
FAILY, S. and FLÉCHAIS, I. 2012. Software for interactive secure systems design: lessons learned developing and 
applying CAIRIS. In Faily, S., Fléchais, I. and Coles-Kemp, L. (eds.) Proceedings of the Designing interactive secure 
systems workshop (DISS 2012), part of the 26th International BCS human computer interaction conference (HCI 
2012): people and computers, 11 September 2012, Birmingham, UK. Swindon: BCS [online], article number 64. 

Available from: https://doi.org/10.14236/ewic/HCI2012.64 

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Software for interactive secure systems design: 
lessons learned developing and applying CAIRIS. 

FAILY, S. and FLÉCHAIS, I. 

2012 

https://doi.org/10.14236/ewic/HCI2012.64


Software for Interactive Secure Systems
Design: Lessons Learned Developing and

Applying CAIRIS

Shamal Faily
Department of Computer Science

University of Oxford
shamal.faily@cs.ox.ac.uk

Ivan Fléchais
Department of Computer Science

University of Oxford
ivan.flechais@cs.ox.ac.uk

As systems become more complex, the potential for security vulnerabilities being introduced increases. If
we are to provide assurances about systems we design then we need the means of analysing, managing, and
generally making sense of the data that contributes to the design. Unfortunately, despite ongoing research
into tools for supporting secure software development, there are few examples of how tools can be used to
help build and support design models associated with security and usability. This paper summarises some
of our experiences developing and applying CAIRIS: a requirements management tool for usable and secure
system design. We describe our motivation for building CAIRIS, summarise how it was built and evaluated,
and present our experiences applying it to real world case studies.

CAIRIS,Requirements Management,Security,Usability

1. INTRODUCTION

As systems become more complex, the potential for
security vulnerabilities being introduced increases.
This means that if we are to provide any assurances
about systems that we design then we need
some means for analysing, managing, and generally
making sense of all the data that contributes to a
system’s design to ensure such vulnerabilities are
not unintentionally introduced. While there has been
ongoing research into software tools to support the
development of secure software, there has been
comparatively little work on tools for reasoning about
security and usability models. Without this ability,
it is difficult to predict the usability implications
of security design decisions and vice-versa, the
security implications of usability decisions; this
becomes particularly difficult when considering how
these implications might change in different contexts
of use.

To help understand how software tools can
support security and usability design techniques,
we developed CAIRIS (Computer Aided Integration
of Requirements and Information Security): a
requirements management tool for secure and
usable system design. Since developing the initial
prototype in 2009, we have evolved CAIRIS based
on our experiences in several real-world case

studies. In this paper, we reflect on some of
these experiences building and applying CAIRIS.
In Section 2, we briefly describe some of the
challenges that motivated our approach to designing
CAIRIS, before summarising how the tool has been
developed and evaluated in Section 3. In Section 4,
we discuss some of our experiences and problems
faced in using and maintaining CAIRIS.

2. RELATED WORK

Because requirements are a recognised boundary
object across security, usability, and software en-
gineering models, requirements management tools
have been proposed as a basis for supporting se-
curity and usability design activities. Their potential
for extensibility is illustrated by the DOORS require-
ments management tool (IBM 2010) which, with the
aid of its DXL scripting language, supports exten-
sions for specifying positive and negative scenarios
of user behaviour(Alexander 2002). However, the
lack of distinct semantics for the underlying con-
cepts associated with these techniques means that
analysts need to manually maintain links between
requirements and non-requirements artifacts.

By structuring the data being managed according
to a specific meta-model, model-based approaches

c© The Authors. Published by BISL. 1
Proceedings of BCS HCI 2012 Workshops
Designing Interactive Secure Systems



Software for Interactive Secure Systems Design: Lessons Learned Developing and Applying CAIRIS
Faily and Fléchais

address this traceability management problem.
However, modelling languages and tools tend
to consider requirements only as a notational
concept. For example, while UMLSec—a UML profile
for secure system development(Jürjens 2005)—
supports the concept of a security requirement, this
is depicted only as a UML stereotype. Rather than
being concerned with how these might be analysed,
the notation is concerned with the requirement’s
deployment rather than its specification.

Further problems arise when trying to integrate tools
grounded in similar, but subtly different, conceptual
models. For example, if we assert that a misuse
case threatens a use case, do we agree what
it means for the use case to be threatened?
Does the misuse case threaten the work carried
out by the use case, or the assets associated
with it? Houmb et. al (Houmb et al. 2010) faced
some of these problems when integrating tools
based on different techniques. Their experiences
indicate that while building heuristics into tools to
help with integration is useful, these alone can’t
replace the expertise needed to apply the techniques
themselves. Consequently, while integrating tools
and concepts can help verify requirements, few tools
provide support for eliciting or validating them.

3. BUILDING AND EVALUATING CAIRIS

Based both on the IRIS meta-model (Faily and
Fléchais 2010)—which characterised our ideas
about how concepts from requirements, security,
and usability engineering might interrelate—and
lessons learned from existing tools, we designed and
developed CAIRIS to appeal to the following design
principles:

• Familiarity: The tool itself should not add to pre-
existing cognitive burdens; given the difficulty
associated with grasping new concepts and
learning new notations, the tool and its artifacts
should require no more cognitive overhead
than learning how to use the techniques
associated with IRIS meta-model.

• Extensibility: Because the tool was to be used
in several case studies, new insights might
arise from its use; this could include identifying
unnecessary functions, or the need for new
functionality. Moreover, it should be possible
to quickly modify the tool to implement the
suggested changes and assess their impact
during, or shortly after, an intervention.

• Standardisation: As well as structuring the
collected data, we wanted the tool to be
used to support a variety of existing analysis
techniques. Crucially, we wanted to ensure

that the tool supported each without changing
standard concepts or the manner in which
each technique normally operated. This meant
that different people might use the tool to
support different techniques, according to their
expertise and responsibilities. Consequently,
given that the meta-model allowed data
collected through one technique to inform
another, traceability between model concepts
needed to be automatic.

We developed CAIRIS using a prototyping approach,
over five iterations.

In the first iteration, CAIRIS was developed in
parallel with the IRIS meta-model. The tool was used
to elicit data using contemporary examples where
multiple contexts of use were evident. One of these
examples involved analysing contemporary news
reports and documentation about the Vélib bicycle
sharing system to elicit security requirements which
would not compromise the usability of Vélib. The
objective of this phase was to determine whether the
concepts necessary to model the different problems
were reflected in the IRIS meta-model.

Based on early feedback from the Requirements
Engineering community (Faily and Fléchais 2009),
additional concepts were added to the IRIS meta-
model and the tool was evolved to support these. As
the meta-model became more elaborate, additional
model views were incorporated into the tool, and
the architecture was re-factored to allow scaleability
should further model elements and associations
need to be added.

In the second iteration, we created a specification
exemplar based on the NeuroGrid e-science project
(Geddes et al 2006) to validate whether the tool
was capable of modelling a complete, non-trivial
problem. Using CAIRIS, the resulting NeuroGrid
model was validated with one of the previous project
stakeholders.

The final three iterations involved applying CAIRIS
in three separate case studies; these studies are
described in more detail in (Faily 2011b)

CAIRIS was written primarily in Python, and used
the open-source wxPython and pyGTK frameworks
for windowing and visualisation support, and NumPy
for matrix manipulation. MySQL was used for
management and access to model data. Although
CAIRIS is primarily maintained by members of the
Security research group at the University of Oxford,
it has been released to github as an open-source
project under an Apache Software license.

2



Software for Interactive Secure Systems Design: Lessons Learned Developing and Applying CAIRIS
Faily and Fléchais

4. EXPERIENCES

Space constraints mean we are unable to reflect on
all of our experiences with CAIRIS. We do, however,
highlight three particular experiences that, we
believe, might provide useful insights to designers of
future software tools for secure and usable system
design.

4.1. Building on similarities rather than
differences

One of the first challenges we needed to address
was reconciling the several different security
requirements engineering meta-models that had
previously been proposed; this would be particularly
challenging given the lack of consensus about
what a security requirement is, e.g. (Tøndel et al.
2008). Rather than trying to tease out lessons
learned from all these models, we instead decided
to select a particular model and attempt to scale this
given the additional usability elements we wanted
to consider. We chose the Information Systems
Security Risk Management (ISSRM) modelling
language Mayer (2009) because not only was it
largely orthogonal to usability, it also attempted to
align with goal-oriented requirements languages.
While the concepts associated with those languages
were incompatible with IRIS, we believe that on-
going research in both CAIRIS and their languages
might lead to synergies in the future.

Our approach came at the cost of simplifying the
risk analysis approach adopted by ISSRM. This
ruled out the ability for modelling sophisticated
risk analysis strategies, such as blended threats
where an attacker might exploit two seemingly
innocuous vulnerabilities to achieve catastrophic
results. Nonetheless, by keeping the IRIS meta-
model as simple as possible without compromising
any of the fundamental concepts, we were able to
progressively incorporate concepts over time.

For example, based on what was originally an
unconnected research finding about the usefulness
of argumentation models for supporting persona
development Faily and Fléchais (2011), we were
eventually able to align concepts from IRIS with
what were incompatible goal-oriented requirements
techniques; this is described in more detail in
Faily (2011a). We believe that the success of this
approach relied not on seeing how social-goal
models could be built into CAIRIS, but on how
CAIRIS could add value to complementary tools
which are better suited to analysing these in more
detail.

4.2. Specifying contexts of use

From the outset, the concept of an environment was
supported in CAIRIS; this was introduced to make it
possible to specify and reason about the elements of
several different contexts of use for a given system.
However, based on the results of our case studies,
the results of trying to specify formal contexts of use
were mixed.

While environments could be of any type, those
of most value tended to be social or cultural
rather than physical. When considering one example
based on the NeuroGrid exemplar, we noticed
that security properties associated with certain
assets had markedly different security properties in
different environments. In the three case studies, the
security properties varied less, and the environments
were used to compartmentalise the analysis of
activities according to the context of most relevance.
Occasionally, however, some discussion arose by
comparing the same tasks carried out in different
social contexts, or discussing how the tasks carried
out in one environment had an impact in others.

We were also interested in how variations of context
could be composed to introduce new contexts
of use. Individually, such environments might be
innocuous but, when combined, new phenomena
might be observed that might not otherwise be
seen in the separate models. To investigate this,
CAIRIS allowed composition of an environment
based on one or more other environments. In
practice, however, this did not prove to be very
useful. Although the environments modelled in the
case study examples were non-trivial, they were
also distinct enough that combining them added little
value to the analysis carried out. However, reasoning
about dependencies between two environments was
occasionally useful when considering how attackers
might exploit knowledge about one environmental
context to cause a shift from one environment to
another, or how a risk in one context lead to a
subsequent risk being introduced in another.

4.3. Using CAIRIS

CAIRIS was not designed to be a general purpose
tool. One of the initial motivations for building the
tool was to support participative workshops where
stakeholders could discuss different models, and
examine the impact of model changes in real time.
However, when CAIRIS was used for supporting
design activities for the EU FP 7 webinos project,
we faced two new challenges. First, many of the
CAIRIS users didn’t have the necessary technical
background to install and setup CAIRIS. Second,
the users were only knowledgeable in some of the
capabilities of CAIRIS. As a result, of the users

3



Software for Interactive Secure Systems Design: Lessons Learned Developing and Applying CAIRIS
Faily and Fléchais

that did install and use CAIRIS, all used CAIRIS for
little more than a tool for specifying and managing
personas.

Because there was little time available on the project
to run training sessions, we used the project wiki to
capture structured data that could then be imported
into CAIRIS. We created structured page templates
for design artifacts like scenarios, use cases, and
personas. We then created scripts that could be
used to convert this content into compatible XML
models that could be imported into CAIRIS. In
addition to this, we provided guidance and support
for the rest of the project on the use of the templates.
Eventually, this approach was extended to security
and requirements models as well. As a result,
although the wiki was still used to browse data, most
of the webinos security, usability, and requirements
model was stored as text in a project git repository,
with a build script used to create a consolidated
CAIRIS model on demand. More details about this
process can be found in Faily et al. (2012).

5. CONCLUSION

In this paper, we described some of our experiences
in designing, building, and using the CAIRIS
requirements management tool. In providing our
candid experiences with CAIRIS, we aim to begin
filling the hitherto unnoticed gap in the literature on
tools for secure and usable system design.

While the tool was designed to support only a
single researcher (the main author), the CAIRIS
user community is slowly beginning to grow.
Following the introduction of the tool to the
Oxford Software Engineering Programme’s Design
for Security course, practitioners are beginning to
use CAIRIS to address their own security design
challenges. As industrial take-up grows, we plan to
evaluate how well CAIRIS, and software tools in
general, tackle the security usability design problems
practitioners currently face.

6. ACKNOWLEDGEMENTS

The research described in this paper was funded
by EPSRC CASE Studentship R07437/CN001, and
the EU FP7 webinos project (FP7-ICT-2009-05
Objective 1.2).

REFERENCES

Alexander, I. (2002). Initial industrial experience of
misuse cases in trade-off analysis. In Proceedings
of the IEEE International Requirements Engineer-
ing Conference, pages 61–68. IEEE Computer
Society.

Faily, S. (2011a). Bridging User-Centered Design
and Requirements Engineering with GRL and
Persona Cases. In Proceedings of the 5th
International i* Workshop, pages 114–119. CEUR
Workshop Proceedings.

Faily, S. (2011b). A framework for usable and secure
system design. PhD thesis, University of Oxford.

Faily, S. and Fléchais, I. (2009). Context-Sensitive
Requirements and Risk Management with IRIS.
In Proceedings of the 17th IEEE International
Requirements Engineering Conference, pages
379–380. IEEE Computer Society.

Faily, S. and Fléchais, I. (2010). A Meta-Model
for Usable Secure Requirements Engineering. In
Proceedings of the 6th International Workshop on
Software Engineering for Secure Systems, pages
126–135. IEEE Computer Society.

Faily, S. and Fléchais, I. (2011). Persona cases: a
technique for grounding personas. In Proceedings
of the 29th international conference on Human
factors in computing systems, pages 2267–2270.
ACM.

Faily, S., Lyle, J., Paul, A., Atzeni, A., Blomme, D.,
Desruelle, H., and Bangalore, K. (2012). Require-
ments sensemaking using concept maps. In Pro-
ceedings of the 4th International Conference on
Human-Centered Software Engineering. Springer.
To Appear.

Geddes et al (2006). The challenges of developing
a collaborative data and compute grid for neu-
rosciences. Computer-Based Medical Systems,
2006. CBMS 2006. 19th IEEE International Sym-
posium on, pages 81–86.

Houmb, S. H., Islam, S., Knauss, E., Jürjens, J.,
and Schneider, K. (2010). Eliciting security
requirements and tracing them to design: an
integration of Common Criteria, heuristics, and
UMLsec. Requirements Engineering, 15(1):63–
93.

IBM (2010). IBM Rational DOORS.

Jürjens, J. (2005). Secure systems development with
UML. Springer, Berlin.

Mayer, N. (2009). Model-based Management of
Information System Security Risk. PhD thesis,
University of Namur.

Tøndel, I. A., Jaatun, M. G., and Meland, P. H.
(2008). Security requirements for the rest of us:
A survey. IEEE Software, 25(1):20–27.

4


	coversheet_template
	FAILY 2012 Software for interactive secure
	Introduction
	Related work
	Building and Evaluating CAIRIS
	Experiences
	Building on similarities rather than differences
	Specifying contexts of use
	Using CAIRIS

	Conclusion
	Acknowledgements


