =  vz(θ, rb) =   vzmax(θ) 344 
 345 
The angular velocity profile may be derived from Equations 8 and 19 as follows:  346 
 347 
∂ω

∂r
=   

1

μa(θ, r)

Cω

r3
 

(Eq.28) 

 348 
 349 
Integrating the above equation and applying the boundary condition that the angular velocity is maximum at the 350 
drillpipe wall, ω = ωmax at r =  r1, results in: 351 
 352 

ω(θ, r) =   ωmax − Cω(θ, r) ∫
dr

μa(θ, r) r3

r

r1

 (Eq.29) 

 353 
The volume flow rate for the generalised drilling fluid flow through the concentric and eccentric annulus with or 354 
without drillpipe rotation annulus can be expressed by integrating the velocity distribution over the entire annulus 355 
region while applying the appropriate boundary conditions: 356 
 357 
 358 

Q = ∫ ∫ vz(θ, r) r drdθ
r2
e

r1

2π

0

 (Eq.30) 

After substituting the equations for the axial velocity profiles into Equation 30, the equation for the volume flow 359 
rate of the fluid becomes: 360 
 361 
 362 

Q =
1

4

∂P

∂z
∫ (ra

2 − r2)∫  
1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
] drdθ   

ra

r1

2π

0

 

 

 

+  
1

4

∂P

∂z
∫ (ra

2 − rb
2)∫  

1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
] drdθ   

ra

r1

2π

0

 

 

 

 

            +  
1

4

∂P

∂z
∫ (r2 − rb

2)∫  
1

μa(θ, r)
[(r −

rb
2

r
) + 

rb(rb − ra)

r
] drdθ   

r2
e

rb

2π

0

 

 

(Eq.31) 
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The constant Cω(θ, r) can be determined by applying the no-slip boundary condition that ω =  0 at the outer wall 363 
of the annulus r =  r2

e , thereby arriving at: 364 
 365 
 366 

Cω(θ, r)  =   
ωmax

∫
dr

μa(θ, r) r3
r2
e

r1

 (Eq.32) 

 367 
The following function can be used to determine the radial position ra = f(θ, e) and rb = f(θ, e). 368 
 369 
 370 

f(ra, rb) =   ∫  
1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
]   dr  

ra

r1

  

 

 

−∫  
1

μa(θ, r)
[(r −

rb
2

r
) + 

rb(rb − ra)

r
]   dr  

r2
e

rb

 

 

(Eq.33) 

 371 
 372 
2.3 Friction factor  373 
 374 
The Fanning friction factor for a fully developed laminar flow of fluids through the concentric and eccentric annuli 375 
with or without inner pipe rotation, may be expressed as a function of the friction geometry parameter Fπ: 376 
 377 

f =
Fπ

ReGen

 (Eq.34) 

 378 
According to the method suggested by Caetano et al. (1992), the friction factor for turbulent flow in the annuli 379 
can be expressed in terms of the friction geometry parameter as: 380 
 381 
 382 

{f (
16

Fπ

)
c

}

−1
2⁄

=   4 log {ReGen (f (
16

Fπ

)
c

)

−1
2⁄

} − 0.40 
(Eq.35) 

 383 
 384 
where the exponent c in Eq 35 is given as: 385 
 386 
c =   0.45exp[− (ReGen − 3000) 106⁄ ] (Eq.36) 

 387 
If the friction factor is obtained, the frictional pressure gradient can be determined from the following generally 388 
known fluid flow equation: 389 
 390 
 391 
dP

dL
=   

2fρVa
2

Dh

 
(Eq.37) 

  392 
 393 
where the hydraulic diameter is given as, Dh = d2 − d1. 394 
 395 
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Using the Equations 31, 34 and 37, the friction geometry parameter for the flow of Newtonian and non-Newtonian 396 
fluids through the concentric and eccentric annuli, with or without inner pipe rotation can be determined from the 397 
solution of the following equations:  398 
 399 

Fπ =
π(d2 + d1)Dh

3

4SπμGen

 
(Eq.38) 

 400 
 401 
 402 

μGen =
τ∈Dh

12Va

+ ∈ (
2m + 1

3m
)

n

(
12Va

Dh

)
n−1

 
(Eq.39) 

 403 
 404 
 405 
 406 

Sπ = ∫ (ra
2 − r2)∫  

1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
] rdrdθ   

ra

r1

π

0

 

 

 

+  ∫ (ra
2 − rb

2) ∫  
1

μa(θ, r)
[(

ra
2

r
− r) + 

ra(rb − ra)

r
] rdrdθ   

ra

r1

π

0

 

 

 

 

            +  ∫ (r2 − rb
2) ∫  

1

μa(θ, r)
[(r −

rb
2

r
) + 

rb(rb − ra)

r
] rdrdθ   

r2
e

rb

π

0

 

 

(Eq.40) 

3.0 Numerical model development  407 

3.1 Numerical methodology 408 
  409 
In order to analyse the steady-state laminar flow of incompressible fluids in the concentric and eccentric annuli 410 
with and without inner pipe rotation, a CFD method was applied to discretise and obtain solutions of the governing 411 
equations for a fully developed 2D fluid flow. This concept was formulated to enable the execution of steady-412 
state CFD numerical simulations and obtain viscosity fields, axial and tangential velocity fields as well as the 413 
provision of data necessary for the evaluation of the fluid flowrate to axial pressure gradient relationship for 414 
Newtonian and non-Newtonian fluid flow through the concentric and eccentric annuli, with and without inner 415 
pipe rotation. Another benefit of the numerical modelling was the provision of additional data that was used to 416 
validate the results obtained from the newly developed analytical models. This involved the development of a 417 
numerical simulation technique by applying an unstructured finite volume method where the concentric and 418 
eccentric annuli are meshed in a manner that the annuli geometry is comprised of control volumes that are bounded 419 
by a finite number of discrete straight edges or planar faces. A triangular mesh for the 2D annuli geometry was 420 
generated using a systematic method where each triangular element or control volume has a node at the centroid 421 
and vertices of the cells where information of the fluid properties are stored in the annuli geometry. Figure 2 422 
shows the unstructured triangular mesh stencil where one control volume, 𝑖, is surrounded by three other 423 
neighbouring control volumes. 424 
  425 
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 426 
 427 

Figure 2:Unstructured mesh control volumes 428 

The momentum equation for an incompressible isothermal flow of a fluid through the annuli is 429 
 430 
 431 
 432 
∂𝐯

∂t
 +   ∇. 𝐯𝐯 = − 

1

ρ
∇P +   

μ

ρ
∇2𝐯 +  𝐠 

(Eq.41) 

 433 
 434 
Assuming that the flow is at steady-state fully developed and not accelerating, neglecting the gravitational body 435 
force, the momentum equation can be simplified to yield: 436 
 437 
 438 
 439 
∇P =   μ∇2𝐯  (Eq.42) 

 440 
To discretise the steady-state momentum equations and obtain solutions for the frictional pressure gradient, the 441 
finite volume approach was applied, where the conservation principles of momentum are satisfied at all the 442 
centroids of the control volumes in the annuli geometry domain. To integrate the governing equations, the 443 
numerical approximation of the diffusion terms in Equation 41 was obtained by defining the average value over 444 
a given control volume or cell in the annuli geometry using a volume integral and expressing the volume integral 445 
as a surface integral using the Gauss divergence theorem as follows:   446 
 447 
 448 
 449 

∇2𝐯 =
1

Vi

∫∇2𝐯

.

CV

 ∂V =
1

Vi

∫ ∇𝐯. 𝐧

.

CS

 ∂Af (Eq.43) 

From the definition of the volume average, Equation 41 may then be expressed as a summation over the discrete 450 
faces bounding a control volume as: 451 
 452 

∫ ∇𝐯. 𝐧

.

CS

 ∂Af =  ∑ ∇𝐯f. 𝐧f

Nf,i

f=1

 Af = Vi∇P (Eq.44) 

 453 
Thus, it is assumed that the average value of the pressure gradient over a cell or control volume, Vi, is the same as 454 
its value at the geometric centroid node of the cell.  455 
 456 
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∫ ∇𝐯. 𝐧

.

CS

 ∂Af =  ∑ ∇𝐯f. 𝐧f

Nf,i

f=1

 Af = Vi∇P (Eq.45) 

When the inner pipe is rotating in the annuli, there exists the axial and tangential velocity components in the annuli 457 
which is denoted respectively by vz and vθ. However, the solution of the equations is not performed using the 458 
cylindrical coordinate system and thus, assuming that there is no pressure gradient in the tangential direction, 459 
Equation 45 can be expressed as follows: 460 
  461 

∑∇vz. 𝐧f

Nf,i

f=1

 Af = Vi∇P (Eq.46) 

 462 

∑∇vθ. 𝐧f

Nf,i

f=1

 Af = 0 (Eq.47) 

 463 
In the annuli geometry, the gradient of the velocity at the faces of the cells were decomposed into vectors in the 464 
normal 𝐧f and tangent 𝐭f coordinate directions which are mutually perpendicular to each other. In the 2D annuli 465 
geometry, it has been assumed that the axial and angular velocities do not vary in the axial direction but varies in 466 
the normal and tangential directions. Therefore, the gradient of the axial and tangential velocity fields at the faces 467 
bounding the control volume, and in the direction pointing from the centroid of the cell to the centroid of its 468 
neighbouring cell across a given face can be written as: 469 
 470 
 471 
 472 
(∇vz)f. 𝐈f = [(∇vz)f. 𝐧f]𝐧f. 𝐈f + [(∇vz)f. 𝐭f]𝐭f. 𝐈f (Eq.48) 

 473 
(∇vθ)f. 𝐈f = [(∇vθ)f. 𝐧f]𝐧f. 𝐈f + [(∇vθ)f. 𝐭f]𝐭f. 𝐈f (Eq.49) 

 474 
The vector 𝐈f is the vector pointing from a given cell centre to its neighbouring cell centre across a given face. 475 
Thus, the dot product 𝐧f. 𝐈f is the distance between the cell centre and its neighbouring cell centre and is denoted 476 
by df. Equations 48 and 49 can then be written as: 477 
 478 
 479 

(∇vz)f. 𝐧f =
(∇vz)f. 𝐈f

df

− 
[(∇vz)f. 𝐭f]𝐭f. 𝐈f

df

 
(Eq.50) 

 480 

(∇vθ)f. 𝐧f =
(∇vθ)f. 𝐈f

df

− 
[(∇vθ)f. 𝐭f]𝐭f. 𝐈f

df

 
(Eq.51) 

 481 
 482 
The fluid at the faces of the control volume is subjected to a normal and tangential shear so the viscosity of the 483 
fluid at the faces of the cells are calculated from the magnitude of the fluid shear rate as: 484 
 485 
 486 
 487 
|γ|f =  √((∇vz)f. 𝐧f)

2 + ((∇vz)f. 𝐭f)
2 + ((∇vθ)f. 𝐧f)

2 + 2((∇vθ)f. 𝐭f)
2  (Eq.52) 

 488 
 489 

μf = 
τ∈

|γ|f
+ ∈ |γ|f

n−1
 (Eq.53) 
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For the cell 𝑖 in Figure 2, Equations 46 and 47 can be discretised to obtain the following equations for the 490 
normal and tangential components in the governing equation. 491 
 492 
 493 

μf1 [
vz1 − vzi

df1

− (
vzc − vzb

df1|𝐭f1|
) 𝐭f1. 𝐈f1] Af1  +   μf2 [

vz2 − vzi

df2

− (
vza − vzc

df2|𝐭f2|
) 𝐭f2. 𝐈f2] Af2 

 

 

+  μf3 [
vz3 − vzi

df3

− (
vzb − vza

df3|𝐭f3|
) 𝐭f3. 𝐈f3] Af3 = Vi∇P 

 

(Eq.54) 

 494 
 495 

μf1 [
vθ1 − vθi

df1

− (
vθc − vθb

df1|𝐭f1|
) 𝐭f1. 𝐈f1] Af1  +   μf2 [

vθ2 − vθi

df2

− (
vθa − vθc

df2|𝐭f2|
) 𝐭f2. 𝐈f2] Af2 

 

 

+  μf3 [
vθ3 − vθi

df3

− (
vθb − vθa

df3|𝐭f3|
) 𝐭f3. 𝐈f3] Af3 =  0 

 

(Eq.55) 

 496 
Equations 54 and 55 can be further simplified to yield the following equations for the axial and tangential 497 
velocities that exist at the centroid of all the control volumes in the flow domain.  498 
 499 
 500 

vzi = 

vz1μf1

df1
Af1  +  

vz2μf2

df2
Af2 +

vz3μf3

df3
Af3 − μf1 (

vzc − vzb

df1|𝐭f1|
) 𝐭f1. 𝐈f1Af1 − μf2 (

vza − vzc

df2|𝐭f2|
) 𝐭f2. 𝐈f2Af2

− μf3 (
vzb − vza

df3|𝐭f3|
) 𝐭f3. 𝐈f3Af3 − Vi∇P 

μf1

df1
Af1   +   

μf2

df2
Af2  +  

μf3

df3
Af3

 

 

(Eq.56) 

 501 
 502 
 503 

vθi = 

vθ1μf1

df1
Af1  +  

vθ2μf2

df2
Af2 +

vθ3μf3

df3
Af3 − μf1 (

vθc − vθb

df1|𝐭f1|
) 𝐭f1. 𝐈f1Af1 − μf2 (

vθa − vθc

df2|𝐭f2|
) 𝐭f2. 𝐈f2Af2

− μf3 (
vθb − vθa

df3|𝐭f3|
) 𝐭f3. 𝐈f3Af3 

μf1

df1
Af1   +   

μf2

df2
Af2  +  

μf3

df3
Af3

 

 

(Eq.57) 

 504 
The velocities at the vertex nodes are computed from interpolation of the velocities in the cells that are in contact 505 
with the vertex node. Although there are several ways in which this interpolation can be performed, the 506 
interpolation function used for the computation of the vertex velocities is dependent on the distance between the 507 
vertex node and the surrounding cell central nodes. The cell-to-vertex interpolation function can be expressed as: 508 
 509 
 510 

vv =  ∑ wv,i

N

i=1

vi 
(Eq.58) 

 511 
 512 

wv,i =  
1 di⁄

∑ 1 di⁄N
i=1

 
(Eq.59) 

 513 
 514 
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where di, is the distance of the ith cell node to the vertex node and N is the number of cells that influences the 515 
vertex node.  516 
 517 
The area of the faces of the control volume is equal to the length of the face so for instance, considering the face 518 
1 of the cell 𝑖 in Figure 2, the area of the face can be determined from: 519 
 520 
 521 
Af1 =  √(xc − xb)

2 + (yc − yb)
2 (Eq.60) 

 522 
In order to mitigate the numerical precision errors when determining the volume of a cell regardless of the shape 523 
or orientation, an average of the volumes is obtained using the two components of the outward unit normal 524 
summed over the faces of the control volume. Thus, the volume of a cell in the domain may be expressed as:   525 
 526 
 527 

Vi = 
1

2
(∑nx,f

Nf,i

f=1

 xf Af  +  ∑ny,f

Nf,i

f=1

 yf Af ) 
(Eq.61) 

 528 
 529 
where xf, yf and zf are the coordinates of the centroid of the faces of the control volume.  530 

 531 
 532 

4.0 Mesh and simulation parameters  533 
 534 
Fluid flow simulations were performed to analyse the combined effect of the fluid rheology, eccentricity and inner 535 
pipe rotation on the flow dynamics, friction geometry parameter and frictional pressure gradient for annuli flows 536 
using the newly developed analytical and numerical CFD models. Table 2 presents the range of the input 537 
parameters that were used to perform analytical and numerical CFD simulations.  538 
 539 
Table 2: Range of input parameters considered  540 

Input parameters  Range of values  

Fluid circulation rate 10 to 70 m3/hr 

Inner and outer pipe size 88 and 144 mm 

Inner pipe rotary speed  0 to 320 rpm 

Eccentricity  0 to 0.9  

 541 
 542 
A computational program was written in MATLAB to obtain solutions for the velocity and viscosity numerical 543 
CFD equations.  544 
Figure 3 shows the annuli geometry and mesh generated for the concentric and eccentric annuli.  545 
 546 
 547 
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a b 

            548 

Figure 3:Geometry and mesh used for numerical computations, a) concentric (e = 0) and b) eccentric (e = 0.5) 549 

 550 
The geometric coordinates of the centroids, vertices, face centres and the face normal and tangent vectors of the 551 
control volumes in the mesh are obtained and stored prior to running the simulations to reduce computational cost. 552 
Appropriate boundary conditions are necessary in order to obtain accurate solutions of the governing equations in 553 
the annuli with or without inner pipe rotation. The axial and angular velocity at the outer wall follow the no-slip 554 
boundary condition hence the axial and tangential velocities of the vertex nodes that are in contact with the outer 555 
wall are set to zero. For the inner pipe wall, while the axial velocities of the vertex nodes are set to zero, in the 556 
simulations where the inner pipe is rotating the tangential velocities of the vertex nodes in contact with the inner 557 
pipe wall are set equal to  ωmaxr1. To perform the CFD simulations, the required axial pressure is first assumed, 558 
then the numerical equations are solved to generate the axial and tangential velocity fields that corresponds to the 559 
assumed axial pressure gradient. The computational procedure is given in Appendix D. The steady-state fluid 560 
flow iterative simulations were performed with the convergence criteria of 1e-4. The rheological parameters of the 561 
simulated Newtonian and non-Newtonian fluids were obtained from literature (Bicalho et al., 2016; Diamante and 562 
Lan, 2014; Vieira Neto et al., 2014) and are given in Table 3.  563 
 564 
 565 
Table 3: Rheological parameters of the simulated fluids  566 

Fluid rheology type 𝐊 (𝐏𝐚 𝐬𝐧) 𝐧 𝛕𝐨 (𝐏𝐚) 

Newtonian 0.0398 1 0 

Power law 0.096 0.75 0 

Power law 0.678 0.27 0 

Herschel-Bulkley 0.6461 0.43 2.29 

It should be noted that for the Newtonian fluid, K = μ 567 
  568 
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5.0 Results and discussion  569 
 570 
The combined effect of fluid rheology, fluid flowrate, eccentricity, and inner pipe rotation on the fluid dynamics 571 
and pressure loss for annuli flows was systematically analysed using the newly developed analytical and numerical 572 
models presented in this paper. Analytical calculations and numerical CFD simulations were performed, and the 573 
results obtained showed that unlike the Newtonian annuli fluid flows, the friction geometry parameter for non-574 
Newtonian annuli flows is not only influenced by the eccentricity but also highly influenced by the inner pipe 575 
rotation speed, the fluid rheological parameters and input flowrate. 576 
 577 
 578 
5.1 Validation of new analytical model  579 
 580 
In order to validate the accuracy of the newly developed analytical model, a comparison of the friction geometry 581 
parameter calculated by the analytical model was performed using the model suggested by Caetano et al. (1992) 582 
for the friction geometry parameter for laminar flow of Newtonian fluids in annuli. Table 4 presents the values of 583 
the friction geometry parameter obtained for different pipe diameter ratios, using both methods for the flow of the 584 
Newtonian fluid in the concentric annuli. The values obtained using the new analytical model matched perfectly 585 
with that of Caetano et al. (1992) with an absolute error of ±0%. The Caetano et al. (1992) model is presented in 586 
Appendix A. 587 
 588 
Table 4: Friction geometry parameter values at different pipe diameter ratios for the concentric annuli (e =0), 589 
obtained from Caetano et al. (1992) and the new analytical model for the flow of Newtonian fluids 590 

Pipe diameter ratio 
Friction geometry parameter (e = 0) 

Caetano et al. (1992) New analytical model 

0.1 22.3430 22.3430 

0.2 23.0881 23.0881 

0.3 23.4612 23.4612 

0.4 23.6783 23.6783 

0.5 23.8125 23.8125 

0.6 23.8970 23.8970 

0.7 23.9495 23.9495 

0.8 23.9801 23.9801 

0.9 23.9956 23.9956 

 591 
 592 
Another comparison of the values obtained using the new analytical model to that which is presented in literature 593 
was performed for the validation the flow of non-Newtonian fluids in the eccentric annuli, without inner pipe 594 
rotation. The annuli pressure gradient for the flow of non-Newtonian Power law fluid at different wellbore 595 
eccentricities, predicted by the analytical model was also compared ( 596 
Figure 4) to that which was predicted by applying the pressure gradient correction factor developed by 597 
Haciislamoglu and Langlinais (1990) through a non-linear regression analysis using numerical data was obtained 598 
from the solution of the non-Newtonian fluid flow equations defined in the bipolar coordinate system. The 599 
Haciislamoglu and Langlinais (1990) correction factor was chosen  as a reference for the new analytical model 600 
validation due to its reliability and applicability in the prediction of the pressure gradient for the flow of Power 601 
law fluids in the eccentric annuli (Bicalho et al., 2016; Pilehvari and Serth, 2009; Rojas et al., 2017; Sayindla et 602 
al., 2017; Tang et al., 2016; Tong et al., 2020). Although some studies have applied this pressure gradient 603 
correction factor for Yield Power Law fluids, these authors have neglected that the correction factor is only valid 604 
for Power law fluids (Dokhani et al., 2020). Haciislamoglu and Langlinais (1990) reported that the accuracy of 605 
the pressure gradient correction factor was about ±5%. However, the comparison of the analytical model 606 
developed in this study showed a maximum deviation of about 7%. The Haciislamoglu and Langlinais (1990) 607 
pressure gradient correction factor equation is presented in Appendix B. 608 
 609 
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 610 

Figure 4: Comparison of the annuli frictional pressure gradient obtained from new analytical model vs that of 611 
Haciislamoglu and Langlinais (1990) for Power law annuli fluid flow 612 

The favourable comparison of the analytical model for the friction geometry parameter and the consequent 613 
frictional pressure gradient for annuli flows provides proof that the model can be applied with confidence for the 614 
analysis and prediction of the flow dynamics for both Newtonian and non-Newtonian fluid flows in the concentric 615 
and eccentric annuli. However, the new models presented in this study provides an additional benefit of 616 
considering the combined effect of fluid rheology, flowrate, eccentricity, and inner pipe rotation while analysing 617 
Newtonian and non-Newtonian annuli fluid flows and performing the pressure loss calculations.  618 
 619 
 620 
5.2 Influence of eccentricity  621 
 622 
The distribution of the velocity fields for the flow of Newtonian and non-Newtonian fluids in the concentric annuli 623 
is generally uniform across the circumference of the annuli. However, when the flowrate is held constant, an 624 
increase in the eccentricity leads to an asymmetric distribution of the flow field, where higher fluid velocities exist 625 
in the larger flow areas of the annuli, in contrast to lower fluid velocities in the smaller or reduced flow areas. The 626 
severity of the induced asymmetry in the velocity fields is dependent on the level of inner pipe eccentricity. It was 627 
observed that the distribution of the velocity field, the position and value of the maximum velocity in the annuli 628 
is highly dependent on the flow regime and the rheological properties of the fluid.  629 
Figure 5 to Figure 8 presents the visualisation of the axial velocity fields obtained from CFD simulations using 630 
the numerical model. These simulations were performed to analyse the behaviour of the flow for all the fluid types 631 
(Error! Reference source not found.) at a constant flowrate of 30 m3/hr without inner pipe rotation.  632 
Figure 5 to Figure 8 shows the axial velocity fields obtained for both Power law fluids simulated in this study. 633 
Even though the shear stress to shear rate relationship for both fluids are governed by the Power law rheological 634 
model, at the same fluid flowrate, the velocity field distribution in the concentric and eccentric annulus were 635 
dependent on the rheological parameters of the fluids. At a constant fluid flowrate, an increase in eccentricity 636 
produced a corresponding decrease in the axial frictional pressure gradient for both the Newtonian and non-637 
Newtonian fluids. This is mainly because a larger portion of the fluids flow though the larger regions of the 638 
eccentric annuli where a lesser flow resistance is experienced. The reduction in pressure loss due to the increase 639 
in the eccentricity has also been reported by several works in literature (Dokhani et al., 2020; Silva and Shah, 640 
2000).  641 
 642 
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 643 

Figure 5: Axial velocity fields obtained for the Power law fluid (K = 0.096, n = 0.75, τo = 0) flowing at 30 m3/hr 644 
in the concentric (e = 0) and eccentric (e = 0.7) annuli 645 

  

 
 646 

Figure 6: Axial velocity fields obtained for the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) flowing 647 
at 30 m3/hr in the concentric (e = 0) and eccentric (e = 0.7) annuli 648 

  

 
 649 

Figure 7: Axial velocity fields obtained for the Power law fluid (K = 0.678, n = 0.27, τo = 0) flowing at 30 m3/hr 650 
in the concentric (e = 0) and eccentric (e = 0.7) annuli 651 
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Figure 8: Axial velocity fields obtained for the Newtonian fluid (K = 0.0398, n = 1, τo = 0) flowing at 30 m3/hr 652 
in the concentric (e = 0) and eccentric (e = 0.7) annuli 653 

However, the degree to which the eccentricity influences the axial frictional pressure gradient is dependent on the 654 
fluid rheology. Unlike the case of the Newtonian fluid flow, the friction geometry parameter for the non-655 
Newtonian fluid flow is not only influenced by the inner pipe eccentricity but also influenced by the rheological 656 
parameters of the fluids. The friction geometry parameter for the different fluids obtained from the analytical 657 
model is presented in Figure 9.  658 
 659 
 660 

 
Figure 9: Influence of eccentricity and fluid rheology on the annuli friction geometry parameter for the different   661 
simulated fluids  662 

It can be deduced that while the friction geometry parameter values for all the simulated fluids in the concentric 663 
annuli or at low eccentricities are approximately the same, at higher inner pipe eccentricities, the fiction geometry 664 
parameter for the non-Newtonian fluids significantly deviates from that of the Newtonian fluid to an extent that 665 
is dependent on the fluid properties. The results obtained from the analytical and numerical model ascertains that 666 
at a given eccentricity, the friction geometry parameter for the Newtonian fluid is constant. However, for the non-667 
Newtonian fluids, the effect of the eccentricity on the friction geometry parameter, the annuli friction factor, and 668 
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the corresponding axial frictional pressure gradient is dependent on the fluid rheological parameters. Figure 10 to 669 
Figure 12 present the comparison of the axial frictional pressure gradient obtained from the new analytical and 670 
numerical models for the flow of the different fluid rheology types at different fluid flowrates in the concentric 671 
and eccentric annuli.  672 
 673 

 
 674 
Figure 10: Comparison of the frictional pressure gradient obtained from the numerical and analytical model for 675 
the flow of the Newtonian fluid (K = 0.0398, n = 1, τo = 0) at different flowrates in the concentric (e = 0) and 676 
eccentric (e = 0.7) annuli 677 
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Figure 11: Comparison of the frictional pressure gradient obtained from the numerical and analytical model for 681 
the flow of the Power law fluid (K = 0.096, n = 0.75, τo = 0) at different flowrates in the concentric (e = 0) and 682 
eccentric (e = 0.7) annuli. 683 

  684 

 
 685 
Figure 12: Comparison of the frictional pressure gradient obtained from the numerical and analytical model for 686 
the flow of the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) at different flowrates in the concentric 687 
(e = 0) and eccentric (e = 0.5) annuli 688 
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The analytical model and numerical CFD simulations predicted a decrease in the axial frictional pressure gradient 689 
with an increase in eccentricity without inner pipe rotation and the comparison showed very good agreement with 690 
a maximum error of about 10%.  691 
 692 
 693 
5.3 Influence of inner pipe rotation 694 
  695 
The combined effect of eccentricity and inner pipe rotation has a strong influence on the friction geometry 696 
parameter of the flow and thereby influences the friction factor or frictional pressure gradient for non-Newtonian 697 
helical fluid flow through the annuli. However, there is no significant impact of the inner pipe rotation on the 698 
friction geometry parameter for Newtonian fluid flow in the concentric and eccentric annuli, even though the 699 
increase in the eccentricity still produces a corresponding decrease in the frictional pressure gradient. The friction 700 
geometry parameter developed for the Newtonian fluids cannot be applied to perform accurate predictions of the 701 
frictional pressure losses for flow of non-Newtonian fluids in the annuli with or without inner pipe rotation. The 702 
results obtained from the analytical and numerical model simulations show that the impact of the inner pipe 703 
rotation on the fluid velocity distribution and frictional pressure losses for non-Newtonian fluids is highly 704 
dependent on the rheological properties of the fluid, fluid flowrate, eccentricity, and the pipe diameter ratio of the 705 
annuli. The introduction of inner pipe rotation generates a tangential fluid velocity component that varies in the 706 
radial and angular direction (eccentric cases) in the annuli space and in a manner that is dependent on the 707 
eccentricity and rheological parameters of the fluids. The tangential velocity field has its maximum value at the 708 
inner pipe wall, decreases in the radial direction and is zero at the outer pipe wall due to the no-slip effect ( 709 
Figure 13 and  710 
Figure 14).  711 
 712 

  

 
 713 

Figure 13: Tangential velocity distribution for the flow of the Power law fluid (K = 0.096, n = 0.75, τo = 0) at a 714 
flowrate of 30 m3/hr and an inner pipe rotary speed of 150 rpm in the concentric (e = 0) and eccentric (e = 0.7) 715 
annuli 716 
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 718 

Figure 14: Tangential velocity distribution for the flow of the Power law fluid (K = 0.678, n = 0.27, τo = 0) at a 719 
flowrate of 30 m3/hr and an inner pipe rotary speed of 150 rpm in the concentric (e = 0) and eccentric (e = 0.7) 720 
annuli 721 

 722 
 723 
From  724 
Figure 13 and  725 
Figure 14, it is observed that although both of the fluids are characterised by the Power law rheological model 726 
and flowing at the same flowrate and inner pipe rotation, the shape and size of the velocity profiles were a function 727 
of the rheological parameters of the fluid.  Figure 15 to Figure 18 are plots that show the actual values and shape 728 
of the tangential velocity profile in the largest and smallest radial gap in the eccentric (e = 0.7) annuli for pipe 729 
rotation speeds in the range of 120 to 300 rpm. While the tangential velocities of the two fluids differ significantly 730 
in the largest radial gap, the tangential velocities in the smallest radial gap in the annuli approached the same value 731 
at the different rotary speeds. For the flow of non-Newtonian shear-thinning fluids through the annuli, the 732 
introduction of the inner pipe rotation changes the fluid viscosity at every local position in the annuli. This change 733 
in the fluid local viscosity in the annuli space is a function of the magnitude of the axial and tangential shear rate 734 
and is highly influenced by pipe eccentricity and fluid rheology.  735 
 736 
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Figure 15: Tangential velocity profiles of the Power law fluid (K = 0.096, n = 0.75, τo = 0) in the largest radial 737 
gap of the eccentric (e = 0.7) annuli at different inner pipe rotation speeds  738 

 739 

 
 740 
Figure 16: Tangential velocity profiles of the Power law fluid (K = 0.678, n = 0.27, τo = 0) in the largest radial 741 
gap of the eccentric (e = 0.7) annuli at different inner pipe rotation speeds 742 
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 743 
Figure 17: Tangential velocity profiles of the Power law fluid (K = 0.096, n = 0.75, τo = 0) in the smallest radial 744 
gap of the eccentric (e = 0.7) annuli at different inner pipe rotation speeds  745 

 746 

 
 747 
Figure 18: Tangential velocity profiles of the Power law fluid (K = 0.678, n = 0.27, τo = 0) in the smallest radial 748 
gap of the eccentric (e = 0.7) annuli at different inner pipe rotation speeds  749 
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Figure 19 and Figure 20 present the viscosity profile of the Power law fluid in the concentric and eccentric annulus 750 
at different inner pipe rotation speeds and at a constant fluid flowrate of 30 m3/hr. It can be observed that at the 751 
same flow conditions, higher viscosity values are seen in the larger radial gap of the eccentric annuli when 752 
compared to fields in the concentric annuli, due to the reduction of the flow resistance in those regions. However, 753 
lower fluid viscosity values exist in the smallest radial gap in the annuli and an increase in the inner pipe rotary 754 
speed produced a decrease in the fluid viscosity for the shear-thinning non-Newtonian fluids.  755 
 756 

  

 
  

 757 
Figure 19: Reduction of the Power law fluid (K = 0.096, n = 0.75, τo = 0) viscosity in the concentric (e = 0) 758 
annulus with an increase in the inner pipe rotary speed   759 

  

   
 760 
Figure 20: Reduction of the Power law fluid (K = 0.096, n = 0.75, τo = 0) viscosity in the eccentric (e = 0.7) 761 
annulus with increase in the inner pipe rotary speed   762 
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The viscosity field in the smallest radial gap in the annuli decreased with inner pipe rotation significantly more 763 
when compared to the other areas in the annuli due to its smaller radial distance and relatively higher tangential 764 
velocities. The inner pipe rotation produced no significant effect on the distribution of the velocity fields for the 765 
Newtonian and non-Newtonian fluids in the concentric annuli. However, in the eccentric annuli, while the inner 766 
pipe rotation had no significant influence on the velocity fields for the Newtonian flow, for the non-Newtonian 767 
fluids, the inner pipe rotation redistributed the velocity fields in the eccentric annuli and improved the flow in the 768 
regions with the smaller radial gap in the annuli.  769 
To visualise the effect of the inner pipe rotation on the velocity fields, the fluid axial velocity profiles at the largest 770 
and smallest radial gap in the annuli is given in Figure 21 to Figure 24 for the different Power law fluids at a 771 
flowrate of 30 m3/hr. An increase in the inner pipe rotation leads to an increase in the fluid velocity in the smallest 772 
region of the annuli for the non-Newtonian fluids. However, if the fluid flowrate is constant, the fluid velocity in 773 
the larger areas are as a result, reduced. Comparing Figure 21 to Figure 22 and Figure 23 to Figure 24, it can be 774 
seen that the Power law fluid with the lower flow behaviour index had a higher decrease in the axial velocity in 775 
the largest radial gap as well as a higher increase in the axial velocity in the smallest radial gap in the annuli. Thus, 776 
it is evident that the effect of the inner pipe rotation on the axial velocity fields is significantly influenced by the 777 
fluid rheology and eccentricity.  778 
 779 
 780 

 
 781 

Figure 21: Reduction of the axial velocity of the Power law fluid (K = 0.096, n = 0.75, τo = 0) in the largest 782 
radial gap of the eccentric (e = 0.7) annulus with an increase in the inner pipe rotation speed  783 
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 784 

Figure 22: Reduction of the axial velocity of the Power law fluid (K = 0.678, n = 0.27, τo = 0) in the largest 785 
radial gap of the eccentric (e = 0.7) annulus with an increase in the inner pipe rotation speed 786 

 787 

 
 788 

Figure 23: Improvement of the axial velocity of the Power law fluid (K = 0.096, n = 0.75, τo = 0) in the smallest 789 
radial gap of the eccentric (e = 0.7) annulus with an increase in the inner pipe rotation speed 790 
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 791 

Figure 24: Improvement of the axial velocity of the Power law fluid (K = 0.678, n = 0.27, τo = 0) in the smallest 792 
radial gap of the eccentric (e = 0.7) annulus with increase in the inner pipe rotation speed 793 
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 796 
Inner pipe rotation has a significant influence on the fluid dynamics in the annuli. It was observed that changes in 797 
the inner pipe rotation speed also produces a significant influence on the annuli friction geometry parameter. 798 
While inner pipe rotation has no significant influence on the friction geometry parameter for the Newtonian fluids, 799 
the effect of the inner pipe rotation on the friction geometry parameter for the different non-Newtonian fluids are 800 
shown in Figure 25 to Figure 28.  801 
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 802 

Figure 25: Changes in the annuli frictional geometry parameter for the Power law fluid (K = 0.096, n = 0.75, τo 803 
= 0) due to an increase in inner pipe rotary speed at different fluid flowrates  804 

 805 

 
 806 
Figure 26: Changes in the annuli frictional geometry parameter for the Herschel-Bulkley fluid (K = 0.6461, n = 807 
0.43, τo = 2.29) due to an increase in inner pipe rotary speed at different fluid flowrates  808 
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An increase in the inner pipe rotation speed led to a decrease in the friction geometry parameter for all the non-810 
Newtonian fluids and it was observed that the effect of the inner pipe rotation on the friction geometry parameter 811 
was not only dependent on the fluid rheology and eccentricity but also significantly dependent on the fluid 812 
flowrate. Figure 25 and Figure 26  show that as the fluid flowrate was increased, the influence of the pipe rotation 813 
on the friction geometry parameter significantly decreased. This is one of the fundamental reasons why the effect 814 
of the inner pipe rotation on the flow behaviour of the fluids flowing under the turbulent flow regime is somewhat 815 
insignificant. There have also been several studies that have reported the negligible effect of the inner pipe rotation 816 
at high fluid circulation rates or turbulent flow conditions (Erge et al., 2014a, 2014b; Salubi et al., 2022).  817 
 818 

 
 819 
Figure 27: Effect of fluid rheology on the annuli frictional geometry parameter for the different Power law 820 
fluids in the concentric (e = 0) annuli due to an increase in inner pipe rotary speed at different fluid flowrates  821 
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 823 
Figure 28: Effect of fluid rheology on the annuli frictional geometry parameter for the different Power law 824 
fluids in the concentric (e = 0) annuli due to an increase in inner pipe rotary speed at different fluid flowrates  825 

For non-Newtonian fluids, the flowrate effect on the the friction geometry parameter due to pipe rotation is highly 826 
dependent on the eccentricity and fluid rheology of the fluids and if the rheological parameters are changed, the 827 
friction geometry parameter would differ even if the fluid rheology model or characteristics remains the same. 828 
However, for the Newtonian fluid the friction geometry parameter remains constant irrespective of the fluid 829 
viscosity. For example it can be deduced from Figure 25 to Figure 28 that the friction geometry parameter for the 830 
two Power law fluids differed significantly at various inner pipe rotation speeds, eccentricities, and fluid flowrates 831 
even though both fluids were characterised by the Power law rheological model.  832 
 833 
 834 
5.4 Influence of the annuli pipe diameter ratio 835 
 836 
The annuli pipe diameter ratio, Ka = d1/d2 is an important parameter that can also influence the friction 837 
geometry parameter along with the fluid rheology, eccentricity, flowrate, and inner pipe rotation. The effect of 838 
the inner pipe rotation on the friction geometry parameter in the lowest and highest annuli pipe diameter ratio is 839 
somewhat low when compared to the other pipe diameter ratios. This is because at low pipe diameter ratios, the 840 
size of the inner pipe is too small when compared to the outer pipe and thus the inner pipe rotation cannot generate 841 
enough tangential force to compete with the axial force of the flow. At very high pipe diameter ratios, the space 842 
between the inner and outer pipe is small and thus generates a high axial shear force that largely exploits the shear 843 
thinning properties of the fluid. Thus, the axial force dominates as the inner pipe rotation in this case, cannot thin 844 
the fluid any further to influence the frictional pressure gradient of the flow. The effect of the annuli pipe diameter 845 
ratio could be seen when the friction geometry parameter values for the Power law fluid without inner pipe rotation 846 
(Figure 29) was compared to cases when the inner pipe rotation was 300 rpm (Figure 30). For the cases of pipe 847 
rotation, even though the friction geometry parameter was significantly reduced, it can be deduced from Figure 848 
30, that the maximum effect of the inner pipe rotation occurred within the annuli geometry parameter range of 849 
about 0.6 to 0.8. The same phenomenon can be seen in the comparison of the friction geometry parameter for the 850 
Herschel-Bulkley fluid at a flowrate of 14 m3/hr without inner pipe rotation (Figure 31) to that which had inner 851 
pipe rotation (Figure 32). However, due to the fluid rheological parameters used in this study, the impact of the 852 
inner pipe rotation is more significant in the Power law fluid when compared to the Herschel-Bulkley fluid. The 853 
effect of inner pipe rotation on the friction geometry parameter at various annuli pipe diameter ratios for the flow 854 
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of the Power law fluids at a fixed eccentricity is presented in Figure 33 and Figure 34. These figures show that 855 
the influence of inner pipe rotation is less pronounced at the lowest and highest pipe diameter ratios and in some 856 
cases, the friction geometry parameters approach the same value at those points and tend to return to the values 857 
obtained in the cases of no pipe rotation. 858 
 859 
 860 

 
Figure 29: Friction geometry parameter for the Power law fluid (K = 0.678, n = 0.27, τo = 0) at 14 m3/hr and 0 861 
rpm 862 

 
Figure 30: Friction geometry parameter for the Power law fluid (K = 0.678, n = 0.27, τo = 0) at 14 m3/hr and 300 863 
rpm 864 
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Figure 31: Friction geometry parameter for the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) at 14 865 
m3/hr and 0 rpm 866 

 867 

 
Figure 32: Friction geometry parameter for the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) at 14 868 
m3/hr and 300 rpm 869 
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Figure 33: Effect of inner pipe rotation on the friction geometry parameter of the Power law fluid (K = 0.678, n 870 
= 0.27, τo = 0) at 14 m3/hr, in the eccentric annuli (e = 0.3) at different pipe diameter ratios  871 

 872 
 873 

 
Figure 34: Effect of inner pipe rotation on the friction geometry parameter of the Power law fluid (K = 0.096, n 874 
= 0.75, τo = 0) at 14 m3/hr, in the eccentric annuli (e = 0.5) at different pipe diameter ratios  875 
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5.5 Axial frictional pressure gradient  876 
 877 
Analytical calculations and numerical simulations results have showed that for the flow of non-Newtonian fluids, 878 
the friction geometry parameter and thus, the axial pressure gradient in the annuli is dependent on the combined 879 
effect of the fluid flowrate, fluid rheology, eccentricity, inner pipe rotary speed and annuli pipe diameter ratio. 880 
Figure 35 to Figure 40 display the results of the comparison of the axial pressure gradient obtained from the 881 
analytical and numerical model for different inner pipe rotation speeds, fluid flowrates and eccentricities, and for 882 
all the simulated non-Newtonian fluids. It was observed that although the increase in the inner pipe rotation led 883 
to a decrease in the frictional pressure gradient, the effect of the pipe rotation is dependent on the fluid flowrate. 884 
For instance, comparing Figure 35 and Figure 36, it can be seen that while the increase in the inner pipe rotation 885 
had an effect on the pressure gradient of the Power law fluid at the fluid flowrate of 10 m3/hr, this effect is 886 
somewhat negligible at the fluid flowrate of 60 m3/hr. In general, the comparison of the pressure gradient 887 
calculated using the new analytical models to that obtained using the numerical CFD models showed very good 888 
agreement with a maximum error of about 10%. 889 
 890 

 
 891 
Figure 35: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 892 
numerical model for the flow of the Power law fluid (K = 0.096, n = 0.75, τo = 0) at 10 m3/hr in the concentric (e 893 
= 0) and eccentric (e = 0.5 and 0.7) annuli  894 

 895 

80

90

100

110

120

130

140

150

160

0 50 100 150 200 250 300

P
re

ss
u

re
 g

ra
d

ie
n

t,
 P

a/
m

Inner pipe rotary speed, rpm

Analytical model, e = 0

Analytical model, e = 0.5

Analytical model, e = 0.7

Numerical model, e = 0

Numerical model, e = 0.5

Numerical model, e = 0.7



38 

 

 
 896 
Figure 36: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 897 
numerical model for the flow of the Power law fluid (K = 0.096, n = 0.75, τo = 0) at 60 m3/hr in the concentric (e 898 
= 0) and eccentric (e = 0.5 and 0.7) annuli 899 

 
 900 
Figure 37: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 901 
numerical model for the flow of the Power law fluid (K = 0. 678, n = 0.27, τo = 0) at 10 m3/hr in the concentric 902 
(e = 0) and eccentric (e = 0.5 and 0.7) annuli 903 
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 905 

Figure 38: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 906 
numerical model for the flow of the Power law fluid (K = 0. 678, n = 0.27, τo = 0) at 35 m3/hr in the concentric 907 
(e = 0) and eccentric (e = 0.5 and 0.7) annuli 908 

 
 909 

Figure 39: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 910 
numerical model for the flow of the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) at 30 m3/hr in the 911 
concentric (e = 0) and eccentric (e = 0.5) annuli 912 
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 913 

Figure 40: Axial frictional pressure gradient at different pipe rotation speeds, obtained from the analytical and 914 
numerical model for the flow of the Herschel-Bulkley fluid (K = 0.6461, n = 0.43, τo = 2.29) at 70 m3/hr in the 915 
concentric (e = 0) and eccentric (e = 0.5) annuli 916 

5.6 Rotational versus orbital motion of the inner pipe  917 
 918 
Analysis of the results presented has shown that when the annuli flow is fully developed and the fluid flowrate is 919 
held constant, the increase in the inner pipe rotation leads to a decrease in the pressure gradient for the shear 920 
thinning non-Newtonian fluids. Although, the magnitude of this effect is highly dependent on the fluid rheological 921 
properties, inner pipe rotation and the annuli eccentricity, it is also dependent on whether the inner pipe is 922 
exhibiting a rotational or an orbital motion. For instance, Erge et al (2014b) pointed out that there are several 923 
drillstring motion patterns that may be expected to form when the drillpipe is rotating and at high rotary speeds, 924 
an irregular motion of the drillstring of the drillstring can occur.   It is important to point out that the new analytical 925 
and numerical models developed in this study is only valid when the pipe is moving in a rotational motion and 926 
cannot be applied directly to investigate the effect of rotation on the fluid dynamics when the inner pipe is moving 927 
in an orbital motion. If the inner pipe is moving in an orbital motion, depending on the axial deflection or sag of 928 
the inner pipe, the eccentricity of the annuli changes constantly as the pipe is moving and thus the distance between 929 
the inner pipe wall and the outer pipe wall across the circumference of the annuli would not be constant with time 930 
at any given location (Figure 41). 931 
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Figure 41: Change in eccentricity and position of inner pipe in the annuli due to orbital motion 934 

 935 
The changes in eccentricity and the radial position caused by the inner pipe orbital motion leads to a transient 936 
distribution of the velocity fields and the local fluid properties in the annuli. Thus, a steady-state fully developed 937 
flow cannot be assumed as the fluid velocity distribution in the annuli is transient. This phenomenon will lead to 938 
a situation where the axial pressure gradient of the flow can either be increased or decreased with an increase in 939 
the inner pipe rotary speed and the setup of numerical CFD simulations to account for this transient effect while 940 
obtaining solutions for the transient governing equations for the fluid flow is highly complex. However, an 941 
experimental study can be performed to investigate the effect of the orbital motion of the inner pipe on the annuli 942 
flow dynamics and hydraulics and obtain a correction factor or parameters that can be applied to modify the 943 
analytical friction factor models to account for this effect.  944 
 945 
 946 

6.0 Conclusions 947 
 948 
New analytical and numerical models were developed to analyse the simultaneous effect of eccentricity and inner 949 
pipe rotation on the fluid dynamics and pressure gradient for the flow of Newtonian and non-Newtonian fluids 950 
through the annuli. The debate about the hydraulics of helical flow of fluids through the concentric and eccentric 951 
annuli was addressed and analytical and numerical CFD models were developed to predict the friction geometry 952 
parameter for the flow of both Newtonian and non-Newtonian fluids through the concentric and eccentric annuli 953 
with and without inner pipe rotation. These suggested mathematical models showed good agreement when 954 
compared to models published in literature and produced a maximum error of about ±7%. Numerical CFD 955 
simulations were performed using the finite volume technique to obtain axial and tangential velocity and viscosity 956 
fields to evaluate the axial pressure gradient for helical flow of both Newtonian and non-Newtonian fluids in the 957 
annuli. Furthermore, new generalised Reynolds number equations valid for Newtonian, Power law, Bingham 958 
plastic and Herschel-Bulkley fluids were derived and presented. The results of the predicted frictional pressure 959 
gradient for fluid flow in concentric and eccentric annuli, with or without inner pipe rotation, obtained using the 960 
analytical and numerical models were compared to generate a maximum error of about 10%.  961 
 962 
The following conclusions were drawn from this study: 963 
 964 
1. The friction geometry parameter for non-Newtonian fluid flow through the annuli, unlike Newtonian flow, is 965 

dependent on the rheological properties of the fluid, the fluid flowrate, inner pipe rotary speed and the annuli 966 
geometry.  967 

 968 
2. In order to determine the friction factor and the consequent frictional pressure gradient in the annuli with or 969 

without inner pipe rotation for the flow of non-Newtonian fluids, the rheological properties along with the 970 
other important parameters of the flow have to be taken into account. Thus, the methods developed for the 971 
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flow of Newtonian fluids in the annuli cannot be applied to perform accurate predictions of the annuli pressure 972 
losses for the axial or helical flow of non-Newtonian fluids.  973 

 974 
3. For a fully developed laminar flow of non-Newtonian shear thinning fluids, if the fluid flowrate is constant, 975 

the increase in the inner pipe rotation leads to a decrease in the axial frictional pressure gradient when the 976 
pipe is rotating on its axis. However, if the inner pipe is rotating in an orbital motion, the frictional pressure 977 
gradient can either increase or decrease depending on the flow dynamics and annuli geometry. 978 

 979 
4. When the fluid flowrate is held constant, while inner pipe rotation has a little or no effect on the axial velocity 980 

distribution in the annuli for the flow of Newtonian fluids, the increase in inner pipe rotation increases the 981 
axial velocity fields in the region of lower flow in the eccentric annuli for shear thinning non-Newtonian 982 
fluids. However, there is little or no effect of inner pipe rotation on the velocity distribution in the concentric 983 
annuli.  984 

 985 
5. An increase in eccentricity generally leads to a corresponding decrease in the frictional pressure losses in the 986 

annuli for both single-phase Newtonian and shear thinning non-Newtonian fluids.  987 
 988 
6. For the helical flow of non-Newtonian fluids in the annuli, the rate at which the inner pipe rotation influences 989 

the axial and tangential velocity field distribution, and the pressure gradient is dependent on the rheological 990 
parameters of the fluid  991 

 992 
7. The effect of inner pipe rotation on the frictional pressure gradient for annuli flow of non-Newtonian fluid is 993 

dependent on the fluid flowrate. As the fluid flowrate increases the impact of the inner pipe rotation on the 994 
fluid hydraulics decreases.  995 

 996 
8. An increase in eccentricity can influence the viscosity profile of non-Newtonian fluids in the annuli. However, 997 

the increase in the inner pipe rotation significantly decreases the annuli fluid viscosity, especially in the 998 
smallest radial gap regions of the eccentric annuli. 999 

 1000 
9. A systematic experimental study is required to investigate the difference between the effect of the inner pipe 1001 

rotational and orbital motion on the fluid dynamics and hydraulics of generalised fluid flow through the 1002 
concentric and eccentric annuli. 1003 

 1004 
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Nomenclature  1014 
A = Cross-sectional area  

de = Distance between the centre of the outer pipe and the inner pipe 

d1, d2 = Diameters of the inner and outer pipe  

Dh = Hydraulic diameter 

∂P ∂L⁄ , ∂P ∂z⁄  = Pressure gradient  

e = Wellbore eccentricity  

f = Friction factor  

Fπ = Friction geometry parameter 

𝐠 = Gravitational acceleration vector  

K = Consistency index 

L = Length  

n = Flow behaviour index 

𝐧 = Normal vector  

nx, n𝑦  = Axial and tangential component of the normal vector 

P = Pressure  

Q = Volumetric flowrate  

r1 = Radius of the inner pipe 

r2
e = Distance between the centre of the inner pipe and the outer pipe wall at a given angular 

position 

Re = Reynolds number 

𝐭 = Tangent vector  

V = Volume 

Va = Average fluid velocity  

𝐯 = Velocity vector 

vr, vθ, vz = Velocity in the cylindrical coordinate system 

w = Weight of interpolation function 

∈ = Consistency index 

ρ = Density  

τ∈ = Yield stress  

μ = Viscosity  

ω = Angular velocity 

ωmax = Maximum angular velocity at the drillpipe wall 

γ = Shear rate 

 

Subscripts  

a = Apparent 

aw = Apparent wall 

CV = Control volume 

CS = Control surface 

f = Face 

Gen = Generalised  

i = Index 

o = True yield 

p = Plastic  

v = Vertex 

w = True wall  

x, y = Cartesian coordinate axes  

y = Bingham yield 

θ, r, z = Cylindrical coordinates 

 1015 
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Appendix A 1142 
 1143 
Concentric annulus: 1144 
 1145 

f =    
16

Re
  

(1 − Ka)
2

[
1 − Ka

4

1 − Ka
2 − 

1 − Ka
2

ln(1 Ka⁄ )
]

 Eq. (A.1) 

 1146 
where, Ka = d1/d2 1147 
 1148 
Eccentric annulus: 1149 
 1150 

f =    
1

Re
  
4(1 − Ka)

2(1 − Ka
2)

∅sinh4ηo

  Eq. (A.2) 

 1151 

cosh ηi =   
Ka(1 + e2) + (1 − e2)

2Kae
  Eq. (A.3) 

 1152 

cosh η𝑜 =   
Ka(1 − e2) + (1 + e2)

2e
  Eq. (A.4) 

 1153 

∅ =   (coth ηi − coth ηo)
2 [

1

ηo− ηi 
− 2∑

2m

exp(2mηi) − exp(2mηo)
∞
m=1 ]           +  

1

4
(

1

sinh4ηo
− 

1

sinh4ηi
)   Eq. (A.5) 

 1154 
 1155 

Appendix B 1156 
 1157 
The correction factor R:  1158 

 1159 

R = 1 − 0.072
e

n
(
D1

D2

)
0.8454

− 1.5 e2√n (
D1

D2

)
0.1852

+   0.96 e3√n(
D1

D2

)
0.2527

 Eq. (B.1) 

 1160 

The pressure gradient in the eccentric annuli (dP dL⁄ )e can thus be calculated from the knowledge of the pressure 1161 

gradient in the concentric annuli (dP dL⁄ )c using the following relationship:  1162 

 1163 

(
dP

dL
)

e
= R (

dP

dL
)

c
 Eq. (B.2) 

  1164 
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Appendix C 1165 
 1166 
Derivation of the generalised Reynolds number equation 1167 

Considering the generalised rheology model of the fluids Eq. 1, the shear stress at the wall of the annuli can be 1168 

expressed as: 1169 

 1170 

τw = τ∈+ ∈ γw
n Eq. (C.1) 

 1171 
For incompressible fully developed 2D flows of liquids with a rate-dependent viscosity, the calculation of shear 1172 

rate is more complex because unlike that of Newtonian fluids the velocity profile is not parabolic. The true wall 1173 

shear rate can be found using the Weissenberg-Rabinowitsch-Mooney (WRM) equation expressed for flow 1174 

through a slit as (Pipe et al., 2008): 1175 

 1176 

γw = 
1

3
γaw [2 + 

1

m
] 

Eq. (C.2) 

 1177 
 1178 

The term γaw represents the apparent shear rate while the constant m is the gradient of the log-log plot of the 1179 

shear stress against the shear rate and may be expressed as: 1180 

 1181 

m = 
d ln(τw)

d ln(γaw)
 

Eq. (C.3) 

 1182 
 1183 
The constant m can be determined by the differentiation (chain rule) of the logarithmic expression as follows:  1184 

 1185 

m = 
d ln(τw)

d ln(γaw)
=  

d ln(τ∈+ ∈ γaw
n)

d ln(γaw)
 

Eq. (C.4) 

 1186 

m =  
d

d ln(γaw)
ln(τ∈+ ∈  en ln(γaw)) 

Eq. (C.5) 

 1187 
 1188 

m =  
n ∈  γaw

n

τ∈+ ∈  γaw
n
 

Eq. (C.6) 

 1189 
 1190 
The apparent shear rate at the wall of the annuli in the case of a Newtonian fluid flow can be expressed as: 1191 

 1192 
 1193 

γaw = 
12Va

Dh

 
Eq. (C.7) 

 1194 
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Substituting Eq. (C.7) into Eq. (C.2) and Eq. (C.6) and simplifying the result yields the final expression for the 1195 

shear rate at the wall of the annuli as: 1196 

 1197 

γw = (
2m + 1

3m
)(

12Va

Dh

) 
Eq. (C.8) 

 1198 
 1199 
 1200 

m =  
n ∈  (

12Va

Dh
)

n

τ∈+ ∈  (
12Va

Dh
)

n 
Eq. (C.9) 

 1201 
 1202 
 1203 

Using Eq. (C.8), the shear stress at the wall of the drilling annuli yields:  1204 

 1205 
 1206 

τw = τ∈+ ∈ (
2m + 1

3m
)

n

(
12Va

Dh

)
n

 
Eq. (C.10) 

 1207 
 1208 
 1209 

The relationship between the friction factor and the Reynolds number may be written as:  1210 

 1211 
 1212 

Re =
24

f
 

Eq. (C.11) 

 1213 
 1214 
Using Eq. (C.10), the friction factor f can be expressed of the wall shear stress as: 1215 

 1216 
 1217 
 1218 

f =
2τw

ρVa
2 = 

2 (τ∈+ ∈ (
2m + 1

3m
)

n

(
12Va

Dh
)

n

)

ρv2
 

Eq. (C.12) 

 1219 
 1220 
 1221 
Thus, from Eq. (C.11), the Reynolds number that characterises the flow of Newtonian and non-Newtonian fluids 1222 

in the annuli, ReGen can be  1223 

 1224 

 1225 

ReGen = 24 
ρVa

2

2 (τ∈+ ∈ (
2m + 1

3m
)

n

(
12Va

Dh
)

n

)

 Eq. (C.13) 

 1226 
 1227 
 1228 
Eq. (C.13) can be simplified and expressed in the generalised form yielding Eq.4. 1229 

  1230 
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Appendix D 1231 
 1232 
Computational procedure for numerical model  1233 

 

 1234 
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