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Abstract: Accurate state-of-charge estimation plays an extremely crucial role in battery management systems. To realize the 

real-time and precise state-of-charge estimation, an intelligent weight decreasing firefly - particle filtering algorithm is proposed. 

In this research, the second-order RC equivalent circuit model is established and the parameters are identified online, state-of-

charge particles simulate the attraction behavior of fireflies in nature and approach the global optimal value to complete the 

particle optimization process. The linear weight decreasing strategy is introduced to avoid the algorithm falling into local 

optimization. The data of different complex conditions are used to verify the feasibility of the proposed algorithm, the results 

show that the root-mean-square error of intelligent weight decreasing firefly - particle filtering method when the initial SOC 

value is set to 1 under Hybrid Pulse Power Characterization and Beijing Bus Dynamic Stress Test condition can be controlled 

within 0.60% and 1.12% respectively, which verifies that the proposed algorithm has high accuracy in state-of-charge 

estimation of lithium-ion batteries. The algorithm proposed in this paper provides a theoretical basis for real-time state 

monitoring and security of battery management systems.

Key words: lithium-ion battery; second-order RC equivalent circuit model; state-of-charge; intelligent weight decreasing firefly; 

particle filtering

1. Introduction

In recent years, many countries have begun to change the energy supply structure and vigorously develop new 

energy to alleviate the energy crisis and environmental pollution [1,2]. The continuous development and 

utilization of new energy and its energy storage devices have laid a foundation for the development of electric 

vehicles [3]. Guided by energy conservation and emission reduction, the automotive industry began to transform, 

and electric vehicles have become the main direction of its development [4]. The overcharge and over discharge 
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2

of lithium-ion batteries in the use of electric vehicle need to be solved urgently [5], which will not only lead to 

serious battery heating, but also damage the battery life, and even lead to thermal runaway of battery, resulting in 

personal safety and property loss [6, 7]. In addition, mileage anxiety is also an important problem in the use of 

electric vehicles [8]. Therefore, a stable and reliable battery management system (BMS) must be adopted in the 

use of lithium-ion batteries to ensure the safe and stable operation, monitor the service status and make efficient 

use of the discharge performance of lithium-ion batteries [9, 10]. State-of-charge (SOC) is a key parameter in 

BMS, it is equivalent to the fuel gauge of vehicles [11], providing the driver with real-time status of the vehicle 

and a better driving experience [12], and it also provides the basis for the calculation of other state parameters of 

electric vehicles [13]. As the key and difficult point of electric vehicle development [14,15], SOC estimation has 

important research significance.

Accurate battery modeling is of great significance to SOC estimation [16]. There are complex electrochemical 

reactions in lithium-ion batteries under random discharge conditions [17,18]. Battery model is often used to 

describe the behavior of battery under external excitation [19]. There are three kinds of commonly used lithium-

ion battery models: electrochemical model, data-driven model and equivalent circuit model [20]. Electrochemical 

model is often used to describe the electrochemical reaction process inside the battery [21], which can deeply 

reflect the complex electrochemical kinetic mechanism [22]. However, it is too complex, large amount of 

calculation and difficult to solve online [23]. The data-driven model relies on a large number of test data to 

establish the relationship between input and output [24], without considering the complex electrochemical 

reaction process inside the battery [25], but a large number of tests need to spend a long time and cost [26]. The 

equivalent circuit model makes a balance between model accuracy and real-time calculation, which opens up a 

way for online SOC estimation [27]. The circuit network structure composed of common circuit elements is used 

to describe the external characteristics of the battery. At present, it is the most widely used model in the process 

of SOC online estimation [28].
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Researchers introduced fading factor into traditional extended Kalman filter (EKF) algorithm to improve the 

estimation accuracy, which solves the problem of easy divergence in the later stage of EKF to a certain 

extent [29]. Aiming at the problem of large error caused by inaccurate initial value when Ampere-hour (Ah) 

algorithm estimates SOC of lithium-ion batteries, an algorithm combining improved particle filter (PF) and Ah 

is proposed in [30], the fused algorithm has higher accuracy and response speed. With the rise of 

population intelligent stochastic optimization algorithms in recent years, aiming at the problem of particle 

dilution in traditional PF, an improved bat algorithm is proposed to optimize PF to estimate SOC in [31]. The 

particle is represented as a bat individual, the predation process of bat population is simulated, and the particle 

dilution problem is solved, which obtains good accuracy.

To precisely describe the working state of the lithium-ion batteries, a firefly algorithm of population intelligence 

random optimization is combined with PF algorithm. By treating particles as fireflies, their attraction behavior 

in nature is simulated, and then the optimization of particles is explored. The linear weight decreasing 

strategy is introduced to avoid the algorithm falling into local optimization. The proposed novel 

algorithm is named intelligent weight decreasing firefly - particle filtering (IWDF - PF) method. Combined 

with the establishment of second-order RC equivalent model and online parameter identification, the 

proposed algorithm is verified by experiments under two complex working conditions.

2. Mathematical analysis

To obtain the current SOC of the batteries precisely, it is essential to establish an appropriate battery model. 

Proper model selection and accurate parameter identification are the foundation of SOC estimation.

2.1. Second-order RC equivalent circuit modeling

Page 3 of 28

The equivalent circuit model uses common circuit elements, such as resistance, capacitance, voltage source and 

so on, to form a circuit network structure to describe the external characteristics of the battery. The influence of 

battery polarization factor is added based on Rint model to form the Thevenin model, which can overcome the 
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4

error caused by polarization effect. Based on it, a group of RC circuits is added to form a second-order RC 

equivalent model, which can more accurately characterize the dynamic characteristics of the battery and has an 

appropriate calculation work. The parallel RC network represents the polarization process of the battery, 

the number of RC circuits is too small to precisely describe the behavior characteristics of the battery. Too many 

RC circuits will increase the difficulty of online parameter identification and can not significantly increase 

the accuracy of the model. To better balance the model accuracy and real-time calculation, the second-order 

RC equivalent circuit model is established, which is shown in Fig. 1.

In Fig. 1, the open circuit voltage is represented by UOC, the terminal voltage is represented by UL, the ohmic 

internal resistance is represented by R0. The first RC parallel circuit is composed of electrochemical polarization 

resistance R1 and electrochemical polarization capacitance C1. The second RC parallel circuit is composed 

of concentration polarization resistance R2 and concentration polarization capacitance C2. R1C1 loop represents 

the process of rapid change of circuit voltage, and R2C2 loop represents the process of slow change of circuit 

voltage. With the discharge direction as positive, the KVL equation of the circuit is listed as shown in Eq. (1).
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Where, [SOC U1 U2]T is selected as the state variable. By discretizing the equivalent circuit, the state space 

expression of the model can be obtained as shown in Eq. (2).
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Eq. (2) shows the state equation and observation equation of the system respectively. ΔT is the sampling time, τ 

is the time constant, τ1=R1C1, τ2=R2C2. wk represents process noise and vk represents observation noise. QN is the 
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rated capacity of the battery. k represents the current time point, and k + 1 represents the next time point.

2.2. High precision online parameter identification

Recursive least square (RLS) method is a recursive algorithm derived from the least square method, which is 

the most frequently used method for battery model parameter identification. The memory length of RLS is infinite, 

with the increase of recurrence times, the proportion of old data will gradually increase, making it difficult for 

new data to correct, resulting in the weakening of estimation effect and worse estimation effect in time-varying 

systems. To avoid the above situation, the recursive least square with forgetting factor (FFRLS) is used for 

parameter identification. The forgetting factor is added to the RLS, which can reduce the occupation of old data 

in matrix P (k), to prevent data saturation and obtain more accurate identification results. The FFRLS recursive 

equations are shown as Eq. (3).
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In Eq. (3), θ (k) is the parameter matrix to be identified of the system at time k, P (k) is the covariance matrix 

of the algorithm at time k, K (k) is the gain matrix at time k, λ is the forgetting factor introduced and the value is 

0.95. The equivalent circuit model is rewritten into the form of discrete-time series, as shown in Eq. (4).
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Let the time constant τ1 = R1C1, τ2 = R2C2, and a = τ1τ2, b = τ1+τ2, c = R0+R1+R2, d = R1τ2+R2τ1+R0(τ1+τ2), Eq. (4) 

can be rewritten as Eq. (5). 
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2 (5)

Substitute s = [x(k)-x(k-1)]/T into Eq. (5) for discretization, where T is the sampling time, as shown in Eq. (6).
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6

The parameters are abstracted and replaced by [k1, k2, k3, k4, k5] as shown in Eq. (7).
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The values of [k1, k2, k3, k4, k5] are shown in Eq. (8).






























abTT
aRk

abTT
aRdTk

abTT
aRdTcTk

abTT
ak

abTT
abTk

2
0

52
0

42
0

2

3

2221

,2,

,,2

(8)

Eq. (7) can be substituted into the FFRLS, the identification parameter vector is θ = (k1, k2, k3, k4, k5)T. After 

deriving the parameter identification results, the actual parameters of the battery can be obtained by parameter 

separation as shown in Eq. (9).
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2.3. Intelligent weight decreasing firefly - particle filtering

Compared with the traditional linear filtering algorithm, PF is appropriate for nonlinear and non-Gaussian noise 

environments and has better nonlinear state estimation performance. PF is a typical Bayesian filtering recursive 

process, which mainly includes five steps: particle initialization, updating particle state and weight, weight 

normalization, resampling and predicting particle state. The algorithm flow chart is shown in Fig. 2.

The biggest drawback of the traditional PF algorithm is that its resampling method reduces particle degradation 

and scarcity by eliminating a group of particles with a small weight, but the particle diversity will be reduced after 

multiple resampling, so it is necessary to optimize it. Firefly algorithm is innovatively introduced to solve this 

problem.

Firefly algorithm is a population intelligent random optimization algorithm, which is realized by simulating the 

population behavior of fireflies in nature. In this algorithm, the firefly is regarded as an independent signal unit to 

attract other fireflies around by emitting fluorescence. The basic assumptions of the algorithm are as follows: 
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7

First, any firefly in a given space will be attracted to fireflies with a higher brightness than itself, and will not be 

affected by individual differences. Second, the degree of attraction of fireflies is directly proportional to the 

brightness of their fluorescence. Third, if a given firefly in space fails to find someone brighter than itself, the 

firefly will move randomly. The relative fluorescence brightness of fireflies is calculated as shown in Eq. (10).

ijreII  
0 (10)

In Eq. (10), I is the relative fluorescence brightness and I0 is the maximum fluorescence brightness. The higher 

the self-fluorescence brightness of the firefly, the better the corresponding objective function value. The spatial 

distance between firefly i and j is expressed as rij; γ is the absorption coefficient of the medium to the fluorescence 

intensity. The attraction of fireflies is calculated as shown in Eq. (11).

2

0
ijre   (11)

In Eq. (11), β is the attraction between fireflies, and β0 is the maximum attraction of fireflies. The location update 

of fireflies is shown in Eq. (12).

   5.0 randxxxx ijii  (12)

In Eq. (12), xi, xj is the spatial position of fireflies i and j; α is the step factor, with a value of 0.2; rand is a 

random number that obeys uniform distribution on [0,1].

In PF algorithm, the difference between the particle and the optimal value is regarded as the relative fluorescence 

brightness of the particle. Therefore, this study introduces the estimation results into the adaptive iterative 

optimization of firefly algorithm to ensure the accuracy of the filter. The modified fluorescence brightness 

calculation equation is adopted as shown in Eq. (13).

  2iSOCSOCI predopt  (13)

To enhance the convergence speed and precision of firefly algorithm, this research introduces the linear 

decreasing strategy of weight into the standard firefly algorithm. The adjusted equation is shown in Eq. (14).
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iterk 




max

minmax
max

 (14)

In Eq. (14), iter and itermax are expressed as the current number of iterations and the maximum number of 

iterations, ωk represents the current weight value, ωmax, ωmin is the maximum and minimum value of weight 

respectively. Accordingly, the position update equation is modified as shown in Eq. (15).

   5.0 randxgbestxx iiki  (15)
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Where gbest is the global optimal value in one iteration. In this study, the weight decreasing firefly algorithm is 

combined with the traditional PF algorithm to optimize it. The complete process of the proposed novel IWDF - 

PF method is shown in Fig. 3.

3. Experimental analysis

To test the feasibility of the novel IWDF - PF method, two complex working conditions of HPPC (Hybrid Pulse 

Power Characterization) and BBDST (Beijing Bus Dynamic Stress Test) are selected for experimental verification. 

The online parameter identification is carried out under these two tests, the identification results are used for SOC 

estimation, and the IWDF - PF algorithm is compared with the traditional PF for more convincing verification. 

3.1. Construction of experimental platform

Lithium-ion battery cell with a rated capacity of 45AH is used for experimental equipment, BTS750-200-100-4 

battery testing equipment is used as the test platform of this research. Because the characteristics of the battery 

will be affected by temperature, the experiments in this research are carried out at room temperature of 25 ℃. 3.2. 

Online parameter identification results

The experimental data of HPPC working condition are used for online battery parameter identification. The 

whole process of HPPC experiment is shown in Fig. 4.

Open circuit voltage (OCV) can only be measured accurately when the battery reaches a stable state. By 

obtaining the voltage data of the shelved part in the HPPC experiment, the OCV corresponding to SOC from 0.1, 
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9

0.2 to 1 is obtained, and the SOC-OCV function relationship is obtained by curve fitting. The function 

relationship is applied to FFRLS to obtain the parameter identification results of the experimental battery 

under HPPC operating condition, the dynamic changes of battery internal parameters with SOC 

obtained by online identification are shown in Fig. 5.

The variation of R0, R1, R2, C1 and C2 with SOC, which is regarded as the input value of the second-order RC 

battery model to get the analog voltage value and then compared with the actual voltage value to discuss the 

precision of online parameter identification. The analysis of the validation results is shown in Fig. 6.

According to Fig. 6(b), in each discharge cycle, the simulation voltage error is relatively large at the moment of 

sudden change of current, which is related to the violent chemical reaction inside the lithium-ion battery. The 

maximum error of the simulation voltage is -0.0390V, controlled within 0.92%, which can be applied to the next 

SOC estimation with high accuracy.

3.3. Experimental verification under HPPC operating condition

To verify the feasibility of the proposed algorithm, the HPPC experimental data and online battery parameter 

identification results are used for SOC estimation firstly, the initial SOC value of is set to 1. The simulation 

results of basic PF and IWDF - PF under HPPC operating condition are shown in Fig. 7.

According to Fig. 7 (b), obviously, the overall accuracy of IWDF - PF is higher, the real value can be tracked 

better in the whole discharge process, and the fluctuation is small. In contrast, the error of PF fluctuates greatly, 

while IWDF - PF solves the problem of easy divergence in the later stage of traditional PF. The experimental 

results of the two algorithms are compared through the maximum error, mean absolute error (MAE) and root-

mean-square error (RMSE) under HPPC test as shown in Tab. 1.

3.4. Experimental verification under BBDST operating condition

The actual operating conditions of lithium-ion batteries for vehicles are very changeable and complex, it is 

certainly need to verify the proposed algorithm with more real and dynamic data. BBDST test data is obtained 
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from the real data collection of Beijing bus dynamic stress test, including the current and voltage data in the 

complete operation process of bus operation, such as starting, acceleration, taxiing, braking, rapid acceleration 

and parking, which has strong authenticity and dynamics. The simulation results of basic PF and IWDF - PF under 

BBDST test when the initial SOC value is set to 1 are shown in Fig. 8.

According to Fig. 8(b), the error of PF algorithm fluctuates greatly, and the accuracy in the later stage is 

extremely unstable and the divergence degree is high. Obviously, the error of IWDF - PF algorithm is very stable, 

the estimated value always tracks the real value well, and the error is always controlled within a reasonable range. 

The maximum error of PF is as high as 4.89%, while it of IWDF - PF is only 2.37%. 

To verify the robustness of the proposed algorithm, SOC is given different initial values for verification. The 

simulation results of basic PF and IWDF - PF under BBDST test when the initial SOC value of is set to 0.9 are 

shown in Fig. 9.

As can be seen from Fig. 9(b), even if the SOC initial value with high interference is set, the algorithm still has 

good convergence and high precision. The error of IWDF - PF algorithm in the whole discharge cycle is obviously 

smaller than that of the traditional algorithm, and the problem of easy divergence in the later stage is solved. It 

can be seen that the firefly algorithm with decreasing weight has a very considerable improvement on the 

traditional PF, which also has strong anti-interference ability. The experimental results of the two algorithms 

under different initial SOC value settings are compared through the maximum error, MAE and RMSE under 

BBDST working condition as shown in Tab. 2.

4. Conclusions

Accurate real-time status supervision of power vehicle lithium-ion batteries is extremely important. In this paper, 

based on the second-order RC equivalent modeling and online parameter identification, the firefly algorithm is 

introduced to complete the optimization process of state-of-charge particles by simulating the mutual attraction 

behavior of fireflies in nature, to break this dilemma of particle degradation. The weight decreasing strategy is 

10

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 11 of 28

added to improve the convergence speed of firefly algorithm. The conclusions of this research can be summarized as 

follows:

(1) The state-of-charge estimation results when the initial value is set to 1 show that the root-mean-square error of 

the novel intelligent weight decreasing firefly - particle filtering method under Hybrid Pulse Power 

Characterization and Beijing Bus Dynamic Stress Test condition can be controlled within 0.60% and 1.12% 

respectively, the accuracy of the improved algorithm is improved by 0.59% and 1.38% respectively, which proves 

the progressiveness and effectiveness of the proposed algorithm. 

(2) The robustness of the algorithm is verified by setting different initial values for SOC. The state-of-charge 

estimation results when the initial value is set to 0.9 show that the root-mean-square error of the novel intelligent 

weight decreasing firefly - particle filtering method under Beijing Bus Dynamic Stress Test condition can be 

controlled within 1.22%, the accuracy of the improved algorithm is improved by 1.94%, which proves that the 

proposed algorithm still has good adjustment and adaptive ability for the initial value setting with great inaccuracy, 

and can still maintain high accuracy in the face of abnormal conditions. Therefore, the proposed algorithm has 

good robustness. 

In conclusion, the proposed algorithm is feasible to improve the state-of-charge estimation accuracy of lithium-

ion batteries. This research provides a theoretical foundation for real-time state monitoring and safe operation of 

new energy vehicles in practical application.
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Tab. 1  Comparison of SOC estimation results under HPPC test
Estimation method PF IWDF - PF

Maximum Error 2.29% 1.39%

MAE 1.04% 0.48%

RMSE 1.19% 0.60%

Tab. 2  Comparison of SOC estimation results under BBDST test
Estimation method PF IWDF - PF

Maximum Error (Initial SOC = 1) 4.89% 2.37%

MAE (Initial SOC = 1) 2.19% 0.96%

RMSE (Initial SOC = 1) 2.50% 1.12%

Maximum Error (Initial SOC = 
0.9)

6.01% 1.83%

MAE (Initial SOC = 0.9) 2.99% 1.09%

RMSE (Initial SOC = 0.9) 3.16% 1.22%
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Second-order RC equivalent circuit model 
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Process of basic PF algorithm 
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Complete process of the proposed novel IWDF - PF method 
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Whole process of HPPC experiment 
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Dynamic changes of R0, R1 and R2 with SOC 
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Dynamic changes of C1 and C2 with SOC 
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Comparison between simulated voltage and actual voltage under HPPC test 
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Voltage error under HPPC test 
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SOC estimation results under HPPC test when SOC initial value is 1 
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SOC estimation error under HPPC test when SOC initial value is 1 
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SOC estimation results under BBDST test when SOC initial value is 1 
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SOC estimation error under BBDST test when SOC initial value is 1 
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SOC estimation results under BBDST test when SOC initial value is 0.9 
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SOC estimation error under BBDST test when SOC initial value is 0.9 
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