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Abstract—Imbalanced classes in datasets are common prob-
lems often found in security data. Therefore, several strategies
like class resampling and cost-sensitive training have been pro-
posed to address it. In this paper, we propose a data augmentation
strategy to oversample the minority classes in the dataset. Using
our Sort-Augment-Combine (SAC) technique, we split the dataset
into subsets of the class labels and then generate synthetic data
from each of the subsets. The synthetic data were then used
to oversample the minority classes. Upon the completion of the
oversampling, the independent classes were combined to form an
augmented training data for model fitting. Using performance
metrics such as accuracy, recall (sensitivity) and true positives
(specificity), the models trained using the augmented datasets
show an improvement in performance metrics over the original
dataset. Similarly, in a binary class dataset, SAC performed
optimally and the combination of SAC and ROSE model shows
an improvement in overall accuracy, sensitivity and specificity
when compared with the performance of the Random Forest
model on the original dataset, ROSE and SMOTE augmented
datasets.

Index Terms—Imbalanced data, Minority oversampling, Data
augmentation, Intrusion detection

I. INTRODUCTION

A. Background

overfitting [3]. Furthermore, when insufficient data is used
during the training stages of a machine learning classifier,
there are likely to be the problem of generalisation. In other
words, the inability of a model to effectively generalise, i.e.,
to train and adjust to unseen data, usually results in bias
in favour of the heavily represented majority classes [4].
This often leads to the misclassification of the classes [5].
Ineffective generalization and misclassification are costly in
terms of protection because the cost of misclassifying an
attack as normal or normal as attack (False Negative or
False Positive) will have a significant impact on the intrusion
detection system’s ability to detect and prevent attacks.

Effective generalization leads to better classification, and
generalization can only be improved if there is enough training
data. As a result, more data is required to address the problem
of generalization caused by a low data regime and imbalanced
classes in a dataset. Data augmentation strategies have been
implemented to increase the size of training data and the
minority class(es). It has been successfully used in image
classification to change the geometrical transformation of an
existing image, and thus improving the image quality [6].
Non-image datasets have also been subjected to data augmen-
tation strategies in order to increase their size. It is also worth
noting that, while the strategy was found to be effective in
improving generalisation and classification in some datasets,
it was found to be less effective in others, owing largely to how
the algorithm was applied [7]. Data augmentation in a non-
image dataset, unlike image classification, will only improve
generalisation and classification if the generated synthetic data
has the same density and underlying distribution as the original
dataset [8]. It is also worth noting that using synthetic
data with a different distribution than the original distribution
complicates the model’s ability to effectively analyse and
classify the data used [9].

Though there are a number of oversampling techniques,
our choice of data augmentation strategy is with a view to
enhancing effective generalisation. This is due to the fact that
DDoS attacks typically result in a class imbalance between
benign traffic and the attack. As a result, augmentation aids
in effective generalisation, which improves classification and
the model’s performance in intrusion detection.

An imbalanced dataset is a dataset in which the instance 
of a class or classes is (are) much more represented than 
the others [1]. While there is no clear-cut minimum ratio of 
the majority to minority classes for a dataset to be classified 
as imbalanced, in cybersecurity however, we have observed 
from our analysis of the IoT Botnet dataset [19] that a 
ratio of 1:3 and beyond can as well result in imbalanced 
dataset. As a consequence, during training, the classifier is 
often overwhelmed by the majority classes, resulting in an 
imbalanced classification [ 2]. S ynthetic o versampling and 
undersampling, cluster-based under-sampling, cost-sensitive 
learning, instance weighing, and other resampling techniques 
have been used to increase the size of the minority class 
or decrease the size of the majority class. However, studies 
by [2] have shown that the synthetic data provided by the 
oversampling method is often devoid of the original data’s 
underlying structural distribution, and thus does not reduce



B. Motivation

We have reviewed existing work on the class imbalance
problem in datasets and we are motivated:

• To use a data augmentation strategy in a cybersecurity
domain for the minority class in a class distribution
that is imbalanced. This strategy would necessitate the
creation of synthetic datasets for augmentation, as well
as a comparison of the distribution of the synthetic versus
the original data.

• To see how the outcome of our data level augmented
model will be especially when a tree-based algorithm like
random forest is used other than a parametric algorithm.
This is in view of the fact that the synthetic data may
differ slightly from a majority of the original data.

• The use of data augmentation has proved very useful
in image classification so we are motivated to use it
to oversample the minority classes and hence improve
generalization and classification, particularly in datasets
with an imbalanced class distribution.

C. Contribution

To address the challenges of class imbalancing and low
data regime in datasets as highlighted above, we present our
contributions in this work as follows:

• A data augmentation strategy for class imbalance in
datasets that can be used with both binary and multiclass
datasets. This proposed novel data level data augmenta-
tion technique employs a Sort, Augment, and Combine
(SAC) minority oversampling approach to address the
problem of class imbalance in a dataset.

• A synthetic data that is of high perceptual quality and
that has the same data distribution as the original data.
This is to enhance effective blending and generalization.

• To demonstrate the SAC technique’s effectiveness on the
performance metrics such as sensitivity, specificity, and
overall accuracy. This is due to the fact that improved
generalization leads to better classification, which is
critical for intrusion detection.

D. Paper organisation

The remaining sections of this paper are organised as
follows: in Section 2, we highlighted related works on the
subject matter. In Section 3, we put forward our methodology
and the steps to achieving our contributions. In Section 4, data
description and model fitting was expatiated and the results of
our model was also laid out. We concluded the work in section
5 and followed up with references.

II. RELATED WORK

Because of its obvious implications, the imbalanced class
problem in real-world datasets has become a huge challenge
among researchers in a variety of fields, including cybersecu-
rity [34]. As a result, numerous studies have been conducted
to mitigate its impact on generalisation and classification. For
example, a number of scholars have written on various resam-
pling techniques, which could be either the undersampling of

the majority class, resulting in lower training costs and the
loss of vital information, or the oversampling of the minority
class, which appears to increase the cost of learning. For
example, Chawla et. al. [10] proposed the Synthetic Minority
Over-sampling Technique (SMOTE), which can be used to
generate synthetic data in order to oversample the minority
class. The approach, according to the authors, could also be
used to undersample the majority class in order to rebalance
the classes. While this method has been lauded as a defacto
approach to improving generalisation capabilities, Zhu et al.
[11] opined that it does not reduce overfitting and, more im-
portantly, that the underlying principles behind the generation
of the synthetic data show that the data does not share the
same distribution as the original dataset. Furthermore, Zhu
et al. argued that the SMOTE technique was ineffective in
dealing with a multiclass imbalance problem, resulting in
over-generalization. They went on to propose a K-NN-based
oversampling technique that assigns a weight relative to the
nearest neighbour of the data value, such that neighbours
that overgeneralize are given less weight, and thus reducing
imbalance.

In their work, He et al., [12] proposed the Adaptive
Synthetic Sampling (ADASYN) technique, which is used to
generate synthetic data for minority classes that are difficult
to learn. They believed that the technique helped to reduce
biases caused by class imbalance and to shift the classification
decision boundary. Similarly, Chen et al. [13] proposed the
Ranked Minority Oversampling in Boosting technique in their
contribution. The technique employs the idea of adaptive
synthetic data generation by ranking minority class instances
at each learning iteration based on the data’s underlying
distribution. The LRSMOTE is also a method that has been
proposed as a solution to the issue of class imbalance. This
technique was proposed by Liang et. al., [14], and according to
the authors, the technique makes the generated synthetic data
to be closed to the centre of the data sample while outliers
are removed. The new data is then primed to maintain the
dataset distribution. However, [15] faulted this approach as he
opined that the method is designed to fit into a binary class
imbalanced problem only.

Another technique proposed to address the problem of
class imbalance in datasets is the cost-sensitive approach. For
example, Khan et al., [15] proposed a deep neural network
technique involving feature representation of both the ma-
jority and minority classes during data training. During this
training, both the minority and majority classes are assigned
a cost of misclassification, and the class with the higher cost
is assigned a cost matrix and penalised. This strategy was
also advocated by [16], but they referred to it as MetaCost.
Similarly, Cao et. al., [17] proposed a cost-sensitive technique
that incorporates AUC and G-mean evaluation into an objec-
tive function. Following that, SVM is used to optimise the
best feature-cost parameter pairs. However, [18] was adamant
about the superiority of the cost-sensitive technique over the
sampling method in his argument. He also claimed that it
would be difficult to test how the methods would perform



on a multiclass imbalanced dataset because the techniques
are primarily designed for binary imbalanced datasets. In
addition, the author hypothesised that determining the exact
cost of misclassification in order to impose a penalty would
be difficult in practise.

Ghazikhani et al. [21] proposed the online ensemble neural
network algorithm to address class imbalance in datasets. The
method employs cost-sensitive learning during the training
phase, which is then followed by a weighted approach that
balances the classes. In the same vein, Eke et al. [22] pro-
posed a heterogeneous ensemble model for data resampling
in an imbalanced dataset. The kernel-based mechanism was
proposed [23] for improved generalisation in a binary class
dataset using orthogonal forward selection (OFS) algorithms.
Zhang et al. [24] in their contribution opined a flow-based
intrusion detection model that combines synthetic minority
oversampling and undersampling for clustering based on the
Gaussian mixture Model. The use of a deep unsupervised
representative learning approach was proposed by [25]. This
approach, according to the authors, learns representation from
data measurements and then uses an autoencoder model to
translate the features to a new low-dimension representation.
Vut. et al. [34] sees the problem of class imbalance as more
of an overlap that clearly impacts the performance of the
learning algorithm. The authors further opined that the overlap
helps to deteriorate the performance at varying degrees than
an imbalance does.

III. METHODOLOGY

Our approach to addressing the problem of class imbalance
in datasets is centred on data augmentation through synthetic
oversampling of the minority class(es). The method is based on
Sort-Augment-Combine (SAC) data augmentation technique
and it can be applied to both binary and multiclass datasets.
The three steps involved in SAC are described below:

A. Sort

After pre-processing, the original dataset is sort into a subset
of the instant classes. In other words, a binary class dataset
will be sorted into two subsets of attack and benign or as the
case may be.

Given a data frame, S and consisting of classes: A,B,C, . . .
we can represent it as a power set, P(S)={A,B,C,. . .}, where
A ⊆ S,B ⊆ S, and C ⊆ S. The expression implies that A,
B, and C are the instant classes of the dataset, S, which can
further be represented as a set as shown in equations (1) - (3).

A = {a1, a2, a3, ...} (1)

B = {b1, b2, b3, ...} (2)

C = {c1, c2, c3, ...} (3)

Where a1, . . . , b1, . . . , c1, . . . are elements of the subsets
A,B, and C.

B. Augment
After dividing and sorting the data frame into subsets of the

instant classes, a function generator - Syn(), from synthpop
package in R was used to synthesize the data value from
the original dataset’s latent space to increase the minority
classes. The generator uses sequential regression modelling
to synthesize each variable one after the other in a dataset. It
fits the data to the assumed distribution and obtains estimates
of its parameters based on conditional distributions from
which synthetic values are derived. For example, consider a
dataset of variables (Z1, Z2, ..., Zn). Here the first variable
to be synthesised is Z1 however, because it lacks predictors
before it, its synthetic values are therefore generated through
random sampling with replacement from its original values.
The succeeding variables distribution are then estimated and
synthesised based on the conditional distributions of the pre-
ceding variables [20]. In our work, the function generator was
used in conjunction with predefined parameters to generate
high-quality synthesised data. For instance, each class subset
was passed to the function with m = 1 (the number of
synthetic versions of the observed data) and k (the number of
cases in the synthesised data) taking different values according
to the size of the synthetic data to be generated. The variables
inherited by the subset from the universal set are essentially
preserved during generation because other subsets share the
variables (data co-location). This therefore, helps to maintain
the distribution behind the original data variables. On the basis
of this synthesis for example, a new set of synthetic data values
are generated to form equations (4), (5) and (6) from equations
(1), (2) and (3).

A = {a1, a2, a3, ...} (4)

B = {b1, b2, b3, ...} (5)

C = {c1, c2, c3, ...} (6)

The minority classes are then supplemented independently.
The process of augmentation is carried out by combining
the generated synthetic data with the original subsets i.e.:
equations (1) & (4); (2) & (5); and (3) & (6) are combined to
form the augmented subsets of A, B, and C. As a result, the
new augmented subsets are:

A = {a1, a2, a3, a1, a2, a3, ...} (7)

B = {b1, b2, b3, b1, b2, b3, ...} (8)

C = {c1, c2, c3, c1, c2, c3, ...} (9)

C. Combine
At this stage, the new augmented subsets are combined to

form a new training dataset (newTrainingdataset). In other
words, combining equations (7), (8) and (9) would give us
the new training dataset. P (S) ={{} + {A} + {B} + {C}}.
Because of co-sharing of the variables by the subsets, the
combination of the augmented subsets is done through
row-binding.



Algorithm: Sort-Augment-Combine (SAC)

1: Load dataset
2: split dataset into subsets of classLabels (Xi, i+1, n)
3 : repeat
4 : for i ← 1: ncol (Xi, i+1, n) do
5: Load Xi
6: apply synthetic function generator to generate (Xi)
7 : end for
8 : Combine(Xi +Xi)
9 : repeat step 3 : step 8 for classLabels (Xi+1)
10: until newClassLabels are formed
11 : Group (newTraining ← (allClassLabels))
12: Return (newTrainingdataset)

IV. DATA DESCRIPTION AND MODEL FITTING

Two datasets were used in this work and they are the BoT-
IoT dataset [19] and the Smart grid dataset [32]. Both are
multiclass datasets with class imbalance.

A. The BoT-IoT dataset

This dataset is the result of a laboratory simulation of IoT
Botnet traffic with various types of attacks. This benchmark
dataset was developed as a stop-gap measure for cybersecurity
researchers and, more importantly, to enhance the under-
standing of modern evasive attacks. This dataset has gained
popularity over the years due to its advantages over other
benchmark datasets in terms of: redundant records leading
to biased detection [26], several missing records as factors
[27], and data unbalancing among constituent observations
[28]. The size of the dataset is 82,332 observations and 42
variables consisting of 10 classes. Table I and Fig. 1 show the
size and ratio of the classes relative to the largest class.

TABLE I
ORIGINAL DATA SIZE, RATIO AND DISTRIBUTION OF INSTANT CLASSES.

Class Number of Observation Ratio to largest class
1 Analysis 677 1:54
2 Backdoor 583 1:63
3 DoS 4089 1:9
4 Exploits 11132 1:3
5 Fuzzers 6062 1:6
6 Generic 18871 1:2
7 Normal 37000 (largest class) 1:1
8 Reconnaissance 3496 1:10
9 Shellcode 378 1:97
10 Worms 44 1:840

The class distribution as shown in Table I and Fig. 1, clearly
show that normal traffic has the most observations, and its
size is twice that of the nearest attack classes, i.e., Generic
and Exploits. Aside from the Generic, Exploits, and Fuzzers
classes, which have a ratio of 1:2, 1:3, and 1:6, respectively
relative to the Normal class, the other classes which also
constitute the attack type are significantly under-represented
in comparison to the benign class. As a result, this is an
imbalanced dataset that requires minority oversampling.

Fig. 1. showing a bar plot of class distribution in the original dataset.

We went on to transform the categorical variables using
one-hot encoding, increasing the number of variables in the
dataset from 42 to 187. It was now necessary to rank the
variables in order of importance. To accomplish this, we used
Random Forest’s feature importance function, which measures
the decrease in node impurity (as measured by the Gini index)
as nodes are split. The ranking results show that the values
of the Mean Decrease Gini range from 0.4512 to 2822. On
the basis of the ranks we filtered out variables with lower
importance especially variables with rankings lower than 3.
Therefore, the number of variables was reduced to 53. In
addition, we also used Principal Component Analysis (PCA)
to obtain Principal Components (PCs) with a proportion of
variance of 90%.

B. Model fitting with original dataset using Random Forest

We fitted the original dataset with a Random Forest model
with K-Fold cross-validation (k=5) to enable us see and
compare the confusion matrix when the oversampling was
eventually done. The confusion matrix is in Fig. 2.

Fig. 2. Output of random forest on original dataset before minority class
augmentation.

The output in Fig. 2 shows an accuracy of 84%. However,
there is also a high rate of misclassification. Usually, algo-
rithms in predictive learning always assume that classification
by models is equal. The same also applies to prediction errors,
where algorithms always assume that a classifier’s errors are
the same for all classes. This postulation only holds in an
ideal situation and not in the case of an imbalanced class
distribution. This is because misclassifications have a tendency
to cause Type 1 and Type 2 errors [29]. Table II summarises
the rate classification.



TABLE II
OVERVIEW OF MISCLASSIFICATION OF CLASSES BEFORE AUGMENTATION.

Class Correctly classified (%) Misclassified (%)
1 Analysis 6 94
2 Backdoor 0 100
3 DoS 42 58
4 Exploits 67 33
5 Fuzzers 56 34
6 Generic 97 3
7 Normal 97 3
8 Reconnaissance 67 33
9 Shellcode 25 75
10 Worms 9 91

Effective classification necessitates lowering the cost of
misclassification, which reduces false alarms. Apparently, ef-
fective classification cannot be achieved unless the imbalanced
problem is addressed. To this end, we deployed the SAC strat-
egy to oversample the minority classes. The size of the Generic
class was used as the basis for creating the synthetic data.
First, it was done to prevent model over-generalizing during
training. Second, the Generic class’s ratio to the Normal class
being 1:2 does not indicate significant imbalance. Furthermore,
the Generic class has a low misclassification rate of 3%. (see
Table 2). Table III shows the new ratios after augmentation.

TABLE III
RATIO OF CLASSES TO LARGEST CLASS AFTER AUGMENTATION DATASET.

Class Original Ratio Augmented New ratio
1 Analysis 677 1:54 18956 1:2
2 Backdoor 583 1:63 18073 1:2
3 DoS 4089 1:9 17992 1:2
4 Exploits 11132 1:3 18367 1:2
5 Fuzzers 6062 1:6 18186 1:2
6 Generic 18871 1:2 18871 1:2
7 Normal (largest) 37000 1:1 37000 1:1
8 Reconnaissance 3496 1:10 18528 1:2
9 Shellcode 378 1:97 18144 1:2
10 Worms 44 1:840 18084 1:2

The classes augmented are: Analysis, Backdoor, DoS, Ex-
ploits, Fuzzers, Reconnaissance, Shellcode, and Worms. Table
III shows the new distribution.

Fig. 3. Plot of the class distribution of augmented classes.

More importantly, before augmenting the minority classes
with the generated data values, we ensured that the synthetic

data values retained a fairly closed distribution as the original
dataset’s distribution. This was accomplished using a plot,
as shown in Fig. 4. The figure depicts comparisons of the
original and synthetic distributions of some of the classes. The
dark (observed) colour represents the original data, while the
light (synthetic) colour represents the generated synthetic data.
The underlying structural distribution of the original class was
fairly preserved in the synthetic data, as shown in the plot.

Fig. 4. A comparison between the original data and the synthetic data.

C. Model fitting with augmented minority classes dataset
using Random Forest Model

Having augmented the minority classes from 82,332 to
202,200 observations with 24 features, it was then imperative
to fit a model in order to observe the effect of the augmenta-
tion. Beyond that, it is instructive to also note that the chal-
lenge in engaging in malware and intrusive activities is through
effective generalisation and classification. This is as Garcia et
al., [30] rightly put that malware and other intrusive actors use
code obfuscation methods to alter their code signatures and
evade detection due to low data regime in minority classes.
Data augmentation and balanced resampling are frequently
used to improve generalisation and classification, particularly
in techniques that use static methods for signature detection. It
was thus befitting that fitting a model on a larger dataset as our
augmented dataset was intended to improve generalisation and
classification. To this end, we used the same fitting procedure
as in the original dataset, i.e. the Random Forest model with
K-Fold cross-validation, while keeping the same parameters.
Fig. 5 Shows the confusion matrix.

Fig. 5. Output of random forest on oversampled minority class dataset.

The augmented minority oversampled model (Fig. 5) has
an overall accuracy of 89%. When compared to the output in
Fig. 2, there was an improvement in classification in terms of
recall and specificity, in addition to the overall accuracy. Since



class classification has improved, it was necessary to compare
the sensitivity and specificity of the original and augmented
datasets. This is shown in Tables IV and V.

TABLE IV
CLASSIFICATION, MISCLASSIFICATION AND PREV. MISCLASSIFICATION.

Class Classifi. (%) Misclass. (%) Orig. Misclass. (%)
1 Analysis 95.3 4.7 94
2 Backdoor 94.8 5.7 100
3 DoS 77.8 22.2 58
4 Exploits 70.4 29.6 33
5 Fuzzers 76.4 23.6 34
6 Generic 96.8 3.2 3
7 Normal 93.5 6.5 3
8 Reconn. 89.5 10.5 33
9 Shellcode 98.7 1.3 75
10 Worms 99.9 0.01 91

Note: In Table V & VI, the row headers are:
OD - Original Data
AD - Augmented Data
DF - Difference between the sensitivity of the original value
and the augmented value. The values are in percentage.

TABLE V
SHOWS THE COMPARISON BETWEEN THE SENSITIVITIES OF THE
CONFUSION MATRIX OF ORIGINAL AND AUGMENTED DATASETS.
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AD 89.7 95 94 77 70 76 97 93 89 98 99
DF 5.7 89 94 35 3 20 0 -4 22 73 90

Sensitivity was used to make the comparisons in Tables
IV and V. The classifier’s sensitivity is its ability to correctly
classify the positive class (TP). From Table IV, while the
misclassification for Analysis, Backdoor, Worms, Shellcode,
and Dos were astronomically high in the original dataset
model, it dropped to 4.7, 5.7, 0.01, 1.3 and 22.2% for the
classes in the minority augmented dataset. Similarly, clas-
sification in the Fuzzers and Reconnaissance classes also
improved significantly. In terms of how much improvement
occurred, Table V shows the percentage difference, and with
the exception of the Generic and Normal classes, which
recorded a slight drop in classification, the output of the model
on the minority augmented dataset shows a very significant
improvement which is critical in intrusion detection.

Specificity is another important performance metric in se-
curity. It is also known as the True Negative rate (TN). It
is defined as the proportion of data that are negative, and
the model correctly classified them as such. A low specificity
value indicates that the model classified negatives as positives
incorrectly. We computed the specificity comparison from the
two confusion matrices due to its obvious implications and the

tendency for it to reduce the incidence of false alarm. Table
VI shows the comparison.

TABLE VI
THE COMPARISON BETWEEN THE SPECIFICITY OF THE CONFUSION

MATRIX OF ORIGINAL AND AUGMENTED DATASETS.
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AD 89.7 99 99 98 97 98 99 98 99 99 99
DF 5.7 0 0 2 4 1 0 5 0 0 -1

Table VI shows that the augmented dataset has a slightly
higher specificity than the original dataset. This is especially
important in light of modern attacks that employ evasive
techniques to avoid detection.

D. Using Smart Grid Dataset

This dataset is the result of a laboratory experiment. It
entails measuring electrical signals on transmission lines with
synchrophasors. The following parameters were measured:
voltage, current, frequency, cyber-attack impedance, and nor-
mal traffic [32]. The dataset was divided into three categories:
binary, triple, and multiclass, each with 15 sets of 37 event
scenarios. In this work, we used two sets of the the triple
class and the size of the dataset was 10,035 observations and
128 predictors. The predictors are made up of three class
labels which are: Attack, Natural and NoEvents. We started
by cleaning and preprocessing the data and then went further
to using the Principal Component Analysis (PCA) to reduce
the features from 128 to 25 Principal Components. The dataset
was split into 70:30 for training and validation and the ratio
of the classes relative to the largest class in the dataset is
contained in Table VII.

TABLE VII
DISTRIBUTION OF THE INSTANT CLASSES IN THE ORIGINAL AND

AUGMENTED SMART GRID DATASET.

Class type Orig. No of Observ. Ratio After Augmentation
1 Attack 6890 1:1 4790
2 Natural 1919 1:3 4760
3 NoEvents 495 1:13 4789

From Table VII, the relationship between the Attack class
and the Natural class is not imbalanced; however, the rela-
tionship between the attack and the NoEvents class is slightly
imbalanced. On this premise, we fitted a model on the original
and then augmented the Natural and NoEvents classes before
fitting a model on the augmented dataset. Interestingly, after
the augmentation of the minority classes, the classifier was
able to correctly classify 97% of the Attack class. Similarly,
the classifier was also able to correctly classify the Natural and
the NoEvents classes with 96% and 99% accuracy. However,
there was also a 7% decrease in the classification of the



attack class after augmentation. Table VIII summarised the
classification and this drop was compensated for by a 4%
increase in overall accuracy. The 4% increase can be attributed
to the improvement in classification in the benign classes.
The significance of this is that, in intrusion detection, better
classification of the benign class also contributes to fewer false
alarms leading to Type 2 errors.

TABLE VIII
SHOWS THE COMPARISON BETWEEN THE SENSITIVITY AND SPECIFICITY

OF THE CONFUSION MATRIX OF ORIGINAL AND AUGMENTED SMART GRID
DATASETS.
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Difference (%) 4 -7 24 14 22 -2 0

The improvement in the classification of the benign classes
as shown in Table VIII is 24% in the Natural class and 14% in
the NoEvents class. Similarly, the specificity in the attack class
also improved by 22% and decreased by 2% for the benign
Natural class. Notwithstanding the decrease in classification, a
lower specificity is indicative of a high False Negatives which
has the propensity to increase false alarms.

E. Comparing SAC, ROSE Augmented, SMOTE Augmented
and SAC+ROSE Augmented datasets Using Binary dataset

Here we went a little further to see how our approach of
minority oversampling method compares in binary classifi-
cation. To achieve this, from the class sizes in Table VII,
we formulated the Benign class by combining the Natural
and NoEvents classes. The combination produced a dataset
with attack and benign classes having 6890 & 2414 (74% &
26%). We then fitted a model on the dataset before and after
augmentation. But first, we performed augmentation of the
minority class in the binary dataset using the SAC technique,
Random Over-sampling Examples (ROSE) and Synthetic Mi-
nority Oversampling Technique (SMOTE). The essence was
to enable us compare how SAC compares with other minority
oversampling techniques.

ROSE and SMOTE are oversampling techniques that have
been used for the oversampling of the minority class in a
binary dataset. Using Random Forest K-Fold (k=5) cross-
validation after setting the parameters, we compared the output
of the model on the original data, ROSE augmented, SMOTE
augmented and the SAC augmented data. We set some of the
parameters as thus:

1) TrainControl.: This parameter allows for the config-
uration of the number of times the cross validation will
be repeated; we used “repeatedcv” to provide for consistent
repeated training/testing split. We used k=5 for resampling
iterations and also used random as the search tuning parameter.

2) Train.: Train. This parameter setting helps in the model
fitting and it enhances the tuning process for better output.
To this end, we used Random Forest (RF). As for the “tune-
Length” we used 10 and also used an “ntree” of 1000.

3) Subset.: The tuning of this element enhances the auto
selection of the “bestTune”. This allows the selection of the
best tune value from the coefficients. The bestTune value is
then used as the value for “mtry”.

Having configured these parameters, we augmented the
dataset using ROSE package in R and also using SMOTE
package in R. After the fitting of the model, we observed
the comparison as shown in TABLE IX, and the output of
the model with the ROSE and SMOTE augmented data were
slightly better in terms of overall accuracy and sensitivity than
the SAC augmented data. We then went a little further to lever-
age on the power of the ROSE and SAC techniques to combine
their data values (SAC augmented + ROSE augmented) to
form a new training data. This combination was fitted with
a model and the overall accuracy, sensitivity and specificity
were 98%.

TABLE IX
COMPARISON OF THE OVERALL ACCURACY, SENSITIVITY AND

SPECIFICITY OF THE CONFUSION MATRIX OF ORIGINAL DATA, ROSE,
SMOTE, SAC AND SAC+ROSE AUGMENTED DATASET.

Dataset Overall Accuracy Sensitivity Specificity
Original data 91 98 71
ROSE Augmented 97 96 98
SMOTE Augmented 94 96 90
SAC Augmented 93 91 94
SAC + ROSE 98 98 98

From the output in TABLE IX above, we can observe that
the SAC technique performed fairly high with no overfitting
owing to the retention of the density and structure of the orig-
inal distribution by the synthesized data values. Interestingly,
the combination of the augmented SAC & ROSE datasets
performed optimally with an overall accuracy, sensitivity and
specificity that exceeds the other models.

F. Sensitivity and Specificity in intrusion detection

1) Sensitivity.: Sensitivity is also known as Recall or True
Positive Rate (TPR). It is the proportion of actual positives of
a dataset that have been predicted correctly as positive and the
higher the sensitivity (recall), the better the model.

2) Specificity,: This is also known as the True Negative
Rate (TNR). It the proportion of the actual negative classes of
a dataset that a model is able to correctly predict as negatives.

Code:https://github.com/otokwala/Esoric/blob/master/augment
ation.txt

V. CONCLUSION

The various proposals to address the problem of class
imbalance in datasets were outlined in this work. We have
proposed a data augmentation technique that can be used to
oversample minority classes in binary and multiclass datasets



to improve generalisation and classification. Our strategy in-
volves: Sorting, Augmenting, and then Combine (SAC). First,
we divided the dataset into subsets of instant classes, and
then created synthetic data from the independent subsets. We
then went on to ensure that the synthetic data values have the
same underlying distribution as the original dataset by using a
compare function to compare the structure of the original data
values and the synthetic data as a pair. Also we proceeded
to supplement each independent class label in the minority
class with the synthetic data. The augmented classes were
then clustered to create a new training dataset. Fitting random
forest model to binary and multiclass datasets significantly
increased the recall and specificity. More importantly, we
leveraged on the combination of SAC and ROSE to obtain
an optimal classification in the binary dataset which therefore
improved the overall accuracy, sensitivity, and specificity.
This is significant and critical in intrusion detection and this
approach can be replicated in other benchmark datasets in the
future for further validation.
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