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Abstract: Image semantic segmentation is in the center of interest for computer vision researchers. Indeed, huge num-
ber of applications requires efficient segmentation performance, such as activity recognition, navigation, and
human body parsing, etc. One of the important applications is gesture recognition that is the ability to under-
standing human hand gestures by detecting and counting finger parts in a video stream or in still images. Thus,
accurate finger parts segmentation yields more accurate gesture recognition. Consequently, in this paper, we
highlight two contributions as follows: First, we propose data-driven deep learning pooling policy based on
multi-scale feature maps extraction at different scales (called FinSeg). A novel aggregation layer is introduced
in this model, in which the features maps generated at each scale is weighted using a fully connected layer.
Second, with the lack of realistic labeled finger parts datasets, we propose a labeled dataset for finger parts
segmentation (FingerParts dataset). To the best of our knowledge, the proposed dataset is the first attempt
to build a realistic dataset for finger parts semantic segmentation. The experimental results show that the
proposed model yields an improvement of 5% compared to the standard FCN network.

1 INTRODUCTION

Semantic segmentation is an important task in image
recognition and understanding. It is considered as a
dense classification problem. The main task in Se-
mantic segmentation is to assign a unique class to
every pixel in an image. Deep learning approaches
have been used in several applications, such as hu-
man activity recognition, object recognition, image
classification (Saleh et al., 2018b), time-series fore-
casting (Abdel-Nasser and Mahmoud, 2017) as well
as semantic segmentation. Recently, convolutional
neural networks (CNNs) have obtained significant re-
sults in image understanding tasks. However, these
approaches still exhibit obvious shortcomings when
they come to dense prediction tasks, e.g., semantic
segmentation. The main reason for the shortcomings
is that these models include repeated steps of pooling
and convolution can cause losing much of finer image
information.

One way of handling this shortcoming is to le-
arn an up-sampling operation (deconvolution) to ge-

nerate the feature maps of higher-resolution. Indeed,
those deconvolution operations can not recover the
lost low-level visual after the down-sampling opera-
tions. For this reason, they are unable to precisely
generate a high resolution output. Indeed, the low-
level visual structure is essential for a proper pre-
diction on the boundaries and details alike. Recently,
the work proposed in (Chen et al., 2018) applied di-
lated convolution filters to deal with larger receptive
fields without down-sampling the image. The afore-
mentioned approach is successful, but it has two li-
mitations. First, the dilated convolution uses a coarse
sub-sampling of features, which likely causes a loss
of important details. Second, it performs convoluti-
ons on a large number of detailed feature maps that
have high dimensional features, which yields additio-
nal algorithmic complexity.

Several applications necessitate accurate segmen-
tation methods, such as activity recognition, naviga-
tion, and human body parsing (Saleh et al., 2018a;
Liang et al., 2018). One of the important applicati-
ons is gesture recognition that is the ability to under-
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standing human hand gestures by detecting and coun-
ting finger parts in a video stream or in still images.
In this paper, we attempt to deal with such small ob-
jects (i.e., finger parts). Consequently, it is essential
to extract extra information from different image sca-
les (e.g., fine to coarse features). Thus, we propose
to enforce the low level layers to learn these fine-to-
coarse features. This is achieved by feeding diffe-
rent resolutions of input images to the network. This
will be advantageous information for solving finger
parts semantic segmentation task, and it can help the
model to overcome scale variations, which is consi-
dered as high-level knowledge. However, the ques-
tion here is which scale will be more beneficial for
extracting high-level information for an accurate fin-
ger parts segmentation. Thus, after feeding images
of different scales, our proposed model can learn to
weight the generated feature maps at different scales.
These feature maps are up-sampled to a unified-scale
and then pooled to feed them to next layers, as shown
in Figure 1. The main contributions of this paper can
be summarized as follows:

• We propose a novel deep aggregation layer ba-
sed on a multi-scale segmentation network which
combines coarse semantic features with fine-
grained low-level features in a parallel style to
generate high-resolution semantic feature maps.
The proposed model is called FinSeg.

• With the lack of realistic labeled finger parts data-
sets, we release a dataset for finger parts semantic
segmentation (called FingerParts dataset). As far
as we know, this is the first available dataset for
finger parts segmentation using a high resolution
real images.

2 RELATED WORKS

Recently, the most successful methods for the se-
mantic segmentation task are related to deep lear-
ning models, specifically CNNs. In (Girshick et al.,
2014), a region-proposal-based method has been used
to estimate segmentation results. In turn, the aut-
hors of (Long et al., 2015; Chen et al., 2018) have
shown the effective feature generation of CNNs and
presented semantic segmentation based on the fully
convolutional networks (FCNs). It worth to note that
FCN becomes a standard deep network for different
applications, such as image restoration (Eigen et al.,
2013), image super-resolution (Dong et al., 2014)
and depth estimation (Eigen and Fergus, 2015; Ei-
gen et al., 2014). However, the main limitation of
networks based on the FCN architecture is the low-

resolution prediction. Thus, many works proposed
different techniques to tackle this limitation in order
to generate high-resolution predictions. For instance,
conditional random field (CRF) has been used as a
post layer for coping with this problem. This is done
by generating a middle resolution score feature map
and then refining boundaries using a dense CRF. In
addition, an atrous convolution layer has been propo-
sed in (Chen et al., 2014). The atrous layers are con-
volution filters with different rates to extract the key
features of input images in different scales. In (Zheng
et al., 2015), a robust end-to-end fashion parsing met-
hod is proposed by adding recurrent layers in order to
improve the performance of the FCN network.

Furthermore, many deconvolution based methods
have been proposed in (Badrinarayanan et al., 2015;
Noh et al., 2015) to learn how to up-sample low re-
solution prediction by taking into account the advan-
tage of middle layer features in the FCN network. For
example, the work proposed in (Chen et al., 2014)
added prediction layers to middle layers to generate
prediction scores at multiple resolutions. Then the
multi-resolution predictions are averaged to generate
the final prediction. But, this model was trained in
multi-stage style rather than end-to-end manner. In
turn, other methods, such as SegNet (Badrinarayanan
et al., 2015), (Sarker et al., 2018; Singh et al., 2018)
and U-Net (Ronneberger et al., 2015) have used skip-
connections in the decoder architecture to add infor-
mation from feature maps extracted of the middle lay-
ers to the deconvolution layers.

Unlike the aforementioned methods, the proposed
FinSeg model exploits the multi-scale features in the
low-level layers in order to predict coarse-to-fine se-
mantic features extracted from different resolution of
an input image. In addition, unlike the standard FCN
network, FinSeg uses the residual network, namely
ResNet101, instead of the VGG network. In addition,
we use the skip-connections of all encoder layers to
add feature maps to all decoder layers as shown in
Figure 1.

3 PROPOSED MODEL

We propose a deep semantic segmentation model
(FinSeg) based on a new aggregation layer. FinSeg
accepts an input image at different resolutions, ex-
tracts feature maps of every scale, weights each ex-
tracted feature maps, pools them and then feeds the
final feature maps through long range connections to
achieve a high-resolution semantic segmentation of
finger parts. Below, we describe the steps of our mo-
del.
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Figure 1: The main structure of the proposed model (FinSeg). Red block refers to the generation of the feature maps from the
proposed aggregation block (shown in details in Figure 2).

3.1 FinSeg Architecture

As shown in Figure 1, the proposed model has an
encoder-decoder architecture. In general, the encoder
reduces the spatial dimension through pooling layers
along with summarizing the input images. In turn, the
decoder recovers the object mask and spatial dimen-
sion. Following (Ronneberger et al., 2015), we use
skip-connections from the encoder to the decoder in
order to recover the object details in the decoder stage
by transferring low level feature from lower layers to
the higher ones.

3.2 Aggregation Layer

We show the architecture of the aggregation layer in
Figure 2. As shown, an image I is fed into the mo-
del with s scales. The input images I1, I2...Is are fed
to a parallel sequence of convolution layers. Shared
convolution filters are applied on the images of diffe-
rent scales. After feeding images of different scales
through first parallel layers of the model, the resul-
ted feature maps have different sizes. Since, it is not
possible to aggregate feature maps with different si-
zes, the multi-scale feature maps are up-sampled to
the largest dimension and aggregated in one feature
map. After aggregation, the resulted feature maps are
then fed into the next aggregation layer and this pro-
cedure is repeated k times.
Fully connected layer (FC) of s inputs and s×nl out-
puts is used to learn the weights of the aggregation
alyer, where s is the number of scales and nl is the
number of internal sequent layers of the aggregation
layer. We propose a fully automated procedure that
can learn how to give a high weight for the more im-
portant scaled feature maps and suppress others. In
this study, s = 3 and nl = 3 are the optimum values
that yield the best results. The FC layer learns to

weight the resulted feature maps of each scale (see
Figure 2). A softmax function is used as an activation
for each resulted s weights. In this work FC is initi-
alized with an input vector w = [1/3;1/3;1/3]. It is
obvious that we start with giving an equal weight for
all scales.

Suppose that the final aggregated feature maps ex-
tracted at a layer l can be expressed as follows:

Fl,i =
s

∑
i=1

wl,iFl,i−1

under the constraint of ∑
s
i=1 wl,i = 1, where Fl,i−1 is

the feature maps of the previous scale i− 1, and i ∈
1....s with l ≥ 2. The resulted Fl,i is then fed into the
convolution layer of the next internal layer.

3.3 Encoder and Decoder of FinSeg

Encoder: After calculating the multi-scale aggrega-
ted feature maps, they are fed into the encoder net-
work. The encoder consists of four convolution lay-
ers followed by a max-pooling layers (down-sampling
layers) to encode input into feature representations at
different levels as shown in Figure 1. The encoder
layers are adapted from the pre-trained ResNet101
network (the first four layers only).
Decoder: It consists of up-sampling and summing
followed by regular convolution operations. To re-
cover original image dimensions by up-sampling, we
use the bi-linear interpolation. Thus, we expand the
feature maps dimensions to meet the same size with
the corresponding blocks of the encoder and then ap-
ply skip connections by summing the feature maps of
the decoder layer with the ones generated from the
corresponding encoder layers.
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Figure 2: The architecture of the aggregation layer. Feature maps are aggregated at the largest scale in each internal layer.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

4.1 FingerParts Dataset

In this paper, we introduce to a new dataset based
on real hand images (called FingerParts) that can be
used for the human palm and finger parts segmenta-
tion task. The FingerParts dataset contains 1100 real
images and their corresponding annotations. We have
ordered human made annotations, which is in general
perfect. Number of hands per image is ranging from
one hand to three hands in most cases. These ima-
ges can contain backside or frontal views of different
hands as shown in Figure 3.

Furthermore, 1000 images were taken from a pu-
blic dataset for hand gesture recognition (Kawulok
et al., 2014; Nalepa and Kawulok, 2014; Grzejszczak
et al., 2016). In addition, 100 images were collected
by scrapping images from Google Image. The re-
sults of scrapping were manually checked in order to
avoid repeated and non-relevant images. The number
of classes in the dataset is 17: a class for the back-
ground, 3 classes per finger (3×5 = 15) and one for
each palm. Information about key-points is also avai-
lable. There is 16 key points information per hand
(i.e., 15 for the fingers parts and one for the palm).
In Table 1, we show a comparison between the Fin-
gerParts dataset with prior state-of-the-art datasets. It
is obvious that our dataset is based on realistic ima-
ges and it can be used for semantic segmentation and
gesture recognition tasks.

Data Augmentation

In this study, we applied data augmentation by scaling
the input images by a random value varying between
0.5 and 2.0. In addition, we applied illumination
changes via a gamma correction operator with values
varying from 0.5 to 3.0 with a step of 0.5. Random
horizontal flipping was also applied. Furthermore, we
added extra synthetic backgrounds to the input ima-
ges to expose the model to more difficult tasks. In
total, we have 58,380 images for training and 4935
for testing.

Figure 3: Samples of the proposed FingerParts dataset.

4.2 Training Procedure

In each iteration, FinSeg reads a batch of 8 ima-
ges, resizes them to 512x512 and normalizes them.
The normalization step consists of 3 steps: 1) the in-
put image is divided by 255. This step makes va-
lues of each RGB image varies between 0 and 1.0,
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Table 1: Quantitative comparison of our proposed dataset, FingerParts, with public datasets of hand segmentation task.

Dataset Number of Images Segmentation Task Real/Synthetic Key Point
(Zimmermann and Brox, 2017) 41258 Yes Synthetic Yes

(Kawulok et al., 2014) 899 No Real Yes
MU HandImages (Barczak et al., 2011) 2425 No Real Yes

FingParts(our) 1100 Yes Real Yes

2) centralization of image values through subtracting
[0.485,0.456,0.406] from RGB channels respectively
is applied, and 3) the RGB channels are divided by
[0.229,0.224,0.225]. Those values were used on Ima-
geNet dataset for classification task and fixed (empi-
rically) from computer vision community. An initial
learning rate of 0.01 with weight decay of 10−8 were
used in the training procedure. SGD was chosen as an
optimizer and with a value of 0.99 for the momentum
parameter. In this work, the cross-entropy is used as a
loss function. It is defined as:

CE =−∑
i

y
′
ilog(yi)

where yi is the probability for predicted class i and y
′
i

is the true probability for that class.
Although, the proposed aggregation layer add

some algorithmic complexity to the proposed model
by multi-scale layers, it converges in the same num-
ber of iterations of the standard FCN model (See Fi-
gure 4). However, the training process is more expen-
sive in terms of time consumption.
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Figure 4: The convergence of the proposed model and the
FCN model.

4.3 Evaluation Metrics

In this work, we use two metrics to assess the perfor-
mance of the proposed model: the intersection over
Union (IoU) and pixel accuracy. In literature, IoU
is referred to as the Jaccard index, which is basically
a metric to calculate the percent overlap between the

target mask and the prediction output.

IoU =
target ∩ prediction
target ∪ prediction

We also use the pixel accuracy metric. This metric
reports the percent of pixels in the image which were
correctly classified. The pixel accuracy is calculated
for each class separately as well as globally over all
classes. It can be defined as follows:

accuracy =
T P+T N

T P+T N +FP+FN

4.4 Experimental Results and
Discussion

We evaluate our approach on the proposed dataset
(FingerParts). To present the usefulness of automati-
cally selecting of feature maps scales, we choose the
FCN model of (Chen et al., 2014) as baseline. In this
section, we compare the results of three variations of
the aggregation layer of the proposed model (Avra-
geAggr, AggrFCNSoftmax and AggrFCNRelu) with
the ones of FCN model. The first variation of the pro-
posed aggregation layer (AvrageAggrFCN), we apply
aggregation is by averaging of feature maps of dif-
ferent scales with the same internal layer. The se-
cond variation (AggrFCNSoftmax), we use a softmax
function as an activation function applied on the weig-
hts resulting of the FC layer. In the third variation
(AggrFCNRelu), we add a Relu after every internal
convolution layer of the aggregation block.

Table 2 hows the experimental results of the pro-
posed model with the proposed dataset. The baseline
model, FCN, yielded an IoU of 0.58 and an accuracy
of of 87%. AvrageAggr gave an improvement of 4%
in IoU values (only after average the feature maps ex-
tracted at different scales). However, for the accuracy,
there was a small improvement (< 0.5%).

Learning a weight for the resulted feature maps at
a scale is a generalized form of aggregation, and it has
more potential to find optimized weights. According
to results shown in Table 2, predicting the weights of
each feature map using an FCN layer yields better re-
sults than the baseline model. An improvement of 5%
with AggrFCNSoftmax was achieved. Another ex-
periment were conducted to check Relu function as
an activation function with AggrFCNRelu yielded an
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IoU improvement of about 3%. Thus, the best results
was achieved when we use the softmax function for
estimating the weight values of each scale.

Qualitative results of some of these experiments
are shown in Figure 5. As shown, and supporting our
quantitative results, the proposed model with AggrF-
CNSoftmax (using aggregation of FC and sofmax lay-
ers) present visual improvements of finger parts seg-
mentation with our dataset, compared to the FCN mo-
del and the two other variations of the proposed model
(AggrFCNRelu and AvrageAggr).

Table 2: The performance of the three variants of the pro-
posed model (AggrFCNSoftmax, AggrFCNRelu and Avra-
geAggr) and the FCN model.

Method IoU Accuracy
FCN (Chen et al., 2014) 0.5833 87.32

AvrageAggr 0.6231 87.64
AggrFCNSoftmax 0.6307 88.13

AggrFCNRelu 0.6151 87.91

A Case Study

To assess the performance of the proposed model
on a concrete case, we select an image randomly
(see Figure 6) from the dataset.Then, we analyze
the performance of the proposed model under diffe-
rent conditions: illumination changing, background
changing, and image flipping. With no effects on
the input image, our model achieved an IoU of
0.5515. Applying illumination effect based on non-
linear Gamma correction with different values (γ ∈
{0.5,1.0,1.5,2.5}) causes a degradation in the per-
formance of our model (IoU drops to 0.5515). This
degradation can be explained by the disappearance of
small parts in Figure 6-(col 1-2). Another issue was
investigated by changing the background and image
flipping. Our experiments show that the changing in
the background IoU reduces to 0.5501 (see Figure 6-
(cols. 3-4)), while image flipping reduces the IoU
to 0.5493 (see Figure 6-(cols. 5-6)). As shown, the
change of the IoU value around 0.55 under different
conditions, such illumination changes, adding back-
ground and image flipping. Consequently, we can say
that the change on the global context of the input ima-
ges has insignificant impact on the final decision of
the proposed model. It is important to note that dif-
ferent finger parts are discriminated using their rela-
tive location to the palm more than their appearance.
Thus, we can conclude that the model learns how to
extract global shape information from the input ima-
ges.

5 CONCLUSIONS

In this paper, we have proposed a novel deep lear-
ning based model for finger parts semantic segmen-
tation. The proposed model is based on generating
features maps with different resolution of an input
image. These features maps are then aggregated to-
gether using automated weights estimated from fully
connected layer. The estimated weights are used to
assign a high weight for the more important scaled
feature maps and suppress others. The generated fe-
ature maps are fed into an encoder-decoder network
with skip-connections to predict the final segmenta-
tion mask. In addition, we have introduced a new da-
taset that can help to solve finger parts semantic seg-
mentation problem. To the best of our knowledge,
FingerParts is first dataset for finger parts semantic
segmentation with real high resolution images. The
proposed model outperformed the standard FCN net-
work with an improvement of 5% in terms of the IoU
metric. Future work will include the use of the seg-
mented fingers parts to improve the accuracy of ge-
sture recognition methods.
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