
FAILY, S. 2008. Towards requirements engineering practice for professional end user developers: a case study. In 
Proceedings of the 2008 Requirements engineering education and training conference (REET 2008), 8 September 

2008, Barcelona, Spain. Washington, D.C.: IEEE Computer Society [online], pages 38-44. Available from: 
https://doi.org/10.1109/REET.2008.8 

 
 
 
 

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 

This document was downloaded from 
https://openair.rgu.ac.uk 

Towards requirements engineering practice for 
professional end user developers: a case study. 

FAILY, S. 

2008 

https://doi.org/10.1109/REET.2008.8


Towards Requirements Engineering Practice for Professional End User
Developers : A Case Study

Shamal Faily
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
shamal.faily@comlab.ox.ac.uk

Abstract

End-User Development has received a lot of attention
in the research community. Despite the importance of Re-
quirements Engineering in the software development life-
cycle, comparatively little exists in the way of prescriptive
advice or case studies on both Requirements Engineering
and End-User Development. This paper argues that end-
user developers can obtain practical benefit by adopting
professional Requirements Engineering practices. We re-
port on how these practices were fostered within a work-
place environment and illustrate that evaluating the effec-
tiveness of teaching such practices can lead to a better un-
derstanding of the relationship between End-User Develop-
ment and Software Engineering in general.

1 Introduction

End-user developers are non-professional software engi-
neers who write software in support of achieving their goals
[12]. Examples of such developers are scientists who de-
velop computational models to investigate phenomena [26]
and business users who develop and maintain spreadsheets
[14]; several other perspectives of End User Development
are discussed by Blackwell [2]. Segal [19] has argued that
not all end-user developers are the same and has carried out
empirical studies focusing on professional end-user devel-
opers, who are proficient in their programming languages of
choice, have a deep knowledge of their chosen problem do-
main, but are neither trained nor interested in professional
software development.

End-User Development (EUD) has received a lot of at-
tention within the research community, as characterised by
Nardi [13] and, more recently, Lieberman et al [10]. It is
generally agreed that the population of the EUD commu-
nity is increasing, as is the critical impact of the software
being developed. If such software is not dependable, then

serious consequences await those who rely on this software
working correctly [12].

While a lot of attention has been given to end user devel-
opment practices in general, comparatively little has been
said on the larger issues of software engineering, described
by Blackwell [2] as end-user software engineering. This
dearth may be attributable to what Kelly [8] describes as a
chasm between the proponents of domain-independent soft-
ware engineering and developers working within applica-
tion domain silos. Although the benefits of what Wing [27]
describes as Computational thinking, e.g. thinking in terms
of abstraction, decomposition and recursion, extend to those
beyond the Computer Science community, Wilson [25] sug-
gests that people on the other side of this chasm do not
understand these concepts without repeatedly encountering
them during the development process. Some research on
using software engineering knowledge to inform the end-
user programming environment is on-going. For example,
Burnett et al. [4] show how aspects of the software life-
cycle can support dealing with testing, assertions and fault
localisation within the Forms/3 framework [3].

The contribution of Burnett and her colleagues should
not be dismissed, but it does illustrate that of the life-
cycle phases being considered, little attention appears to be
paid to Requirements Engineering (RE) as an EUD activ-
ity. Some of the possible consequences of this have been
reported in recent work. In a case study of scientific soft-
ware developers by Sanders & Kelly [18], none of the par-
ticipants interviewed were aware of requirement specifica-
tions being written before the software under specification
was developed. Segal & Moore [20] illustrate the cultural
conflict between software engineers who require up-front
requirements and scientists who, by virtue of their focus on
exploring the application domain, are unable to carry out
up-front RE as requirements are expected to be emergent.

Lieberman et al. [9] suggest that current EUD research
for dealing with the capture of user requirements is based
on developing of Domain Specific Languages which allow
users to express their desired functionality. As promising as



this line of research may be, it is unlikely to benefit many
end-user developers in the short to medium term, who have
neither the time nor the inclination to change the fundamen-
tal way they develop software. Berti et al. [1] describe how
scenarios and sketches can be used to capture informal in-
put from end-user developer stakeholders. While this work
facilitates working at different levels of abstraction, there is
an implicit assumption that the fundamental difficulty lies
only at the beginning of the design process. None of these
research exemplars say anything about the pedagogical is-
sues which need to be addressed before requirements can be
expressed and modelled, i.e. how to teach end-user devel-
opers to elicit, analyse, verify and validate requirements.

Wilson [23, 25] has investigated approaches for educat-
ing computational scientists in professional software en-
gineering techniques and concluded that intensive short
courses is a less effective method for delivering new tools
and techniques than mentorship with an experienced devel-
oper. Wilson has also provided general, but practical, guid-
ance on how to gather requirements during the development
process [24].

2 Background

2.1 Context

The work described by this paper was carried out by
members of the European Space Agency’s (ESA) Flight
Dynamics Division, based at the European Space Operation
Centre (ESOC) in Darmstadt, Germany. The division is re-
sponsible for orbit and attitude determination of ESA space-
craft supported by ESOC, and its members develop, main-
tain and operate Flight Dynamics Systems software running
on the agency’s Orbit and Attitude Operations System (OR-
ATOS), a mission-independent software and hardware in-
frastructure.

This study reports the results of teaching and apply-
ing RE best practice, i.e. practices commonly used by re-
quirements engineers in industry, to a project developing a
cross-section software tool for generating Spacecraft Tra-
jectory Data Messages (STDMs). STDMs consist of a se-
quence of earth-fixed state vectors, containing components
for spacecraft position and velocity. These are transmitted
to ground stations to support the tracking of ESA spacecraft
[28]. Each section within the Flight Dynamics division used
their own software tools for generating STDMs, which had
evolved over several years to meet requirements specific to
the individual sections.

This work was carried out as part of a programme to
build the next generation of ORATOS (ORATOS-NG). Al-
though the STDM generation software would form part of
ORATOS-NG, this particular work activity was considered
a pilot project. As such, the project was a vehicle for ex-

perimenting with different tools and techniques for building
ORATOS-NG artifacts. These tools and techniques would
include an RE approach, suitable for adoption by the divi-
sion for future ORATOS-NG projects.

The project team itself consisted of nine on-site ESA
and contractor staff. Most of the team members, including
the project manager, were professional end-user developers.
While only a few of these team members had experience
of the STDM generation process, each possessed a general
domain knowledge of flight dynamics operations. These
users were also competent Fortran programmers and had
developed components for flight dynamics systems used by
several missions. These users also had a passing familiar-
ity with the production of requirements documentation and
would occasionally be required to contribute to the Flight
Dynamics requirements compilation for a particular mis-
sion, or comment on the requirements of related ground
segment systems.

Three of the team members, including the author, were
professional software engineers and assigned the role of
process coaches. The coaches were responsible for criti-
cally monitoring the process and identifying areas for im-
provement. The coaches were also responsible for record-
ing the information exchanged during the process on the
Flight Dynamics Division wiki. Although professional soft-
ware engineers, the coaches also had general experience of
the Flight Dynamics domain as developers and maintainers
of the software infrastructure used by the Flight Dynamics
end-user developers. All of the coaches had received some
form of RE training, either as part of an undergraduate de-
gree programme or industrial training, and had varying lev-
els of experience in carrying out professional RE activities.

In conjunction with the RE activities described within
the approach, knowledge capture activities were also under-
taken by project team members. This involved documenting
content describing domain concepts, salient to STDM gen-
eration. Although details on this knowledge capture exer-
cise is beyond of the scope of this case study, the resulting
content was often used as supporting material for the re-
quirements. This material included an overview of STDMs,
as well as more in-depth detail on related infrastructure
items, such as Time Formats, Ground Stations and Plan-
etary Ephemerides. This content was added to the Flight
Dynamics Division wiki. As this wiki had been in use by
the division for some years, it was considered the most ef-
fective way of disseminating domain knowledge to the rest
of the team.

Due to the critical nature of the day-to-day work carried
out by the team members, all the work described by this
paper took place on a part-time basis, over a period of 12
months.



2.2 Training Approach

Given the lack of pedagogical guidance from the EUD
and RE communities for imparting RE knowledge to end
user developers, it was not possible to formulate a clear
strategy for delivering the requisite RE knowledge to the
ORATOS-NG team at the beginning of the project. Conse-
quently, the process coaches decided to deliver instruction
based on RE tools and techniques which had been either
been personally tried and tested by the process coaches, or
anecdotal evidence suggested their adoption would be suc-
cessful. As operational commitments made it difficult for
users to get time away for dedicated, full-time training, the
following approaches were used as vehicles for delivering
RE knowledge.

• Team meetings

• Wiki-based guidance

• One-to-one tutorials

Initial team meetings were used as a means to explain core
concepts to the entire project team. For example, at an early
stage, there was uncertainty within the team about how best
to begin a Requirements Engineering process. To remedy
this, the author used one of the team meetings to deliver
a training session on the use of context modelling. The
presentation consisted of a brief overview of Context Mod-
els, Use Cases and Problem Frames [7], supplemented with
simple domain and non-domain specific examples. Follow-
ing the presentation, the team informally discussed the pros
and cons of each approach before deciding to trial the use
of context models and use cases. The meetings which sub-
sequently followed were used to collectively work on an
STDM generator context model and project blast-off docu-
ment, as described in Robertson & Robertson [16] to estab-
lish the scope of the project. When the scope of the project
had been agreed, the amount of RE instruction provided
during the meeting was restricted to dealing with problems
which arose in the process of authoring use cases and re-
quirements.

In addition to full team meetings, a splinter group of
users, with specific knowledge of STDM generation, would
frequently meet to collectively discuss elicited requirements
for the STDM generator and its dependent infrastructure el-
ements. As these meetings were led by the users and fo-
cused on requirements validation meetings, the role of the
process coach was to clarify any issues raised by users relat-
ing to the quality of requirements. These included respond-
ing to specific queries about authoring requirement text and
commenting on the quality of requirements and fit-criteria
in specific cases.

Wikis have proven to be useful in software development
as a discussion medium [11] and, when appropriate struc-
tured, as a framework for supporting RE activities [5, 15].
Nevertheless, it was believed that the wiki may not be robust
enough as a requirements management tool. Consequently,
the process coaches evaluated a number of commercial and
open-source requirements tools, based on the criteria spec-
ified within the INCOSE Requirements Management Tool
Survey [6]. Following a short trial of two shortlisted appli-
cations by the rest of the project team, Telelogic DOORS
[22] was selected as the ORATOS-NG Requirements Man-
agement tool. The process coaches added material to the
wiki, which provided guidance on how to author require-
ments and use cases. An assumption was made by the pro-
cess coaches that focusing on techniques for authoring ro-
bust, testable requirements statements would force users to
consider the thought processes involved in writing good re-
quirements. Although this material was primarily prepared
to enable users to read and digest in their own time, an
overview of the initial content added was also given dur-
ing one of the weekly team meetings. Many of the guide-
lines documented were based on ideas presented in Robert-
son & Robertson [16], including the use of the VOLERE
Requirements template as the basis of a standard template
for ORATOS-NG requirements.

One-to-one tutorial sessions were held with a number
of users to validate the quality of requirements being cur-
rently authored. During the session, the user and the coach
would discuss each requirements statement, with respect to
its wording, fit criteria and justification/rationale ; particu-
lar emphasis was placed on inspecting rather than reviewing
requirements. For example, the author would occasionally
use Z [21] to formalise requirements text, to demonstrate
how poor wording, coupled with loose fit criteria, could
conspire to break the system, while still satisfying the state-
ment text and fit criteria. Although the users were mathe-
maticians, the discrete mathematical notation of Z proved to
be unfamiliar. As Z was also unfamiliar to the other process
coaches, this technique was used exclusively within tuto-
rial sessions led by the author, where the necessary notation
could be explained. Notational issues aside, users recog-
nised the value of this technique as a way of animating bad
requirements text.

3 Training Experience

3.1 Advantages and Benefits

While the part-time, on-site delivery of RE best prac-
tice does not replace the benefits of full-time, off-site train-
ing, we did observe a number of benefits from the approach
adopted. Over the lifetime of the project, these led to a pro-
gressive improvement in the users’ ability to analyse and



validate requirements. This improvement in quality was
measured by using the ORATOS-NG requirements guide-
lines to check the conformance of requirements text in sev-
eral DOORS modules.

Based on the splinter group meetings attended by the
process coaches, an improvement was also noted in the
users ability to validate requirements, re-evaluate fit criteria
and re-analyse supporting material to verify requirements
traceability. The use of fit criteria was considered to be
especially useful, as it often gave a focal point for discus-
sion. On the strength of these observations, we believe the
approach followed proved to be largely effective and users
obtained tangible benefits, with respect to improvements in
their ability to model and validate requirements. While a
general improvement in requirements elicitation was also
noted, it is difficult to say whether this improvement was
substantial. As the users were expert both in the knowl-
edge of the domain and the technology necessary to ulti-
mately realise the requirements, requirements elicitation ac-
tivities were primarily based on retrospectively inferring re-
quirements from design documentation, technical notes and
source code. As these activities were solitary activities car-
ried out within the users’ own offices, any improvement in
these techniques could not be measured.

Although the STDM generation software was subse-
quently never implemented, the team was sufficiently sat-
isfied with the improvement in their ability to carry out
RE activities that the approach was adopted for subsequent
ORATOS-NG projects. The advantages of each element of
the overall approach is described in the following sections.

3.1.1 Team meetings

Early versions of requirements produced by many of the
team members resembled a wish-list of language imple-
mentation specific features. Additionally, many of the man-
dated fields in the requirements template were left incom-
plete. While the spirit of the requirements was understood
by their respective authors, team meetings provided a forum
for other users to challenge these implicit assumptions. By
raising the issue of requirements quality during team meet-
ings, it was possible not only to discuss how this quality
could be improved, but also to address any misconceptions
held by the users.

3.1.2 Wiki-based guidance

As their experience grew, users also began to take pro-
gressive ownership of the process. This was most evident
when considering the evolution of guidelines provided for
using DOORS and authoring requirements. Users took re-
sponsibility for customising the guidelines on the wiki and
proposing changes to the DOORS ORATOS-NG require-
ments template, e.g. the Source and History attributes were

found to be realised within DOORS by traceability links
and object history respectively.

As well as improving the original guidelines, users also
provided several domain-specific examples of how to com-
plete the requirements template, pitfalls which should be
avoided and useful hints and tips for using DOORS.

3.1.3 One-to-one tutorials

From the coaches’ observations during splinter group meet-
ings, we believe that the main catalyst to this increased pro-
cess ownership was the emphasis on inspecting, rather than
simply reviewing, requirements. Rather than passively dis-
cussing a requirements module under review, users would
actively challenge the text of each requirement for com-
pleteness, relevance and traceability. In many ways, users
would implicitly carry out a Quality Gateway process as de-
scribed by Robertson and Robertson [16]. This is particu-
larly interesting as although users were encouraged to use
[16] as a reference guide, no explicit instruction on the use
of a Quality Gateway process was ever given.

3.2 Difficulties experienced

Although the approach described proved to be effective,
it was not completely without problems. The three factors
below categorise particular difficulties experienced by users
during the take-up of the prescribed techniques. We believe
that these difficulties arose both as a consequence of the
approach adopted as well as the context in general.

3.2.1 EUD and Software Engineer dichotomy

Even though the users were receptive of the knowledge be-
ing imparted, they would occasionally remind the process
coaches that they were not ”software engineers” when faced
with problems understanding particular aspects of a tech-
nique. When faced with continual adversity, users would
also express hesitance in investing additional effort, if they
did not believe the subsequent pay-off was worth the addi-
tional mental workload.

During the preparation of use cases, users took partic-
ular issue with the level of software engineering exper-
tise they believed was implicitly assumed by the process
coaches. Following the initial drafting of use cases for dif-
ferent STDM generation scenarios, users reported problems
understanding the meaning of the constituent parts of the
use case template. To illustrate the use of the prescribed
template, one of the process coaches examined the same
source material and, in collaboration with one of the users,
produced an alternative version of one of the use cases. The
structure of both use cases differed significantly and, al-
though the user acknowledged his better understanding of



the template, concern was raised about level of expertise
believed necessary to author use cases.

3.2.2 Over abstraction of best practice

Users occasionally reported confusion refining what they
considered to be over-generalised explanations of use cases
and requirements; in some cases, questions were asked
about whether some aspects of the template were relevant
to their specific problem domain. Over abstraction of use
case terminology was illustrated by one user who compared
and contrasted a trivial, non Flight-Dynamics specific, use
case described in Robertson & Robertson [16], with those
produced by the team for the different scenarios for STDM
generation. The user could understand the role of actors,
events and triggers in the example use case, but reported
difficulty mapping this understanding to the STDM prob-
lem domain, without making too many assumptions about
possible solutions. For example, in a number of use cases,
it is necessary to define the Orbit Determination sub-system
as an actor invoking the generation of STDMs and assume
certain interface operations. However, infrastructure ele-
ments within this sub-system were also being defined and
users were concerned that they may inadvertently make as-
sumptions about the Orbit Determination sub-system imple-
mentation, which may eventually prejudice any implemen-
tation arising from the STDM Generator requirements and
vice-versa. Users believed the guidance available to them
for authoring use cases was too generic and didn’t factor in
practical considerations of working with interleaving levels
of abstraction.

In the case of requirements, it was also necessary to
make customisations to the VOLERE based requirements
templates to make the attributes more relevant to the team.
For example, the Business Rules column was proposed for
removal by some users, as it was not considered relevant.
When this attribute of the shell was explained as rules for
the context of the system’s operation rather than a com-
mercial context per se, this attribute was changed to Op-
erational Rules so members of the division would better be
able to relate to its meaning.

3.2.3 Nomenclature differences

Although ESOC is an international environment and all
non-British team members were fluent in English, confu-
sion occasionally occurred when jargon used in Software
Engineering literature was interpreted literally. An example
of this occurred towards the end of the requirements capture
phase when, during a presentation on Software Architecture
and UML, one of the users complained that the grammatical
incorrectness of the definition for architecture in the UML
Reference Manual, i.e. the organizational structure of a sys-
tem, including its decomposition into parts, their connec-

tivity, interaction mechanisms, and the guiding principles
that inform the design of a system [17], conflicted with the
meaning the definition was trying to express.

This issue was compounded by the fact that end-user de-
velopers had their own nomenclature which didn’t always
match that used in general software engineering commu-
nity. One reason for this is that many of the software devel-
opment practices in the division can trace their origins back
to the late 1960s and appear to have evolved independently
from the rest of the software engineering community.

4 Discussion

The results of placing emphasis on inspecting rather
than reviewing requirements appear to concur with Wilson’s
finding that users can transfer their ability to think method-
ically to areas outside of their natural domain [26]. Further
studies would be needed to determine whether this premise
holds for other classes of professional end-user developers
and how much stake-holder ownership of the process con-
tributes to successful adoption of the techniques described.

While the approach taken was an economical means of
delivering a discrete set of usable RE best practice, prob-
lems with the take-up of use cases led a loss of confidence
in a potentially useful technique, which was never regained.
These problems also illustrate that end-user developers can
be equally intolerant of aspects of Requirements Engineer-
ing, as well as Software Engineering, best practice if the
perceived pay-off is dubious. In this instance, more up-
front-training in this technique and more examples of where
use cases are appropriate may have made a difference with
respect to their adoption. Creating supplementary artefacts
may have also helped. For example, using a team meeting to
create a use case model to supplement the context model, as
well have collectively drafting a number of use cases, may
have helped remove any confusion about actors and levels
of abstraction.

The results also indicate that professional end-user de-
velopers are particularly sensitive to nomenclature differ-
ences and can fall foul of over-generalised prescriptive
guidelines, especially when English is not their first lan-
guage. RE practitioners may be desensitised to these prob-
lems, not only because of their familiarity of the literature,
but also because of their implicit confidence in the tech-
niques prescribed. Such confidence is typically achieved by
practical awareness of the techniques’ nuances, having ap-
plied them professionally on previous occasions. End-user
developers, who draw experience exclusively from the ap-
plication domain they work in, are not usually able to draw
on such personal experiences. In turn, this makes such de-
velopers less likely to tolerate any approach which is dis-
missive of the associated cognitive load they have to bear.
One solution to this problem might be to focus on estab-



lishing a shared understanding of terms and terminology at
an early stage and reinforcing this in the wiki-based guid-
ance. However, it is possible that the disconnect between
the domain independent and domain specific communities
is sufficiently well established that the observations reflect
conflicts between the respective norms and values. A dis-
cussion on how to reconcile these cultural differences is be-
yond the scope of this paper. Suffice it to say, we believe
these concerns can be best addressed by finding which RE
approaches scale between these communities. Only then
can a pedagogical discussion on how best to teach these
techniques have real value.

5 Conclusions

This paper has described how professional end-user de-
velopers can gain practical benefit from adopting RE best-
practice. We have also confirmed previous work alluding
to the applicability of an end-user developer’s methodical
nature to software engineering. The bullet points below
summarise the findings we believe to be of most interest to
professionals and researchers, with regard to professional
end-user developer RE education.

• RE techniques can be delivered in an on-site, part-time
context in lieu of classroom instruction, provided ses-
sions are exemplar driven and timely with respect to
identified problems.

• Emphasising inspection over review of requirements
not only increases sensitivity of users to practicalities
of expressing requirements, it also fosters activities to-
wards a quality gateway process by leveraging the pre-
existing ability to think methodically.

• Cultural conflicts between instructors and pupils can
manifest themselves as confusion over nomenclature
and complaints about the relevance of techniques.
These can be initially reconciled by providing addi-
tional training for techniques which may be novel to
end-user developers without any formal software en-
gineering education, and being prepared to customise,
where possible, standardised phraseology to fit within
the context of development and operation. However,
these issues may be indicative of deeper cultural divi-
sions, in which case alternative techniques should be
explored.

These claims do come with the caveat that the study was
carried out using a small team of on-site staff with very spe-
cific domain knowledge. Consequently, generalising these
results for the entire End-User Development community
would be a fallacy, especially when users are spread over
multiple sites. Nonetheless, not only do practices long en-
joyed by RE practitioners appear to be useful additions to

the end-user developer’s arsenal, they can also be conveyed
with comparatively little pedagogical ceremony.

6 Acknowledgements

The data used within this case study was gathered while
the author was working for Logica at ESOC. The author
would like to thank the ORATOS-NG team at ESOC, for
their assistance and support during the pilot project, and
their comments during the preparation of this paper. The
author would also like to thank Ivan Fléchais, the OUCL Se-
curity Reading Group and the anonymous referees for their
valuable review comments, and Judith Segal, for her helpful
pointers to related work.

References

[1] S. Berti, F. Paternò, and C. Santoro. Natural develop-
ment of ubiquitous interfaces. Communications of the ACM,
47(9):63–64, 2004.

[2] A. F. Blackwell. Psychological issues in end-user program-
ming. In H. Lieberman, F. Paternò, and V. Wulf, editors,
End-user Development, volume 9 of Human-Computer In-
teraction Series, pages 9–30. Springer, 2006.

[3] M. Burnett, J. Atwood, R. W. Djang, J. Reichwein, H. Got-
tfried, and S. Yang. Forms/3: A first-order visual language
to explore the boundaries of the spreadsheet paradigm. Jour-
nal of Functional Programming, 11(2):155–206, 2001.

[4] M. Burnett, G. Rothermel, and C. Cook. An integrated
software engineering approach for end-user programmers.
In H. Lieberman, F. Paterno, and V. Wulf, editors, End-
User Development, volume 9 of Human-Computer Interac-
tion Series, chapter 5, pages 87–113. Springer, 2006.

[5] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-
based stakeholder participation in requirements engineering.
IEEE Software, 24(2):28–35, March-April 2007.

[6] INCOSE. INCOSE requirements management tools survey.
http://www.paper-review.com/tools/rms/read.php, 2007.

[7] M. A. Jackson. Problem frames : analysing and structur-
ing software development problems. Addison-Wesley/ACM
Press, Harlow, England, 2001.

[8] D. Kelly. A software chasm: Software engineering and sci-
entific computing. IEEE Software, 24(6):120–119, Nov.-
Dec. 2007.

[9] H. Lieberman, F. Paternò, M. Klann, and V. Wulf. End-
user development: An emerging paradigm. In H. Lieberman,
F. Paternò, and V. Wulf, editors, End-user Development, vol-
ume 9 of Human-Computer Interaction Series, chapter 1,
pages 1–8. Springer, 2006.

[10] H. Lieberman, F. Paternò, and V. Wulf. End-user Devel-
opment, volume 9 of Human-Computer Interaction Series.
Springer, Dordrecht, 2006.

[11] P. Louridas. Using wikis in software development. IEEE
Software, 23(2):88–91, March-April 2006.



[12] B. A. Myers, M. M. Burnett, S. Wiedenbeck, and A. J. Ko.
End user software engineering: CHI 2007 special interest
group meeting. In CHI ’07 extended abstracts on Human
factors in computing systems, 2007.

[13] B. Nardi. A Small Matter of Programming: Perspectives on
End-User Computing. MIT Press, Cambridge, MA, 1993.

[14] R. R. Panko. What we know about spreadsheet errors. Jour-
nal of End User Computing, 10(2):15–21, 1998.

[15] E. Ras, R. Carbon, B. Decker, and J. Rech. Experience man-
agement wikis for reflective practice in software capstone
projects. IEEE Transactions on Education, 50(4):312–320,
Nov. 2007.

[16] S. Robertson and J. Robertson. Mastering the requirements
process. Addison-Wesley, Upper Saddle River, NJ, 2nd ed
edition, 2006.

[17] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley,
Boston, 2nd edition, 2005.

[18] R. Sanders and D. Kelly. Dealing with risk in scientific soft-
ware development. IEEE Software, 25(4):21–28, July-Aug.
2008.

[19] J. Segal. When software engineers met research scientists:
A case study. Empirical Software Engineering, 10(4):517–
536, 2005.

[20] J. Segal and C. Morris. Developing scientific software. IEEE
Software, 25(4):18–20, July-Aug. 2008.

[21] J. M. Spivey. The Z notation: a reference manual. Prentice
Hall International (UK) Ltd., Hertfordshire, UK, UK, 1992.

[22] Telelogic AB. Telelogic DOORS.
[23] G. Wilson. Software carpentry: Getting scientists to write

better code by making them more productive. Computing in
Science and Engineering, 8(6):66–69, 2006.

[24] G. Wilson. Software Carpentry : Version 1122.
http://swc.scipy.org, 2007.

[25] G. Wilson. Those Who Will Not Learn From History...
Computing in Science & Engineering, 10(3):5–6, May-June
2008.

[26] G. V. Wilson. Where’s the real bottleneck in scientific com-
puting? American Scientist, 94:5, 2005.

[27] J. M. Wing. Computational thinking. Communications of
the ACM, 49(3):33–35, 2006.

[28] G. Ziegler. ESA/ESOC First Acquisition Strategies. In 17th
International Symposium on Space Flight Dynamics, 2003.


	coversheet_template
	FAILY 2008 Towards requirements engineering practice

