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A novel state of charge estimation method of lithium-ion batteries based on the IWOA-

AdaBoost-Elman algorithm

Huan Lia, Shun-Li Wanga*, Monirul Islam a, Etse Dablu Bobobee a, Chuan-Yun Zoua, Carlos Fernandezb

aSchool of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, 

China; bSchool of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK.

Abstract: Lithium-ion (Li-ion) battery is a very complex nonlinear system. The data-driven state of charge (SOC) 

estimation method of Li-ion battery avoids complex equivalent circuit modeling and parameter identification, which can 

describe the nonlinearity of the battery more directly and accurately. To address the problems of low generalization ability, 

local miniaturization, low prediction accuracy and insufficient dynamics in the prediction process of a single feedforward 

neural network, an IWOA-AdaBoost-Elman algorithm-based SOC estimation method for lithium-ion batteries is proposed. 

The method introduces an Improved Whale Optimization Algorithm (IWOA) to continuously optimize the nonlinear weights 

of the Elman neural network during the iterative process. Using the AdaBoost algorithm, multiple weak IWOA-Elman 

predictors are recombined into one strong SOC estimator by successive iterations. The combined strong predictor has strong 

generalization ability, estimation accuracy and dynamic characteristics. To verify the rationality of the model, the SOC 

estimation is performed under dynamic operating conditions. The experimental results show that the proposed method is 

more accurate and stable compared with other optimization models. In addition, the proposed method can overcome the 

effects of different discharge multipliers, different ambient temperatures and different aging cycles on SOC estimation. Both 

theoretical and experimental results show that the IWOA-AdaBoost-Elman algorithm provides a new way for the SOC 

estimation of Li-ion batteries.

Keywords: lithium-ion battery; state of charge; Improved Whale Optimization Algorithm; AdaBoost; Elman neural 

network
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1. Introduction

Currently, lithium-ion batteries are dominant in the EV battery market due to their high power and energy density, 

high voltage, extended life cycles and low self-discharge rates. Nevertheless, lithium batteries are sensitive to 

aging and temperature; thus, special focus is required on their working environments to avoid any physical damage, 

aging, and thermal runaways[1, 2]. BMS can manage a secondary battery or battery pack by protecting the battery 

within its safe range of operation and closely monitoring battery characteristics such as state of charge (SOC), 

state of health (SOH), thermal management, and battery balance state. Highly accurate battery SOC[3] values are 

the key to an efficient BMS, which is used to measure the remaining usable power of the battery in its current 

state, and some researchers use SOC to estimate SOH and remaining useful life(rul). Wang et al. [4]used the 

equivalent internal impedance to estimate the SOH of Li-ion batteries by considering the influences of temperature 

and SOC. Incremental capacity (IC) and differential voltage (DV) analysis can also be used to estimate SOH 

based on accurate estimation of SOC[5]. In addition, accurate SOC estimation has a very important role in battery 

troubleshooting, Zhang et al. [6]proposed a real-time diagnosis method for soft-short circuit(SSC) fault of series-

connected lithium-ion battery pack based on the cell difference model (CDM) and low-pass filters. Yao et al. 

[7]proposed an intelligent fault diagnosis method for lithium battery systems based on grid search SVM, which

can identify the potential fault state and classify the severity of the fault. Shang et al. [8]proposed a multi-fault 

diagnosis method for early battery failure prediction based on the modified sample entropy. In the operating state, 

the battery system works in a nonlinear state at all times. Currently, the main methods for SOC estimation are 

open-circuit voltage algorithm[9, 10], current integration method[11, 12], physical model method[13, 14] and 

data-driven method[12, 15-18]. The open-circuit voltage method is commonly used in industry to calibrate SOC, 

but accurate measurement of OCV takes a long time. The current integration method is used to achieve SOC 

estimation by integrating current over time. However, accurate initial values of SOC are difficult to obtain, while 

the accuracy of SOC estimation decreases with the accumulation of current measurement errors. Physical 
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modeling methods include Kalman filter[19], sliding mode observer[20, 21], and particle filter[22, 23]. Kalman 

filters are widely used, including extended Kalman filter[24-26], unscented Kalman filter[27-29], and adaptive 

Kalman filter[30-32]. Although these methods have better robustness and estimation accuracy, it is difficult to 

build an accurate battery equivalent circuit model due to internal resistance and capacitance variation, and the 

computational cost is high. Data-driven machine learning methods such as neural networks and support vector 

machines[7, 33] build nonlinear relational models characterizing the external characteristics of the battery through 

the inputs and outputs of the battery system. Environmental disturbances such as external temperature[34, 35] and 

aging conditions[2, 36] can also be considered.

With the rapid development of artificial intelligence and machine learning methods, data-driven estimation 

methods have been widely used to estimate Li-ion battery SOC. The data-driven method can efficiently solve 

battery data acquisition nonlinearity and instability issues. The neural network is an important data-driven learning 

method based on self-organization, self-adaptation, and self-learning, which can model and simulate complex 

nonlinear objects and is suitable for capturing the nonlinear and dynamic characteristics of battery systems. BPNN 

is a representative algorithm in neural networks and has a wide range of applications in battery SOC estimation. 

Xuan et al.[37] has developed a SOC estimation model based on BPNN for Li-ion batteries and achieved good 

results. However, BP neural networks still have algorithmic drawbacks in SOC estimation, such as local 

miniaturization, limited prediction accuracy, and overfitting. The feedforward neural network lacks a memory 

mechanism and has poor dynamic adaptability. Chemali et al.[38] built a deep feedforward neural network (DFNN) 

to estimate the SOC under different operating conditions and different temperatures. It was pointed out that the 

DFNN is suitable for handling nonlinear systems of Li-ion batteries, but the training time is too long and complex 

processor units are required. ELM has the characteristics of fast learning speed, high stability and generalization. 

Lipu et al.[39] used current, voltage and temperature as input features, an ELM-based SOC estimation model was 

designed, but the number of suitable implied layers limits the performance of this model. Recently, many scholars 
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are keen on using hybrid deep learning methods to optimize the accuracy of SOC estimation. Song et al.[40] 

applied a combination of convolutional neural network (CNN) and LSTM to estimate SOC, which proved to be a 

very effective but computationally intensive model for predicting nonlinear systems and solving time series 

problems. To a certain extent, "shallow model" based estimation methods can effectively fit nonlinearities. Still, 

it is difficult to effectively capture the dynamic characteristics of the battery in the time dimension of physical or 

electrochemical properties. However, the direct introduction of complex neural networks is computationally 

intensive and prone to overfitting, so more effective data-driven SOC estimation methods need to be explored. To 

solve these issues, this study uses an Elman neural network for SOC estimation of lithium-ion batteries. The 

network structure is very simple, and its topology has one more undertaking layer than the feedforward static BP 

neural network. The undertaking layer makes the network structure with memory function and facilitates the 

modeling of the dynamic system process. However, the input weights of the network and the thresholds of the 

hidden nodes are obtained randomly, which easily leads the network to fall into the local optimum. To solve this 

problem, an improved whale optimization algorithm (IWOA) is proposed in this study to optimize Elman neural 

network. In addition, this study uses the integrated learning AdaBoost algorithm[41, 42] to form a strong predictor 

by combining several IWOA-Elman predictors through a combination strategy to further improve the estimation 

accuracy of the model. The IWOA-AdaBoost-Elman model fully exploits the advantages of different algorithms, 

so that the combined strong predictor has good estimation accuracy and generalization ability, and also has 

dynamic characteristics. The contributions of this paper are multifaceted. Firstly, this study innovatively proposes 

the IWOA-AdaBoost-Elman combination model. The IWOA algorithm is proposed by improving the formulation 

for the problem that WOA is prone to fall into local optimum. Secondly, this study verifies that the proposed 

model has better robustness and higher accuracy than other models under dynamic working conditions. Besides, 

we discuss the SOC estimation capability of the proposed model under different multiplicity, different temperature 

and different aging degree.
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2. Mathematical analysis

2.1. Elman neural network

Compared with the BP neural network, the Elman neural network has a three-layer (input layer, hidden layer, 

and output layer) structure and adds an undertaking layer. The undertaking layer serves primarily as a feedback 

link between the input and hidden layers. The Elman neural network can reflect the delay between input and 

output in time. The structure of the Elman neural network is shown in Fig. 1.

x

1

u(k-1)

Input layer

Hidden layer

Output layer

y(k)

x1 xn xc1 xcn

Undertaking layer

Fig. 1. The structure of the Elman neural network

Fig. 1 is the structure of the Elman neural network, which the following mathematical model can describe.

1 2( ) ( ( ) ( 1))cx k f w x k w u k� � � (1)

( ) ( 1) ( 1)c cx k ax k x k� � � � (2)

3 ( )ky w x k� (3)

1
( )

1 x
f x

e�
�

�

(4)

In the above equation, is the connection weight matrix between the undertaking layer and the hidden layer, 
1w

is the connection weight matrix between the input layer and the hidden layer, and is the connection 
2w 3w

weight matrix between the output layer and the hidden layer.  and  represent the output of the hidden ( )x k ( )cx k

layer and the undertaking layer, represents the output of the output layer, and is the self-connected 
ky a
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feedback gain factor.

2.2. Traditional WOA algorithm

Elman neural network has a strong dynamic memory and time-varying capability. Because it randomly selects 

the initial value and threshold value and uses the gradient descent method to optimize. Its network learning speed 

is slow, and the prediction accuracy is relatively low. Therefore, this study uses the IWOA algorithm to optimize 

the initial weights and thresholds of the Elman neural network.

The WOA algorithm is a new type of population intelligence optimization algorithm proposed by Seyedali 

Mirjalili and others in 2016, a heuristic algorithm that simulates the social behavior of humpback whales. The 

algorithm includes three main stages: randomly searching for food, encircling predation, and bubble predation. 

The algorithm flowchart is shown in Fig. 2.

Begin

End

N

( ) ( )  (5)t t� �� � �D F X X

( 1) ( ) (6)t t� �� � � �X X A D

2    (7)

2    (8)

a r a

r

� � �

� �

A

F

Identify the specific location of the 

prey and surround itDecrease a from 2 to 0

Update a,r,F,D

1�A

0.5	 �

( ) cos(2 ) ( )   (10)bgt +1 e g t
 ��� � � �X D X

Update position using Eq.(10)

( ) ( )  (11)r rand t t� � �D F X X

( 1) ( )  (12)rand rt t� � � �X X A D

Update position using Eq.(11),Eq.(12)

Randomly hunt prey

Max whales?
Max 

iteration?

Input Practical Data from 

dataset 

Update position using Eq.(9)

( 1) ( ) (9)t t� �� � � �X X A D

Best results

Y

N

Y
N

N Y

Y

Fig. 2. The flowchart of the WOA algorithm

The equation shown in Fig. 2, t represents the number of current iterations; A and F are coefficient vectors; r is 

a random vector on the range [0,1]. The b denotes the constant of the logarithmic helix, g is a random number in 
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[-1,1], and p is the probability of randomness.

2.3. IWOA- Elman algorithm

The traditional WOA algorithm[43, 44] is an effective optimization technique. However, the algorithm 

converges very quickly at the beginning of the evolution process, although it is easy to fall into a local search. 

The specific reason is that WOA uses parameter A to adjust the balance between the development phase and the 

conversion of the exploration phase. Use Eq. (12) and Eq. (5) to select the development phase or the exploration 

phase, but the probability of selecting these two equations is not equal. Further calculation of Eq. (7) can be 

rewritten as Eq. (13)

2

    =[2 1]

    =

a r a

r a

a�

� � � �

� � �

�

A

(13)

In Eq. (13),  is a uniformly distributed random real number on the interval [-1,1]. The parameter � a

decreases linearly from 2 to 0 in the iterative process. Therefore, when Eq. (5) is executed in the second half of 

the optimization process, Eq. (14) always holds. In the first half of the optimization process, the probability of 

executing Eq. (5) can be calculated as Eq. (15).

| |=| · |<1A � a (14)

1 1/

0.5 1

1

0.5

1

0.5

(| A | 1) (| | 1)

0.5

1
0.5 ( 1)

0.5 (ln ) |

ln 2 0.693

a

dad

d

�

	 	 �

�

�
�

� �

 � � 

� �

� � �

� � �

� �

� �

� (15)

It can be seen from Eq. (15) that even in the first half of the evolutionary process, the probability of Eq. (5) being 

selected is relatively large. In fact, under the premise of <0.5 in the whole optimization process, the total	

probability of executing Eq. (5) is (| KM��J7�1.7�1O��6P7�/25� Therefore, the dominance of Eq. (5) in the	 A

optimization algorithm is higher than that of Eq. (12). On the other hand, in the early stage of the optimization 
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1 1( 1) ( ) ( ) ( )r rt t t t� � � � �X X A X X (16)

2 2( 1) ( ) ( ) ( )r rt t t t�� � � � �X X A X X (17)

The r1 and r2 in Eq. (16) and Eq. (17) denote two different random individuals. The core idea of the IWOA 

algorithm proposed in this study is based on three considerations. First, the symmetric perturbation of 
2 ( )r tX

using in Eq. (17) can enhance the optimized population variability. Second, although the 
2( ) ( )rt t�� �A X X

dominance of Eq. (17) is still higher than that of Eq. (16), both equations use a random individual to update the 

current individual, which can enhance the exploration based on the existing development stage, thus making a 

good balance between the two. Third, dropping the coefficient F promotes robustness by ensuring the consistency 

of the distance between two individuals. IWOA retains the basic structure of the original WOA and does not 

introduce additional parameters or other complex search operators that require tuning. As a result, the optimization 

times of the two algorithms are essentially the same.

2.4. IWOA-Elman-AdaBoost

The AdaBoost algorithm is a typical integration algorithm that will recalculate the classifier's classification error 

rate after each iteration. To improve the classification accuracy of the iterations, the initial weights of the training 

samples with high error rates in the previous iteration are increased in the next iteration. Finally, multiple weak 

classifiers are organically combined to form a strong classifier to achieve an overall improvement in recognition 

accuracy.

The Elman neural network optimized by the IWOA algorithm has the advantages of fast convergence and not 

easy to fall into local minima, while the AdaBoost algorithm has the advantages of serial integration learning, 

which becomes a strong predictor by combining the interdependencies of weak predictors and according to certain 

weights. In this study, the IWOA-AdaBoost-Elman based SOC estimation algorithm is proposed. The core idea 

is to transform the data layer fusion problem into the decision layer fusion problem by using the integration 

learning theory. The structure of this model is shown in Fig. 4.
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AdaBoost
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Y

N

Temperature

Current

Voltage

Dataset

Training data

Evaluation dataIWOA-Elman1

IWOA-Elman2

…

IWOA-Elmank

Adaboost algorithm

Test Data

IWOA-Adaboost -Elman

SOC

Training phase Test phase

Adaboost algorithm

Fig. 4. Algorithm implementation steps of AdaBoost

As the algorithm steps are shown in Fig. 4, the sample data are divided into the training set, test set, and input 

training set. The training sample weights need to be initialized, D1 is the set of weights of the dataset, N represents 

the number of samples, and w represents the initial weight of each sample. Using the AdaBoost algorithm, some 

weak predictors (IWOA-Elman) are formed into strong predictors and utilized to predict lithium-ion battery SOC.

2.5. Algorithm evaluation metrics

To evaluate the established SOC estimation model and compare the predicted data with the actual data, three 

statistics were selected in this study: mean absolute error (MAE), mean absolute percentage error (MAPE), and 
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Fig. 8.  Simulation test results of various optimization algorithms under dynamic working conditions

As shown in Fig. 8, (a) and (b) illustrate the SOC simulation results and their errors. From the figures, it can be 

seen that the IWOA-Elman-Adaboost model follows the real value steadily in all phases of the operating 

conditions, and the errors remain in a small range. In contrast, the other optimization models show some degree 

of instability and tend to diverge. From the histograms of (c), (d), (e), and (f), it can be seen that the IWOA-

Elman-Adaboost model has a significant advantage over the other algorithms in terms of all indicators. This 

further confirms the superiority of the method for SOC estimation.

3.3. SOC estimation at different discharge currents

Parameters such as capacity, energy and open-circuit voltage of Li-ion batteries are crucial indicators of their 

performance and key parameters affecting SOC estimation. In this study, a ternary lithium battery with a rated 

capacity of 70AH will be used as the research object, and constant current discharge experiments with different 

discharge currents will be carried out at an ambient temperature of 25°C. The changes of key parameters under 

different discharge currents are shown in Fig. 9.
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closely related to the operating environment temperature, which is often considered a constant value in the SOC 

estimation algorithm, thus affecting the SOC estimation accuracy under different environmental temperatures. 

Considering the influence of temperature on the characteristic parameters of Li-ion battery capacity, dynamic 

working condition experiments are conducted at different temperatures, respectively. The relationship between 

the key parameters of Li-ion battery SOC estimation and temperature is shown in Fig. 11.
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Fig. 11.  The changes of key parameters under different temperatures

As shown in Fig. 11, (a) reveals that the lithium battery capacity increases with the rises of temperature. When 

the temperature increases, it accelerates the occurrence of internal side reactions in Li-ion batteries, and when the 

temperature decreases, it causes the deposition of active lithium on the electrode surface. (b) describes the 

relationship between the variation of SOC and open-circuit voltage of Li-ion battery at different temperatures. 

From the figure, it can be seen that when the value of SOC is between 0.4 and 1, the difference of the 

corresponding open-circuit voltage under the same SOC value is very small, and only when the SOC value is 

between 0 and 0.4, there is a large difference in the open-circuit voltage. To demonstrate that the proposed method 

can overcome the influence of ambient temperature on the accuracy of SOC estimation, the data collected at an 

ambient temperature of 25°C is used as the training set and the data collected at other temperatures is used as the 

test set. In this experiment, the IWOA and Adaboost parameters of each model are consistent. Through several 
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Fig. 12.  Simulation results of SOC estimation at different temperatures

As shown in Fig. 12, the IWOA-Adaboost-Elman model can follow the change of the reference value smoothly, 

as seen in figures (a), (b), (c), and (d). The model has good convergence and can still respond quickly to the 

change of the reference value under low-temperature conditions. Figures (e), (f), (g), and (h) depict more visually 

the error metrics of the different models. From the figures, it can be seen that the maximum absolute error of 

IWOA-Adaboost-Elman is less than 3.5% for both low and high-temperature conditions, which is much lower 

than that of other models. For other error indicators, the proposed method has more obvious advantages. The 

IWOA-Adaboost-Elman model's accuracy for estimating SOC under temperature variation is verified. It is further 

demonstrated that the model can overcome the influence of ambient temperature variation on SOC estimation.

3.5. SOC estimation under different states of health

In practical applications, as the battery ages, the battery SOC estimation error gradually increases, up to 20% to 

30%. Considering the influence of battery aging on the accuracy of SOC estimation, this study will take a lithium 

battery (model 18650) with a rated capacity of 2Ah and conduct a cyclic aging test at an ambient temperature of 

25°C. The changes of characteristic parameters under different states of health(SOHs) are shown in Fig. 13.
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Fig. 14.  SOC estimation results under different SOH

As shown in Fig. 14, it is clear from (a), (b), (c), and (d) that the IWOA-Adaboost-Elman model has higher 

accuracy and robustness compared to the other models at each aging stage. Figures (e), (f), (g), and (h) depict 

more visually the error metrics of the different models. The maximum absolute error of the IWOA-Adaboost-

Elman model is 1.1% when the SOH of the battery is 85%, and the RMSE, MAE and MAPE of this model are 

0.53%, 0.47% and 8.2%, respectively. After further aging, when SOH is 72%, the accuracy of SOC estimation 

decreases and the maximum absolute error increases to 2.1%, and all other error indicators increase. The SOC 

accuracy decreases further when the cell is deeply cycled, with a maximum absolute error of 4.1% when SOH 

drops to 58%, and RMSE and MAE reach 2.6% and 2.4%, respectively. However, the maximum absolute error 

of the proposed method remains below 4.5% for all aging cycles. In addition, all error metrics are significantly 

better than other models. It can be seen that the IWOA-Adaboost-Elman model can well address the effects of 

different degrees of aging on the SOC estimation of Li-ion batteries.

4. Conclusions

In this study, the IWOA-AdaBoost-Elman prediction model is proposed. We modified the search function based 

on the original WOA model to solve the problem of balancing local and global search in the optimization model. 

In addition, we innovatively use the AdaBoost algorithm to combine several weak IWOA-Elman predictors into 

one strong predictor, which further improves the prediction accuracy. 
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Experimental results show that the improved WOA improves the accuracy of Elman's SOC estimation under 

dynamic operating conditions. However, the IWOA-Elman-Adaboost model has higher accuracy, 56.4% and 22.7% 

higher than the Elman and IWOA-Elman models, respectively. Similarly, the IWOA-Elman-Adaboost model has 

more significant advantages over the WOA, GA and MAE optimized Elman models under the same dynamic 

conditions. In studying the effect of different discharge multiples on SOC estimation, we found that important 

parameters of SOC estimation changed at different discharge multiples. However, the IWOA-Elman-Adaboost 

model can still show a better advantage. It is worth noting that the combined model proposed in this study has 

strong generalization capability, prediction accuracy and dynamic characteristics. Despite the significant changes 

in the operational performance and internal properties of Li-ion batteries, the IWOA-Elman-Adaboost model can 

still maintain good accuracy and adaptability under various ambient temperatures and aging cycles.

In contrast to traditional estimation methods based on equivalent circuit models, this method is completely data-

driven and is not limited by cell materials or models. Therefore, it can be easily applied to different types and 

scenarios of battery management systems. Future work will explore the SOC estimate under the fusion of multiple 

operating conditions, and should also consider the influence factors such as measurement noise under the battery 

SOC estimation in practice.

Nomenclature

The symbols used in this research can be described as shown in Tab.1.

Tab.1 List of symbols

Symbol Description Symbol Description

SOC State of Charge ELM Extreme Learning Machine

WOA Whale Optimization Algorithm CNN Convolutional Neural Network

BPNN Backpropagation Neural Network LSTM Long-Short Term Memory

OCV Open Circuit Voltage DST Dynamic Stress Test

EKF Extended Kalman Filter BBDST Beijing buses dynamic stress test
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DFNN Deep Feedforward Neural Network SOH State of Health

1w

the connection weight matrix between 

the undertaking layer and the hidden 

layer

2w

the connection weight matrix 

between the input layer and the 

hidden layer

3w
the connection weight matrix between 

the output layer and the hidden layer

( )cx k the output of the undertaking layer

( )x k the output of the output layer a
the self-connected feedback gain 

factor

A,F coefficient vectors r a random vector on the range [0,1]

b the constant of the logarithmic helix g a random number in [-1,1]

p the probability of randomness �
a uniformly distributed random real 

number on the interval [-1,1]

Y the true SOC value Ŷ the predicted SOC value

rul remaining useful life IC Incremental capacity 

DV differential voltage SSC soft-short circuit

CDM cell difference model

Page 25 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

References

1. Aaldering, L.J., J. Leker, and C.H. Song, Analysis of technological knowledge stock 

and prediction of its future development potential: The case of lithium-ion batteries. 

Journal of Cleaner Production, 2019. 223.

2. Xiong, R., et al., Lithium-ion battery aging mechanisms and diagnosis method for 

automotive applications: Recent advances and perspectives. Renewable & 

Sustainable Energy Reviews, 2020. 131.

3. Qiu, X.H., W.X. Wu, and S.F. Wang, Remaining useful life prediction of lithium-ion 

battery based on improved cuckoo search particle filter and a novel state of charge 

estimation method. Journal of Power Sources, 2020. 450.

4. Wang, X.Y., X.Z. Wei, and H.F. Dai, Estimation of state of health of lithium-ion batteries 

based on charge transfer resistance considering different temperature and state of 

charge. Journal of Energy Storage, 2019. 21

5. Li, Y., et al., Data-driven health estimation and lifetime prediction of lithium-ion batteries: 

A review. Renewable & Sustainable Energy Reviews, 2019. 113.

6. Zhang, Z.D., et al., Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing 

low-pass filters. Energy, 2019. 166.

7. Yao, L., et al., An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based 

on Grid Search Support Vector Machine. Energy, 2021. 214.

8. Shang, Y.L., et al., A multi-fault diagnosis method based on modified Sample Entropy 

for lithium-ion battery strings. Journal of Power Sources, 2020. 446.

9. Tian, J.P., et al., Electrode ageing estimation and open circuit voltage reconstruction 

Page 26 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

for lithium ion batteries. Energy Storage Materials, 2021. 37

10. Pan, B., et al., Aging mechanism diagnosis of lithium ion battery by open circuit voltage 

analysis. Electrochimica Acta, 2020. 362.

11. Shen, D.X., et al., A novel online method for predicting the remaining useful life of 

lithium-ion batteries considering random variable discharge current. Energy, 2021. 218.

12. Xu, T.T., Z. Peng, and L.F. Wu, A novel data-driven method for predicting the 

circulating capacity of lithium-ion battery under random variable current. Energy, 2021. 

218.

13. Sommerville, R., et al., A review of physical processes used in the safe recycling of 

lithium ion batteries. Sustainable Materials and Technologies, 2020. 25.

14. Zhu, G.B., et al., Correlation between the physical parameters and the electrochemical 

performance of a silicon anode in lithium-ion batteries. Journal of Materiomics, 2019. 

5(2).

15. Lipu, M.S.H., et al., Data-driven state of charge estimation of lithium-ion batteries: 

Algorithms, implementation factors, limitations and future trends. Journal of Cleaner 

Production, 2020. 277.

16. Zhang, S.Z., et al., A data-driven coulomb counting method for state of charge 

calibration and estimation of lithium-ion battery. Sustainable Energy Technologies and 

Assessments, 2020. 40.

17. Song, Y.C., et al., A hybrid statistical data-driven method for on-line joint state 

estimation of lithium-ion batteries. Applied Energy, 2020. 261.

18. Deng, Z.W., et al., Data-driven state of charge estimation for lithium-ion battery packs 

Page 27 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

based on Gaussian process regression. Energy, 2020. 205.

19. Wang, S.L., et al., A novel charged state prediction method of the lithium ion battery 

packs based on the composite equivalent modeling and improved splice Kalman 

filtering algorithm. Journal of Power Sources, 2020. 471.

20. Chen, L., et al., Remaining useful life prediction for lithium-ion battery by combining an 

improved particle filter with sliding-window gray model. Energy Reports, 2020. 6.

21. Sun, L., G.R. Li, and F.Q. You, Combined internal resistance and state-of-charge 

estimation of lithium-ion battery based on extended state observer. Renewable & 

Sustainable Energy Reviews, 2020. 131.

22. Sun, X.F., K. Zhong, and M. Han, A hybrid prognostic strategy with unscented particle 

filter and optimized multiple kernel relevance vector machine for lithium-ion battery. 

Measurement, 2021. 170.

23. Zheng, C.W., Z.Q. Chen, and D.Y. Huang, Fault diagnosis of voltage sensor and 

current sensor for lithium-ion battery pack using hybrid system modeling and unscented 

particle filter. Energy, 2020. 191.

24. Zhengxin, J., et al., An Immune Genetic Extended Kalman Particle Filter approach on 

state of charge estimation for lithium-ion battery. Energy, 2021. 230.

25. Wu, M.Y., L.L. Qin, and G. Wu, State of charge estimation of power lithium-ion battery 

based on an adaptive time scale dual extend Kalman filtering. Journal of Energy 

Storage, 2021. 39.

26. Zhu, Q., et al., A state of charge estimation method for lithium-ion batteries based on 

fractional order adaptive extended kalman filter. Energy, 2019. 187.

Page 28 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



29

27. Li, W.H., et al., Electrochemical model-based state estimation for lithium-ion batteries 

with adaptive unscented Kalman filter. Journal of Power Sources, 2020. 476.

28. Ben Sassi, H., F. Errahimi, and N. ES-Sbai, State of charge estimation by multi-

innovation unscented Kalman filter for vehicular applications. Journal of Energy 

Storage, 2020. 32.

29. Yang, F.F., et al., State-of-charge estimation of lithium-ion batteries using LSTM and 

UKF. Energy, 2020. 201.

30. Jiang, C., et al., A state-of-charge estimation method of the power lithium-ion battery 

in complex conditions based on adaptive square root extended Kalman filter. Energy, 

2021. 219.

31. Zhang, S.Z., X. Guo, and X.W. Zhang, A novel one-way transmitted co-estimation 

framework for capacity and state-of-charge of lithium-ion battery based on double 

adaptive extended Kalman filters. Journal of Energy Storage, 2021. 33.

32. Zhang, K., et al., State of Charge Estimation for Lithium Battery Based on Adaptively 

Weighting Cubature Particle Filter. Ieee Access, 2019. 7.

33. Zhou, Z.K., et al., An efficient screening method for retired lithium -ion batteries based 

on support vector machine. Journal of Cleaner Production, 2020. 267.

34. Li, N.S., et al., Study on the environmental adaptability of lithium-ion battery powered 

UAV under extreme temperature conditions. Energy, 2021. 219.

35. Li, C.L., et al., Simplified electrochemical lithium-ion battery model with variable solid-

phase diffusion and parameter identification over wide temperature range. Journal of 

Power Sources, 2021. 497.

Page 29 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

36. Wu, W.X., et al., Impact of low temperature and charge profile on the aging of lithium-

ion battery: Non-invasive and post-mortem analysis. International Journal of Heat and 

Mass Transfer, 2021. 170.

37. Xuan, D.J., et al., Real-time estimation of state-of-charge in lithium-ion batteries using 

improved central difference transform method. Journal of Cleaner Production, 2020. 

252.

38. Chemali, E., et al., State-of-charge estimation of Li-ion batteries using deep neural 

networks: A machine learning approach. Journal of Power Sources, 2019. 400.

39. Lipu, M.S.H., et al., Extreme Learning Machine Model for State-of-Charge Estimation 

of Lithium-Ion Battery Using Gravitational Search Algorithm. Ieee Transactions on 

Industry Applications, 2019. 55(4).

40. Song, X.B., et al., Combined CNN-LSTM Network for State-of-Charge Estimation of 

Lithium-Ion Batteries. Ieee Access, 2019. 7.

41. Zhu, X.Y., P. Zhang, and M. Xie, A Joint Long Short-Term Memory and AdaBoost 

regression approach with application to remaining useful life estimation. Measurement, 

2021. 170.

42. Shahraki, A., M. Abbasi, and O. Haugen, Boosting algorithms for network intrusion 

detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest 

AdaBoost. Engineering Applications of Artificial Intelligence, 2020. 94.

43. Wong, L.A., et al., Optimal placement and sizing of battery energy storage system for 

losses reduction using whale optimization algorithm. Journal of Energy Storage, 2019. 

26.

Page 30 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31

44. Talaat, M., B.E. Sedhom, and A.Y. Hatata, A new approach for integrating wave energy 

to the grid by an efficient control system for maximum power based on different 

optimization techniques. International Journal of Electrical Power & Energy Systems, 

2021. 128.

Page 31 of 31

John Wiley & Sons

International Journal of Energy Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	coversheet_template
	LI 2021 A novel state  of charge (AAM)
	coversheet_template
	LI 2021 A novel state  of charge (AAM)




