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Abstract-In this study, we introduce a novel framework for 
non-stationary data stream classification problems by modifying 
the Genetic Algorithm to search for the optimal configuration 
of a streaming multi-layer ensemble. We aim to connect the two 
sub-fields of non-stationary stream classification and evolutionary 
dynamic optimization. First, we present Streaming Multi-layer 
Ensemble (SMiLE) - a novel classification algorithm for non­
stationary data streams which comprises multiple layers of 
different classifiers. Second, we develop an ensemble selection 
method to obtain an optimal subset of classifiers for each layer 
of SMiLE. We formulate the selection process as a dynamic 
optimization problem and then solve it by adapting the Genetic 
Algorithm to the stream setting, generating a new classification 
framework called SMiLE_GA. Finally, we apply the proposed 
framework to address a real-world  problem of insect stream 
classification, which relates to the automatic recognition of insects 
through optical sensors in real-time. The experiments showed that 
the proposed method achieves better prediction accuracy than 
several state-of-the-art benchmark algorithms for non-stationary 
data stream classification. 

Index Terms-Ensemble Method, Multi-layer Ensemble, Ge­
netic Algorithm 

1. INTRODUCTION

In the era of big data, machine learning is becoming increas­
ingly popular for analyzing complex data to save the cost and 
time of performing manual tasks. However, when dealing with 
real-world big data, traditional machine learning algorithms 
suffer from three major drawbacks: storing the whole dataset 
is infeasible; models fail to handle very high-speed data; 
changes in data distribution make models collapsed (concept 

drift [1]). Data can even be generated as a real-time stream in 
many applications including sensor networks, video streaming, 
and traffic monitor systems, which demands machine learning 
models to be updated continuously and rapidly. Naturally, 
data streams are potentially non-stationary because the process 
generating them may become different over time, leading to 
the concept drift issue. In particular, prediction models can get 
stuck in the concept of old data and never adapts readily to 
the new distribution. In such scenarios, online learning with 
an associated concept drift handling mechanism is one of the 
best schemes to adapt to distribution changes in data streams 
while maintaining good prediction performance. [2]-[4] 

The field of optimization plays a crucial role in almost 
all machine learning algorithms. For example, Deep Neural 
Network (DNN), one of the most successful machine learning 

models, needs an opt1m1zation algorithm to search for its 
optimal weights. Gradient-based optimization methods like 
Stochastic Gradient Descent, Adam [5] are well-suited for 
optimizing DNN due to the feasibility to differentiate the 
loss function with respect to its weights. However, these 
optimization methods are not applicable for more complicated 
scenarios, for example when the loss function is not differen­
tiable. 

The dynamic nature of many real-world problems can 
affect their objective functions and constraints, corrupting the 
behaviors of traditional optimization methods. In the literature, 
optimization problems with their components changing over 
time are called Dynamic Optimization Problems (DOPs). 

Solving DOPs is particularly difficult due to the requirement 
to track changing optimal solution(s) over time. For complex 
problems like DOPs, Evolutionary Computation-based meth­
ods are an effective choice since their behaviors are inspired by 
biological evolution and self-organized populations operating 
in continuously changing environments. 

In this paper, we propose a novel streaming classification 
framework by introducing a DOP solver that works in the data 
stream setting, which connects the two sub-fields and opens a 
new research direction for the machine learning community. 
Our contributions in this work are summarized as follows: 

1) Streaming Multi-layer Ensemble: We introduce a cas­
cade structure to combine different online learning al­
gorithms into a multi-layer ensemble, which is able to
learn incrementally from non-stationary data streams.

2) Ensemble selection for SMiLE: We propose a mecha­
nism to make the Genetic Algorithm applicable to solve
the SMiLE selection problem in a non-stationary stream
setting.

3) Real-world application: We apply the proposed frame­
work to address the insect stream classification problem .
The goal is to recognize insects related to public health
problems. The data streams in this problem was gener­
ated by using an optical sensor over time [6].

4) Experimental analysis: We compare the proposed meth­
ods with several state-of-the-art algorithms on the insect
streaming data. The experiments show that the proposed
method achieve higher prediction accuracy than the
benchmark algorithms .



In the next section, we have some discussions on the 

background and related work (Section II), followed by the 

proposed methods (Section Ill), experimental setting (Section 

IV), and result and discussion (Section V). Finally, we draw 

some conclusions in Section VI. 

II. BACKGROUND AND RELATED WORK

A. Data stream learning

In the data stream setting ( or online setting), learning

models are expected to start making predictions at any time 

before obtaining the whole dataset since the stream of data 

may never end. Furthermore, they need to be incremental 

and fast due to the high-speed characteristic of data streams. 

Here we discuss two types of algorithms for data stream 

classification: single classifiers and ensemble systems. 

Single classifiers 

Some batch learning methods are naturally incremental and 

fast, making them directly applicable to classify streaming 

data. The most noticeable method with a low computational 

cost is the well-known Nai"ve Bayes (NB) classifier. It performs 

instance-incremental prediction by making a naive assumption 

that all feature variables are mutually independent conditional 

on each class. However, this simple assumption is also the 

drawback of the NB method since it is generally invalid in 

many real-world scenarios. Other methods that can perform 

online learning by instinct are Perceptron and Stochastic 

Gradient Descent (SGD). Perceptron tries to linearly separate 

the data into different classes, while SGD is an incremental 

gradient-based optimization method for differentiable objec­

tive functions, especially convex loss functions such as log 

loss or hinge loss. Both SGD and Perceptron are very fast 

and cost-efficient, but they can only handle simple datasets 

for instance those with the linear separability property. 

Another way to produce online classifiers is to 'streamify' 

batch learning algorithms. Decision Tree attracts the most 

attention in the literature due to its capability to retain high 

performance and theoretical support when porting to the 

stream environments. It is also a good base learner for many 

streaming ensembles with state-of-the-art prediction accuracy 

[2], [7], [8]. Very Fast Decision Tree (VFDT) [9] - also 

known as Hoeffding Tree - was the first successful adaption 

of Decision Tree to the data stream setting. To determine the 

best split attribute when building a tree, VFDT tries not to 

revisit old instances by waiting for new ones to arrive. An 

interesting characteristic of VFDT is that it asymptotically 

converges to a batch learning Decision Tree when having 

enough data. Hulton et al. introduced Concept-adapting Very 

Fast Decision Tree (CVFDT) (10] as an upgraded version of 

VFDT for non-stationary data streams. There are also many 

other variants of the Hoeffding Tree model in the literature, 

for example Extremely Fast Decision Tree (EFDT) (11], 

Random Hoeffding Tree (RHT) (12], Hoeffding Option Tree 

(HOT) (13], and Hoeffding Adaptive Tree (HAT) [14]. They 

all use the Hoeffding bound to check the condition for splits 

at each node. 

Ensemble systems 

Almost all the best-performing models for non-stationary data 

streams in terms of prediction accuracy are ensemble-based 

methods mainly because they can selectively exploit the 

advantages of various single classifiers at once. The most 

well-known ensemble-based system for data streams is the 

Online Bagging method, which was introduced by Oza (15]. 

It adapted the classical Bagging algorithm to the stream 

setting by employing the Poisson(l) distribution to simulate 

the bootstrap technique in an online manner. The author 

also proposed Online Boosting in his work, but it is less 

popular than Online Bagging due to the slower speed and 

the lower prediction accuracy. There are better variants 

of Boosting for non-stationary data streams, such as the 

Boosting-like Online Learning Ensemble (BOLE) [3] and 

the Online Smooth Boost (OSB) (16]. BOLE improved the 

performance of Online Boosting by weakening the condition 

for an expert to vote and making use of the Drift Detection 

Method (DDM) [17] to handle changes in data. In the 

OSB method, the definition of the online weak learner was 

redefined, and only smooth distributions were generated 

to avoid assigning too much weight to a single ensemble 

member (also known as ensemble expert). Recently, van 

Rijn et al. proposed the BLAST ensemble (18] which made 

use of the Online Performance Estimation framework to 

adaptively select a subset of best-performing base classifiers 

to form the voting panel. BLAST works well in practice when 

having a diverse set of different base classifiers. Another 

approach to handle streaming data is to use chunk-based 

ensembles. A well-known ensemble in this category is the 

Learn++.NSE (19], which generalized the Learn++ method 

(20] for non-stationary environments. Learn++.NSE exploits 

the ensemble error on a new data chunk to assign weights 

to the instances. Very recently, Montiel et al. introduced the 

Adaptive XGBoost (AXGB) ensemble system [4], a replica 

of the classical eXtreme Gradient Boosting (XGB) (21], for 

the stream setting. In this method, new ensemble members 

are generated from mini-batches of incoming instances. The 

learning process continues even when a fixed maximum 

size of the ensemble is reached thanks to the fact that the 

ensemble keeps updating to be adaptive to the latest concept 

of data. 

B. Evolutionary computing algorithms for Dynamic Optimiza­

tion Problems

Most optimization solvers in the literature were designed 

for problems with static fitness functions and constraints. 

However, in reality, these static assumptions may be invalid 

due to the dynamic characteristics of the environments where 

the problem is set up. In these cases, the objective functions 

and constraints can vary over time, makjng static optimiza­

tion algorithms collapsed or even inapplicable. This dynamic 

context can be found everywhere in today's real-world ap­

plications including Social Networks, IoT Devices, Smart 

Homes, and Smart Traffic Monitoring Systems. Evolutionary 

Computing (EC) and Swarm Intelligence (SI) methods are 
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Fig. 1. Streaming Multi-layer Ensemble 

especially useful for solving DOPs since they are developed 
based on real-life biological evolution and naturally self­
organized populations which are always subjected to non­
stationary phenomena. There are two main approaches on how 
to design EC and SI algorithms for DOPs regarding the way 
to generate population diversity: Active and Passive. 
Active approach 

In the active approach, algorithms possess a mechanism to 
explicitly detect changes in the problem formulation. When 
a change is detected, the algorithm alters its original search 
behaviors to adapt to that change. Note that the performance 
of this approach highly depends on the efficiency of the asso­
ciated change detector. The most notable work following the 
active approach is the introduction of hyper-mutation operator 
[22], which triggers an increase in the rate of mutation when 
a change occurs. Another successful work involves actively 
diversifying the pool of candidates by migrating individuals 
inside a subpopulation in a multi-population paradigm [23], 
[24]. It appears that the active approach faces the challenges 
of determining how much diversity needs to be magnified 
when a change is detected, making it difficult to solve the 
problem of data stream classification in which none or very 
little information is revealed at the beginning of the stream. 
Passive approach 

On the other hand, population diversity is continuously main­
tained over time during the search procedure in the passive 
approach. In detail, diversity in population/swarm is promoted 
by sacrificing search performance to prevent the optimization 
process to converge too quickly to the optimum and, therefore, 
avoid being stuck there when the solution becomes out of 
date. There are many proposed ways to accomplish this idea 
in the literature. For example, Simoes and Costa introduce the 
transformation operator, which was inspired by the somatic 
hypermutation of B-cells [25]. When an individual performs 
the transformation operator, one gene segment is first randomly 
chosen from a random gene pool. Then, the selected segment 
substituted the gene located after a random transformation 
locus. In [26], robust optimization over time (ROOT) was 
proposed as a new approach to solve DOPs. This framework 
uses an adapted radial-basis-function to locally approximate 
the fitness, and an auto-aggressive model is employed to 
predict it. This method then searches for robust solutions by 

exploiting the information of local fitness approximation and 
prediction. Recently, Yazdani et al. followed the idea of ROOT 
to propose a multi-swarm Particle Swarm Optimization (PSO) 
algorithm for DOPs [27]. This method allows different swarms 
to track peaks and collect data about their search behaviors, 
which is then analyzed to determine the next robust solution. 
The average number of environments is maximized while the 
quality of solutions is kept acceptable. The passive approach 
can be easily applied to real-world problems such as stream 
classification since its performance is comparable to the active 
approach while there is no need to employ a change detector. 

Ill. PROPOSED METHOD 

A. Problem formulation

A data stream is defined as an infinite sequence of data
points X = {x1,x2, ... ,x

00
}, in which xk is ad-dimensional 

feature vector, with an associated sequence of class labels Y = 
{y1,Y2,--·,Yoo}, where Yk E {li,l2,---,ZM} is the true label 
of the sample Xk in X. A common assumption in the data 
stream literature is that the true label Yk of Xk is obtainable 
before the next data point xk+l comes up. 

Generally, there are two main approaches to process data 
streams: (l) use a single data instance {xk, yk} at a time 
to update the classifier; (2) divide the incoming stream into 
equally sized chunks C1, C2, ... 

, 
C00 and then use all instances 

of a chunk to update the classifier. 
A data stream is stationary if all its instances (excluding the 

outliers) are generated from the same distribution D. By con­
trast, a non-stationary stream includes concept drift [l] over 
time, or in other words, the underlying data distribution may 
change over time. Many types of concept drift are introduced 
in the literature, most notably Abrupt Drift, Gradual Drift, and 
Incremental Drift. If an abrupt drift occurs at a moment, the 
current data distribution is immediately substituted by a new 
distribution, which often severely damages the classification 
performance if the learning model fails to react in a timely 
manner. Meanwhile, gradual and incremental drifts happen 
over a longer period of time, making them more challenging to 
detect. The types of concept drift in evolving data streams are 
very similar to the types of changes in dynamic optimization 
problems [28]. Therefore, it is very natural to employ a DOPs 
solver to address the problem of non-stationary data stream 
classification. 

B. Streaming Multi-layer Ensemble (SMiLE)

Inspired by the cascade structure of Multi-layer Perceptron
(or Neural Networks), we proposed the Streaming Multi-layer 
Ensemble (SMiLE) for data stream classification. The main 
idea is to use the layer-by-layer processing of the features to 
perform representation learning. In particular, the output of a 
layer is considered as the input data for the next layer [29]. 
The proposed method is illustrated in Fig. l. 

Each layer of SMiLE is a heterogeneous ensemble con­
taining various types of online classifiers. Table I shows the 
classifier list used in each layer. We choose this list of online 
classifiers based on their prediction accuracy and speed. Since 



TABLE I 
CLASSIFIER LIST AT EACH LAYER 

Classifier Type 

Na"ive Bayes (NB) Bayesian 
Perceptron (Pere) Linear Model 
SGD (hinge loss) SVM 

Hoeffding Tree (HT) Decision Tree 
Random Hoeffding Tree (RHT) Random Tree 
Hoeffding Option Tree (HOT) Option Tree 
Hoeffding Adaptive Tree (HAT) Decision Tree 

all the classifiers in the list are fast and incremental, each layer 
can be updated on the fly with a single instance. Also, all the 
layers are able to make predictions at any time. 

When a true label y of a data point x is available, we 
can update the SMiLE as follows. First, x plays the role of 
the input vector for layer l. In other words, K classifiers in 
layer l predict on x, giving K output probability vectors with 
the length of M (the number of classes). These vectors are 
then concatenated into a KxM-dimensional vector v1, which 
is considered as the input vector for layer 2. Before considering 
layer 2, the instance { x, y} is used to train each classifier in 
layer l. Similarly to what we have done in layer l, classifiers 
in layer 2 predict on v1, yielding another K x M-dimensional 
output vector before being updated using the instance { v1, y }. 
The process continues until all classifiers of all layers of the 
SMiLE are updated by using a single instance {x, y}. 

The classification phase of SMiLE is slightly simpler than 
the update process discussed above. Each layer consecutively 
makes predictions for the K x M-dimensional output vector 
obtained from the previous layer, except for layer l which 
predicts for the raw feature vector x. The last layer L gives 
us K different M-dimensional output prediction vectors. The 
final prediction of SMiLE is achieved by aggregating these 
probability vectors using an ensemble combining method such 
as the Sum Rule or the Majority Vote Rule [30]. 

C. Ensemble selection for SMiLE
We introduce a novel selection method to improve the

proposed SMiLE. It is inspired by the mechanism of the 
Drop Out method [31], a must-mentioning technique when 
talking about the success of Deep Learning [32]. The main 
idea is to drop a subset of neurons at each layer to reduce 
the complexity of the whole Neural Networks (Multi-layer 
Ensembles), avoiding the overfitting issue in many cases. Here, 
we selectively choose which classifiers to be used in each 
layer by formulating this process as a DOP and then solve 
it using the Genetic Algorithm. Our method is different from 
the original Drop Out method where a number of neurons are 
blindly dropped at random. 

To formulate the selection process, we first introduce the 
concept of a SMiLE configuration. We employ a binary 
vector to represent the selection decision at the layer i: 
Si = [si,1 si,2··· si,K]r ,si,j E {O, 1}, where si,j = 1 
means the j-th classifier of layer i is selected, and si,j = 0 

otherwise. Therefore, a selection configuration for SMiLE can 
be represented by a LK-length vector: 

layer I layer 2 layer L 

Each configuration now corresponds to a specific multi­
layer ensemble which is simpler than the original one. We call 
this simpler multi-layer ensemble as a refined ensemble. For 
example, with K = 3, L = 4, v = [O O 1 1 1 0 1 1 1 1 0 1], 
number of classes M = 4, number of features d = 5, clas­
sifier list = Na"ive Bayes (NB), Perceptron (Pere), Stochastic 
Gradient Descent (SGD), then the refined ensemble is shown 
in Fig. 2. 
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The classification phase and update phase of a refined 
ensemble follow the same procedures of the original SMiLE 
which has been thoroughly discussed in sub-section III-B. 

The fitness associated with each configuration is evaluated 
as follows. First, we use the chunk-based approach to store 
a chunk of N latest instances of the data stream. This chunk 
then will be used to calculate the fitness as follows: 

• The first N /2 instances are used solely for updating the
refined ensemble

• For the remaining N /2 instances, we use the interleaved­
test-then-train method to evaluate the ensemble. Particu­
larly, the ensemble makes prediction for an incoming data
point to obtain a predicted label which is compared with
the real label to compute the 0-l loss. After that, the data
point along with its true label is used for updating the
ensemble. This is a very common technique to evaluate
classifiers in data stream [2], [4], [33].

Lets consider a chunk of N instances Ci 
[{xk, yk}, ... , {xk+N -1, Yk+N-d], and a configuration 
v with its corresponding refined ensemble E. Let 
{y�+N/2, ... , Y�+N-d be the predictions of the ensemble
E for {xk+N/2, ... , Xk+N -d- We take the accuracy of E
on the last N /2 instances of Ci as the fitness score for the 
corresponding configuration: 

l k+N-1
fitness(v) = .Co,1(E) = 

N/2 L II[yI = Yi] (l)
i=k+N/2 

where 11[.] is the indicator function which returns l if the 
condition is true and O otherwise. Note that the fitness function 



Algorithm 1 Update phase of SMiLE_GA 

Input: a data stream S = C1 , C2 , ... , C00 (Ci is i-th chunk 
of data 

1: Initialize the population and the segment pool of GA 
2: for each chunk ck do 

3: iter = 0 
while iter < max_iter do 

Evaluate population using equation (1) 
4: 
5: 
6: Use Roulette Wheel to select 2 individuals using 

probabilities obtained from equation (2) 
7: Transform selected individuals with probability of Pt 

8: 
9: 

10: 

Mutate selected individuals with probability of Pm 

iter = iter + 1 
end while 

11: Update the segment pool 
12: Choose the refined ensemble corresponding to the best 

candidate to classify Ck+l 
13: end for 

changes over time due to the non-stationary characteristic of 
evolving data streams. Hence, we need a DOP solver instead 
of a static one to search for the best configuration of SMiLE. 
In particular, we used the Genetic Algorithm (GA) with the 
transformation operator introduced in [25], which is in charge 
of injecting diversity into the population. The proposed method 
SMiLE_GA is detailed in Algorithm l. 

When a new chunk of data is available, we update the pop­
ulation max_iter times. In each iteration, we first recalculate 
the fitness of all candidates in the current population (line 
5). This is done by using equation (l) for every candidate 
after updating them using the first half instances of the 
chunk. Next, two different individuals are selected from the 
population using the Roulette Wheel Selection technique with 
probabilities: 

fitnessi 
Pi = '\'nPop 

f
.

�j=l itness1

(2) 

where Pi and fitnessi are the selection probability and 
fitness score of the i-th candidate, respectively, and nPop 

is the size of the population used in GA (line 6). The two 
candidates are transformed with a probability of Pt (line 7). 
The transformation operator is as follows. First, a random 
segment is selected from the pool. Then, a position in the 
configuration is chosen at random. After that, the selected 
segment substitutes the genes located right after the chosen 
position (see Fig. 3) [25]. In the next stage, the two selected 
chromosomes are mutated with a probability of Pm (line 8). 
After evolving the population, we then update the segment 
pool as follows: 70% of the segments are taken from the 
individuals of the current population, while the remaining 30% 
are newly generated at random (line l l). The segment sizes 
are also generated randomly. At the final step, the ensemble 
corresponding to the highest-fitness chromosome is chosen to 
predict for instances in the next data chunk (line 12). 
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Fig. 3. The transformation operator 

TABLE II 
INSECT DATASETS USED IN THE EXPERIMENTS 

Data #instances #classes #features Change point(s) 

Abrupt 52,848 6 33 
14,352; 19,500; 
33,240; 38,682; 39,5 I 0 

l.ncremcntal-gradual 24,150 6 33 14,028 
lncremental 57,018 6 33 Throughout all the stream 
l.ncremental-abrupt-

79,986 6 33 26,568; 53,364 
reoccurring 
l.ncremcntal-reoccurring 79,986 6 33 26,568; 53,364 

Out-of-control 905,145 24 33 Throughout all the stream 

IV. EXPERIMENT SETTING

A. Datasets

We applied the proposed framework to solve the problem
of insect stream classification. We used six datasets recently 
published by Souza et al. [6], which relates to the automatic 
recognition of disease-carrying insects through optical sensors 
in real-time. To collect data, a smart trap was used to capture 
selective species, especially those that are vectors of mosquito­
borne diseases and agricultural pests. This trap frees all other 
species, alleviating the negative influence of the device on 
the ecological balance. Before the announcement of this data, 
the data stream literature was completely lacking knowledge 
of when and how data distributions change in real-world 
data streams. Souza et al. collected data in an artificial non­
stationary environment for about three months to construct 
the insect stream datasets with concept drifts. Note that the 
true class labels were obtained by building different collector 
devices that many specimens of only one species was exhibited 
inside the collector. Many types of concept drift in data streams 
can be introduced by changing the temperature as follows: 

• Abrupt: The first period of the stream was collected at a
temperature of 30° C, then it suddenly changed to 20° C.
After a period of time, the temperature increased back to
around 35°C. Three other abrupt drifts similarly appeared
until the stream ended.

• Incremental-gradual: The beginning instances were col­
lected at around 37°C, and the temperature gradually
decreased to 35° C. For a period after that, the temperature
intercalates in the values of 35° C and 23°C until com­
pletely change to 23° C. Finally, the temperature gradually
increased to 27° C.



TABLE III 
ACCURACY RESULTS OF SMILE, SMILE_GA AND BASE CLASSIFIERS 

Dataset SMiLE_GA SMiLE NB Pere SGD HT RUT HOP HAT 

Abrupt 70.8882 (1) 64.3033 (3) 50.7342 (7) 67.7888 (2) 16.6667 (9) 53.8317 (6) 49.3377 (8) 55.9491 (5) 61.5028 (4) 

lncrernen tal-grnd ual 70.8033 (1) 60.1656 (6) 53.6273 (7) 70.1946 (2) 16.6708 (9) 60.6087 (4.5) 46.3354 (8) 60.6087 (4.5) 61.7019 (3) 

Incremental 59.0480 (2) 53.7567 (4) 47.4201 (7) 59.3444 (1) 16.6667 (9) 52.1572 (5.5) 43.9914 (8) 52.1572 (5.5) 54.0058 (3) 

lncremen tal-abru pt-reoccurring 71.5950 (2) 69.1296 (3) 58.5390 (6) 72.9315 (1) 16.7229 (9) 57.7326 (7) 51.0527 (8) 59.6292 (5) 64.0750 (4) 

Incremental-reoccurring 74.4630 (1) 70.1910 (2) 48.7560 (7) 68.3370 (3) 16.7254 (9) 53.3818 (6) 46.8107 (8) 54.7083 (5) 66.6517 (4) 

Out-of-control 67.0174 (1) 64.0208 (3) 45.9915 (8) 66.7527 (2) 14.1356 (9) 56.2187 (4) 54.5515 (6) 56.1770 (5) 49.2031 (7) 

Average of accuracy 68.9692 63.5945 50.8447 67.5582 16.2647 55.6551 48.6799 56.5383 59.5234 

Average of ranking 1.3333 3.5000 7.0000 1.8333 9.0000 5.5000 7.6667 5.0000 4.1667 

• Incremental: the stream of instances was collected while

incrementally increasing the temperature from 20° C to

40°C.

• Incremental-abrupt-reoccurring: There were three consec­

utive cycles of incremental changes of temperature from

20°C to 24 °C. 

• Incremental-reoccurring: There were three consecutive

cycles of incremental changes where the temperature

first gradually increased from 20° C to 40°C, then slowly

decreased from 40° C to 20°C, and finally rose incremen­

tally from 20°C back to 40° C.

• Out-of-control: there was no pattern in the changes of the

temperature. This dataset is drift-free since all instances

were collected in uniformly random order and each

example was sampled uniformly at a time during the

stream.

The details of the datasets are summarized in Table II. 

B. Benchmark algorithms and parameters

The benchmark algorithms used in our experiments were the

Online Bagging (OB) [15], Online Smooth Boost (OSB) [16], 

Adaptive XGBoost (AXGB) [4], and Learn++.NSE (LNSE) 

[19]. Note that OB and OSB are two instance-incremental 

ensemble systems, while AXGB and LNSE are two chunk­

incremental ensemble systems. Since AXGB was developed 

only for binary classification problems, we wrapped it with 

a one-vs-all classifier when dealing with multi-class data 

streams. We compared these algorithms with our proposed 

methods SMiLE and SMiLE_GA. 

Regarding the hyper-parameters, we used default values 

reported in the original papers if not stated here. The ensemble 

size of the benchmark algorithms was set to 30. The numbers 

of layers of SMiLE and SMiLE_GA were set to 4 when com­

paring to other benchmark algorithms. Each layer contained 7 

different learning algorithms. We used the Majority Vote Rule 

for combing the outputs of the last layer. The chunk size was 

set to 500. The parameter for the GA module is as follows: the 

transformation probability was set to Pt = 0.75; the mutation 

rate was set to Pm = 0.05; the population size and the segment 

pool size were both set to 30. 

We compared the proposed methods to the benchmark 

algorithms concerning prediction accuracy, which is one of 

the most common metrics used in data stream evaluation [2], 

[3], [8], [33]. To evaluate the prediction performance, we 

used the interleaved-test-then-train strategy (also known as the 

prequential evaluation method), in which an instance is first 

used for testing and then for training. 

V. RESULT AND DISCUSSION 

A. Proposed methods vs. baselines

The accuracy results of SMiLE, SMiLE_GA, and 7 base

learners on 6 datasets are reported in Table Ill. Overall, the 

proposed method SMiLE_ GA achieved the best prediction 

accuracy results. It ranks first on 4 datasets and ranks second 

on the remaining 2 datasets, demonstrating the considerable 

improvement of the proposed method in comparison to its 

base classifiers. We can see that the SGD performed extremely 

badly, which obtained only about 16% of accuracy on all 

datasets. This deteriorates the performance of SMiLE, making 

its accuracy even worse than the single learner Perceptron. For­

tunately, by using the ensemble selection module, SMiLE_GA 

can refuse to use SGD whenever this classifier exhibits harmful 

impacts to the performance of the whole framework. In com­

parison to SMiLE, the upgraded version SMILE_GA performs 

better on all datasets, especially on the Incremental-gradual 

and Abrupt datasets, where there are huge accuracy gaps of 

around 10% and 6% respectively between SMiLE_GA and 

SMiLE. This observation demonstrates the benefit of using 

the ensemble selection module. 

B. Proposed methods vs. benchmark algorithms

Table IV shows the accuracy results of SMiLE, SMiLE_GA,

and 4 benchmark methods. For all datasets, we can see that 

the proposed method SMiLE_GA achieved the best overall 

results with an average accuracy of 68.9692% and an average 

ranking of 1.1667, followed by its counterpart SMiLE method. 

The SMiLE_GA framework ranked first on 5/6 datasets and 

ranked second on the remaining dataset, demonstrating the 

effectiveness of our method in comparison to available stream­

ing learning algorithms in the literature. Especially on the 

dataset with abrupt concept drifts, the SMiLE method left 

a large gap of 6.5% accuracy compared to the second-best 

method. By contrast, the worst-performing method was the 

OSB with an average accuracy of 57.5764% and an average 

ranking of 4.6667. This poor performance can be attributed 

to the fact that the OSB method did not consider a strategy 

to deal with changes in the distribution of data. Meanwhile, 

AXGB, LNSE, and OB obtained average performance in our 

experiments. From Table IV, we can see a general view of 

the prediction performance of the algorithms. However, when 



TABLE IV 

ACCURACY RESULTS OF SMILE, SMILE_GA AND BENCHMARK ALGORITHMS 

Dataset SMiLE GA SMiLE AXGB OSB LNSE OB 

Abrupt 70.8882 (1.0) 64.3033 (2.0) 58.8100 (4.0) 55.8299 (6.0) 61.5104 (3.0) 57.5008 (5.0) 
Incremental-gradual 70.8033 (1.0) 60. I 656 (5.0) 56.8500 (6.0) 60.4017 (4.0) 61.6398 (3.0) 62.2774 (2.0) 
Incremental 59.0480 (2.0) 53.7567 (6.0) 61.7500 (1.0) 55.6544 (4.0) 56.2314 (3.0) 54.6985 (5.0) 
Incrementa I-abrupt-reoccurring 71.5950 (1.0) 69.1296 (2.0) 57.8900 (5.0) 60.1105 (4.0) 55.5822 (6.0) 60.9494 (3.0) 
Incrementa I-reoccurring 74.4630 (1.0) 70.1910 (2.0) 60.3300 (4.0) 55. I 697 (5.0) 60.6994 (3.0) 55. I 672 (6.0) 
Out-of-control 67.0174 (1.0) 64.0208 (3.0) 66.8400 (2.0) 58.2923 (5.0) 52.1297 (6.0) 59.3976 (4.0) 
Average of accuracy 68.9692 63.5945 60.4117 57.5764 57.9655 58.3318 
Average of ranking 1.1667 3.3333 3.6667 4.6667 4.0000 4.1667 
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Fig. 4. Accuracy results over time 

dealing with data streams, we are often interested in observing 

these performances over incoming instances, which helps us 

to better understand how changes happen during the stream. 

Therefore, we present Fig. 4 to show an individual evaluation 

for each dataset. 

Fig. 4a shows the accuracy results over time for the Abrupt 

data. The accuracies of all algorithms tended to decrease when 

concept drift occurred, except for the second one. OB, AXGB, 

and OSB endured the most significant drop in performance 

when changes occurred. By contrast, the performance of our 

proposed method SMiLE_GA was very stable during the 

stream. It recovered the prediction accuracy very quickly every 

time a drift happens, leading to its best accuracy at the end of 

the stream. 

Fig. 4b illustrates the results over time for the Incremental­

gradual data stream. In this figure, there were significant 

decreases in the performances of all methods right after the 

gradual drift occurred. As in the description of this dataset, 

there were two different concepts presented in this period, 

making it difficult for all algorithms to detect and react to this 

change. The proposed method SMiLE continues to perform 

best almost all over the stream. 

Fig. 4c shows the accuracy results over time for the In­

cremental dataset. Due to the slow rate of the incremental 

changes, all algorithms tended to perform stably with a gradual 

increase in the prediction accuracy. In this dataset, AXGB 

exhibited the highest accuracy after 10000 instances arrived 

until the end of the stream. 

Fig. 4d illustrates the accuracy results for the Incremental­

abrupt-reoccurring dataset. There were small decreases in the 

accuracy of all methods whenever a change occurred, except 

for the case of SMiLE, whose performance kept increasing 

even when concept drifts happened. However, the SMiLE_GA 

method obtained higher accuracy than its counterpart SMiLE 

even with its decline in accuracy when changes appeared. 

Fig. 4e shows the result results for the Incremental­

reoccurring dataset. The overall trend was very similar to what 

had previously been shown in Fig. 4d for the Incremental­

abrupt-reoccurring dataset, except for that in the current figure, 

the falls in the prediction accuracies of all methods were more 

significant after the final change occurred, especially for OSB 

and OB methods, those did not have a module to deal with 

concept drifts. 

Fig. 4f shows the results for the Out-of-control data. 



Even though this dataset presents undefined changes in type 

and number, all methods obtained stable performances over 

time with gradual increases in the accumulated accuracies. 

SMiLE_GA and AXGB were the best-performing methods 

in this dataset. Although SMiLE_GA obtains lower accuracy 

at the first period of the stream, its accuracy increased more 

quickly and surpassed the accuracy of AXGB at the end of 

the stream. Learn++.NSE seemed to perform poorly on this 

data, showing a minor downward trend in its accuracy during 

the data stream. 

VI. CONCLUSIONS

In this work, we have proposed the Streaming Multi-layer 

Ensemble (SMiLE) for data stream classification. It arranges 

its base classifiers in a cascade structure and performs layer­

by-layer processing of the feature vector before utilizing an 

ensemble combining method to form the final prediction. 

Furthermore, we introduced a novel data stream classification 

framework called SMiLE_GA, which modifies the Genetic 

Algorithm to solve the dynamic optimization problem repre­

senting the process of ensemble selection for multiple layer 

ensemble. We applied the proposed methods to solve a real­

world problem of insect stream classification. Our experiments 

showed that the SMiLE_GA greatly improved the prediction 

accuracy of its base classifiers and surpassed the performance 

of many benchmark algorithms. 
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