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Abstract—Industrial Control Systems are essential to 

managing national critical infrastructure, yet the security of these 

systems historically relies on isolation. The adoption of modern 

software solutions, and the unique challenges presented by legacy 

systems, has made securing industrial networks increasingly 

difficult. With malware identified as the leading cause of cyber 

incident in industrial systems, this work presents a comparative 

study of existing malware detection techniques, to compare both 

accuracy and suitability for use in the defence of industrial 

systems. 
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I. INTRODUCTION

Industrial Control Systems (ICS) are responsible for 
controlling national critical infrastructure such as power 
stations, water treatment centres, and manufacturing plants. 
However, the security of these systems has long been based on 
isolation and proprietary software. With cyber-attacks becoming 
more sophisticated and the introduction of Enterprise solutions 
and the Internet of Things (IoT) in industrial networks, 
protecting these critical systems has become even more 
important. 

There is a long history of cyber-attacks targeting industrial 
systems using malware, from the Trojan inserted into the Trans-
Siberian pipeline by the CIA, to the recent attacks on the 
Ukrainian power grid in 2015 and 2016 [1]. Defending complex 
legacy systems from malware requires resilient detection 
solutions capable of protecting these critical systems without 
interference to their operation. 

While there is an abundance of research related to malware 
detection, the discussion surrounding security and malware 
detection in industrial control systems is limited. A report by the 
US Army Research Laboratory [2] found that malware attacks 
were the most common cause of incidents in ICS systems, and 
this threat continues to rise. As ICS networks begin to adopt 
modern solutions, the importance of securing these systems also 
increases. 

II. ICS SECURITY LANDSCAPE

Traditionally deployed on isolated networks, ICS are known 
for using proprietary control protocols and specialised system 
components to ensure high availability and real-time response 
[3]. However, there is now a rise in ICS adopting IT solutions to 
replace and upgrade propriety components, introducing remote 
access capabilities and allowing ICS to communicate with the 
wider business network. While the transition away from 
isolated, propriety networks support new capabilities, it also 
increases the risk of introducing new vulnerabilities. 

A. Industrial Internet of Things

The Industrial Internet of Things (IIoT) refers to the use of
IoT devices in industrial sectors, bringing together traditional 
automated ICS systems and advanced Internet-based 
capabilities to create “cyber-physical” systems. With modern 
ICS solutions turning away from isolated networks in favour of 
more connected systems, IIoT provides a novel approach to 
implementing additional features and capabilities to ICS [4].  

Despite the new technologies IIoT can introduce to ICS, the 
security and hardening of these connected devices may be 
unknown, with the potential to introduce new threat surfaces. 
Generally, IIoT devices are resource-constrained in terms of 
processing power, memory, and energy consumption. This 
means that much like traditional ICS components, there is little 
scope for additional security modules within IIoT devices [5]. 

B. ICS Security Threats

Threats to ICS can take numerous forms, ranging from
structural threats, such as equipment failure, to accidental 
damage, including human error, to adversarial threats from 
individuals, groups, or nation-states [6]. The Kaspersky ICS 
CERT [7] report on the “Threat Landscape of Industrial 
Automation Systems” states that the main threat sources in the 
ICS environment as Internet, removeable media, and email, with 
the last two commonly used as carriers for malware. 

Historically, the main cause of ICS cyber-incidents is 
malicious software that infects and damages hosts within a 



system by deploying a malicious payload or overloading server 
central processing units (CPU) with can harm the performance 
of the system [2]. Detecting and defending against the malware 
threat is an important step to securing industrial systems, using 
security mechanisms to detect known and unknown malware 
variants, and protect against advanced malware techniques [8]. 

C. Malware in Industrial Systems

Historic cyber-attacks against ICS, such as Stuxnet in 2010
and Shamoon in 2012, have shown that despite air-gapped 
networks, the use of obscure protocols, and the deployment of 
specialised components, ICS are still vulnerable to cyber threats 
[2]. 

Modern malware threats can employ advanced techniques to 
hide their true intentions and avoid detection from anti-virus 
programs and intrusion detection systems. Commonly seen 
techniques such as polymorphism, the ability to appear in 
different forms, and obfuscation, the ability to hide true 
intentions behind a benign appearance, drive the development of 
more advanced detection techniques [19]. 

Research by Dragos Inc. [10] recently published details 
regarding ICS-specific ransomware, capable of targeting ICS 
operations and forcible stop processes. Their report on the 
EKANS and MEGACORTEX malware families identifies the 
first known ICS-specific ransomware variants. ICS-specific 
malware is currently limited, but these new creations show an 
evolution of tactics of threat actors turning towards targeting 
ICS environments. 

III. RELATED WORK

Detecting malware in inbound traffic and within systems can 
be made difficult with the increased use of advanced obfuscation 
techniques. Implementing a robust detection system can help 
protect a network from successful attack. This section discusses 
existing research in the field of malware detection and the 
different approaches to defending against this threat.  

A. Static Analysis Techniques

Sufficient monitoring and logging within a computer
network are the least technical methods of malware detection, 
yet it provides system engineers and administrators with an 
overview of the system and a valid way to detect changes or 
abnormal activity. 

Commercial antivirus products typically employ signature-
based malware detection, where signatures from malware code, 
for example a unique sequence of bytes, are used to determine if 
suspicious programs are malicious in nature by comparing the 
program to malware signatures. However, this method of 
detection cannot identify malware which can mutate during 
deployment, as each mutation generates a new signature [8]. 

An approach presented by [11] uses data-clustering based 
anomaly detection, designed for ICS using data from a range of 
sources such as industrial processes and network traffic. While 
this approach provides hardening to a system, the required 
storage space and performance drain could negatively  affect 
ICS availability [12]. 

B. Behaviour-based Analysis Techniques

Behaviour-based malware detection looks to overcome the
vulnerabilities of static analysis, which can be vulnerable to code 
obfuscation techniques [9]. Dynamic analysis of malware 
overcomes this issue by monitoring the behaviour of files during 
execution, usually in a virtual or sandbox environment. 

One behaviour-based approach suggested by [13] employs 
virtual environments to monitor sample API calls, as certain 
malware families rely on libraries provided by the host operating 
system. The results of this research showed a 97% detection 
accuracy when using a Decision Tree for classification. 

However, [9] suggests API calls are vulnerable to 
manipulation, resulting in misclassification. Their own solution 
focuses on using short snapshots of behavioural data from 
samples, suggesting a ‘sliding-window’ approach over full 
behavioural analysis, which they argue can be time consuming 
and runs the risk of malicious samples executing their payloads 
before detection. 

C. Deep Learning Techniques

Deep Learning and unsupervised learning algorithms hold
promise for automating malware detection in systems and 
developing generalisations for identifying benign and malicious 
files [14]. The process of Deep Learning involves training a 
network of artificial neurons to recognise complex patterns and 
classify new samples [15]. 

Research by Saxe and Berlin [14] and Dahl et al. [16] both 
present Deep Learning models for malware classification using 
neural networks. Saxe and Berlin achieved an accuracy of 95% 
with a false positive rate of 0.1% using a deep neural network 
with three layers, with a dataset of 431,926 benign and malicious 
samples. 

In contrast, Dahl et al. achieved an accuracy of ~90% with a 
false positive rate of 0.83% and a false negative rate of 0.35%, 
using an ensemble of shallow, one-layer neural networks and a 
large dataset of 2.6 million files. Both approaches show that 
deep learning can be used effectively to provide accurate 
malware detection. 

D. Malware Detection in ICS

As shown, research into malware detection and classification
is widely conducted, with researchers continuing to search for 
more advanced and accurate techniques. However, there is little 
attention on this field within industrial systems and the use of 
modern technology to defend legacy systems. 

The study conducted in this paper looks to provide a 
comparison of detection techniques with a focus on their 
application in an industrial environment, as the unique 
requirements of ICS demand a malware detection technique that 
works with the system, not against it. 

IV. COMPARATIVE STUDY

The comparative study presented in this paper looks to 
compare the accuracy of three different malware detection 
approaches: signature-based, behaviour-based, and deep 
learning. The goal of the study is to identify the ability of each 
technique to identify known and unknown malicious samples. 



A. Tools and Architecture

Development of a robust IDS tool requires extensive use of
advanced topics such as machine learning and network traffic 
monitoring. In place of developing custom modules, that may be 
insecure or inaccurate, the decision was made to use the Python 
language to complete the implementation of the study 
experiments, which benefits from a large selection of libraries 
designed for these topics [17]. 

Due to limitations with physical hardware, virtualisation will 
be used to deploy virtual machines for the purposes of malware 
analysis. Use of virtual machines provides an additional layer of 
security while working with malicious files, keeping potentially 
damaging software in an isolated environment. Another benefit 
to using virtual machines is the ability to create new machines 
when required, without needing additional physical hardware 
for hosting. 

As part of this project, a storage solution is required to store 
the project dataset, solution results, and provide a temporary 
storage for network traffic for the detection solution. SQLite was 
chosen as the storage solution, as it provides fast data access and 
a small code footprint. Additionally, SQLite databases are self-
contained and can be embedded into applications, without the 
need for a standalone server to host the database. 

B. Dataset

Research to identify existing malware research datasets
found that few repositories of samples exist, with even fewer 
containing data related to industrial systems. Two research 
datasets containing malicious and benign samples were 
identified: EMBER (Elastic Malware Benchmark for 
Empowering Researchers) and SOREL-20M (Sophos-
ReversingLabs – 20 Million) [18], both of which are publicly 
available for use in malware detection research. 

Following evaluation of these two datasets, SOREL-20M 
was chosen to provide malicious samples for the project dataset. 
Since the dataset contains classified samples, features, and the 
raw binaries, there is scope for use of the samples for each 
detection technique in the comparative study. 

1) Populating Study Dataset
The SOREL-20M dataset contains samples, features, and

raw binaries for approximately 10 million malware samples and 
is available from an Amazon Web Services (AWS) S3 Bucket 
cloud storage. 

The original dataset contains approximately 8 Terabytes of 
data, with the raw binaries contributing the most to the 
extremely large size. As the storage available for this work was 
limited, there was no possibility of storing the whole dataset. 
Therefore, 1000 samples were chosen at random from the 
SOREL-20M dataset using SQLite’s built in random() SQL 
function to select samples from the dataset meta.db file, which 

contains the binary hash, class, and malware tags for every 
sample. 

The malicious samples contained in the SOREL-20M 
dataset are all Portable Executable files. Portable Executable 
(PE) is the standard file format for executable files under the 
Windows operating system, with the name of the format a 
reference to the fact these files are not architecture specific. 

As the SOREL-20M dataset does not contain the raw 
binaries for any benign samples, these files were sourced from a 
Windows 7 virtual machines, taking copies of benign Windows 
executables and other PE files, such as Dynamic-Link Libraries 
(DLL), screensavers, and system files. 

2) Class Imbalance
The final project dataset following analysis and processing

contains a total 1949 samples, with 1011 benign samples and 
938 malicious samples. For this work, class distribution is 
slightly imbalanced, with Benign being the majority class. 
However, there is no extreme disproportion between classes 
which lowers the risk of the training model being overwhelmed 
and increases the chance of successfully detecting Malicious 
samples. 

3) Dataset Similarity
As this project focuses on the protection of industrial and

legacy systems, it is important to show the link between the 
dataset malware samples and live malware known to target 
industrial systems and networks. 

Known industrial malware samples were download from 
theZoo [19], a malware binary collection hosted on GitHub, 

and analysed using Cuckoo Sandbox [20] to provide static and 
behavioural data. These live samples were then compared to the 
project dataset, to determine the level of similarity with the 
project malware samples, calculated using Cosine Similarity of 
each sample’s DLL imports, supplied by the Cuckoo Sandbox 
analysis. 

Cosine Similarity is used to determine the similarity between 
two documents or vectors, irrespective of size, having the 
advantage over Euclidean Distance, another common similarity 
metric which calculates similarity by counting common values 
in documents. The Cosine Similarity approach offers an 
alternative to as document size is not considered [21]. The 
equation  below outlines the calculation for Cosine Similarity. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
𝑎∙𝑏

‖𝑎‖‖𝑏‖
=

∑ 𝑎𝑖𝑏𝑖
𝑛
1

√∑ 𝑎1
2𝑛

1 √∑ 𝑏1
2𝑛
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The similarity of the study dataset samples and the live 
malware samples was based on the DLL imports called by each 
sample. Two known ICS malware were used to perform the 
similarity calculations. Fig. 2 and Fig. 3 show the results of this 
experiment and display the percentage similarity for both 
malware samples against the malicious samples included in the 
project dataset. 

Shamoon, the malware used in the 2012 Saudi Aramco 
attack [2], and Triton, a malware known to target industrial 
safety controllers [22], both share similarities with samples in 
the study dataset, with some samples showing 50% and above 
similarity. The rise in similar samples around 40-60% indicates 
shared DLL imports, common files used by both the malware 
and the samples. As the malicious nature and type of the dataset 
samples is unknown, the higher similarity suggests the sample 
shares the same malware family or behaviour as the industrial 
malware samples. 



Fig. 3. Dataset Similarity with Shamoon 

Fig. 4. Dataset Similarity with Triton 

Although not exact due to the random nature of the project 
malware samples, this basic test of similarity suggests that 
samples in the dataset could affect industrial systems, lending 
support to the developed detection techniques and solution 
capabilities of defending legacy systems from malware. 

C. Dynamic Analysis

To perform behaviour-based analysis for the comparative
study, behavioural data was required. Although the SOREL-
20M dataset contains the results of dynamic analysis and feature 
extraction for each sample, this information is stored in large 
files that cannot be accessed directly in the AWS S3 storage and 
are too large to download. Therefore, to provide the required 
behavioural information, dynamic analysis of samples was 
completed using Cuckoo Sandbox, which was deployed and 
configured for the project. 

Due to a lack of additional physical machines, Cuckoo 
Sandbox was installed using virtual machines, hosted using 
VMware Workstation Pro 15. Cuckoo Sandbox consists of two 
main processes: the Cuckoo Host, which controls the analysis, 
configuration, and stores the results; and the Cuckoo Guests, 
which perform the analysis. 

D. Feature Extraction

While the analysis reports from Cuckoo Sandbox provide
extensive details about the execution of samples, additional 
information was required for the Deep Learning analysis. The 
pefile Python package, used in part by Cuckoo Sandbox, was 

used to perform feature extraction on the samples to provide 

static analysis for the Deep Learning detection, a technique 
performed by [14] in their similar malware detection research. 

PE feature extraction was performed on each sample, with 
the information retrieved from the sample Image Optional 
Header recorded for use in the Deep Learning detection. This 
feature extraction returns useful information about the sample 
and its contents provide enough information for the Deep 
Learning technique to accurately distinguish malicious samples 
from benign. 

V. IMPLEMENTATION OF TECHNIQUES

To conduct a comparative study of the three chosen malware 
detection techniques and determine the most accurate, the study 
will record accuracy, false positive rate, and false negative rate 
for each technique. 

Additionally, to provide standard sets of samples for both 
training and testing, a subset of the project dataset is chosen 
when running the comparative study. This subset initially 
contains 1500 samples chosen at random from the project 
database, containing both malicious and benign samples. Using 
the train_test_split() function available from the 

Scikit Learn library [23], the subset of samples is split into a 
training set and a testing set, with no overlap of samples. 

The training set contains 70% of the original 1500 samples 
and will be used only for training the models for each detection 
technique. The test set contains the remaining 30% of the 
samples and will be used to test each technique. For a fair 
comparison of techniques, the same training and test sets was 
used for each technique. 

A. Signature-based Detection

For the purposes of this project, a signature will be generated
for each sample by taking the hash of the sample contents and 
comparing the hash to a repository of known malicious 
signatures. File hashes were chosen over byte strings from file 
contents due to the lack of information surrounding each 
malicious sample, as each malware has unique indicators of 
compromise and without knowing what malware family each 
sample belongs to, it is difficult to identify the signature byte 
strings that identify samples as malicious. 

To demonstrate signature-based detection, SHA256 hashes 
were generated for the malicious and benign samples in the 
project dataset. 

For this technique within the comparative study, the training 
set is used to populate the hash repository, with each malicious 
hash in the training set added to the repository. To test this 
technique, each hash in the test set is compared to the hash 
repository to identify if the sample is malicious. Predictions 
recorded by the method are then compared to the actual results, 
to provide an accuracy for the technique. 

B. Behaviour-based Detection

Behaviour-based detection is conducted using the DLL
import data for each sample, which was generated by the 
Cuckoo Sandbox analysis. The classification algorithm chosen 
for this technique is a Linear  Support Vector Machine (SVM), 
a model used for binary classification problems, built using the 
Scikit Learn Python library. 



As the DLL imports are stored as a string value in the project 
database, the values for each sample are first transforms into a 
JSON array using the built-in json Python standard package 

[17]. The class and DLL imports array for each sample in the 
training or test set is then passed to the Behaviour class, which 
performs normalisation and scaling on the data to format the 
DLL import array into integer vector features, as the Linear 
SVM model cannot perform classification on text. 

The behaviour-based technique uses integer feature vectors 
to perform classification, the length of which equals the number 
of features set by the model, which for this project is set to 50, 
an arbitrary value that could be adjusted following future 
investigations into which parameter values provide the highest 
accuracy. 

For each sample, an empty feature array is created with a 
length equalling the number of features set by the model. The 
normalisation of the DLL import data begins by looping through 
each DLL in the array and generating a hash value for each DLL, 
calculated using the Python built-in hash() function and 

returning the remainder when divided by the number of features. 
The returned value will be between 0 and the number of features. 
Using this value as an index for the sample feature vector, the 
value in that position is incremented by one. Upon completing 
the hash function for each DLL string, the feature vector 
containing integer values representing each DLL will be 
returned for classification. 

C. Deep Learning-based Detection

The Deep Learning technique uses a neural network with
three hidden layers to perform detection, created using the 
MLPClassifier() function from Scikit Learn [23]. This 

technique uses the Image Optional Header information extracted 
from each sample to perform the classification. 

The MLPClassifer provides a multi-layer perceptron, a class 
of feedforward Artificial Neural Network (ANN). For this 
experiment, three hidden layers were used with 30, 15, and 10 
neurons respectively, using the ReLU activation function and a 
stochastic gradient descent solver. 

As the values extracted from the header of each sample are 
between very different value ranges, to perform accurate 
detection the values must be standardised using a scalar 
function. This will ensure all values are scaled to the same value 
range and is a common requirement for many machine learning 
algorithms. The chosen scalar for this technique is the 
MinMaxScalar, provided by the Scikit Learn library, which 

will transform each feature into a value between 0 and 1. 

Much like the behaviour-based technique, the training set is 
used to train the Deep Learning model, with the training set used 
to fit the model scaling when used with the test set. Once training 
is complete the Deep Learning model is tested using the test set, 
with predicted classes recorded alongside the actual class to 
allow for accuracy calculations. 

VI. RESULTS

Table I shows the results of the comparative study, outlining 
the recorded accuracy, false positive rate, and false negative rate 

of each technique. The experiments to test each technique were 
completed ten times to produce an average result. 

TABLE I. RESULTS OF COMPARATIVE STUDY 

Technique Accuracy, % 

False 

Positive 

Rate 

False 

Negative 

Rate 

Signature-based 52.22 0.0 

(known) 

1.0 

(unknown) 

Behaviour-based 83.24 0.19 0.15 

Deep Learning 95.53 0.07 0.015 

Signature-based detection provided the highest efficiency 
for identifying known threats but proved weak when detecting 
unknown samples. This method of detection relies heavily on 
existing knowledge to build a repository of known threats, and 
with limited ability to detect unknown threats, this method is less 
suitable for critical industrial systems. 

Behaviour-based detection provided high accuracy, but also 
recorded the highest false negative rate, making it less successful 
at detecting malicious samples. With high false negative rates, 
this technique would potentially allow malicious threats into a 
system. 

Additionally, this technique may not detect malware samples 
designed to evade sandbox environments and would require 
more resources to conduct dynamic analysis, which may not be 
available within legacy systems. This technique would be best 
utilised as part of a wider security approach, working in tandem 
with other monitoring tools. 

The Deep Learning approach achieved the highest accuracy, 
with an increase of 10% over the behaviour-based approach, 
with low false positive and false negative rates, confirming this 
technique can detect unknown malicious samples with a high 
degree of success. In comparison with the results achieved by 
[14] and [16], this approach achieved similar values for
accuracy. Optimising the hyperparameters such as the batch
size, number of epochs, and number of hidden layers for the
neural network may produce higher accuracy results or lower
the false positive and negative rates.

VII. LIMITATIONS

The most significant limitation of this work is the reduced 
size of the project dataset, as only a limited number of samples 
were used to train and test the techniques in the comparative 
study, and to test the detection solution. This was due to a lack 
of storage space on the available physical hardware used to 
conduct the project, as well as the time required to analyse a 
greater number of samples. 

Furthermore, only Portable Executable files were used to 
provide samples for the project dataset, due to the limited 
availability of research-level malware datasets to source 
malicious samples. Therefore, the developed malware detection 
solution is only capable of analysing PE files due to their unique 
file structure. 

Resources for the study were limited due to a lack of 
additional storage and physical hardware, resulting in the use of 



virtual machines for both the Cuckoo Sandbox malware analysis 
and to simulate a network for the detection solution. 

While this work focused only on the accuracy of each 
detection technique, in a real-world deployment, analysis time 
would be an important factor and critical for identifying threats 
quickly in an industrial or legacy network. Therefore, further 
research would be required to identify the time taken to analyse 
samples for each technique. 

VIII. FUTURE WORK

There is a large scope for future work expanding on the 
foundation presented by the results of the conducted 
comparative study. 

With the availability of increased storage and processing 
power, a larger dataset could be used to further test the 
techniques chosen for the comparative study. Additionally, the 
possibility of future research using a greater variety of files and 
samples would provide a more accurate comparison of detection 
technique in different environments. 

As the project focused on accuracy statistics to provide 
comparisons and results, future research could investigate other 
statistics such as resource use, processing power, and analysis 
time. Additional work using the compared detection techniques 
on physical hardware or simulated industrial systems would also 
provide a greater insight into the ability of malware detection 
techniques to detect threats in a live system. 

IX. CONCLUSION

The results of the comparative study show that each 
detection technique can provide accurate results, dependent on 
the scenario, similar to those presented in [23, 24]. While the 
study proved the Deep Learning technique can achieve the 
highest accuracy for the chosen dataset, this technique may not 
be the best fit for another dataset or file type. Future work 
exploring the use of Deep Learning in malware detection could 
provide further insight into the application of this technique in 
the cyber security  domain. 

Despite limitations, the work itself contributes to existing 
research in the field of malware detection, providing further 
insight into the use of machine learning in network security and 
for the protection of legacy systems. 
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