
LUONG, A.V., NGUYEN, T.T. and LIEW, A.W.-C. 2021. Streaming multi-layer ensemble selection using dynamic genetic
algorithm. In Zhou, J., Salvado, O., Sohel, F., Borges, P. and Wang, S. (eds.). Proceedings of 2021 Digital image

computing: techniques and applications (DICTA 2021), 29 November - 1 December 2021, Gold Coast, Australia.
Piscataway: IEEE [online], article 9647220. Available from: https://doi.org/10.1109/dicta52665.2021.9647220

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

Streaming multi-layer ensemble selection using
dynamic genetic algorithm.

LUONG, A.V., NGUYEN, T.T. and LIEW, A.W.-C.

2021

https://doi.org/10.1109/dicta52665.2021.9647220

Streaming Multi-layer Ensemble Selection using

Dynamic Genetic Algorithm

Anh Vu Luong

Griffith University

Gold Coast, Australia

vu.luong@griffithuni.edu.au

Tien Thanh Nguyen

Robert Gordon University

Aberdeen, Scotland, UK

t.nguyenl 1@rgu.ac.uk

Alan Wee-Chung Liew

Griffith University

Gold Coast, Australia

a.liew@griffith.edu.au

Abstract-In this study, we introduce a novel framework for
non-stationary data stream classification problems by modifying
the Genetic Algorithm to search for the optimal configuration
of a streaming multi-layer ensemble. We aim to connect the two
sub-fields of non-stationary stream classification and evolutionary
dynamic optimization. First, we present Streaming Multi-layer
Ensemble (SMiLE) - a novel classification algorithm for non­
stationary data streams which comprises multiple layers of
different classifiers. Second, we develop an ensemble selection
method to obtain an optimal subset of classifiers for each layer
of SMiLE. We formulate the selection process as a dynamic
optimization problem and then solve it by adapting the Genetic
Algorithm to the stream setting, generating a new classification
framework called SMiLE_GA. Finally, we apply the proposed
framework to address a real-world problem of insect stream
classification, which relates to the automatic recognition of insects
through optical sensors in real-time. The experiments showed that
the proposed method achieves better prediction accuracy than
several state-of-the-art benchmark algorithms for non-stationary
data stream classification.

Index Terms-Ensemble Method, Multi-layer Ensemble, Ge­
netic Algorithm

1. INTRODUCTION

In the era of big data, machine learning is becoming increas­
ingly popular for analyzing complex data to save the cost and
time of performing manual tasks. However, when dealing with
real-world big data, traditional machine learning algorithms
suffer from three major drawbacks: storing the whole dataset
is infeasible; models fail to handle very high-speed data;
changes in data distribution make models collapsed (concept

drift [1]). Data can even be generated as a real-time stream in
many applications including sensor networks, video streaming,
and traffic monitor systems, which demands machine learning
models to be updated continuously and rapidly. Naturally,
data streams are potentially non-stationary because the process
generating them may become different over time, leading to
the concept drift issue. In particular, prediction models can get
stuck in the concept of old data and never adapts readily to
the new distribution. In such scenarios, online learning with
an associated concept drift handling mechanism is one of the
best schemes to adapt to distribution changes in data streams
while maintaining good prediction performance. [2]-[4]

The field of optimization plays a crucial role in almost
all machine learning algorithms. For example, Deep Neural
Network (DNN), one of the most successful machine learning

models, needs an opt1m1zation algorithm to search for its
optimal weights. Gradient-based optimization methods like
Stochastic Gradient Descent, Adam [5] are well-suited for
optimizing DNN due to the feasibility to differentiate the
loss function with respect to its weights. However, these
optimization methods are not applicable for more complicated
scenarios, for example when the loss function is not differen­
tiable.

The dynamic nature of many real-world problems can
affect their objective functions and constraints, corrupting the
behaviors of traditional optimization methods. In the literature,
optimization problems with their components changing over
time are called Dynamic Optimization Problems (DOPs).

Solving DOPs is particularly difficult due to the requirement
to track changing optimal solution(s) over time. For complex
problems like DOPs, Evolutionary Computation-based meth­
ods are an effective choice since their behaviors are inspired by
biological evolution and self-organized populations operating
in continuously changing environments.

In this paper, we propose a novel streaming classification
framework by introducing a DOP solver that works in the data
stream setting, which connects the two sub-fields and opens a
new research direction for the machine learning community.
Our contributions in this work are summarized as follows:

1) Streaming Multi-layer Ensemble: We introduce a cas­
cade structure to combine different online learning al­
gorithms into a multi-layer ensemble, which is able to
learn incrementally from non-stationary data streams.

2) Ensemble selection for SMiLE: We propose a mecha­
nism to make the Genetic Algorithm applicable to solve
the SMiLE selection problem in a non-stationary stream
setting.

3) Real-world application: We apply the proposed frame­
work to address the insect stream classification problem .
The goal is to recognize insects related to public health
problems. The data streams in this problem was gener­
ated by using an optical sensor over time [6].

4) Experimental analysis: We compare the proposed meth­
ods with several state-of-the-art algorithms on the insect
streaming data. The experiments show that the proposed
method achieve higher prediction accuracy than the
benchmark algorithms .

In the next section, we have some discussions on the

background and related work (Section II), followed by the

proposed methods (Section Ill), experimental setting (Section

IV), and result and discussion (Section V). Finally, we draw

some conclusions in Section VI.

II. BACKGROUND AND RELATED WORK

A. Data stream learning

In the data stream setting (or online setting), learning

models are expected to start making predictions at any time

before obtaining the whole dataset since the stream of data

may never end. Furthermore, they need to be incremental

and fast due to the high-speed characteristic of data streams.

Here we discuss two types of algorithms for data stream

classification: single classifiers and ensemble systems.

Single classifiers

Some batch learning methods are naturally incremental and

fast, making them directly applicable to classify streaming

data. The most noticeable method with a low computational

cost is the well-known Nai"ve Bayes (NB) classifier. It performs

instance-incremental prediction by making a naive assumption

that all feature variables are mutually independent conditional

on each class. However, this simple assumption is also the

drawback of the NB method since it is generally invalid in

many real-world scenarios. Other methods that can perform

online learning by instinct are Perceptron and Stochastic

Gradient Descent (SGD). Perceptron tries to linearly separate

the data into different classes, while SGD is an incremental

gradient-based optimization method for differentiable objec­

tive functions, especially convex loss functions such as log

loss or hinge loss. Both SGD and Perceptron are very fast

and cost-efficient, but they can only handle simple datasets

for instance those with the linear separability property.

Another way to produce online classifiers is to 'streamify'

batch learning algorithms. Decision Tree attracts the most

attention in the literature due to its capability to retain high

performance and theoretical support when porting to the

stream environments. It is also a good base learner for many

streaming ensembles with state-of-the-art prediction accuracy

[2], [7], [8]. Very Fast Decision Tree (VFDT) [9] - also

known as Hoeffding Tree - was the first successful adaption

of Decision Tree to the data stream setting. To determine the

best split attribute when building a tree, VFDT tries not to

revisit old instances by waiting for new ones to arrive. An

interesting characteristic of VFDT is that it asymptotically

converges to a batch learning Decision Tree when having

enough data. Hulton et al. introduced Concept-adapting Very

Fast Decision Tree (CVFDT) (10] as an upgraded version of

VFDT for non-stationary data streams. There are also many

other variants of the Hoeffding Tree model in the literature,

for example Extremely Fast Decision Tree (EFDT) (11],

Random Hoeffding Tree (RHT) (12], Hoeffding Option Tree

(HOT) (13], and Hoeffding Adaptive Tree (HAT) [14]. They

all use the Hoeffding bound to check the condition for splits

at each node.

Ensemble systems

Almost all the best-performing models for non-stationary data

streams in terms of prediction accuracy are ensemble-based

methods mainly because they can selectively exploit the

advantages of various single classifiers at once. The most

well-known ensemble-based system for data streams is the

Online Bagging method, which was introduced by Oza (15].

It adapted the classical Bagging algorithm to the stream

setting by employing the Poisson(l) distribution to simulate

the bootstrap technique in an online manner. The author

also proposed Online Boosting in his work, but it is less

popular than Online Bagging due to the slower speed and

the lower prediction accuracy. There are better variants

of Boosting for non-stationary data streams, such as the

Boosting-like Online Learning Ensemble (BOLE) [3] and

the Online Smooth Boost (OSB) (16]. BOLE improved the

performance of Online Boosting by weakening the condition

for an expert to vote and making use of the Drift Detection

Method (DDM) [17] to handle changes in data. In the

OSB method, the definition of the online weak learner was

redefined, and only smooth distributions were generated

to avoid assigning too much weight to a single ensemble

member (also known as ensemble expert). Recently, van

Rijn et al. proposed the BLAST ensemble (18] which made

use of the Online Performance Estimation framework to

adaptively select a subset of best-performing base classifiers

to form the voting panel. BLAST works well in practice when

having a diverse set of different base classifiers. Another

approach to handle streaming data is to use chunk-based

ensembles. A well-known ensemble in this category is the

Learn++.NSE (19], which generalized the Learn++ method

(20] for non-stationary environments. Learn++.NSE exploits

the ensemble error on a new data chunk to assign weights

to the instances. Very recently, Montiel et al. introduced the

Adaptive XGBoost (AXGB) ensemble system [4], a replica

of the classical eXtreme Gradient Boosting (XGB) (21], for

the stream setting. In this method, new ensemble members

are generated from mini-batches of incoming instances. The

learning process continues even when a fixed maximum

size of the ensemble is reached thanks to the fact that the

ensemble keeps updating to be adaptive to the latest concept

of data.

B. Evolutionary computing algorithms for Dynamic Optimiza­

tion Problems

Most optimization solvers in the literature were designed

for problems with static fitness functions and constraints.

However, in reality, these static assumptions may be invalid

due to the dynamic characteristics of the environments where

the problem is set up. In these cases, the objective functions

and constraints can vary over time, makjng static optimiza­

tion algorithms collapsed or even inapplicable. This dynamic

context can be found everywhere in today's real-world ap­

plications including Social Networks, IoT Devices, Smart

Homes, and Smart Traffic Monitoring Systems. Evolutionary

Computing (EC) and Swarm Intelligence (SI) methods are

----- Classifcati oo Phase h
i ,i' j-th basedassif..- at lay..- i

yn--�-----�--

Laye-

- UpdatePhase

Fig. 1. Streaming Multi-layer Ensemble

especially useful for solving DOPs since they are developed
based on real-life biological evolution and naturally self­
organized populations which are always subjected to non­
stationary phenomena. There are two main approaches on how
to design EC and SI algorithms for DOPs regarding the way
to generate population diversity: Active and Passive.
Active approach

In the active approach, algorithms possess a mechanism to
explicitly detect changes in the problem formulation. When
a change is detected, the algorithm alters its original search
behaviors to adapt to that change. Note that the performance
of this approach highly depends on the efficiency of the asso­
ciated change detector. The most notable work following the
active approach is the introduction of hyper-mutation operator
[22], which triggers an increase in the rate of mutation when
a change occurs. Another successful work involves actively
diversifying the pool of candidates by migrating individuals
inside a subpopulation in a multi-population paradigm [23],
[24]. It appears that the active approach faces the challenges
of determining how much diversity needs to be magnified
when a change is detected, making it difficult to solve the
problem of data stream classification in which none or very
little information is revealed at the beginning of the stream.
Passive approach

On the other hand, population diversity is continuously main­
tained over time during the search procedure in the passive
approach. In detail, diversity in population/swarm is promoted
by sacrificing search performance to prevent the optimization
process to converge too quickly to the optimum and, therefore,
avoid being stuck there when the solution becomes out of
date. There are many proposed ways to accomplish this idea
in the literature. For example, Simoes and Costa introduce the
transformation operator, which was inspired by the somatic
hypermutation of B-cells [25]. When an individual performs
the transformation operator, one gene segment is first randomly
chosen from a random gene pool. Then, the selected segment
substituted the gene located after a random transformation
locus. In [26], robust optimization over time (ROOT) was
proposed as a new approach to solve DOPs. This framework
uses an adapted radial-basis-function to locally approximate
the fitness, and an auto-aggressive model is employed to
predict it. This method then searches for robust solutions by

exploiting the information of local fitness approximation and
prediction. Recently, Yazdani et al. followed the idea of ROOT
to propose a multi-swarm Particle Swarm Optimization (PSO)
algorithm for DOPs [27]. This method allows different swarms
to track peaks and collect data about their search behaviors,
which is then analyzed to determine the next robust solution.
The average number of environments is maximized while the
quality of solutions is kept acceptable. The passive approach
can be easily applied to real-world problems such as stream
classification since its performance is comparable to the active
approach while there is no need to employ a change detector.

Ill. PROPOSED METHOD

A. Problem formulation

A data stream is defined as an infinite sequence of data
points X = {x1,x2, ... ,x

00
}, in which xk is ad-dimensional

feature vector, with an associated sequence of class labels Y =
{y1,Y2,--·,Yoo}, where Yk E {li,l2,---,ZM} is the true label
of the sample Xk in X. A common assumption in the data
stream literature is that the true label Yk of Xk is obtainable
before the next data point xk+l comes up.

Generally, there are two main approaches to process data
streams: (l) use a single data instance {xk, yk} at a time
to update the classifier; (2) divide the incoming stream into
equally sized chunks C1, C2, ...

,
C00 and then use all instances

of a chunk to update the classifier.
A data stream is stationary if all its instances (excluding the

outliers) are generated from the same distribution D. By con­
trast, a non-stationary stream includes concept drift [l] over
time, or in other words, the underlying data distribution may
change over time. Many types of concept drift are introduced
in the literature, most notably Abrupt Drift, Gradual Drift, and
Incremental Drift. If an abrupt drift occurs at a moment, the
current data distribution is immediately substituted by a new
distribution, which often severely damages the classification
performance if the learning model fails to react in a timely
manner. Meanwhile, gradual and incremental drifts happen
over a longer period of time, making them more challenging to
detect. The types of concept drift in evolving data streams are
very similar to the types of changes in dynamic optimization
problems [28]. Therefore, it is very natural to employ a DOPs
solver to address the problem of non-stationary data stream
classification.

B. Streaming Multi-layer Ensemble (SMiLE)

Inspired by the cascade structure of Multi-layer Perceptron
(or Neural Networks), we proposed the Streaming Multi-layer
Ensemble (SMiLE) for data stream classification. The main
idea is to use the layer-by-layer processing of the features to
perform representation learning. In particular, the output of a
layer is considered as the input data for the next layer [29].
The proposed method is illustrated in Fig. l.

Each layer of SMiLE is a heterogeneous ensemble con­
taining various types of online classifiers. Table I shows the
classifier list used in each layer. We choose this list of online
classifiers based on their prediction accuracy and speed. Since

TABLE I
CLASSIFIER LIST AT EACH LAYER

Classifier Type

Na"ive Bayes (NB) Bayesian
Perceptron (Pere) Linear Model
SGD (hinge loss) SVM

Hoeffding Tree (HT) Decision Tree
Random Hoeffding Tree (RHT) Random Tree
Hoeffding Option Tree (HOT) Option Tree
Hoeffding Adaptive Tree (HAT) Decision Tree

all the classifiers in the list are fast and incremental, each layer
can be updated on the fly with a single instance. Also, all the
layers are able to make predictions at any time.

When a true label y of a data point x is available, we
can update the SMiLE as follows. First, x plays the role of
the input vector for layer l. In other words, K classifiers in
layer l predict on x, giving K output probability vectors with
the length of M (the number of classes). These vectors are
then concatenated into a KxM-dimensional vector v1, which
is considered as the input vector for layer 2. Before considering
layer 2, the instance { x, y} is used to train each classifier in
layer l. Similarly to what we have done in layer l, classifiers
in layer 2 predict on v1, yielding another K x M-dimensional
output vector before being updated using the instance { v1, y }.
The process continues until all classifiers of all layers of the
SMiLE are updated by using a single instance {x, y}.

The classification phase of SMiLE is slightly simpler than
the update process discussed above. Each layer consecutively
makes predictions for the K x M-dimensional output vector
obtained from the previous layer, except for layer l which
predicts for the raw feature vector x. The last layer L gives
us K different M-dimensional output prediction vectors. The
final prediction of SMiLE is achieved by aggregating these
probability vectors using an ensemble combining method such
as the Sum Rule or the Majority Vote Rule [30].

C. Ensemble selection for SMiLE
We introduce a novel selection method to improve the

proposed SMiLE. It is inspired by the mechanism of the
Drop Out method [31], a must-mentioning technique when
talking about the success of Deep Learning [32]. The main
idea is to drop a subset of neurons at each layer to reduce
the complexity of the whole Neural Networks (Multi-layer
Ensembles), avoiding the overfitting issue in many cases. Here,
we selectively choose which classifiers to be used in each
layer by formulating this process as a DOP and then solve
it using the Genetic Algorithm. Our method is different from
the original Drop Out method where a number of neurons are
blindly dropped at random.

To formulate the selection process, we first introduce the
concept of a SMiLE configuration. We employ a binary
vector to represent the selection decision at the layer i:
Si = [si,1 si,2··· si,K]r ,si,j E {O, 1}, where si,j = 1
means the j-th classifier of layer i is selected, and si,j = 0

otherwise. Therefore, a selection configuration for SMiLE can
be represented by a LK-length vector:

layer I layer 2 layer L

Each configuration now corresponds to a specific multi­
layer ensemble which is simpler than the original one. We call
this simpler multi-layer ensemble as a refined ensemble. For
example, with K = 3, L = 4, v = [O O 1 1 1 0 1 1 1 1 0 1],
number of classes M = 4, number of features d = 5, clas­
sifier list = Na"ive Bayes (NB), Perceptron (Pere), Stochastic
Gradient Descent (SGD), then the refined ensemble is shown
in Fig. 2.

----- Classlfcatlon Phase - Update Phase

Li¥f 3 Li¥<

Fig. 2. An example of refined ensemble

�''
'
'
'

' ' . .; ;M�=r
I

Max
y

'

: �---.:El�--►-■:
�: ,El: ___ , - ' '

L __ ,

The classification phase and update phase of a refined
ensemble follow the same procedures of the original SMiLE
which has been thoroughly discussed in sub-section III-B.

The fitness associated with each configuration is evaluated
as follows. First, we use the chunk-based approach to store
a chunk of N latest instances of the data stream. This chunk
then will be used to calculate the fitness as follows:

• The first N /2 instances are used solely for updating the
refined ensemble

• For the remaining N /2 instances, we use the interleaved­
test-then-train method to evaluate the ensemble. Particu­
larly, the ensemble makes prediction for an incoming data
point to obtain a predicted label which is compared with
the real label to compute the 0-l loss. After that, the data
point along with its true label is used for updating the
ensemble. This is a very common technique to evaluate
classifiers in data stream [2], [4], [33].

Lets consider a chunk of N instances Ci
[{xk, yk}, ... , {xk+N -1, Yk+N-d], and a configuration
v with its corresponding refined ensemble E. Let
{y�+N/2, ... , Y�+N-d be the predictions of the ensemble
E for {xk+N/2, ... , Xk+N -d- We take the accuracy of E
on the last N /2 instances of Ci as the fitness score for the
corresponding configuration:

l k+N-1
fitness(v) = .Co,1(E) =

N/2 L II[yI = Yi] (l)
i=k+N/2

where 11[.] is the indicator function which returns l if the
condition is true and O otherwise. Note that the fitness function

Algorithm 1 Update phase of SMiLE_GA

Input: a data stream S = C1 , C2 , ... , C00 (Ci is i-th chunk
of data

1: Initialize the population and the segment pool of GA
2: for each chunk ck do

3: iter = 0
while iter < max_iter do

Evaluate population using equation (1)
4:
5:
6: Use Roulette Wheel to select 2 individuals using

probabilities obtained from equation (2)
7: Transform selected individuals with probability of Pt

8:
9:

10:

Mutate selected individuals with probability of Pm

iter = iter + 1
end while

11: Update the segment pool
12: Choose the refined ensemble corresponding to the best

candidate to classify Ck+l
13: end for

changes over time due to the non-stationary characteristic of
evolving data streams. Hence, we need a DOP solver instead
of a static one to search for the best configuration of SMiLE.
In particular, we used the Genetic Algorithm (GA) with the
transformation operator introduced in [25], which is in charge
of injecting diversity into the population. The proposed method
SMiLE_GA is detailed in Algorithm l.

When a new chunk of data is available, we update the pop­
ulation max_iter times. In each iteration, we first recalculate
the fitness of all candidates in the current population (line
5). This is done by using equation (l) for every candidate
after updating them using the first half instances of the
chunk. Next, two different individuals are selected from the
population using the Roulette Wheel Selection technique with
probabilities:

fitnessi
Pi = '\'nPop

f
.

�j=l itness1

(2)

where Pi and fitnessi are the selection probability and
fitness score of the i-th candidate, respectively, and nPop

is the size of the population used in GA (line 6). The two
candidates are transformed with a probability of Pt (line 7).
The transformation operator is as follows. First, a random
segment is selected from the pool. Then, a position in the
configuration is chosen at random. After that, the selected
segment substitutes the genes located right after the chosen
position (see Fig. 3) [25]. In the next stage, the two selected
chromosomes are mutated with a probability of Pm (line 8).
After evolving the population, we then update the segment
pool as follows: 70% of the segments are taken from the
individuals of the current population, while the remaining 30%
are newly generated at random (line l l). The segment sizes
are also generated randomly. At the final step, the ensemble
corresponding to the highest-fitness chromosome is chosen to
predict for instances in the next data chunk (line 12).

Populct:ion �mrtPool

Seecta
p:>5ition

Seectan
individual

T ransforrrati on

Seecta
SE:grrent

Fig. 3. The transformation operator

TABLE II
INSECT DATASETS USED IN THE EXPERIMENTS

Data #instances #classes #features Change point(s)

Abrupt 52,848 6 33
14,352; 19,500;
33,240; 38,682; 39,5 I 0

l.ncremcntal-gradual 24,150 6 33 14,028
lncremental 57,018 6 33 Throughout all the stream
l.ncremental-abrupt-

79,986 6 33 26,568; 53,364
reoccurring
l.ncremcntal-reoccurring 79,986 6 33 26,568; 53,364

Out-of-control 905,145 24 33 Throughout all the stream

IV. EXPERIMENT SETTING

A. Datasets

We applied the proposed framework to solve the problem
of insect stream classification. We used six datasets recently
published by Souza et al. [6], which relates to the automatic
recognition of disease-carrying insects through optical sensors
in real-time. To collect data, a smart trap was used to capture
selective species, especially those that are vectors of mosquito­
borne diseases and agricultural pests. This trap frees all other
species, alleviating the negative influence of the device on
the ecological balance. Before the announcement of this data,
the data stream literature was completely lacking knowledge
of when and how data distributions change in real-world
data streams. Souza et al. collected data in an artificial non­
stationary environment for about three months to construct
the insect stream datasets with concept drifts. Note that the
true class labels were obtained by building different collector
devices that many specimens of only one species was exhibited
inside the collector. Many types of concept drift in data streams
can be introduced by changing the temperature as follows:

• Abrupt: The first period of the stream was collected at a
temperature of 30° C, then it suddenly changed to 20° C.
After a period of time, the temperature increased back to
around 35°C. Three other abrupt drifts similarly appeared
until the stream ended.

• Incremental-gradual: The beginning instances were col­
lected at around 37°C, and the temperature gradually
decreased to 35° C. For a period after that, the temperature
intercalates in the values of 35° C and 23°C until com­
pletely change to 23° C. Finally, the temperature gradually
increased to 27° C.

TABLE III
ACCURACY RESULTS OF SMILE, SMILE_GA AND BASE CLASSIFIERS

Dataset SMiLE_GA SMiLE NB Pere SGD HT RUT HOP HAT

Abrupt 70.8882 (1) 64.3033 (3) 50.7342 (7) 67.7888 (2) 16.6667 (9) 53.8317 (6) 49.3377 (8) 55.9491 (5) 61.5028 (4)

lncrernen tal-grnd ual 70.8033 (1) 60.1656 (6) 53.6273 (7) 70.1946 (2) 16.6708 (9) 60.6087 (4.5) 46.3354 (8) 60.6087 (4.5) 61.7019 (3)

Incremental 59.0480 (2) 53.7567 (4) 47.4201 (7) 59.3444 (1) 16.6667 (9) 52.1572 (5.5) 43.9914 (8) 52.1572 (5.5) 54.0058 (3)

lncremen tal-abru pt-reoccurring 71.5950 (2) 69.1296 (3) 58.5390 (6) 72.9315 (1) 16.7229 (9) 57.7326 (7) 51.0527 (8) 59.6292 (5) 64.0750 (4)

Incremental-reoccurring 74.4630 (1) 70.1910 (2) 48.7560 (7) 68.3370 (3) 16.7254 (9) 53.3818 (6) 46.8107 (8) 54.7083 (5) 66.6517 (4)

Out-of-control 67.0174 (1) 64.0208 (3) 45.9915 (8) 66.7527 (2) 14.1356 (9) 56.2187 (4) 54.5515 (6) 56.1770 (5) 49.2031 (7)

Average of accuracy 68.9692 63.5945 50.8447 67.5582 16.2647 55.6551 48.6799 56.5383 59.5234

Average of ranking 1.3333 3.5000 7.0000 1.8333 9.0000 5.5000 7.6667 5.0000 4.1667

• Incremental: the stream of instances was collected while

incrementally increasing the temperature from 20° C to

40°C.

• Incremental-abrupt-reoccurring: There were three consec­

utive cycles of incremental changes of temperature from

20°C to 24 °C.

• Incremental-reoccurring: There were three consecutive

cycles of incremental changes where the temperature

first gradually increased from 20° C to 40°C, then slowly

decreased from 40° C to 20°C, and finally rose incremen­

tally from 20°C back to 40° C.

• Out-of-control: there was no pattern in the changes of the

temperature. This dataset is drift-free since all instances

were collected in uniformly random order and each

example was sampled uniformly at a time during the

stream.

The details of the datasets are summarized in Table II.

B. Benchmark algorithms and parameters

The benchmark algorithms used in our experiments were the

Online Bagging (OB) [15], Online Smooth Boost (OSB) [16],

Adaptive XGBoost (AXGB) [4], and Learn++.NSE (LNSE)

[19]. Note that OB and OSB are two instance-incremental

ensemble systems, while AXGB and LNSE are two chunk­

incremental ensemble systems. Since AXGB was developed

only for binary classification problems, we wrapped it with

a one-vs-all classifier when dealing with multi-class data

streams. We compared these algorithms with our proposed

methods SMiLE and SMiLE_GA.

Regarding the hyper-parameters, we used default values

reported in the original papers if not stated here. The ensemble

size of the benchmark algorithms was set to 30. The numbers

of layers of SMiLE and SMiLE_GA were set to 4 when com­

paring to other benchmark algorithms. Each layer contained 7

different learning algorithms. We used the Majority Vote Rule

for combing the outputs of the last layer. The chunk size was

set to 500. The parameter for the GA module is as follows: the

transformation probability was set to Pt = 0.75; the mutation

rate was set to Pm = 0.05; the population size and the segment

pool size were both set to 30.

We compared the proposed methods to the benchmark

algorithms concerning prediction accuracy, which is one of

the most common metrics used in data stream evaluation [2],

[3], [8], [33]. To evaluate the prediction performance, we

used the interleaved-test-then-train strategy (also known as the

prequential evaluation method), in which an instance is first

used for testing and then for training.

V. RESULT AND DISCUSSION

A. Proposed methods vs. baselines

The accuracy results of SMiLE, SMiLE_GA, and 7 base

learners on 6 datasets are reported in Table Ill. Overall, the

proposed method SMiLE_ GA achieved the best prediction

accuracy results. It ranks first on 4 datasets and ranks second

on the remaining 2 datasets, demonstrating the considerable

improvement of the proposed method in comparison to its

base classifiers. We can see that the SGD performed extremely

badly, which obtained only about 16% of accuracy on all

datasets. This deteriorates the performance of SMiLE, making

its accuracy even worse than the single learner Perceptron. For­

tunately, by using the ensemble selection module, SMiLE_GA

can refuse to use SGD whenever this classifier exhibits harmful

impacts to the performance of the whole framework. In com­

parison to SMiLE, the upgraded version SMILE_GA performs

better on all datasets, especially on the Incremental-gradual

and Abrupt datasets, where there are huge accuracy gaps of

around 10% and 6% respectively between SMiLE_GA and

SMiLE. This observation demonstrates the benefit of using

the ensemble selection module.

B. Proposed methods vs. benchmark algorithms

Table IV shows the accuracy results of SMiLE, SMiLE_GA,

and 4 benchmark methods. For all datasets, we can see that

the proposed method SMiLE_GA achieved the best overall

results with an average accuracy of 68.9692% and an average

ranking of 1.1667, followed by its counterpart SMiLE method.

The SMiLE_GA framework ranked first on 5/6 datasets and

ranked second on the remaining dataset, demonstrating the

effectiveness of our method in comparison to available stream­

ing learning algorithms in the literature. Especially on the

dataset with abrupt concept drifts, the SMiLE method left

a large gap of 6.5% accuracy compared to the second-best

method. By contrast, the worst-performing method was the

OSB with an average accuracy of 57.5764% and an average

ranking of 4.6667. This poor performance can be attributed

to the fact that the OSB method did not consider a strategy

to deal with changes in the distribution of data. Meanwhile,

AXGB, LNSE, and OB obtained average performance in our

experiments. From Table IV, we can see a general view of

the prediction performance of the algorithms. However, when

TABLE IV

ACCURACY RESULTS OF SMILE, SMILE_GA AND BENCHMARK ALGORITHMS

Dataset SMiLE GA SMiLE AXGB OSB LNSE OB

Abrupt 70.8882 (1.0) 64.3033 (2.0) 58.8100 (4.0) 55.8299 (6.0) 61.5104 (3.0) 57.5008 (5.0)
Incremental-gradual 70.8033 (1.0) 60. I 656 (5.0) 56.8500 (6.0) 60.4017 (4.0) 61.6398 (3.0) 62.2774 (2.0)
Incremental 59.0480 (2.0) 53.7567 (6.0) 61.7500 (1.0) 55.6544 (4.0) 56.2314 (3.0) 54.6985 (5.0)
Incrementa I-abrupt-reoccurring 71.5950 (1.0) 69.1296 (2.0) 57.8900 (5.0) 60.1105 (4.0) 55.5822 (6.0) 60.9494 (3.0)
Incrementa I-reoccurring 74.4630 (1.0) 70.1910 (2.0) 60.3300 (4.0) 55. I 697 (5.0) 60.6994 (3.0) 55. I 672 (6.0)
Out-of-control 67.0174 (1.0) 64.0208 (3.0) 66.8400 (2.0) 58.2923 (5.0) 52.1297 (6.0) 59.3976 (4.0)
Average of accuracy 68.9692 63.5945 60.4117 57.5764 57.9655 58.3318
Average of ranking 1.1667 3.3333 3.6667 4.6667 4.0000 4.1667

--sMiLE_GA --sMiLE -LeamNSE -·-AXGB --+-OnlineSrroothBoost -OnlineBagging -----Driftpoints

(a) Abrupt (b) lncrerrental-gradual (c) lncrerrental

70

60

30 i

20 j

10000 20000 30000 40000 50000 5000 10000 15000 20000 25000 10000 20000 30000 40000 50000 60000
Instances Instances Instances

(d) lncrerrental-abrupt-reoccuring (e) lncrerrental-reoccuring (0 Out-of-control

70

60

so

40

30 lj

20

70

60

50 i

i
i

a 40 i
,:j_ i

30 ✓

20

30

20

0 10000 20000 0000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000 200000 400000 600000 800000
Instances Instances Instances

Fig. 4. Accuracy results over time

dealing with data streams, we are often interested in observing

these performances over incoming instances, which helps us

to better understand how changes happen during the stream.

Therefore, we present Fig. 4 to show an individual evaluation

for each dataset.

Fig. 4a shows the accuracy results over time for the Abrupt

data. The accuracies of all algorithms tended to decrease when

concept drift occurred, except for the second one. OB, AXGB,

and OSB endured the most significant drop in performance

when changes occurred. By contrast, the performance of our

proposed method SMiLE_GA was very stable during the

stream. It recovered the prediction accuracy very quickly every

time a drift happens, leading to its best accuracy at the end of

the stream.

Fig. 4b illustrates the results over time for the Incremental­

gradual data stream. In this figure, there were significant

decreases in the performances of all methods right after the

gradual drift occurred. As in the description of this dataset,

there were two different concepts presented in this period,

making it difficult for all algorithms to detect and react to this

change. The proposed method SMiLE continues to perform

best almost all over the stream.

Fig. 4c shows the accuracy results over time for the In­

cremental dataset. Due to the slow rate of the incremental

changes, all algorithms tended to perform stably with a gradual

increase in the prediction accuracy. In this dataset, AXGB

exhibited the highest accuracy after 10000 instances arrived

until the end of the stream.

Fig. 4d illustrates the accuracy results for the Incremental­

abrupt-reoccurring dataset. There were small decreases in the

accuracy of all methods whenever a change occurred, except

for the case of SMiLE, whose performance kept increasing

even when concept drifts happened. However, the SMiLE_GA

method obtained higher accuracy than its counterpart SMiLE

even with its decline in accuracy when changes appeared.

Fig. 4e shows the result results for the Incremental­

reoccurring dataset. The overall trend was very similar to what

had previously been shown in Fig. 4d for the Incremental­

abrupt-reoccurring dataset, except for that in the current figure,

the falls in the prediction accuracies of all methods were more

significant after the final change occurred, especially for OSB

and OB methods, those did not have a module to deal with

concept drifts.

Fig. 4f shows the results for the Out-of-control data.

Even though this dataset presents undefined changes in type

and number, all methods obtained stable performances over

time with gradual increases in the accumulated accuracies.

SMiLE_GA and AXGB were the best-performing methods

in this dataset. Although SMiLE_GA obtains lower accuracy

at the first period of the stream, its accuracy increased more

quickly and surpassed the accuracy of AXGB at the end of

the stream. Learn++.NSE seemed to perform poorly on this

data, showing a minor downward trend in its accuracy during

the data stream.

VI. CONCLUSIONS

In this work, we have proposed the Streaming Multi-layer

Ensemble (SMiLE) for data stream classification. It arranges

its base classifiers in a cascade structure and performs layer­

by-layer processing of the feature vector before utilizing an

ensemble combining method to form the final prediction.

Furthermore, we introduced a novel data stream classification

framework called SMiLE_GA, which modifies the Genetic

Algorithm to solve the dynamic optimization problem repre­

senting the process of ensemble selection for multiple layer

ensemble. We applied the proposed methods to solve a real­

world problem of insect stream classification. Our experiments

showed that the SMiLE_GA greatly improved the prediction

accuracy of its base classifiers and surpassed the performance

of many benchmark algorithms.

REFERENCES

[l] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, "Charac­
terizing concept drift," Data Mining and Knowledge Discovery, vol. 30,
no. 4, pp. 964-994, 2016.

[2] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, "Adaptive random forests
for evolving data stream classification," Machine Learning, vol. 106,
no. 9, pp. 1469-1495, 2017.

[3] R. S. M. de Ban-os, S. G. T. de Carvalho Santos, and P. M. G. Junior,
"A boosting-like online learning ensemble," in 2016 international Joint
Conference on Neural Networks (JJCNN). IEEE, 2016, pp. 1871-1878.

[4] J. Montiel, R. Mitchell, E. Frank, B. Pfahringer, T. Abdessalem, and
A. Bifet, "Adaptive xgboost for evolving data streams," in 2020 inter­
national Joint Conference on Neural Networks (JJCNN). IEEE, 2020,
pp. 1-8.

[5] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
arXiv preprint arXiv:1412.6980, 2014.

[6] V. M. Souza, D. M. dos Reis, A. G. Maletzke, and G. E. Batista,
"Challenges in benchmarking stream learning algorithms with real-world
data," Data Mining and Knowledge Discovery, vol. 34, no. 6, pp. 1805-
1858, 2020.

[7] A. Bifet, G. Holmes, and B. Pfahringer, "Leveraging bagging for evolv­
ing data streams;· in Joint European conference on machine learning

and knowledge discovery in databases. Springer, 2010, pp. 135-150.
[8] H. M. Gomes, J. Read, and A. Bifet, "Streaming random patches

for evolving data stream classification," in 2019 IEEE International
Conference on Data Mining (ICDM). IEEE, 2019, pp. 240-249.

[9] P. Domingos and G. Hulten, "Mining high-speed data streams," in
Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2000, pp. 71-80.

[IO] G. Hulten, L. Spencer, and P. Domingos, "Mining time-changing data
streams," in Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, 2001, pp. 97-106.

[I I] C. Manapragada, G. I. Webb, and M. Salehi, "Extremely fast decision
tree," in Proceedings of the 24th ACM SIGKDD International Confer­
ence on Knowledge Discovery & Data Mining, 2018, pp. 1953-1962.

[12] A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, "Ensembles of
restricted hoeffding trees," ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 3, no. 2, pp. 1-20, 2012.

[13] B. Pfahringer, G. Holmes, and R. Kirkby, "New options for hoeffd­
ing trees," in Australasian Joint Conference on Artificial Intelligence.
Springer, 2007, pp. 90-99.

[14] A. Bifet and R. Gavalda, "Adaptive learning from evolving data streams,"
in International Symposium on Intelligent Data Analysis. Springer,
2009, pp. 249-260.

[15] N. C. Oza, "Online bagging and boosting," in 2005 IEEE international
conference on systems, man and cybernetics, vol. 3. Ieee, 2005, pp.
2340-2345.

[16] S.-T. Chen, H.-T. Lin, and C.-J. Lu, "An online boosting algorithm with
theoretical justifications," arXiv preprint arXiv:1206.6422, 2012.

[17] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, "Learning with drift
detection," in Brazilian symposium on artificial intelligence. Springer,
2004, pp. 286--295.

[18] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren, "Having a
blast: Meta-learning and heterogeneous ensembles for data streams," in
2015 ieee international conference on data mining. IEEE, 2015, pp.
1003-1008.

[19] R. Elwell and R. Polikar, "Incremental learning of concept drift in
nonstationary environments," IEEE Transactions on Neural Networks,

vol. 22, no. 10, pp. 1517-1531, 2011.
[20] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, "Learn++: An

incremental learning algorithm for supervised neural networks," IEEE

transactions on systems, man, and cybernetics, part C (applications and
reviews), vol. 31, no. 4, pp. 497-508, 2001.

[21] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system,"
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785-794.

[22] H. G. Cobb, "An investigation into the use of hypermutation as an adap­
tive operator in genetic algorithms having continuous, time-dependent
nonstationary environments," Naval Research Lab Washington DC,
Tech. Rep., 1990.

[23] C.-K. Goh and K. C. Tan, "A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization," IEEE Transactions

on Evolutionary Computation, vol. 13, no. 1, pp. 103-127, 2008.
[24] H. Ma, S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou, "Multi-population

techniques in nature inspired optimization algorithms: A comprehensive
survey," Swarm and evolutionary computation, vol. 44, pp. 365-387,
2019.

[25] A. Simoes and E. Costa, "On biologically inspired genetic operators:
Transformation in the standard genetic algorithm," in Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO'2001),

San Francisco, USA, 2001.
[26] X. Yu, Y. Jin, K. Tang, and X. Yao, "Robust optimization over time-a

new perspective on dynamic optimization problems," in IEEE Congress

on evolutionary computation. IEEE, 2010, pp. 1-6.
[27] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, "A new multi­

swarm particle swarm optimization for robust optimization over time," in
European Conference on the Applications of Evolutionary Computation.
Springer, 2017, pp. 99-109.

[28] M. Mavrovouniotis, C. Li, and S. Yang, "A survey of swarm intelligence
for dynamic optimization: Algorithms and applications," Swann and
Evolutionary Computation, vol. 33, pp. 1-17, 2017.

[29] T. T. Nguyen, N. Van Pham, M. T. Dang, A. V. Luong, J. McCall, and
A. W. C. Liew, "Multi-layer heterogeneous ensemble with classifier and
feature selection," in Proceedings of the 2020 Genetic and Evolutionary

Computation Conference, 2020, pp. 725-733.
[30] T. T. Nguyen, X. C. Pham, A. W.-C. Liew, and W. Pedrycz, "Aggregation

of classifiers: a justifiable information granularity approach," IEEE

transactions on cybernetics, vol. 49, no. 6, pp. 2168-2177, 2018.
[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut­

dinov, "Dropout: a simple way to prevent neural networks from over­
fitting," The journal of machine learning research, vol. 15, no. I, pp.
1929-1958, 2014.

[32] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 52 I,
no. 7553, pp. 436--444, 2015.

[33] J. Gama, R. Sebastiao, and P. P. Rodrigues, "On evaluating stream
learning algorithms," Machine learning, vol. 90, no. 3, pp. 317-346,
2013.

	coversheet_template
	LUONG 2021 Streaming multi-layer (AAM)

