
FAILY, S. and FLÉCHAIS, I. 2010. Towards tool-support for usable secure requirements engineering with CAIRIS.
International journal of secure software engineering [online], 1(3), pages 56-70. Available from:

https://doi.org/10.4018/jsse.2010070104

© IGI Global. This material is made available for personal and non-commercial use only. For all other purposes,
permission must be sought from the publisher, using the contact details provided on the IGI Global website:
https://www.igi-global.com/about/rights-permissions/content-reuse/

This document was downloaded from
https://openair.rgu.ac.uk

Towards tool-support for usable secure
requirements engineering with CAIRIS.

FAILY, S. and FLÉCHAIS, I.

2010

https://doi.org/10.4018/jsse.2010070104
https://www.igi-global.com/about/rights-permissions/content-reuse/

56 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: HCI Security, Misuse Cases, Personas, Requirements Management, Risk Analysis, Security
Requirements Engineering, User-Centered Design

intRoduction

Frequent reports of human and technical se-
curity failures in systems highlight the need
for designing usable security, but specifying
usable and secure systems is easier said than
done. Understanding why security controls are
unusable means factoring in the characteristics
of people using controls, the work they carry out
while using controls, and the physical, social,
and even cultural contexts within which the
controls are used. While it is accepted wisdom

towards tool-Support for
usable Secure Requirements

engineering with caiRiS
Shamal Faily, University of Oxford, UK

Ivan Fléchais, University of Oxford, UK

abStRact
Understanding how to better elicit, specify, and manage requirements for secure and usable software systems
is a key challenge in security software engineering, however, there lacks tool-support for specifying and man-
aging the voluminous amounts of data the associated analysis yields. Without these tools, the subjectivity of
analysis may increase as design activities progress. This paper describes CAIRIS (Computer Aided Integration
of Requirements and Information Security), a step toward tool-support for usable secure requirements engi-
neering. CAIRIS not only manages the elements associated with task, requirements, and risk analysis, it also
supports subsequent analysis using novel approaches for analysing and visualising security and usability. The
authors illustrate an application of CAIRIS by describing how it was used to support requirements analysis
in a critical infrastructure case study.

that these concerns should be treated as early
as possible, eliciting and specifying require-
ments for secure and usable controls remains
a hit-and-miss affair.

Requirements Engineering involves under-
standing the problem domain within which a
system is situated, obtaining data from stake-
holders in this domain, analysing this data to
elicit a set of requirements, validating these
requirements, and managing their evolution.
When properly applied, techniques from HCI
and Information Security complement these
early stages of Requirements Engineering.
Techniques used by usability professionals
are grounded in observational, performance, DOI: 10.4018/jsse.2010070104

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 57

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and other qualitative and quantitative data. If
used properly, this usability data can immerse
analysts and stakeholders in the problem do-
main and help explore assumptions held about
threats and vulnerabilities. Similarly, Goal-
Oriented Requirements Engineering techniques
are not only useful for eliciting requirements
from goals, but also threats from anti-goals
(Lamsweerde, 2004). Even the traditional
workshop setting, where requirements are often
elicited and validated, can support the design
of usable security; participative approaches
to risk analysis, e.g., (Fléchais et al., 2007;
Braber et al., 2007) help stakeholders take a
situated approach to security by alerting them
to threats and vulnerabilities, identifying risks
in their environment, and directing mitigating
specification and design decisions.

The challenge of specifying usable and
secure software systems comes not only from
choosing the right combination of techniques,
but also from analysing and managing the data
arising from them. For non-trivial systems, risk
and requirements analysis precipitate volumi-
nous amounts of data. A requirement may be
the leaf node of a large goal-tree, the root goal
of which may be derived from mitigating a par-
ticular risk; this mitigation response may arise
as a result of a chain of risk and requirements
analysis. Furthermore, empirical usability data
needs to contribute to any design decisions; if we
mitigate one risk, the resulting usability impact
of this design decision may introduce others.
Risk and usability ratings for a system design
are also coloured by analyst perceptions; this
allows human error to creep into any valuation.

Without tool-support, the security-usability
balance can become uneven and overly subjec-
tive as risk analysis becomes more advanced.
We need tool-support to manage security,
usability, and requirements data, automate its
analysis, and convey the results to stakehold-
ers. This paper discusses CAIRIS (Computer
Aided Integration of Requirements and Risk
Analysis): a tool for managing the elements
arising from usability, requirements, and risk
analysis. This tool supports the elicitation of
requirements from goals and tasks, and risks

from threats and vulnerabilities. By structur-
ing elicited data according to a meta-model for
usable secure requirements engineering (Faily
& Fléchais, 2010), meaningful traceability
links between different model types can be
automatically maintained, allowing data to be
quickly analysed and visualised in a participa-
tive workshop setting. In the next section, we
describe the related work motivating CAIRIS.
In the subsequent sections, we introducing the
tool, and we describe how CAIRIS was used to
elicit requirements in a Critical Infrastructure
case study.

Related woRK

We are unaware of any single tool purporting to
support the analysis of usability, requirements,
and risk analysis. Some coverage is, however,
provided by existing tools in each of these
areas, and presented in the following sections.

conceptual tools for usability

Designing usable system requires an early focus
on users and their goals (Preece et al., 2007).
Although many engineers consider usability
as synonymous only with user interface design
(Seffah & Metzker, 2004), it is also a quality
concerning the people interacting with these
interfaces, and how they use them to perform
work tasks. Unfortunately, we currently lack
tool-support allowing analysts and developers
to inform secure system design with usability
insights.

Qualitative usability data can be repre-
sented as personas: fictitious, specific, concrete
representations of target users (Pruitt & Adlin,
2006). By describing how personas carry out
these scenarios, we can represent usability
data in a meaningful way to stakeholders and
inform the subsequent analysis accordingly. A
step towards managing personas and the sce-
narios they participate in involves devising a
suitable means of structuring and categorising
this interaction. Such categorisations might also
help measure the impact to usability of security
design decisions, and vice-versa.

58 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Security Requirements
engineering tools

Many tools for Security Requirements Engineer-
ing are general Requirements Management tools,
which have been augmented for security. Such
tools are often based on the spreadsheet metaphor,
where a table is used to enter the attributes of a
natural language requirement. By applying this
metaphor, requirement attributes, such as its
description, type, and rationale, can be quickly
specified. Unfortunately, the generic strength
of a Requirements Management tool is also its
weakness; the lack of distinct semantics means an
analyst must manually maintain traces between
requirements and non-requirements artifacts.

Model-based approaches support traceabil-
ity between different artifacts. If a tool conforms
to the requisite meta-model then, as data is entered
into the tool, it can be structured in a manner that
facilitates automated analysis and visualisation.
Tool-support for model-based approaches exist
for risk analysis (Braber et al., 2007; Meland et
al., 2008) and goal modelling (Respect-IT, 2007),
but the task of integrating different model-based
approaches for security requirements engineer-
ing is non-trivial. One problem is the diversity
of the models to be integrated; tools are often
based on different meta-models, making un-
derstanding and agreeing interfaces difficult. If
we assert that misuse cases <<threaten>> use
cases, do we agree what it means for a use case
to be threatened? Does a misuse case threaten
the work carried out by a use case, or the assets
associated with it? Houmb et al. (2009) describes
some of the challenges faced when integrating
these different techniques.

One strategy for integrating these ap-
proaches is to consider how Secure Requirements
Engineering and HCISec might complement each
other. Thimbleby (2007) argues that usability ap-
proaches are necessary, but far from sufficient for
critical systems. The sheer size of the state space
associated with interactive devices is so big that
empirical evaluation on its own is unsustainable.
It is, however, possible, to supplement usability
analysis with basic technical methods.

visualising Secure
Systems design

Before stakeholders can measure the impact of
usability of secure system design decisions, they
need to understand the rationale underpinning
a design. Previous work has illustrated how
different visualisation techniques can both
explain the results of analysis, and explore
the resulting impact. While we are unaware of
work purporting to visualise the analysis and
resulting impact of usability and security, there
has been work on independently visualising
analysis in each area.

The canonical visual notation for modelling
tasks as scenarios is the UML Use Case Diagram.
These diagrams show the relationship between
human or non-human actors, represented as
stick figures, and coherent units of functional-
ity, represented as ellipses. The diagrams have
also been extended to display Misuse Cases,
typically represented as black ellipse, and at-
tackers, typically represented as an attacker with
a filled black head (Alexander, 2002). Røstad
has proposed an extended notation for dealing
Misuse Cases, such that threats and vulnerabili-
ties are modelled as separate entities in a Use
Case Diagram (Røstad, 2006). With the aid of
stereotyped associations and different attacker
types, this notation allows more information
cogent to a risk analysis to be modelled, and
inside and outside attacks to be distinguished.

Techniques from information visualisation
have also been used to support risk analysis.
Hogganvik (2007) has concluded that colours
are a useful means of distinguishing the value
of different risks, and Feather et al. has used bar
charts to portray information from Defect De-
tection and Prevention (DDP) models to make
problematic areas more evident to stakeholders
(Feather et al., 2006).

caiRiS

CAIRIS is a step towards tool-support for us-
able secure requirements engineering. CAIRIS
supports the elicitation of usability, require-

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 59

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ments, and risk analysis data before and during
participative design activities. Data is entered
into the CAIRIS front-end, and stored in a back-
end database; the constraints in the database
are based on the IRIS meta-model (Faily &
Fléchais, 2010).

Requirements management

A recent survey on techniques for describing
security requirements (Tøndel et al., 2008)
concluded that there was no consensus on what
a security requirement is. We have, therefore,
decided to represent all requirements, including
security requirements, as natural language text:
the lingua franca for requirements specifica-
tions in industry. CAIRIS includes an editor
for specifying natural language requirements,
which is based on the spreadsheet metaphor; the
table columns conform to the Volere Require-
ments Shell (Robertson & Robertson, 2009).
Each table of requirements is associated with
an asset or an environment. This enables large
specifications to be structured according to the
concern most closely related to it.

CAIRIS also supports many of the features
found in commercial requirements management
tools, such as versioned changes to require-
ments, forward and backward traceability, and
automatic requirements document generation.
CAIRIS does not, however, support ad-hoc
traceability between all artifacts; almost all
traceability links are automatically generated
and maintained as part of the modelling process.
Manual links can only be created where they
are meaningful. For example, it is meaningful
to associate a task with a vulnerability; some
aspect of a task might be open to exploitation,
and it is difficult to cull such a relationship from
the textual narrative of the task. However, it is
invalid to manually associate a task with a role.
Although this relationship may exist implicitly,
it is as a corollary of a relationship between
tasks and personas. This latter relationship can
be generated automatically by CAIRIS when
stating a persona participates in a task.

task analysis

Empirical data about how target users plan to
use the system-to-be is modelled in CAIRIS
using personas (Pruitt & Adlin, 2006) and task
based scenarios (Rosson & Carroll, 2002). These
personas fulfil one or more roles. Although there
is no agreed way of measuring the usability of
a task with respect to its participating personas,
a number of persona and task attributes match
attributes found in the ISO 9241-11 (ISO, 1998)
framework. ISO 92411-11 describes how us-
ability goals can be evaluated using the goals
of effectiveness, efficiency, and satisfaction.
Based on this framework, we have devised a
set of task usability properties (Figure 1); these
can be used to evaluate how usable a task is
to a persona. When defining tasks, these four
properties are set for each persona participating
in a scenario. Each of these properties map to
one of the usability components of ISO 9241-11.

Each property has an associated value x
which maps to a natural number in the range 0
≤ x ≤ 3; this corresponds to the qualitative
values of None, Low, Medium, and High re-
spectively. To ensure equal weighting for all 3
usability components, the usability of a task Ut
is computed using the equation

U
a b

c d
t
=
+
+ +

2

where a b+
2

 is the mean task efficiency, c is

the mean task satisfaction, and d is the mean
task effectiveness. Variables a, b, c, and d refer
to the task duration, frequency, demands, and
goal conflict respectively. The mean value is
taken across all personas carrying out the task
in question. The higher the value of Ut, the less
usable a task is for the personas associated with
it. More meaningful values must be used for
duration and frequency because values like low,
medium, and high are ambiguous. For duration,

60 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the qualitative ratings used are Seconds, Min-
utes, and Hours or Longer are associated with
the values 1, 2, and 3 respectively. For fre-
quency, the ratings used are Monthly or less,
Daily - Weekly, and Hourly or more.

When mitigating risks, one or more roles
are associated with each mitigating countermea-
sure; these roles will, in some way, be directly
affected by the countermeasure being designed.
By associating roles with countermeasure within
IRIS, candidate personas and their tasks can be
identified. For each task-persona pairing, coun-
termeasure usability properties can be specified.

Based on this countermeasure usability
data, it is possible to calculate the countermea-
sure usability factor TUt. The right hand side of
the equation computing TUt is identical to Ut, i.e.

TU
a b

c d
t
=
+
+ +

2

The values are, however, different. a b+
2

is the mean contribution to task efficiency, c

is the mean contribution to task satisfaction,
and d is the mean contribution to task effec-
tiveness. Like Ut, the variables a, b, c, and d
refer to the task duration, frequency, demands,
and goal conflict respectively. The mean con-
tributing value is taken across all countermea-
sures affecting the task in question. However,
unlike Ut, each qualitative value x associated
with a property maps to an integer in the range
−3 ≤ x ≤ 3.

Based on these equations, we compute the
task summative usability SUt to be

SU U TU
t t t
= +

Like Ut, the higher the score, the less usable
the task is for the associated personas. After
calculating Ut and SUt, the score is normalised
to a natural number in the range 0 ≤ n ≤ 9. Given
the potential of a task to increase or decrease
usability, this value remains unchanged irre-
spective of it being a high positive or negative
number.

Figure 1. Task (left) and countermeasure task (right) usability properties

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 61

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Risk analysis

In CAIRIS, we define a risk as the likelihood
of a threat exploiting a vulnerability to cause
an impact. Threats are synonymous to attacks,
and vulnerabilities are properties of a system
making it liable to exploitation.

A risk rating can be assigned based on
likelihood and severity tables in IEC 61508
(IEC 1998-2005) (Figure 2). However, this
rating does not reflect values held about indi-
vidual assets or threats. To score risks with
respect to the perceived value of the assets
threatened, we define a security property as a
row vector c i a o

 , where c, i, a, and o

represent the values held for confidentiality,
integrity, availability and accountability respec-
tively. Each element n is valued 0 ≤ n ≤ 3 based
on whether the value held for that element is
none, low, medium or high. The likelihood of
the threat being realised, Lr, is computed using
the equation

L L m
r t t= −

where Lt is the likelihood of the threat t associ-
ated with risk r, and mt is the mean likelihood
value for the set of countermeasures mitigating
the likelihood of Lt occurring. The values of Lt
and mt exist within the range 0 ≤ n ≤ 5, and
map to the likelihood categories in Figure 2.
The severity of the vulnerability exposed by
risk r is computed using the equation

S S m
r v s= −

where Sv is the severity of the vulnerability v
associated with risk r, and ms is the mean
severity for the set of countermeasures mitigat-
ing the severity of Sv. Like threat severity,
vulnerability values exist within the range 0 ≤
n ≤ 3 and map to the vulnerability categories
in Figure 2.

Risk impact is described by a security prop-
erty, representing the values held in the assets
at risk from risk r. Risk impact is computed
using the equation

P P P m
r t a p= × −()

where Pt is the security property of the threat
associated with risk r, Pa is the security prop-
erty of the vulnerable or threatened assets at
risk, and mp is the mean security property for
the countermeasures targeting the risk’s threat
or vulnerability.

Finally, the calculation for the Risk Score
of risk r, Rr, is computed, as the product of the
threat likelihood, the severity of the vulnerabil-
ity, and the risk impact to the threatened assets.

R L S P
r r r r
= × ×

Each element of row vector is added to-
gether, and the sum is normalised to an integer
between 1 and 9. If, during the above computa-
tions, negative numbers are calculated, these
values are resolved to 0.

caiRiS modelS

One of the main differences between CAIRIS
and related tools for security modelling is the
model-driven nature of visualisation; models
are automatically generated from specified,
declarative data rather than via direct manipula-
tion. This frees analysts from the tedious task
of manually maintaining a variety of different
models and the traceability relations between
them.

Data elicited by CAIRIS is stored in a
MySQL database conforming to the IRIS Meta-
model (Faily & Fléchais, 2010), a conceptual
model for usable secure requirements engineer-
ing. Rendering a tabular representation of the
model data using the open-source Graphviz
framework generates each model view. By us-
ing Graphviz’s xdot output format, the position

62 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of different model elements is retained and,
consequently, hit-testing can be supported in
CAIRIS model viewer components; this allows
analysts to click on nodes in a model viewer
to obtain more information about the related
model elements.

Several models can be automatically gener-
ated by CAIRIS based on elicited data. These
are described in the following sections.

asset model

The CAIRIS Asset Model is represented as a
UML class model, where assets are represented
as classes. If an asset is used within a task then
the persona associated with the task is also
displayed in the asset model as an actor. Simi-
larly, depending on the level of zoom used in
the model, a comment node is also displayed
to indicate the traceability origin of the asset
and its relationship.

Assets may be generated from countermea-
sures as part of risk analysis. If this occurs, then
an association between the asset at risk and the
countermeasure protecting it is generated; this
association is labelled with a <<safeguard>>
stereotype.

task model

Personas and their task associations are repre-
sented using a modified form of UML Use Case
diagram, where tasks are modelled as use cases,
and personas are modelled as actors. This model
also displays Misuse Cases and the attackers
who realise them; attackers are displayed as
actors wearing a black hat and Misuse Cases
are represented as black ellipses with white text.
Figure 3 is an example of a CAIRIS task model.

In the same manner that assets are associ-
ated with tasks, Misuse Cases are also, albeit
indirectly, associated with assets. Each Misuse

Figure 2. IEC 61508 tables for threat likelihood, vulnerability severity, and risk categorisation

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 63

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Case in CAIRIS is associated with a risk and,
by extension, with a single threat and vulner-
ability. Consequently, if an asset is used by a
task and also exposed by a vulnerability or
threatened by threat, then we can model this
Asset-Misuse Case relationship in CAIRIS.
Because these associations potentially add to
model clutter in a large task model, these are
associations are displayed based on the model’s
current zoom factor.

goal, obstacle, and
Responsibility models

We adopt a multi-model view of Requirements
Engineering based on the goal-oriented KAOS
methodology (Lamsweerde, 2009). KAOS
defines goals as prescriptive descriptions of
system intent, which are used as vehicles for
refining requirements. The KAOS modelling
notation is compliant with UML and, by ex-
tension, compatible with modelling notations
commonly used by industry. The polygon KAOS
model elements are also comparatively trivial to
render visually. This is an important property for
tool-support, which needs to rapidly compute
and visualise the products of analysis without
hindering participative design activities.

High-level goals stipulated by stakehold-
ers at the beginning of a project can be refined
by CAIRIS using goal trees; leaf goals can
be refined as requirements, which can then
be operationalised as tasks. Alternatively, a
bottom up approach may also be taken where
goals or requirements are elicited from tasks
and retrofitted into the goal tree.

Obstacles can be identified from require-
ments and goals; these are conditions represent-
ing undesired behaviour and prevent an associ-
ated goal from being achieved (Lamsweerde &
Letier, 2000). By refining obstacles, candidate
threats and vulnerabilities may be defined.

Horizontal traceability is implemented us-
ing concern links. If assets or asset relationships
of concern are identified in goals or tasks, these
are automatically generated in the asset model.

Risk analysis model

The Risk Analysis model provides a quick-look
view of the current risk analysis. This model
only displays the elements of risk analysis,
and other non-risk analysis elements associ-
ated with them. This view also compresses
goal trees arising from risk responses, thereby
making it easier to trace risks to mitigating
responses, the requirements they treat, and the
countermeasures they refine.

Risk Analysis model nodes are both colour
coded and encoding with multidimensional data.
As Figure 4 illustrates, information about the
security properties is coded within asset and
threat elements. Histograms indicate whether
or not values are held for each property and,
if so, whether that property is low, medium, or
high. The colours selected for the confidenti-
ality, integrity, availability, and accountability
histograms are the 3 primary colours -- red,
blue, and green -- together with black; the
use of black and primary colours provide the
maximum differentiation between property
types (Tufte, 1990).

Figure 3. Task Model example

64 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Risk analysis elements are colour coded
with information, such as threat likelihood,
vulnerability severity, and risk impact. Threats,
vulnerabilities, and risks are also coloured based
on their criticality: the more critical the element,
the deeper the hue of red.

The Risk Analysis model also visualises
metrics on requirements quality. These metrics
are based on requirements completeness, the
presence of an imperative phrase, and ambigu-
ity. These are displayed using cartoon Chernoff
Faces (Chernoff, 1973), and described in more
detail by (Wilson et al., 1996). Eye-brow shape
indicates the completeness of a given require-
ment. If no text is found in certain fields, or
phrases like TBC, None, or not defined are
present, the completeness score is marked down
accordingly, and the eye-brows convey a nega-
tive mood. The eye shape indicates whether or
not an imperative phrase exists in the require-
ment description. If such a phrase exists then
the eyes becomes vertically elongated. The
mouth indicates the presence of weak or fuzzy
phrases, such as mostly, appropriate, normal,
or adequate; the presence of these phrases turn
the smile into a frown.

clutter management

With so much information associated with
the different model views, visual clutter can
become a problem as models grow. Minimal
distinctions in colour can be used to reduce
visual clutter, and small contrasts enrich the
visual signal increasing the number of possible
distinctions (Tufte, 1997). To take advantage
of this, we map the normalised values for Rr
and SUt to the respective risk (red) and task
usability (blue) colour charts. The higher the
risk or task usability score, the deeper the hue
of red or blue.

Threat likelihood and vulnerability sever-
ity scores map to a colour chart similar to that
of risk. An example of how these colours are
applied to elements on the IRIS risk analysis
model is provided in Figure 4.

CAIRIS also uses geometric and semantic
zooming to make efficient use of the available
viewing area as model data increases. Geometric
zooming magnifies detail at the cost of loss of
context; semantic zooming conveys additional
model information as it is zoomed (Spence,
2007). The risk analysis model supports 3

Figure 4. Risk Analysis model before (left) and after (right) risk mitigation

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 65

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

levels of zooming. At the lowest zoom factor,
only the most salient elements are displayed. As
the zoom factor increases, the further elements
are displayed, together with the associations
between them. At the highest zoom factor, all
remaining elements are displayed, together with
additional information about assets and threats.
At this level of granularity, textual labels are also
displayed; at lower levels, such detail would be
unreadable and distracting. Zooming is also sup-
ported in the task model. Associations between
personas and attackers and Tasks and Misuse
Cases respectively are displayed at low zoom
factors. Associations indicating that a Misuse
Case threatens a Task, or a Task mitigates a
Misuse Case are displayed at medium zoom
factors. Associations indicating assets used by a
Task, exploited or threatened by a Misuse Case,
or assets mitigating a Misuse Case are displayed
at high zoom factors. Figure 3 illustrates a task
model at a high zoom factor.

Even with support for zooming, clutter
remains a problem in large models when viewed
at a high zoom factor. Consequently, filtering is
also supported in certain models. Models can be
filtered by task in the task model, and by node
name and type, i.e., risk, threat, vulnerability,
etc, in the risk analysis model; in these models,
only the filtered model node and associated
nodes are displayed. In the goal model, filtering
is supported by goal name; when the filter is
applied, the goal tree is re-displayed such that
the filtered node becomes the root node.

caSe Study

In this section, we report on a case study where
CAIRIS was used to support the specification
of requirements for a central repository for
control software; this repository was designed
to support the work of instrument technicians
at a UK water company.

Water and sewage treatment is controlled
by a substantial amount of control software.
This software runs on many different devices

and locations across wide geographic areas. As
part of their responsibility for maintaining the
water network, instrument technicians make
software modifications to telemetry outstations,
PLCs (Programmable Logic Controllers), and
SCADA (Supervisory Control and Data Acqui-
sition) workstations. Without a central strategy
for controlling such software, water treatment
integrity may be compromised if software is
lost, or incorrect software is accidentally, or
deliberately, installed on critical instrumenta-
tion. However, because maintaining the water
network can be physically and mentally taxing,
any new technology needs to be situated for the
contexts within which these technicians work.

Following an initial scoping workshop,
empirical data was elicited from 3 contextual
interviews (Holtzblatt & Jones, 1993) with in-
strument technicians, 2 on-site qualitative inter-
views, and 2 telephone interviews with related
stakeholders. Transcripts of these interviews
were analysed using qualitative data analysis,
the results of which were used to identify the
behavioural characteristics of potential users.
From these behaviour characteristics, a number
of personas were developed. This qualitative
data was also used to inform a number of can-
didate requirements, vulnerabilities, and threats.

Three one-day workshops were held to
carry out requirements analysis; participants
included instrument technicians, software engi-
neers, IT support staff, and information security
officers. Each workshop began by validating the
results of previous sessions before undertaking
requirements analysis, and supplemental task
and risk analysis. CAIRIS was used by a joint
facilitator/scribe in each of these workshops to
specify the artifacts of task, requirements, and
risk analysis, and display different models to
facilitate discussion and subsequent analysis
activities.

For the purposes of brevity, this section
focuses on how CAIRIS was used to elicit and
analyse requirements relating to the modifica-
tion of PLC software.

66 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

category definition and
asset modelling

In the initial workshop, definitions were agreed
and candidate assets were elicited. The mean-
ings of Low, Medium, and High values were
agreed for security properties, and categorical
values for vulnerability severity were agreed
and entered into CAIRIS. The IEC and ISO
categories for threat likelihood and usability
were also discussed with participants.

At this early stage, information about as-
sets of value was also elicited and entered into
CAIRIS. For this example, we focus only on
two particular assets: PLC control software
and repository access credentials. The security
properties associated with PLC Software were
Integrity (High), Availability (High), and Ac-
countability (Medium). The properties associ-
ated with the repository access credentials were
Confidentiality (High), and Availability (High).

usability analysis

For reasons of brevity, we focus on the work
of Barry, the primary persona in the case study.
Barry represented an instrument technician who
modifies software as part of his day-to-day
work. In several tasks, Barry made infrastructure
changes to plant equipment, which led to con-
trol software modifications and, consequently,
interaction with the software repository. One of
these tasks, Modify PLC Software, began with
Barry examining the details of the task on the
SAP-based planning system, determining the
required plant changes, and speaking to plant
operators about the work. Barry then carried
out the necessary modification work and com-
missioned (tested) the changes. When this task
was completed to the satisfaction of the plant
operators, Barry closed the job on the planning
system, and uploaded the modified programs
to the software repository.

Given Barry’s profile, this task takes sev-
eral hours, but only occurs on an infrequent
basis. Due to the amount of work involved in
this task, coupled with the importance of the
task itself, this is a high demand task, which

does not interfere with his goals. Based on this
information, CAIRIS can compute the usability
of this task:

U
a b

c d
t
= + +

=
+
+ +

=

2
3 1

2
3 1

6

goal and Requirement elicitation

From the scoping workshop, a high-level goal
for maintaining control software was elicited;
this was broken down to sub-goals for main-
taining different classes of software. In this
case study, we focus only on the elicitation of
security requirements following the analysis of
a goal for downloading PLC software.

In this simple example, a number of
functional requirements (PLCS-2, PLCS-3,
and PLCS-4) were directly elicited from the
Download PLC software goal. However, in
this context, an instrument technician must be
authorised to make any software downloads and
potential software modifications. We chose to
generate obstacles on each of these goals to ex-
plore their consequences. Workshop participants
were interested in exploring the unauthorised
access of repository login credentials as a cause
of unauthorised downloading. While analysing
this goal, the assumption that organisational
login credentials would be used for accessing
the software repository was explicated. This
domain assumption was modelled elsewhere in
the goal model, and further obstacle refinement
proceeded on the basis of this assumption. A
number of leaf obstacles, one of which pertained
to login credentials sharing, were identified.
Based on this obstacle, a Credentials Sharing
vulnerability was specified. Given the resources
these credentials facilitate access to this vulner-
ability was scored as Critical.

The Chernoff Faces for these requirements
in Figure 4 suggest quality problems with some
of these requirements. In some cases, the eye-
brow shape indicates that attributes, such as

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 67

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

fit criteria and rationale, are missing in some
cases. In the case of PLCS-3, the requirements
description (“A user shall be able to download
the latest version of the PLC software for a site”)
is also ambiguous. This is due to the presence
of the weak-phrase be able to, which is open
to multiple interpretations.

Risk analysis

Not all threats and vulnerabilities arose from
requirements analysis. A Logic Bomb threat was
defined based on the concern that an inside-
attacker instrument technician might inten-
tionally plant malicious code in PLC software
to compromise water treatment. An example
of such malicious logic involves turning off
particular pumps in a water treatment plant at
a designated time late one evening; this ensures
the malevolent instrument technician receives a
financially lucrative call-out to fix the problem.
Alternatively, if another instrument technician’s
credentials are used, the Logic Bomb could
undermine the company’s confidence in his
abilities. In the worse case scenario, turning
off critical safety controls can lead to pollution
of the water supply or substantial environment
damage if raw sewage is released into the sur-
rounding ecosystem. When carrying out this
threat, the attacker wishes to hide his Logic
Bomb within an innocuous code change carried
out by another instrument technician. As such,
the attacker looks to target the accountability
property of this asset. All participants agreed
that, dangerous as this threat is, its likelihood
was low.

We defined a Plant Logic Bomb via bor-
rowed credential risk. This risk occurs when
an attacker carries out a Logic Bomb threat by
exploiting the Credentials Sharing vulnerability.
CAIRIS assessed this risk quantitatively by
calculating its risk score. The likelihood and
severity scores mapped to 1 and 2 respectively.
The threat targeted only the accountability
property of PLC software. The Windows login
credentials, used to access the repository, are

exploited by the Credentials Sharing vulnerabil-
ity. Using this information, CAIRIS calculated
the risk score Rr:

L L m

S S m

P P P m

r t t

r v s

r t a p

= −
= −
=

= −
= −
=

= × −
=

1 0

1

2 0

2

()

([[] [])

[]

[

0 0 0 3 0 3 3 2

0 0 0 6

1 2 0 0

×
=
= × ×
= × ×

R L S V
r r r r

00 6

0 0 0 12

]

[]=

After rounding Rr down, the normalised
score resolved to 9.

This risk was mitigated with a detective
mitigation response, such that occurrences of
this risk would be detected after the event. A
goal was generated to reflect the objective of
detecting this risk and, after goal refinement,
requirements for peer-reviewing PLC software
changes were elicited. One of these require-
ments stipulated that an instrument technician
making a software modification cannot be the
technician selected to carry out a peer review.
Based on this, a SAP-Repository bridge coun-
termeasure was defined. This countermeasure
was a software component for cross-checking
a peer reviewer with an instrument technician
responsible for a modification. This counter-
measure is considered reasonably effective at
targeting the Logic Bomb threat, motivating the
value of 2 (Medium) for mt . This countermea-
sure also fosters a high value of accountability,
giving rise to a score of []0 0 0 3 formp . Based
on this information, the risk score can now be
re-evaluated.

68 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

L L m

S S m

P P P m

r t t

r v s

r t a p

= −
= −
= −

= −
= −
=

= × −
=

1 2

1

2 0

2

()

(([] []) []

[]

0 0 0 3 0 3 3 2 0 0 0 3

0 0 0

 3

× −
=
= × ×R L S V

r r r r

= × ×
=

0 2 0 0 0 3

0 0 0 0

[]

[]

These results show that while the account-
ability security value remains threatened, the
likelihood of the threat was rendered inert,
thereby reducing the risk score to the lowest
possible value. As this countermeasure appeared
to be effective, a new asset was defined for
this component. The security property of this
asset was based on the values placed on the
countermeasure.

This countermeasure also positively influ-
enced the task of modifying PLC software. A
software component linking the repository with
the SAP based work system means that job data
can be used to support modification comments
and, potentially, the job can be closed off by
uploading a modification to the repository; this
changes leads to the task being slightly less
mentally taxing. Therefore, the summative task
usability can now be re-evaluated.

SU U TU
t t t
= +

= +
+
− +

=

6
0 0

2
1 0

5

The risk analysis model before and after
risk mitigation in Figure 4 illustrates how the

differences in R
r
 and SU

t
are represented us-

ing different colours; the risk node colour has
changed from a dark to a light shade of red,
while the task node in the mitigated model is
now a lighter shade of blue.

concluSion

Reasoning about security and usability is a
challenge during requirements analysis, not
least because analyst bias and data explosion
can occur as specification and design activities
progress. This challenge motivates the need
for tool support to manage the results of this
analysis, and use these results to further inform
security and usability requirements analysis.

This paper has introduced CAIRIS:
tool-support for usable secure requirements
engineering. Although CAIRIS incorporates
much of the functionality found in classic Re-
quirements Management tools, elicited data is
structured using a conceptual model for usable
security. This allows CAIRIS to analyse risk and
task analysis data as it is specified, and auto-
matically generate different views of collected
data. Our approach has shown that empirical
usability and risk analysis data can be put to
good use by applying simple qualitative and
quantitative techniques to evaluate risks and
tasks. By using this data with simple visualisa-
tion techniques, we can validate assumptions
underpinning analysis, and explore the impact
of certain specification and design designs.

Future work will examine the challenges
associated with integrating CAIRIS with other
tools, which support downstream secure soft-
ware engineering activities.

acKnowledgment

The research described in this paper was funded
by EPSRC CASE Studentship R07437/CN001.
We are very grateful to QinetiQ Ltd for their
sponsorship of this work.

International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010 69

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

RefeRenceS

Alexander, I. (2002). Initial industrial experience of
misuse cases in trade-off analysis. In Proceedings of
Requirements Engineering, IEEE Joint International
Conference (pp. 61-68). Washington, DC: IEEE.

Chernoff, H. (1973). The Use of Faces to Represent
Points in K-Dimensional Space Graphically. Journal
of the American Statistical Association, 68.

den Braber, F., Hogganvik, I., Lund, M. S., Stølen,
K., & Vraalsen, F. (2007). Model-based security
analysis in seven steps - A guided tour to the CORAS
method. BT Technology Journal, 25(1), 101–117.
doi:10.1007/s10550-007-0013-9

Faily, S., & Fléchais, I. (2010). A Meta-Model for
Usable Secure Requirements Engineering. In Pro-
ceedings of the Software Engineering for Secure
Systems (SESS ‘10).

Feather, M. S., Cornford, S. L., Kiper, J. D., &
Menzies, T. (2006). Experiences using Visualization
Techniques to Present Requirements, Risks to Them,
and Options for Risk Mitigation. In Proceedings of
Requirements Engineering Visualization (REV ‘06),
the First International Workshop (p. 10).

Fléchais, I., Mascolo, C., & Sasse, M. A. (2007).
Integrating security and usability into the require-
ments and design process. International Journal
of Electronic Security and Digital Forensics, 1(1),
12–26. doi:10.1504/IJESDF.2007.013589

Hogganvik, I. (2007). A graphical approach to
security risk analysis.

Holtzblatt, K., & Jones, S. (1993). Contextual In-
quiry: a participatory technique for systems design
(pp. 177-210).

Houmb, S. H., Islam, S., Knauss, E., Jurjens, J., &
Schneider, K. (2009). Eliciting security requirements
and tracing them to design: an integration of Com-
mon Criteria, heuristics, and UMLsec. Requirements
Engineering, 1–31.

IEC. (1998-2005). IEC 61508: Functional safety
of electrical/electronic/programmable electronic
safety-related systems. Parts 1-7. Geneva, Switzer-
land: International Electrotechnical Commission.

ISO. (1998). ISO 9241-11. Ergonomic requirements
for office work with visual display terminals (VDT)
s - Part 11 Guidance on usability (Tech. Rep.). Ge-
neva, Switzerland: ISO.

Lamsweerde, A. v. (2009). Requirements engineer-
ing: from system goals to UML models to software
specifications. Hoboken, NJ: John Wiley.

Meland, P. H., Spampinato, D. G., Hagen, E., Baad-
shaug, E. T., Krister, K.-M., & Velle, K. S. (2008).
SeaMonster: Providing tool support for security
modeling. In Proceedings of NISK 2008.

Preece, J., Rogers, Y., & Sharp, H. (2007). Beyond
Interaction Design: Beyond Human-Computer
Interaction. New York: John Wiley & Sons, Inc.

Pruitt, J., & Adlin, T. (2006). The persona lifecycle:
keeping people in mind throughout product design.
Amsterdam: Elsevier.

Respect-IT. (2007). Objectiver. Retrieved from http://
www.objectiver.com

Robertson, J., & Robertson, S. (2009). Volere
Requirements Specification Template: Edition 14 -
January 2009. Retrieved from http://www.volere.
co.uk/template.htm

Rosson, M. B., & Carroll, J. M. (2002). Usabil-
ity engineering: scenario-based development of
human-computer interaction. San Francisco, CA:
Academic Press.

Røstad, L. (2006). An extended misuse case nota-
tion: Including vulnerabilities and the insider threat.
In Proceedings of REFSQ, the 12th International
Working Conference on Requirements Engineering.

Seffah, A., & Metzker, E. (2004). The obstacles
and myths of usability and software engineer-
ing. Communications of the ACM, 47(12), 71–76.
doi:10.1145/1035134.1035136

Spence, R. (2007). Information Visualization: Design
for Interaction. Upper Saddle River, NJ: Pearson
Prentice Hall.

Thimbleby, H. (2007). User-centered methods are
insufficient for safety critical systems.

Tøndel, I. A., Jaatun, M. G., & Meland, P. H. (2008).
Security Requirements for the Rest of Us: A Sur-
vey. Software, IEEE, 25(1), 20–27. doi:10.1109/
MS.2008.19

Tufte, E. R. (1990). Envisioning information.
Cheshire, CT: Graphics Press.

Tufte, E. R. (1997). Visual Explanations: Images
and Quantities, Evidence and Narrative. Cheshire,
CT: Graphics Press.

70 International Journal of Secure Software Engineering, 1(3), 56-70, July-September 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

van Lamsweerde, A. (2004). Elaborating Security
Requirements by Construction of Intentional Anti-
Models. In Proceedings of the 26th International
Conference on Software Engineering (ICSE ‘04)
(pp. 148-157).

van Lamsweerde, A., & Letier, E. (2000). Handling
obstacles in goal-oriented requirements engineer-
ing. Software Engineering, 26(10), 978–1005.
doi:10.1109/32.879820

Wilson, W., Rosenberg, L., & Hyatt, L. (1996).
Automated quality analysis of natural language
requirement specifications. In Proceedings of Four-
teenth Annual Pacific Northwest Software Quality
Conference.

Shamal Faily is a doctoral student at the Computing Laboratory at the University of Oxford. His
doctoral research involves understanding how factors relating to ‘context of use’ impact security,
and how these factors can be applied to secure systems design. Shamal graduated with a BSc
in Business Computing Systems from City University, and spent nearly 10 years as a software
engineer at Logica UK.

Ivan Fléchais is a Departmental Lecturer in the Software Engineering Programme at Oxford
University and his main lecturing and research interests are in the area of computer security. In
particular, given that people are the weakest link in the security chain, this involves researching
how secure systems can be designed, implemented and tested to take human needs into account.
Prior to this, he graduated with a BSc in Computer Science from University College London and
then stayed on at UCL to achieve a PhD researching how to design secure and usable systems
which resulted in the creation of the AEGIS secure system design methodology.

	coversheet_template
	FAILY 2010 Towards tool-support for usable secure

