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Abstract: Hyperparameter tuning is a critical function necessary for the effective deployment of
most machine learning (ML) algorithms. It is used to find the optimal hyperparameter settings of
an ML algorithm in order to improve its overall output performance. To this effect, several opti-
mization strategies have been studied for fine-tuning the hyperparameters of many ML algorithms,
especially in the absence of model-specific information. However, because most ML training pro-
cedures need a significant amount of computational time and memory, it is frequently necessary to
build an optimization technique that converges within a small number of fitness evaluations. As a
result, a simple deterministic selection genetic algorithm (SDSGA) is proposed in this article. The
SDSGA was realized by ensuring that both chromosomes and their accompanying fitness values
in the original genetic algorithm are selected in an elitist-like way. We assessed the SDSGA over a
variety of mathematical test functions. It was then used to optimize the hyperparameters of two
well-known machine learning models, namely, the convolutional neural network (CNN) and the
random forest (RF) algorithm, with application on the MNIST and UCI classification datasets. The
SDSGA’s efficiency was compared to that of the Bayesian Optimization (BO) and three other popular
metaheuristic optimization algorithms (MOAs), namely, the genetic algorithm (GA), particle swarm
optimization (PSO) and biogeography-based optimization (BBO) algorithms. The results obtained re-
veal that the SDSGA performed better than the other MOAs in solving 11 of the 17 known benchmark
functions considered in our study. While optimizing the hyperparameters of the two ML models,
it performed marginally better in terms of accuracy than the other methods while taking less time
to compute.

Keywords: algorithm; convolutional neural network; hyperparameter; random forest; machine
learning; metaheuristic; optimization

1. Introduction

Machine learning (ML) techniques are increasingly being used in a wide range of
research areas including for object detection and classification [1,2], natural language
processing and data-driven control [3]. Despite the relatively good performance obtained,
selecting the optimal hyperparameter (HP) values for most ML models remains a significant
challenge. These hyperparameters are usually classified as either continuous, discrete, or
a combination of the two [4]. Continuous hyperparameter metrics that can be optimized
include the learning rate, decay, momentum and regularization parameters [5,6]. Similarly,
the number of layers in deep learning models and the number of trees in the random
forest algorithm are examples of discrete hyperparameters that must be fine-tuned [7].
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We could perhaps note that other conditional search spaces might be influenced by other
hyperparameters, such as the type of optimizer used in training, which determines the
types and number of hyperparameters to be used [8].

In terms of hyperparameter tuning, the random and grid search approaches are
currently the most popular methods for fine-tuning the hyperparameters of many ML
models [9,10]. However, because they tend to search every sample point in the hyperpa-
rameter space, regardless of the training configuration used, these search techniques are
regarded as naive approaches. Consequently, such search methods are inefficient, and the
computational complexity and cost of optimizing hyperparameter values increase. Several
other optimization techniques, such as Bayesian optimization, evolutionary strategies,
and tree pipeline approaches have been proposed for searching and selecting the optimal
hyperparameter values of many ML models [11–13].

It has been demonstrated that the Bayesian optimization technique with Gaussian pro-
cesses can effectively search for hyperparameter values in a continuous search space [14].
Tree-based Bayesian optimization and evolutionary algorithms have also been demon-
strated to be flexible and applicable in a wide range of search spaces [13]. However,
comparing the performance of different ML models is necessary, especially when different
optimization techniques are used to optimize the hyperparameter values under differ-
ent application conditions. As a result, in order to improve the training efficiency and
accuracy performance of ML models, the present article proposes an improved optimiza-
tion technique called the simple deterministic selection genetic algorithm (SDSGA) for
hyperparameter optimization. Following the performance of the proposed technique, we
summarize the current article’s contributions as follows:

1. A simple deterministic selection genetic algorithm (SDSGA) was developed as an
improved optimization technique for computing optimal HP values with a small
number of fitness evaluations.

2. The proposed SDSGA has shown a high exploitative capability which makes it able
to search more deeply within a region in the search space without sacrificing its
exploratory capabilities.

The rest of the paper is structured as follows: Section 2 examines the related work,
while our proposed SDSGA is described in Section 3. Our method of comparison and
analysis is presented in Section 4. Experimental results were obtained, discussion is
presented in Section 5, and Conclusions are drawn in Section 6.

2. Related Work

Several techniques have been proposed for optimizing the hyperparameters (HPs)
of ML models. These include the grid search, random search, and Bayesian optimization
techniques. The grid search approach was observed to be inefficient and time consuming
in optimizing certain hyperparameters [14,15]. Similarly, the random search approach has
been shown to be effective in optimizing the HPs of ML models within a small search
space [9]. However, due to the random nature of the technique, its performance tends to be
spurious and erratic, necessitating the use of more computational resources [15]. This is
frequently associated with a lack of indicators and a guide for an optimization process that
governs the expected improvement direction.

The Bayesian Optimization and Gaussian process approaches have also been used
to optimize the HP values of ML models [16]. These algorithms are inherently sequential
in nature since they rely on the results of the previous iteration to decide on the next HP
sample to be evaluated [17]. Thus, this leads to their inability to use multiple CPU and
GPU cores in speeding up the optimization process. Other HP optimization methods for
speeding up the search space are documented in [14,18], with a popular approach being the
Successive Halving Algorithm SHA [19]. In this approach, the HPs optimization problem
was defined as a non-stochastic multi armed bandit problem, in which more resources
are allocated to the HP samples that demonstrate more promising performance. Similarly,
in [18], an early stop criteria mechanism was incorporated into the algorithm to prevent
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the model from being evaluated with unfavorable HP samples. Thus, this speeds up the
search process as compared to the naïve random search approach.

Some other hybrid methods were also proposed to speed up the optimization process,
among these is the adaptive Bayesian approach, in which dataset sizes were selected
adaptively, and the model was evaluated using the Bayesian optimization algorithm [20].
Similarly, the Bayesian optimization approach was combined with the hyperband, thus
harnessing the strength of both techniques to effectively search the solution space and
to terminate the process [14]. Despite being highly parallel, the lack of consideration of
previous experiences in searching for new solutions is a major drawback associated with
random search-based approaches.

It has been demonstrated that the Gaussian Process (GP) and Bayesian Optimization
(BO) are effective methods for optimizing HP configurations. However, they cannot fully
take advantage of parallel computing platforms due to their inherently sequential nature.
Other approaches that use the power of parallel computing platforms to accelerate HP
optimization processes have been reported in [12,21]. For example, a metaheuristic-based
approach called the covariance matrix adaptation evolutionary strategy (CMA-ES) has been
proposed to optimize HPs in ML models. Similarly, the PSO-BO algorithm was proposed
in [22], which uses the PSO algorithm to optimize the acquisition function of the BO
algorithm. Other metaheuristic approaches for hyperparameter optimization are presented
in [23,24]. In addition, a parallel approach referred to as the parallel PSO was proposed
in [25] to scale up the HP optimization, while harnessing the strength of the multiple
computing resources. The results obtained demonstrated performance improvement over
the sequential PSO-BO technique. Other documented approaches entail the use of large
population sizes in evaluating the performance of metaheuristics-based optimization of
ML model HPs [26,27].

Various AutoML systems have been proposed in the literature for the practical appli-
cation of hyperparameter optimization of ML models. The main goal is to automatically
optimize the ML pipeline, such as optimizing the ML model selection and hyperparameters.
These include Auto-Sklearn [28], Auto-Weka [29], Auto-Keras [15], and Auto-Pytorch [30],
which are named after the ML packages they primarily support. Despite the fact that our
research is not about AutoML, we should point out that, because our proposed optimization
algorithm is model-free, an AutoML system can be built with little modification using the
proposed optimization algorithm.

These approaches mentioned thus far can be summarized into those that fully evaluate
the model and then optimize the results, such as the validation error or validation accuracy,
and those that do not fully evaluate the model and do not optimize the results. There are
several algorithms that fall into the category of those that fully evaluate the model, such as
the BO and PSO-BO algorithms, as well as those that only evaluate the models for a limited
number of iterations such as the SHA and its variants. Although these different classes
and techniques have many advantages, they also have some significant drawbacks. For
example, the first group requires algorithms that are highly parallel; otherwise, it may take
a long time before any useful results can be generated—whereas the second class, on the
other hand, may result in the possibility of losing good hyperparameters since the model
are often not evaluated in its entirety.

However, in this article, we present the SDSGA with an aim to efficiently search for
the optimal hyperparameters of ML models. A comparative analysis approach was then
used in evaluating the performance of the developed SDSGA, which was then compared
with other MOAs, such as the genetic algorithm (GA), particle swarm optimization (PSO),
and biogeography-based optimization (BBO) techniques. We used small population sizes
in order to conserve the computation resources involved in training ML models (CNN and
RF). As a result, the fewer function evaluations used to find the optimal HP values, the less
time will be spent on training the model.
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3. Methodology

In this article, the selection method used in the typical GA is modified. The elitist GA
as described in [31] was used as the base GA, as it has been shown to be very effective
in finding global optima in unimodal and multimodal problems [32]. We note that the
proposed approach was motivated by the desire to overcome the drawback of the original
GA, which uses probabilistic selection techniques such as the roulette wheel. Because of
this, the original GA has a tendency to become trapped in local optima, thus being a major
weakness in the exploitation capabilities of the GA.

3.1. Crossover and Mutation in GA

When using the GA, a population of individuals is created that contains the variables
that need to be optimized, which are known as chromosomes. A population is defined
in (1) with the row vector [x1,1x1,2x1,3 . . . x1,m] representing the solution vector in a single
iteration. X is a matrix of all individuals that take part in the optimization process. The
total population throughout the run is defined in (2), where n represents the n-th iteration,
and m represents the number of agents or chromosomes:

X =


x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m

...
...

...
. . .

...
xn,1 xn,2 xn,3 . . . xn,m

 (1)

pop =


pop1
pop2
pop3

...
popn

 (2)

Furthermore, let P represent the percentage of the best fitness values to be chosen
as the number of parents in the population; thus, assuming P = 30%, the top 30% of the
population in terms of fitness will be chosen for recombination/crossover. If xn

i represents
the i-th individual in the n-th generation, and this individual’s fitness is in the top 30%
of the population, it will be chosen as a parent; otherwise, it will not be chosen. This is
represented in (3) as follows:

xn
iselect(t) =


[xn

iselect(t − 1), xn
i ] i f f itness(xn

i ) ε (P × xn)

xn
iselect(t − 1) i f otherwise

(3)

where xn is the whole population, t is the iteration count, xn
iselect(t) is the parent array at

the end of given iteration of the for loop in line 6 of Algorithm 1, xn
iselect(t − 1) is the parent

array at the end of the previous iteration, the expression [xn
iselect(t − 1), xn]i means that xn

i ,
which is the nth individual is appended to the parent array xn

iselect(t − 1) from the previous
iteration. The first condition in (3) implies that an i-th individual will be appended to the
parent array if its fitness value is in the best P% of the whole population, whereas the
parent array remains the same if otherwise.

Regarding the crossover probability, for example, if the probability of crossover Pc is
set to 60%, then two randomly selected individuals will have a 0.6 probability of performing
a crossover operation on each other. The same rule applies to the mutation operation as it
does to the other operations. The number of parents, the probability of crossover, and the
probability of mutation are typically provided as parameters to the GA algorithm before the
optimization run is carried out. Notably, the individuals upon which these crossover and
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mutation operations are conducted are those whom are selected according to the criteria
stated in (3).

3.2. Proposed Improved Genetic Algorithm (SDSGA)

In implementing the GA, it was discovered that, if the population is too low, there
appears to be little to no diversity in the population after a few generations. Although
increasing the mutation probability can inject diversity, the GA tends to diverge and is
unable to exploit a promising region of the search space more effectively.

The strategy employed in this study is to enhance the highly exploitative prop-
erty of GA by modifying the selection algorithm in such a way that the entire solu-
tion/chromosome set, including the fitness values, is considered rather than only the
fitness value being used as a selection criterion as was previously done. On the other
hand, we note that there have been several proposals in the literature for improving GA
by specifically modifying the selection algorithms used for selecting parents who will
participate in crossover operation [33,34]. Our proposal is different since it only involves
a simple selection of individuals sorted in a decreasing order of fitness values making
sure that all selected individuals are unique. Although this can help in highly exploitative
search, it reduces diversity in the population, which makes the algorithm unable to search
globally in the search space.

This challenge was addressed by increasing the mutation probability. It may be counter
intuitive to increase the mutation probability as it causes divergence in the algorithm.
However, since the system is already highly exploitative, this shows that the global search
and the local search can be balanced using this method. The proposed algorithm for the
modified GA selection algorithm is shown in Algorithm 1, whereas Figure 1 presents
the flowchart for the proposed SDSGA. The performance of the proposed SDSGA was
tested and evaluated by comparing with other well-known and popular metaheuristic
optimization algorithms, particularly the GA, PSO and BBO algorithms, which will be
described in Section 4. They were all tested for both benchmark function optimization
and the tuning of the HPs of the ML models, specifically the CNN and RF algorithms. For
tuning the hyperparameters, Bayesian Optimization, as described in [11], was used as a
basis for comparison.

Algorithm 1 Pseudocode of the selection algorithm.

Require: population
Ensure: parent array

1: Sort the population in decreasing order
2: Create array of zeros to contain parents
3: Set added, count to 0
4: for each individual in population do
5: if individual does not exist in parent array then
6: Add copy of individual to parent array
7: Increment added
8: end if
9: if added is equal to parent size then

10: Break
11: end if
12: end for
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Start
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satisfied?

No

Yes

Stop

Figure 1. Flowchart of the SDSGA.

4. Experimental Components

This section describes the datasets, benchmark functions, and optimization algorithms
used in this study. The approach used is broken down into five sections: dataset description,
overview of metaheuristic optimization algorithms, overview of ML models classifiers, our
method of comparison, and the evaluation metrics used.

4.1. Description of Benchmark Functions

To validate the SDSGA’s suitability for optimizing the hyperparameters of ML models,
its performance was compared to that of some well-known metaheuristic optimization
algorithms. The proposed SDSGA was tested on 17 benchmark functions that included
both unimodal and multimodal functions. The chosen functions have been widely used in
the literature as alternative functions in place of real-world simulations. They also present
various challenges to optimization algorithms, making them excellent tools for comparing
and validating different metaheuristic algorithms. The mathematical expressions of some
of these functions are described in [35].

A dimension of 10 was used for all the benchmark functions with a population size
of 200 and iteration of 100, which is within the limit of the maximum number of fitness
evaluations as noted in [36]. The use of dimension 10 generally introduces some level
of complexity and difficulty into the optimization process with difficulty increasing as
dimension increases. The initial population was generated randomly only once for every
run and passed to each of the optimization algorithms. This is done to make sure that they
all start under the same initial condition.

The optimization algorithms were run five times for each benchmark function and
a pivot table was created. The mean and standard deviation of the runs were computed.
These were used to compare the performance of the optimization algorithms.

4.2. Description of the Datasets

We used two different datasets from different application areas in this article. The
first set of data used were obtained from the MNIST vision classification datasets [37],
while the second sets of data were obtained from the UCI classification datasets [38]. The
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MNIST dataset consists of 70,000 gray scale images out of which 60,000 images were used
for training and 10,000 for testing. These images have a resolution of 28 × 28, which gives
a total of 784 pixels. These images have a resolution of 28 × 28, which gives a total of
784 pixels. We note that all the images belong to one of 10 classes contained in the datasets.

The objective was to optimize the HP values using each of the metaheuristic optimiza-
tion algorithms (SDSGA, GA, PSO and BBO) and the BO algorithm for the CNN model
in order to predict and classify an image into a category that is appropriate for the image.
Some sample images contained in MNIST datasets are shown in Figure 2. In addition, five
UCI image datasets were selected for this research including the car evaluation, breast
cancer clinical trial, ADULT, LETTER and forest cover Type. Table 1 summarizes the key
details of these datasets. The selected optimization algorithms were then used to optimize
the hyperparameters of the RF model in predicting the classes in the datasets.

Figure 2. Some of the images present in the MNIST dataset.

Table 1. Summary of the UCI dataset.

S/N Name Number of Instances Number of Features Missing Values?

1 CAR 1728 6 NO
2 Breast Cancer 569 32 NO
3 Adult 48,842 14 YES
4 Letter 20,000 16 NO
5 Cover Type 581,012 54 NO

4.3. Overview of the Metaheuristic Optimization Algorithms

The GA, PSO and BBO metaheuristic optimization algorithms [39–41], as well as our
proposed SDSGA were used to optimize the HP values of each ML model. The selection of
these algorithms was based on their widespread use as representative examples of their
nature of optimization in general. We note that not too much effort has been put into
optimizing the parameters of these metaheuristic optimization algorithms. Instead, good
parameters are often selected based on reports from the literature. The BO algorithm was
used as a baseline for comparison purposes in [11].

4.3.1. Particle Swarm Optimization (PSO)

The PSO is a population based-metaheuristic optimization algorithm, belonging to
the class of Swarm Intelligence [42]. It models solutions to an optimization problem as a
swarm of particles having specified positions and velocities. These particles also possess
memory for storing their local best position and some means of communication of the
global best position:

vt+1
i = vt

i + αε1[g∗ − xt
i ] + βε2[x∗i − xt

i ] (4)



Appl. Sci. 2022, 12, 1186 8 of 19

xt+1
i = xt

i + vt+1
i (5)

where v and x represent the velocity and position of a particle, respectively. The subscripts
t and i are the iteration and an individual particle, respectively, whereas α, β, ε1, ε2 are the
learning parameters used to fine-tune the algorithm per specific problem.

4.3.2. Genetic Algorithm (GA)

The GA is also a population-based metaheuristic algorithm that was developed based
on Darwinian theory of evolution of genes [39]. The solution to an optimization problem is
represented by GA as a population of chromosomes. These chromosomes then iteratively
recombine and mutate to form new child chromosomes with the aim of producing better
offspring as the generation progresses. Further details on the theoretical development of
GA as an optimization algorithm can be found in [43]. We note the existence of another
variant of GA known as Elitist GA, which ensures the preservation and propagation of
the best results over the next generation [44]. This variant of the GA was adopted for the
optimization of the HP values in this research.

4.3.3. Biogeography Based Optimization (BBO)

The BBO algorithm was proposed in [45], as a way of connecting the engineering field
with that of biogeography. Biogeography was thus mathematically modelled in such a way
that it describes the species migration from a one island to another, the rise of species, and
the extinction of others. We note that an island in the context of optimization describes a
habitat that is geographically isolated from other habitats around it. The objective function
was modelled by the habitat suitability index (HSI), while the independent variables were
modelled as the suitability index variables (SIVs). This optimization process follows the
emigration and immigration of species from one island to another. The island with a
high HSI has a high fitness value, and the island has a high emigration rate as the species
migrate to explore other islands. The island with low HSI tends to have a high immigration
rate. This is because there is less competition on the island, thus making it very attractive.
However, species on the island tend to go extinct if the island does not get better, which, in
turn, causes more immigration.

4.3.4. Metrics of Analysis for Optimizing Benchmark Functions

The performance of the four metaheuristic optimization algorithms, SDSGA GA, PSO
and BBO algorithms for the optimization of benchmark functions were analyzed using
metrics such as mean of the best solution reached by the algorithm and the standard
deviation of the best solutions. By taking the mean of the best solutions found, it is possible
to reduce the impact of outliers on the results. As a measure of variability or spread around
a mean, the standard deviation of the solutions provides an indication of that variability
or spread.

4.4. Overview of the Machine Learning Classifiers

A simple CNN model with two convolution layers was trained on the MNIST dataset.
The convolution filter used has a size of 5 × 5, with a stride of 1 and no padding. The
MaxPooling filter was used at the pooling layer after the convolution step with a size of
2 × 2. We added dropout to regularize the model to avoid overfitting. The Log SoftMax
was used at the output of the model to select one of the 10 classes predicted for an image.
The Adam optimizer was used with default parameters and the model’s loss was computed
using a negative log likelihood loss function. The structure of the convolutional neural
network used is depicted in Figure 3.

For the classification tasks, the RF classifier was trained on the UCI datasets. In order
to keep the experiment simple, the same model was used for training all the four datasets.
A preprocessing step was necessary for the ADULT dataset since it contains some missing
data. This involves mainly filling the unavailable fields with the mode of the feature values.
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Figure 3. Structure of CNN used, showing the results of all operations.

4.4.1. Tuning the Hyperparameters of CNN Model

The CNN model was trained using the MNIST dataset. Two hyperparameters viz.
learning rate, lr, and the batch size, s, were selected to be optimized. The selection of
these HPs was guided by the results of the preliminary experimental investigation, which
revealed that the learning rate and batch size have a significant impact on the accuracy of
the CNN ML model when used for image classification problems. The ranges used for the
two hyperparameters are lr = [0, 1] and s = [20, 2000]. The three algorithms used were
limited to only a population size of 15. This was done in order to meet the goal of using
smaller population sizes to evaluate the performance of the algorithms while utilizing
limited computational resources.

4.4.2. Tuning the Hyperparameters of the Random Forest Model

The performance of the RF algorithm for classification depends highly on both the
strength of a single tree and the correlation between trees [11]. The value that controls them
is m < M, where m is the number of features that a leaf node should be split, and M is
the number of features in the dataset. An increase in m will increase the strength of the
trees as well. However, this will increase the correlation between trees which will in turn
increase the error rate of classification. Therefore, a trade-off needs to be made by finding
the optimal value of m. The second hyperparameter is the number of trees in the RF model.
A smaller number of trees implies having lower accuracy. Thus, the range of values used
for these hyperparameters are m = [1, 20] and n = [1, 200]. We note that we have used the
standard implementation of RF algorithm with classification and regression trees (CART)
implementation of decision trees [46]. However, there are perhaps better alternatives such
as the oblique RF [47,48], where, instead of simple partitioning as is done in standard
RF, an oblique linear hyperplane is used in splitting the training data at each node. The
heterogeneous oblique RF [49] is also a type of oblique RF where the authors proposed the
use of multiple linear hyperplanes for the splitting of the features. The choice of which will
be based on some optimization at the node. Another type of RF is the multinominal RF
(MRF) [50] which is concerned about increasing the consistency and the differential privacy
in RF with performance comparable to the standard RF.

4.4.3. Metrics of Analysis for HP Optimization

The BO and four metaheuristic optimization algorithms, SDSGA GA, PSO and BBO
were evaluated for tuning the HPs of ML models using metrics such as mean validation
accuracy, number of iterations and execution time. The validation accuracy is the most
essential metric since the purpose of the HP optimization is to improve the classification
accuracy of the ML models. Metaheuristic optimization algorithms are well known for their
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effectiveness in determining global optimal solution values in specific problems. However,
a large number of fitness evaluations are required to accomplish this. The algorithm may
find fitter solutions to the model as the number of iterations increases. Similarly, in this
study, the number of iterations was used as a metric to compare the algorithms by using
the worst performing algorithm as the baseline and comparing how long the competing
algorithms took to reach a comparable solution. Furthermore, the execution time was
computed to compare how long it takes each algorithm to perform the optimization process
excluding the preprocessing step. It is noted that, due to the sequential nature of BO,
a single fitness evaluation is the same as one iteration. This is in contrast to the other
metaheuristic algorithms, which consider 15 fitness evaluations to be one iteration. To
normalize this metric, 15 fitness evaluations were thus grouped as one iteration in the
BO algorithm.

5. Results and Discussion

The performance of the SDSGA is compared to other metaheuristic algorithms in this
section, both on the different benchmark functions and for fine-tuning the hyperparameters
of two ML models. For the performance comparison of the benchmark functions, metrics
such as mean accuracy and mean standard deviation were used for comparison. For tuning
the hyperparameters of the two ML models, metrics such as accuracy, number of function
evaluations, and execution time were used to make comparisons.

5.1. Effect of the Population Size on SDSGA Performance

This section discusses how the proposed SDSGA performs when different percentages
P of the total population size were chosen as the number of parents, ranging from 10%
to 90% with a 10% increment, when applied to the benchmark test functions, as well as
how the considered ML models, namely the random forest and the CNN performed when
trained on the MNIST and UCI datasets. Following Figure 4, the total number of best results
recorded across the entire benchmark functions by the SDSGA was 13 at both P = 20% and
30% parent sizes.

The least performance was at P = 90%, which may be attributed to the fact that almost
the entire population was considered as parents, thus effectively reducing the chance for
exploitation through recombination. Furthermore, the fact that the 20% and 30% parent
sizes yielded the same number of the best outcomes shows that there were no statistical
differences between the two parent sizes. As a result, selecting any of the two parent sizes
will result in the same performance. Summarily, Figure 4 simply indicates that the SDSGA
achieves the best performance in 13 of the benchmark functions when the parent size was
set to 20% and 30% of the total population.

A similar study was performed on some UCI datasets, and it was discovered that
a parent size of 20 and 30% yielded the best results when applied to different datasets,
as shown in Figure 5. Nonetheless, we see a minor improvement in performance by the
proposed SDSGA when a parent size of 20% was chosen and implemented on the LETTER
and ADULT datasets as opposed to 30%. In the instance of the LETTER dataset, there was
a modest improvement in accuracy from around 96.5% for a parent size of 30% to about
96.52% for the size of 20%, and, similarly, about 85.88% was recorded for the parent size of
20% compared to 85.86% recorded for the 30% parent size (see Figure 5). We should point
out that the little change may not be statistically significant. As a result, the parent size of
either 20 or 30% can be selected for evaluating the SDSGA.
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Figure 4. Effect of varying the parent size.

Figure 5. Comparison of accuracy of the UCI datasets under varying parent population percentages.

5.2. Comparison and Evaluation of Optimization Algorithms on Benchmark Function

Table 2 shows the result of running the SDSGA on 17 benchmark functions and
comparing its performance with that of the GA, PSO and BBO algorithms. The light
green color in the table was used to highlight the best mean values per function, while
the light brown color highlighted the highest standard deviation values. Table 2 shows
that the developed SDSGA performed better than the three compared algorithms in terms
of accuracy in 65% of the benchmark functions. In some cases where the SDSGA did not
perform as well as other algorithms used for comparison, the standard deviation shows
that the result does not deviate too far from the global optimum and that its results are
stable across runs.
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Table 2. Result of comparison of metaheuristic algorithms on benchmark functions in 10D.

Algorithms

BBO GA PSO SDSGA

S/N Functions Global Sol Mean Std Mean Std Mean Std Mean Std

1 Ackley 0 5.81 × 10+00 7.96 × 10−01 2.20 × 10+00 6.19 × 10−01 1.41 × 10+01 8.04 × 10+00 1.53 × 10+00 2.70 × 10−01

2 DeJongsF1 0 1.86 × 10+01 1.35 × 10+01 5.96 × 10−01 4.76 × 10−01 3.62 × 10+00 1.44 × 10+00 4.96 × 10−01 5.88 × 10−01

3 DeJongsF2 0 2.54 × 10+04 2.03 × 10+04 1.07 × 10+03 8.16 × 10+02 3.27 × 10+03 3.90 × 10+03 6.53 × 10+02 4.13 × 10+02

4 Ellipsoid 0 7.67 × 10+05 4.95 × 10+05 6.94 × 10+03 8.76 × 10+03 1.67 × 10+05 1.29 × 10+05 1.16 × 10+04 2.54 × 10+04

5 Griewank 0 −6.90 × 10−01 5.30 × 10−02 −8.43 × 10−01 1.02 × 10−01 −4.62 × 10−01 2.31 × 10−01 −9.58 × 10−01 1.72 × 10−02

6 Hyper Ellipsodic 0 8.90 × 10+01 2.15 × 10+01 4.52 × 10+00 3.17 × 10+00 4.01 × 10+01 2.44 × 10+01 1.32 × 10+00 1.48 × 10+00

7 KTablet 0 4.96 × 10+04 1.18 × 10+04 9.35 × 10+02 1.13 × 10+03 1.39 × 10+04 7.81 × 10+03 1.09 × 10+03 1.40 × 10+03

8 Michalewicz −1.8013 −9.29 × 10+00 7.26 × 10−02 −9.31 × 10+00 9.63 × 10−02 −3.81 × 10+00 4.16 × 10−01 −9.43 × 10+00 1.74 × 10−01

9 Rastrigin 0 5.11 × 10+01 9.01 × 10+00 1.42 × 10+01 5.77 × 10+00 9.08 × 10+01 3.64 × 10+01 7.23 × 10+00 1.55 × 10+00

10 Rosenbrock 0 2.54 × 10+04 2.03 × 10+04 1.07 × 10+03 8.16 × 10+02 3.27 × 10+03 3.90 × 10+03 6.53 × 10+02 4.13 × 10+02

11 Schwefel −418.9829 −6.36 × 10+02 2.37 × 10−01 −6.36 × 10+02 9.51 × 10−02 −5.34 × 10+02 3.46 × 10+01 −6.36 × 10+02 1.12 × 10−01

12 Sphere 0 1.86 × 10+01 1.35 × 10+01 5.96 × 10−01 4.76 × 10−01 3.62 × 10+00 1.44 × 10+00 4.96 × 10−01 5.88 × 10−01

13 StyblinskiTang −391.66165 −180.32 1.13 × 10+02 −3.56 × 10+02 2.86 × 10+01 −2.99 × 10+02 4.58 × 10+01 −3.75 × 10+02 1.13 × 10+01

14 SumOfDiffPower 0 1.73 × 10+03 1.59 × 10+03 1.05 × 10+01 1.09 × 10+01 3.84 × 10+03 6.75 × 10+03 8.66 × 10−01 1.48 × 10+00

15 WeightedSphere 0 8.90 × 10+01 2.15 × 10+01 4.52 × 10+00 3.17 × 10+00 4.01 × 10+01 2.44 × 10+01 1.32 × 10+00 1.48 × 10+00

16 XinSheYang 0 3.56 × 10−03 4.00 × 10−04 2.84 × 10−03 7.37 × 10−04 1.60 × 10−01 9.39 × 10−02 3.01 × 10−03 1.02 × 10−03

17 Zakharov 0 −2.32 × 10+02 3.53 × 10+01 −2.52 × 10+02 4.65 × 10+01 −1.94 × 10+02 4.50 × 10+01 −1.91 × 10+02 5.81 × 10+01
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This is evident in the Griewank function results in Table 2 where it is noted that,
while the SDSGA is not the best performing algorithm, its standard deviation is the best.
Furthermore, when it came to optimizing the KTablet function, the GA came out on top in
terms of both mean best solution and standard deviation (=9.35 × 10+02, 1.13 × 10+03=).
The SDSGA (=1.09 ×10+03, 1.40 × 10+03=) is not far from the GA when compared to both
BBO (4.96 × 10+04, 1.18 × 10+04) and PSO (1.39 × 10+04, 7.81 × 10+03).

5.3. CNN on the MNIST Dataset

This section summarizes the performance accuracy obtained when each of the opti-
mization technique (SDSGA, GA, PSO, BBO and BO) were used to tune the HPs of the CNN
on MNIST datasets. Due to the use of an early stopping strategy during the model training,
if no further improvement is achieved, the execution time becomes a poor metric of evalua-
tion. As an example, we discovered that, if the validation accuracy has not increased to 70%
after three epochs of training, it fails to reach 90% even after 10 to 20 epochs. As a result,
continuing to use such HP combinations wastes computational resources. Therefore, a bet-
ter approach to measure the performance entailed selecting a baseline validation accuracy
and comparing how many iterations it takes the algorithms to give such results. Table 3
shows the results of optimizing the CNN model on the MNIST dataset. It was observed
that the BO algorithm performed the least with a value of 99.14%, which is slightly less than
the PSO algorithm at 99.15% while the SDSGA performed the best with an average value
of about 99.2% (see Table 3). Similarly, the BBO algorithm recorded the next best in terms
of performance with about 99.18%, while the GA performed at 99.17%. Furthermore, it was
discovered that the differences between the optimization algorithms are not significant.
This could be due to the number of fitness evaluations chosen as 150 or it could be due to
the optimal accuracy of the ML model having plateaued around that value. Nonetheless,
we discovered that increasing the number of fitness evaluations beyond 150 resulted in no
further improvement in the results.

Table 3. Result of optimizing the CNN model on the MNIST dataset. The data have been prepared to
show the best accuracy so far.

PSO (%) GA (%) BBO (%) BO (%) SDSGA (%)

1 99.04 99.04 99 98.95 99.04
2 99.04 99.17 99.12 98.99 99.18
3 99.04 99.17 99.12 98.99 99.18
4 99.04 99.17 99.12 98.99 99.18
5 99.14 99.17 99.16 99.01 99.2
6 99.14 99.17 99.16 99.05 99.2
7 99.14 99.17 99.16 99.05 99.2
8 99.14 99.17 99.17 99.06 99.2
9 99.15 99.17 99.18 99.06 99.2
10 99.15 99.17 99.18 99.14 99.2

The BO algorithm performed the worst in terms of the number of fitness evaluations
required for the algorithms to reach optimal, with 99.14% at the tenth iteration. This means
that the BO had performed 150 fitness evaluations to reach this value. The best performing
algorithm was the SDSGA, which achieved an accuracy of 99.2% at the fifth iteration. The
BBO algorithm performed the next best and achieved an accuracy of 99.18% at the ninth
iteration, whereas the GA achieved 99.17% at the second iteration. The accuracy of the
BBO algorithm shows that it performed better than the GA and PSO algorithm. Despite
gradually improving, its results have been consistently optimal across all runs. Figure 6
depicts a graph of the optimization algorithms’ accuracy as iteration progresses.
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Figure 6. Validation accuracy of CNN model as iteration progresses.

5.4. Random Forest on UCI Datasets

Table 4 shows the performance of the four metaheuristic algorithms when optimizing
the hyperparameters of random forest (RF) model based on four UCI datasets. The “Time”
column shows the execution time, the column “Best Pos” shows the values of the best
hyperparameters after the optimization run. The column “Best Sol” is the accuracy obtained
for that run when using the best hyperparameters for that run. The “Iter” column shows
the number of iterations it takes for the algorithm to arrive at that accuracy. The variation
of the prediction accuracies for all the optimization algorithms is shown in Figure 7.

Figure 7. Prediction accuracy for the different algorithms under the different UCI datasets.



Appl. Sci. 2022, 12, 1186 15 of 19

Table 4. Performance of the metaheuristic-based algorithms on RF trained on four different
UCI datasets.

A: CAR

Algorithm Time (s) Best Pos Best Sol (%) Iter

PSO 14.02 [174, 6] 97.399 5
GA 27.65 [163, 6] 97.399 6
BBO 38.5 [120, 6] 97.399 2
BO 79.47 [129, 6] 97.688 1

SDSGA 22.48 [117, 6] 97.688 3

B: BREAST CANCER

Algorithm Time (s) Best Pos Best Sol (%) Iter

PSO 60.43 [129, 7] 98.246 3
GA 47.95 [143, 7] 98.246 7
BBO 62.92 [118, 16] 98.246 4
BO 106.4 [68, 20] 98.246 5

SDSGA 41.37 [124, 7] 98.246 2

C: LETTER

Algorithm Time (s) Best Pos Best Sol (%) Iter

PSO 787.68 [198, 5] 96.45 3
GA 427.81 [141, 5] 96.45 5
BBO 599.96 [91, 4] 96.5 7
BO 616.72 [141, 5] 96.45 10

SDSGA 422.75 [85, 4] 96.5 2

D: ADULT

Algorithm Time (s) Best Pos Best Sol (%) Iter

PSO 763.43 [184, 15] 85.86 4
GA 780 [138, 15] 85.79 3
BBO 953.09 [193, 15] 85.87 8
BO 942.51 [183, 15] 85.843 4

SDSGA 655.41 [184, 15] 85.86 7

E: Cover Type

Algorithm Time (s) Best Pos Best Sol (%) Iter

PSO 11,847.65 [198, 19] 93.1 8
GA 5481.84 [155, 18] 93.081 6
BBO 11,721.25 [193, 18] 93.092 7
BO 13,437.37 [188, 20] 93.133 3

SDSGA 10,907.01 [194, 20] 93.129 6

We present in Table 4 the results obtained when training the RF model on five UCI
datasets using the BO, SDSGA, GA, PSO and BBO algorithms to tune the HPs. In some
cases, the best solution obtained by each optimization algorithm (BO, SDSGA, GA, PSO and
BBO) was the same as demonstrated by the Breast Cancer dataset, where all optimization
algorithms achieved an accuracy of 98.246% despite being obtained under different HPs
values (see Table 4B). This is because the multiple hyperparameter combinations produced
the same validation accuracy in this problem. Because the outcome is heavily dependent on
the initial population, this can have a significant impact on the efficiency of metaheuristic
optimization algorithms.

In the CAR dataset (Table 4A), it is noticed that both the BO and SDSGA algorithms
performed the best at 97.688% while the rest of the optimization algorithms performed
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the same at a slightly lower value of 97.399%. In the LETTER dataset, SDSGA and BBO
performed the best at 96.5%, whereas the BO, GA and PSO algorithms performed equally
at 96.45%. The BBO algorithm performed better than the other algorithms in the ADULT
dataset at 85.87%, whereas the PSO and SDSGA algorithms were tied at 85.86%. The
BO algorithm performed at 85.843%, while GA performed the worst at 85.79%. The
COVER TYPE dataset had the largest variation in accuracy with BO performing the best
at 93.133%, whereas the SDSGA performed at 93.129%. The performance of the PSO is a
little closer at 93.1%, BBO at 93.092% and the GA performed the least at 93.081%. From the
hyperparameters of the Cover Type dataset (Table 4E), it was observed that the random
forest algorithm’s accuracy can still be improved by increasing both m and n as those
hyperparameters near the edges tend to have higher accuracies.

The time column in Table 4 refers to the time it takes to execute the whole optimization
run excluding the preprocessing step. Here, it can be observed that, while there is no
consistent pattern, the SDSGA performed the best in the three datasets (BREAST CANCER,
LETTER and ADULT). Especially in the case of the LETTER dataset, where it took 422 s,
or roughly half the time it took the PSO algorithm to execute at (787 s). We note that the
PSO algorithm performed the best in terms of its execution time at 14.02 s when used to
optimize the CAR dataset. This may be because the CAR dataset is the lightest and least
complicated of the datasets considered. However, the BO algorithm at 79.47 s performed
the worst with a large margin in the CAR dataset as compared to the BBO algorithm,
which comes next at 38.5 s. We also note that the execution time of GA was close to that
of SDSGA in three of the datasets (CAR, BREAST CANCER and LETTER) except in the
case of ADULT and COVER TYPE datasets where they are very far apart. The SDSGA
performed uncharacteristically poorly in the COVER TYPE dataset. This could be attributed
to the population’s low diversity which makes it difficult for the selection algorithm to find
suitable non-duplicate chromosomes to be selected as parents. This issue can be solved by
using a different random seed or increasing the probability of mutation.

The Iter column in Table 4 refers to the number of iterations it took to get the best
solution. Because the optimal value is unknown in advance in this optimization problem,
it is impossible to predict the number of iterations or fitness evaluations. What determines
this is the budget such as the amount of time or number of fitness evaluations available
for the optimization to be completed in hopes of obtaining a nearly optimal value within
this budget.

It has been observed that, because metaheuristic optimization algorithms are
population-based, if the hyperparameter space is not large enough, these algorithms will
converge very quickly to the optimal values. Because of its sequential nature, the BO tends
to approach optimal values gradually. The progression of the BO algorithm in Figure 7
shows a straight line for the car dataset. This is due to the fact that the BO algorithm
achieved its best solution during the first 15 fitness evaluations. Following that, it never
achieved a higher value in any of the subsequent evaluations. It is observed in the BREAST
CANCER dataset that, despite all algorithms being convergent to the same accuracy value,
the number of iterations required to achieve this accuracy varies as it does in the other
datasets. We note that GA’s remains average across all datasets, in contrast to the proposed
SDSGA, which performed competitively well against the other optimization algorithms.

6. Conclusions

An improved GA called the simple deterministic selection genetic algorithm (SDSGA)
with highly exploitative capabilities has been developed for hyperparameter optimization
of machine learning (ML) models. To accomplish this, the GA selection algorithm was
modified so that only the populations with the highest fitness are allowed to perform
recombination/crossover as parents. In order to prevent drastic decrease in the diversity
of the population, constraints were introduced to ensure that all chromosomes remain
unique within the parent population. To increase the diversity further, the SDSGA was
designed to have a high support for high mutation probability. The SDSGA was created
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to allow for high accuracy search for hyperparameters in machine learning models when
time is limited. The optimization results of the proposed method on benchmark functions
were compared with that of the GA, PSO and BBO algorithms, and the results obtained
show that, overall, the SDSGA performed better than the other algorithms in 65% of the
benchmark functions in terms of mean accuracy, albeit marginally. It is worth noting that
the BBO algorithm performed the worst in all of the test functions evaluated herein. This is
not necessarily due to the BBO being inferior as other factors such as the type of function
and parameters used may have contributed for performance degradation. The comparison
of the SDSGA with other optimization algorithms including the BO algorithm showed
that our improved GA performed well, particularly in optimizing the CNN model on the
MNIST dataset with an accuracy of 99.2%. For the case of the random forest model, our
SDSGA performed marginally better than the other algorithms in most cases except in
few cases where the PSO performed best, particularly on the CAR dataset in terms of its
execution time. Despite this, we note that the better performances of our method, albeit
marginally, were achieved at faster computing times than the other methods, emphasizing
the proposed method’s advantage. It is possible to compare the SDSGA with other popular
metaheuristic algorithms such as the artificial bee colony (ABC), differential evolution
(DE), covariance matrix adaptation evolutionary strategy (CMA-ES), and the grey wolf
optimization (GWO) algorithms for hyperparameter tuning of ML models, which serves
to provide a direction for further research. Additionally, its consistency can be tested on
high-dimensional spaces and multi-objective problems to determine how well it performs
in these environments.
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