
REID, D., HARRIS, I. and PETROVSKI, A. 2021. Comparative study of malware detection techniques for industrial
control systems. In Moradpoor, N., Elçi, A. and Petrovski, A. (eds.) Proceedings of 14th International conference on
Security of information and networks 2021 (SIN 2021), 15-17 December 2021, [virtual conference]. Piscataway: IEEE

[online], article 19. Available from: https://doi.org/10.1109/SIN54109.2021.9699167

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

Comparative study of malware detection
techniques for industrial control systems.

REID, D., HARRIS, I. and PETROVSKI, A.

2021

https://doi.org/10.1109/SIN54109.2021.9699167

Comparative Study of Malware Detection Techniques

for Industrial Control Systems

Deborah Reid

School of Computing

Robert Gordon University

Aberdeen, Scotland

d.a.reid@rgu.ac.uk

Ian Harris

School of Computing

Robert Gordon University

Aberdeen, Scotland

i.s.harris1@rgu.ac.uk

Andrei Petrovski

School of Computing

Robert Gordon University

Aberdeen, Scotland

a.petrovski@rgu.ac.uk

ORCID: 0000-0002-0987-2791

Abstract—Industrial Control Systems are essential to

managing national critical infrastructure, yet the security of these

systems historically relies on isolation. The adoption of modern

software solutions, and the unique challenges presented by legacy

systems, has made securing industrial networks increasingly

difficult. With malware identified as the leading cause of cyber

incident in industrial systems, this work presents a comparative

study of existing malware detection techniques, to compare both

accuracy and suitability for use in the defence of industrial

systems.

Keywords—industrial control systems, malware detection,

machine learning, cybersecurity

I. INTRODUCTION

Industrial Control Systems (ICS) are responsible for
controlling national critical infrastructure such as power
stations, water treatment centres, and manufacturing plants.
However, the security of these systems has long been based on
isolation and proprietary software. With cyber-attacks becoming
more sophisticated and the introduction of Enterprise solutions
and the Internet of Things (IoT) in industrial networks,
protecting these critical systems has become even more
important.

There is a long history of cyber-attacks targeting industrial
systems using malware, from the Trojan inserted into the Trans-
Siberian pipeline by the CIA, to the recent attacks on the
Ukrainian power grid in 2015 and 2016 [1]. Defending complex
legacy systems from malware requires resilient detection
solutions capable of protecting these critical systems without
interference to their operation.

While there is an abundance of research related to malware
detection, the discussion surrounding security and malware
detection in industrial control systems is limited. A report by the
US Army Research Laboratory [2] found that malware attacks
were the most common cause of incidents in ICS systems, and
this threat continues to rise. As ICS networks begin to adopt
modern solutions, the importance of securing these systems also
increases.

II. ICS SECURITY LANDSCAPE

Traditionally deployed on isolated networks, ICS are known
for using proprietary control protocols and specialised system
components to ensure high availability and real-time response
[3]. However, there is now a rise in ICS adopting IT solutions to
replace and upgrade propriety components, introducing remote
access capabilities and allowing ICS to communicate with the
wider business network. While the transition away from
isolated, propriety networks support new capabilities, it also
increases the risk of introducing new vulnerabilities.

A. Industrial Internet of Things

The Industrial Internet of Things (IIoT) refers to the use of
IoT devices in industrial sectors, bringing together traditional
automated ICS systems and advanced Internet-based
capabilities to create “cyber-physical” systems. With modern
ICS solutions turning away from isolated networks in favour of
more connected systems, IIoT provides a novel approach to
implementing additional features and capabilities to ICS [4].

Despite the new technologies IIoT can introduce to ICS, the
security and hardening of these connected devices may be
unknown, with the potential to introduce new threat surfaces.
Generally, IIoT devices are resource-constrained in terms of
processing power, memory, and energy consumption. This
means that much like traditional ICS components, there is little
scope for additional security modules within IIoT devices [5].

B. ICS Security Threats

Threats to ICS can take numerous forms, ranging from
structural threats, such as equipment failure, to accidental
damage, including human error, to adversarial threats from
individuals, groups, or nation-states [6]. The Kaspersky ICS
CERT [7] report on the “Threat Landscape of Industrial
Automation Systems” states that the main threat sources in the
ICS environment as Internet, removeable media, and email, with
the last two commonly used as carriers for malware.

Historically, the main cause of ICS cyber-incidents is
malicious software that infects and damages hosts within a

system by deploying a malicious payload or overloading server
central processing units (CPU) with can harm the performance
of the system [2]. Detecting and defending against the malware
threat is an important step to securing industrial systems, using
security mechanisms to detect known and unknown malware
variants, and protect against advanced malware techniques [8].

C. Malware in Industrial Systems

Historic cyber-attacks against ICS, such as Stuxnet in 2010
and Shamoon in 2012, have shown that despite air-gapped
networks, the use of obscure protocols, and the deployment of
specialised components, ICS are still vulnerable to cyber threats
[2].

Modern malware threats can employ advanced techniques to
hide their true intentions and avoid detection from anti-virus
programs and intrusion detection systems. Commonly seen
techniques such as polymorphism, the ability to appear in
different forms, and obfuscation, the ability to hide true
intentions behind a benign appearance, drive the development of
more advanced detection techniques [19].

Research by Dragos Inc. [10] recently published details
regarding ICS-specific ransomware, capable of targeting ICS
operations and forcible stop processes. Their report on the
EKANS and MEGACORTEX malware families identifies the
first known ICS-specific ransomware variants. ICS-specific
malware is currently limited, but these new creations show an
evolution of tactics of threat actors turning towards targeting
ICS environments.

III. RELATED WORK

Detecting malware in inbound traffic and within systems can
be made difficult with the increased use of advanced obfuscation
techniques. Implementing a robust detection system can help
protect a network from successful attack. This section discusses
existing research in the field of malware detection and the
different approaches to defending against this threat.

A. Static Analysis Techniques

Sufficient monitoring and logging within a computer
network are the least technical methods of malware detection,
yet it provides system engineers and administrators with an
overview of the system and a valid way to detect changes or
abnormal activity.

Commercial antivirus products typically employ signature-
based malware detection, where signatures from malware code,
for example a unique sequence of bytes, are used to determine if
suspicious programs are malicious in nature by comparing the
program to malware signatures. However, this method of
detection cannot identify malware which can mutate during
deployment, as each mutation generates a new signature [8].

An approach presented by [11] uses data-clustering based
anomaly detection, designed for ICS using data from a range of
sources such as industrial processes and network traffic. While
this approach provides hardening to a system, the required
storage space and performance drain could negatively affect
ICS availability [12].

B. Behaviour-based Analysis Techniques

Behaviour-based malware detection looks to overcome the
vulnerabilities of static analysis, which can be vulnerable to code
obfuscation techniques [9]. Dynamic analysis of malware
overcomes this issue by monitoring the behaviour of files during
execution, usually in a virtual or sandbox environment.

One behaviour-based approach suggested by [13] employs
virtual environments to monitor sample API calls, as certain
malware families rely on libraries provided by the host operating
system. The results of this research showed a 97% detection
accuracy when using a Decision Tree for classification.

However, [9] suggests API calls are vulnerable to
manipulation, resulting in misclassification. Their own solution
focuses on using short snapshots of behavioural data from
samples, suggesting a ‘sliding-window’ approach over full
behavioural analysis, which they argue can be time consuming
and runs the risk of malicious samples executing their payloads
before detection.

C. Deep Learning Techniques

Deep Learning and unsupervised learning algorithms hold
promise for automating malware detection in systems and
developing generalisations for identifying benign and malicious
files [14]. The process of Deep Learning involves training a
network of artificial neurons to recognise complex patterns and
classify new samples [15].

Research by Saxe and Berlin [14] and Dahl et al. [16] both
present Deep Learning models for malware classification using
neural networks. Saxe and Berlin achieved an accuracy of 95%
with a false positive rate of 0.1% using a deep neural network
with three layers, with a dataset of 431,926 benign and malicious
samples.

In contrast, Dahl et al. achieved an accuracy of ~90% with a
false positive rate of 0.83% and a false negative rate of 0.35%,
using an ensemble of shallow, one-layer neural networks and a
large dataset of 2.6 million files. Both approaches show that
deep learning can be used effectively to provide accurate
malware detection.

D. Malware Detection in ICS

As shown, research into malware detection and classification
is widely conducted, with researchers continuing to search for
more advanced and accurate techniques. However, there is little
attention on this field within industrial systems and the use of
modern technology to defend legacy systems.

The study conducted in this paper looks to provide a
comparison of detection techniques with a focus on their
application in an industrial environment, as the unique
requirements of ICS demand a malware detection technique that
works with the system, not against it.

IV. COMPARATIVE STUDY

The comparative study presented in this paper looks to
compare the accuracy of three different malware detection
approaches: signature-based, behaviour-based, and deep
learning. The goal of the study is to identify the ability of each
technique to identify known and unknown malicious samples.

A. Tools and Architecture

Development of a robust IDS tool requires extensive use of
advanced topics such as machine learning and network traffic
monitoring. In place of developing custom modules, that may be
insecure or inaccurate, the decision was made to use the Python
language to complete the implementation of the study
experiments, which benefits from a large selection of libraries
designed for these topics [17].

Due to limitations with physical hardware, virtualisation will
be used to deploy virtual machines for the purposes of malware
analysis. Use of virtual machines provides an additional layer of
security while working with malicious files, keeping potentially
damaging software in an isolated environment. Another benefit
to using virtual machines is the ability to create new machines
when required, without needing additional physical hardware
for hosting.

As part of this project, a storage solution is required to store
the project dataset, solution results, and provide a temporary
storage for network traffic for the detection solution. SQLite was
chosen as the storage solution, as it provides fast data access and
a small code footprint. Additionally, SQLite databases are self-
contained and can be embedded into applications, without the
need for a standalone server to host the database.

B. Dataset

Research to identify existing malware research datasets
found that few repositories of samples exist, with even fewer
containing data related to industrial systems. Two research
datasets containing malicious and benign samples were
identified: EMBER (Elastic Malware Benchmark for
Empowering Researchers) and SOREL-20M (Sophos-
ReversingLabs – 20 Million) [18], both of which are publicly
available for use in malware detection research.

Following evaluation of these two datasets, SOREL-20M
was chosen to provide malicious samples for the project dataset.
Since the dataset contains classified samples, features, and the
raw binaries, there is scope for use of the samples for each
detection technique in the comparative study.

1) Populating Study Dataset
The SOREL-20M dataset contains samples, features, and

raw binaries for approximately 10 million malware samples and
is available from an Amazon Web Services (AWS) S3 Bucket
cloud storage.

The original dataset contains approximately 8 Terabytes of
data, with the raw binaries contributing the most to the
extremely large size. As the storage available for this work was
limited, there was no possibility of storing the whole dataset.
Therefore, 1000 samples were chosen at random from the
SOREL-20M dataset using SQLite’s built in random() SQL
function to select samples from the dataset meta.db file, which

contains the binary hash, class, and malware tags for every
sample.

The malicious samples contained in the SOREL-20M
dataset are all Portable Executable files. Portable Executable
(PE) is the standard file format for executable files under the
Windows operating system, with the name of the format a
reference to the fact these files are not architecture specific.

As the SOREL-20M dataset does not contain the raw
binaries for any benign samples, these files were sourced from a
Windows 7 virtual machines, taking copies of benign Windows
executables and other PE files, such as Dynamic-Link Libraries
(DLL), screensavers, and system files.

2) Class Imbalance
The final project dataset following analysis and processing

contains a total 1949 samples, with 1011 benign samples and
938 malicious samples. For this work, class distribution is
slightly imbalanced, with Benign being the majority class.
However, there is no extreme disproportion between classes
which lowers the risk of the training model being overwhelmed
and increases the chance of successfully detecting Malicious
samples.

3) Dataset Similarity
As this project focuses on the protection of industrial and

legacy systems, it is important to show the link between the
dataset malware samples and live malware known to target
industrial systems and networks.

Known industrial malware samples were download from
theZoo [19], a malware binary collection hosted on GitHub,

and analysed using Cuckoo Sandbox [20] to provide static and
behavioural data. These live samples were then compared to the
project dataset, to determine the level of similarity with the
project malware samples, calculated using Cosine Similarity of
each sample’s DLL imports, supplied by the Cuckoo Sandbox
analysis.

Cosine Similarity is used to determine the similarity between
two documents or vectors, irrespective of size, having the
advantage over Euclidean Distance, another common similarity
metric which calculates similarity by counting common values
in documents. The Cosine Similarity approach offers an
alternative to as document size is not considered [21]. The
equation below outlines the calculation for Cosine Similarity.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) =
𝑎∙𝑏

‖𝑎‖‖𝑏‖
=

∑ 𝑎𝑖𝑏𝑖
𝑛
1

√∑ 𝑎1
2𝑛

1 √∑ 𝑏1
2𝑛

1

The similarity of the study dataset samples and the live
malware samples was based on the DLL imports called by each
sample. Two known ICS malware were used to perform the
similarity calculations. Fig. 2 and Fig. 3 show the results of this
experiment and display the percentage similarity for both
malware samples against the malicious samples included in the
project dataset.

Shamoon, the malware used in the 2012 Saudi Aramco
attack [2], and Triton, a malware known to target industrial
safety controllers [22], both share similarities with samples in
the study dataset, with some samples showing 50% and above
similarity. The rise in similar samples around 40-60% indicates
shared DLL imports, common files used by both the malware
and the samples. As the malicious nature and type of the dataset
samples is unknown, the higher similarity suggests the sample
shares the same malware family or behaviour as the industrial
malware samples.

Fig. 3. Dataset Similarity with Shamoon

Fig. 4. Dataset Similarity with Triton

Although not exact due to the random nature of the project
malware samples, this basic test of similarity suggests that
samples in the dataset could affect industrial systems, lending
support to the developed detection techniques and solution
capabilities of defending legacy systems from malware.

C. Dynamic Analysis

To perform behaviour-based analysis for the comparative
study, behavioural data was required. Although the SOREL-
20M dataset contains the results of dynamic analysis and feature
extraction for each sample, this information is stored in large
files that cannot be accessed directly in the AWS S3 storage and
are too large to download. Therefore, to provide the required
behavioural information, dynamic analysis of samples was
completed using Cuckoo Sandbox, which was deployed and
configured for the project.

Due to a lack of additional physical machines, Cuckoo
Sandbox was installed using virtual machines, hosted using
VMware Workstation Pro 15. Cuckoo Sandbox consists of two
main processes: the Cuckoo Host, which controls the analysis,
configuration, and stores the results; and the Cuckoo Guests,
which perform the analysis.

D. Feature Extraction

While the analysis reports from Cuckoo Sandbox provide
extensive details about the execution of samples, additional
information was required for the Deep Learning analysis. The
pefile Python package, used in part by Cuckoo Sandbox, was

used to perform feature extraction on the samples to provide

static analysis for the Deep Learning detection, a technique
performed by [14] in their similar malware detection research.

PE feature extraction was performed on each sample, with
the information retrieved from the sample Image Optional
Header recorded for use in the Deep Learning detection. This
feature extraction returns useful information about the sample
and its contents provide enough information for the Deep
Learning technique to accurately distinguish malicious samples
from benign.

V. IMPLEMENTATION OF TECHNIQUES

To conduct a comparative study of the three chosen malware
detection techniques and determine the most accurate, the study
will record accuracy, false positive rate, and false negative rate
for each technique.

Additionally, to provide standard sets of samples for both
training and testing, a subset of the project dataset is chosen
when running the comparative study. This subset initially
contains 1500 samples chosen at random from the project
database, containing both malicious and benign samples. Using
the train_test_split() function available from the

Scikit Learn library [23], the subset of samples is split into a
training set and a testing set, with no overlap of samples.

The training set contains 70% of the original 1500 samples
and will be used only for training the models for each detection
technique. The test set contains the remaining 30% of the
samples and will be used to test each technique. For a fair
comparison of techniques, the same training and test sets was
used for each technique.

A. Signature-based Detection

For the purposes of this project, a signature will be generated
for each sample by taking the hash of the sample contents and
comparing the hash to a repository of known malicious
signatures. File hashes were chosen over byte strings from file
contents due to the lack of information surrounding each
malicious sample, as each malware has unique indicators of
compromise and without knowing what malware family each
sample belongs to, it is difficult to identify the signature byte
strings that identify samples as malicious.

To demonstrate signature-based detection, SHA256 hashes
were generated for the malicious and benign samples in the
project dataset.

For this technique within the comparative study, the training
set is used to populate the hash repository, with each malicious
hash in the training set added to the repository. To test this
technique, each hash in the test set is compared to the hash
repository to identify if the sample is malicious. Predictions
recorded by the method are then compared to the actual results,
to provide an accuracy for the technique.

B. Behaviour-based Detection

Behaviour-based detection is conducted using the DLL
import data for each sample, which was generated by the
Cuckoo Sandbox analysis. The classification algorithm chosen
for this technique is a Linear Support Vector Machine (SVM),
a model used for binary classification problems, built using the
Scikit Learn Python library.

As the DLL imports are stored as a string value in the project
database, the values for each sample are first transforms into a
JSON array using the built-in json Python standard package

[17]. The class and DLL imports array for each sample in the
training or test set is then passed to the Behaviour class, which
performs normalisation and scaling on the data to format the
DLL import array into integer vector features, as the Linear
SVM model cannot perform classification on text.

The behaviour-based technique uses integer feature vectors
to perform classification, the length of which equals the number
of features set by the model, which for this project is set to 50,
an arbitrary value that could be adjusted following future
investigations into which parameter values provide the highest
accuracy.

For each sample, an empty feature array is created with a
length equalling the number of features set by the model. The
normalisation of the DLL import data begins by looping through
each DLL in the array and generating a hash value for each DLL,
calculated using the Python built-in hash() function and

returning the remainder when divided by the number of features.
The returned value will be between 0 and the number of features.
Using this value as an index for the sample feature vector, the
value in that position is incremented by one. Upon completing
the hash function for each DLL string, the feature vector
containing integer values representing each DLL will be
returned for classification.

C. Deep Learning-based Detection

The Deep Learning technique uses a neural network with
three hidden layers to perform detection, created using the
MLPClassifier() function from Scikit Learn [23]. This

technique uses the Image Optional Header information extracted
from each sample to perform the classification.

The MLPClassifer provides a multi-layer perceptron, a class
of feedforward Artificial Neural Network (ANN). For this
experiment, three hidden layers were used with 30, 15, and 10
neurons respectively, using the ReLU activation function and a
stochastic gradient descent solver.

As the values extracted from the header of each sample are
between very different value ranges, to perform accurate
detection the values must be standardised using a scalar
function. This will ensure all values are scaled to the same value
range and is a common requirement for many machine learning
algorithms. The chosen scalar for this technique is the
MinMaxScalar, provided by the Scikit Learn library, which

will transform each feature into a value between 0 and 1.

Much like the behaviour-based technique, the training set is
used to train the Deep Learning model, with the training set used
to fit the model scaling when used with the test set. Once training
is complete the Deep Learning model is tested using the test set,
with predicted classes recorded alongside the actual class to
allow for accuracy calculations.

VI. RESULTS

Table I shows the results of the comparative study, outlining
the recorded accuracy, false positive rate, and false negative rate

of each technique. The experiments to test each technique were
completed ten times to produce an average result.

TABLE I. RESULTS OF COMPARATIVE STUDY

Technique Accuracy, %

False

Positive

Rate

False

Negative

Rate

Signature-based 52.22 0.0

(known)

1.0

(unknown)

Behaviour-based 83.24 0.19 0.15

Deep Learning 95.53 0.07 0.015

Signature-based detection provided the highest efficiency
for identifying known threats but proved weak when detecting
unknown samples. This method of detection relies heavily on
existing knowledge to build a repository of known threats, and
with limited ability to detect unknown threats, this method is less
suitable for critical industrial systems.

Behaviour-based detection provided high accuracy, but also
recorded the highest false negative rate, making it less successful
at detecting malicious samples. With high false negative rates,
this technique would potentially allow malicious threats into a
system.

Additionally, this technique may not detect malware samples
designed to evade sandbox environments and would require
more resources to conduct dynamic analysis, which may not be
available within legacy systems. This technique would be best
utilised as part of a wider security approach, working in tandem
with other monitoring tools.

The Deep Learning approach achieved the highest accuracy,
with an increase of 10% over the behaviour-based approach,
with low false positive and false negative rates, confirming this
technique can detect unknown malicious samples with a high
degree of success. In comparison with the results achieved by
[14] and [16], this approach achieved similar values for
accuracy. Optimising the hyperparameters such as the batch
size, number of epochs, and number of hidden layers for the
neural network may produce higher accuracy results or lower
the false positive and negative rates.

VII. LIMITATIONS

The most significant limitation of this work is the reduced
size of the project dataset, as only a limited number of samples
were used to train and test the techniques in the comparative
study, and to test the detection solution. This was due to a lack
of storage space on the available physical hardware used to
conduct the project, as well as the time required to analyse a
greater number of samples.

Furthermore, only Portable Executable files were used to
provide samples for the project dataset, due to the limited
availability of research-level malware datasets to source
malicious samples. Therefore, the developed malware detection
solution is only capable of analysing PE files due to their unique
file structure.

Resources for the study were limited due to a lack of
additional storage and physical hardware, resulting in the use of

virtual machines for both the Cuckoo Sandbox malware analysis
and to simulate a network for the detection solution.

While this work focused only on the accuracy of each
detection technique, in a real-world deployment, analysis time
would be an important factor and critical for identifying threats
quickly in an industrial or legacy network. Therefore, further
research would be required to identify the time taken to analyse
samples for each technique.

VIII. FUTURE WORK

There is a large scope for future work expanding on the
foundation presented by the results of the conducted
comparative study.

With the availability of increased storage and processing
power, a larger dataset could be used to further test the
techniques chosen for the comparative study. Additionally, the
possibility of future research using a greater variety of files and
samples would provide a more accurate comparison of detection
technique in different environments.

As the project focused on accuracy statistics to provide
comparisons and results, future research could investigate other
statistics such as resource use, processing power, and analysis
time. Additional work using the compared detection techniques
on physical hardware or simulated industrial systems would also
provide a greater insight into the ability of malware detection
techniques to detect threats in a live system.

IX. CONCLUSION

The results of the comparative study show that each
detection technique can provide accurate results, dependent on
the scenario, similar to those presented in [23, 24]. While the
study proved the Deep Learning technique can achieve the
highest accuracy for the chosen dataset, this technique may not
be the best fit for another dataset or file type. Future work
exploring the use of Deep Learning in malware detection could
provide further insight into the application of this technique in
the cyber security domain.

Despite limitations, the work itself contributes to existing
research in the field of malware detection, providing further
insight into the use of machine learning in network security and
for the protection of legacy systems.

REFERENCES

[1] S. McLaughlin et al., “The cybersecurity landscape in industrial control
systems”, in Proceedings of the IEEE, vol. 105, issue 5, pp. 1039-1057,
2016.

[2] D. T. Sullivan. (2015). Survey of malware threats and recommendations
to improve cybersecurity for industrial control systems version 1.0
(Online). Available: https://apps.dtic.mil/sti/pdfs/ADA617910.pdf

[3] D. Timpson and E. Moradian, “A methodology to enhance industrial
control system security”, in Procedia Computer Science, vol. 126, issue
2018, pp. 2117-2126, 2018.

[4] P. McLaughlin and R. McAdam. (2016). The undiscovered country: the
future of industrial automation (Online). Available:
https://www.honeywellprocess.com/en-
US/online_campaigns/IIOT/Documents/The-Undiscovered-Country.pdf

[5] E. Sisinni et al., “Industrial internet of things: challenges, opportunities,
and directions”, in IEEE Transactions on Industrial Informatics, vol. 14,
issue 11, pp. 4724-4734, 2018.

[6] K. Stouffer et al. (2014). Guide to industrial control systems (ICS)
security (Online). Available:
http://www.gocs.com.de/pages/fachberichte/archiv/164-
sp800_82_r2_draft.pdf

[7] Kaspersky ICS CERT. (2020). Threat landscape for industrial
automation systems: H1 2020 (Online). Available: https://ics-
cert.kaspersky.com/media/KASPERSKY_H1_2020_ICS_REPORT_EN
.pdf

[8] P. Vinod, V. Laxmi and M. Gaur, “Survey on malware detection
methods”, in Hack.in 2019: 3rd Hackers’ Workshop on Computer Science
and Internet Security, Kanpur, India, 2009, pp.74-79.

[9] M. Rhode, P. Burnap and K. Jones, “Early-stage malware prediction using
recurrent neural networks”, in Computers & Security, vol. 7, pp. 578-594,
2018.

[10] Dragos, Inc. (2020). EKANS ransomware and ICS operations [Online].
Available: https://www.dragos.com/blog/industry-news/ekans-
ransomware-and-ics-operations/

[11] I. Kiss et al., “Data clustering-based anomaly detection in industrial
control systems”, in IEEE 10th International Conference on Intelligent
Computer Communication and Processing (ICCP), Cluj-Napoca,
Romania, 2014, pp. 275-281.

[12] E. Kabanga and C. H. Kim, “Malware images classification using
convolutional neural network”, in Journal of Computer and
Communications, vol. 6(1), pp. 153-158, 2018.

[13] H. S. Galal, Y. B. Mahdy, and M. A. Atiea, “Behaviour-based features
model for malware detection”, in Journal of Computer Virology and
Hacking Techniques, vol. 12(2016), pp. 59-67, 2016.

[14] J. Saxe and K. Berlin. (2015). Deep neural network based malware
detection using two-dimensional binary program features (Online).
Available: https://arxiv.org/pdf/1508.03096v2.pdf

[15] W. Knight. (2015). Antivirus that mimics the brain could catch more
malware (Online). Available:
https://www.technologyreview.com/2015/10/29/165374/antivirus-that-
mimics-the-brain-could-catch-more-malware/

[16] G. Dahl et al., “Large-scale malware classification using random
projections and neural networks”, in IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 3422-3426, 2013.

[17] G. Van Rossum, The python library reference, release 3.9.4 [Online].
Available: https://www.python.org/downloads/release/python-394/

[18] R. Harang and E. M. Rudd, “SOREL-20M: A large scale benchmark
dataset for malicious PE detection”, Sophos, [Online], 2020. Available:
https://arxiv.org/abs/2012.07634

[19] Y. Nativ, L. Ludar and 5fingers. (2015). theZoo – a live malware
repository (Online). Available: https://github.com/ytisf/theZoo

[20] Cuckoo Sandbox. (2019). Cuckoo Sandbox – automated malware
analysis (Online). Available: https://cuckoosandbox.org/

[21] S. Prabhakaran. (2020). Cosine similarity – understanding the math and
how it works (Online). Available:
https://www.machinelearningplus.com/nlp/cosine-similarity/

[22] National Cyber Security Centre. (2018). TRITON malware targeting
safety controllers (Online). Available:
https://www.ncsc.gov.uk/information/triton-malware-targeting-safety-
controllers

[23] F. Pedregosa, “Scikit-learn: Machine learning in python”, Journal of
Machine Learning, vol 12, pp. 2825-2830, 2011.

[24] U. Otokwala, A., Petrovski., H. Kalutarage,.”Effective Detection of
Cyber-Attack in a Cyber-Physical Power Grid System”, in Proceedings
of the Future of Information and Communications conference, 2021, vol.
1, pp. 812-829.

[25] F. Majdani, et. Al. “Detecting Malicious Signal Manipulation in Smart
Grids Using Intelligent Analysis of Contextual Data”, in Proceedings of
the 13th International Conference on Security of Information and
Networks, 2020, article No: 4, pp. 1-8.

	coversheet_template
	Detecting MW in ICS_final.pdf

