HAMID, O., SANAEE, R. and OLUYEMI, G. [2021]. Drilling geomechanical assessment using integrated reservoir workflow. To be presented at 2021 International field exploration and development conference (IFEDC 2021): efficient development of oil and gas driven by surveillance technology, 16-18 September 2021, Qingdao, China.

Drilling geomechanical assessment using integrated reservoir workflow.

HAMID, O., SANAEE, R. and OLUYEMI, G.

2021

IFEDC | 监测技术驱动油气高效开发

Efficient Development of Oil and Gas Driven Surveillance Technology

2021油气田勘探与开发国际会议

International Field Exploration and Development Conference 2021

International Field Exploration and Development Conference 2021

2020年9月16日-18日 中国•青岛

16–18 September 2021 in Qingdao, China

Drilling Geomechanical Assessment Using Integrated Reservoir Workflow IFEDC20219783

Speaker: **Osman Hamid**

Organization: Robert Gordon University

16–18 September in Qingdao, China

2021 油气田勘探与开发国际会议

International Field Exploration and Development Conference 2021

Contents

- Introduction
- Drilling Geomechanics
- Types of Wellbore Stability
- Modeling Approaches of Wellbore Stability
- Empirical Solutions
- Mathematical Modeling (Analytical and Numerical
- Pre-Drill, Real-Time and Post Drill Modeling
- Impact of Wellbore quality
- Conclusion

International Field Exploration and Development Conference 2021

16–18 September in Qingdao, China

Rock Failure Mechanism

Veeken et al. 1991

International Field Exploration and Development Conference 2021

2021年9月16日-18日 中国•青岛

16–18 September in Qingdao, China

A failure model that uses the Mohr-Coulomb criterion for different UCS values

Hamid et al., 2014

Types of Wellbore Stability

After Fjaer 2008

International Field Exploration and Development Conference 2021

2021年9月16日-18日 中国•青岛

16-18 September in Qingdao, China

Global Mud-Weight Profile

- This plot suggested normal pore pressure regime for the first 5000 FT
- Then the pore pressure gradient increases to 0.48 psi/ft. and 0.52 psi/to till top of high-pressure Carbonate Formation
- High pore pressure up to 0.95
 psi/ft. and then decreases at
 bottom of high-pressure
 Carbonate Formation

International Field Exploration and Development Conference 2021

16-18 September in Qingdao, China

Empirical Modeling approaches:

The empirical method includes experience-based rules of thumbs and observation and laboratory model analogs, such as thick wall cylinder (TWC), wellbore collapse tests, and polyaxial cell.

Mathematical Modeling approaches:

- 1. Analytical models which can be closed-form solution including linear elastic, elastoplastic modeling, and kinematic considerations.
- Numerical approaches include Finite Element (FEM), Finite Difference (FDM), boundary element (BEM), and distinct element (DEM).

16-18 September in Qingdao, China

Analytical Modeling approaches:

Linear Elastic

$$\sigma'_r = P_w - \alpha P_a$$

$$\sigma'_\theta = \sigma_{Max} + \sigma_{Min} - 2(\sigma_{Max} - \sigma_{Min})\cos 2\theta + A_p \Delta p - \alpha P_a$$

$$\sigma'_z = \sigma_V - 2\vartheta(\sigma_{Max} - \sigma_{Min})\cos 2\theta + A_p \Delta p - \alpha P_a$$

$$\tau_{r\theta} = \tau_{rz} = \tau_{\theta z} = 0$$

International Field Exploration and Development Conference 2021

16-18 September in Qingdao, China

Analytical Modeling approaches:

Non-Linear Elastic

$$\frac{1}{N_p+1} \left[\{ \sigma_{Ave} - \alpha p(R,t) \} \left(1 - N_p \right) + S_p + A_p \left\{ \frac{P_O}{2} \left(N_p - 1 \right) + p(R,t) \right\} \right] + \frac{S_r}{1-N_r}$$

$$-\left[p_{w} + \frac{S_{r}}{1 - N_{r}}\right] \left(\frac{R}{r_{w}}\right)^{N_{r}-1} - \alpha_{p}(1 - N_{r})R^{N_{r}-1} \int_{r_{w}}^{R} r^{-N_{r}} p(r, t) dr + \sigma_{Ave} - \frac{A_{p}P_{o}}{2} = 0$$

$$N_r = \frac{1 + \sin(\emptyset_r)}{1 - \sin(\emptyset_r)}$$

$$S_r = \frac{-2.c_r.cos(\emptyset_r)}{1 - \sin(\emptyset_r)}$$

Variations in Breakdown Pressure Gradient with Wellbore Inclination and Filter Cake

Albahrani et al. 2018

Pre-Drill on the left and RT Model Update on the right

Hamid et al. 2016

16–18 September in Qingdao, China

2021 油气田勘探与开发国际会议

International Field Exploration and Development Conference 2021

Post-drill Geomechanical Model Updated with Drilling Results

Hamid et al. 2018

International Field Exploration and Development Conference 2021

16-18 September in Qingdao, China

The role of solids in bridging and plugging the formation

Jonathan 2009

International Field Exploration and Development Conference 2021

16–18 September in Qingdao, China

Impact of Wellbore Quality on Petrophysical logs

International Field Exploration and Development Conference 2021

2021年9月16日-18日 中国•青岛

16–18 September in Qingdao, China

Impact of Wellbore Quality

International Field Exploration and Development Conference 2021

16–18 September in Qingdao, China

Conclusion

Applying this workflow will lead to:

- 1. Better wellbore quality to ensure better quality log data.
- 2. High success rate of completion and stimulation operations, which leads to maximizing hydrocarbon production and
- 3. Save time and money.

International Field Exploration and Development Conference 2021

2020年9月16日-18日

中国•青岛

16-18 September 2021 in Qingdao, China

I would like to thanks my Co-authors Dr. Reza Sanaee and Dr. Gbenga Oluyemi

谢谢大家!