
STEPHENS HEMINGWAY, B.H. 2021. The utility of mathematical fitness-fatigue models for assisting with the planning
of physical training for sport: from in silico experiments employing synthetic data, lower-bound operational

conditions and model estimation, to the development of software resources for future research. Robert Gordon
University, PhD thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-1603154

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

The utility of mathematical fitness-fatigue
models for assisting with the planning of physical

training for sport: from in silico experiments
employing synthetic data, lower-bound

operational conditions and model estimation, to
the development of software resources for

future research.

STEPHENS HEMINGWAY, B.H.

2021

https://doi.org/10.48526/rgu-wt-1603154

THE UTILITY OF MATHEMATICAL
FITNESS-FATIGUE MODELS FOR

ASSISTING WITH THE PLANNING OF
PHYSICAL TRAINING FOR SPORT

From in silico experiments employing synthetic data,
lower-bound operational conditions and model estimation,

to the development of software resources for future
research

Benedict H. Stephens Hemingway

Department:

School of Health Sciences &

School of Computing

Submitted in partial fulfilment of the requirements for the degree of:

Doctor of Philosophy

May 2021

The Robert Gordon University, Aberdeen, Scotland, UK

 ii

Abstract

The greatest potential application of mathematical models in sport science is to predict future

performance of individual athletes in response to training with sufficient accuracy to assist with

planning of training programs and short tapering periods. The most widely known and investigated set

of mathematical models include the fitness-fatigue models (FFMs). However, despite over 45 years of

FFM study, problems remaining within the research base and gaps in existing knowledge have limited

interpretation of prior research and prevented progression toward practical implementation. These

limitations include: 1) inadequate study of model validity in prior experimental study as a result of

unsatisfactory model testing; 2) a disorganised literature body without a connective narrative linking

previous research and providing consistent recommendations for the requirements and direction of

future study; 3) limitations in the structure of basic FFMs matched by little awareness of extensions

that have been proposed to address them; 4) no consideration of experimental factors and methods that

may interact with model accuracy (e.g., measurement error, testing frequency, parameter estimation);

5) limited practical resources elucidating key concepts, and no tools available to facilitate processes

required to fit and evaluate more promising FFMs. Subsequently the aims of this PhD were to 1)

Systematise the FFM literature body, providing sufficient detail and structure to the point where there

exists a consistent narrative threading the historical literature, pertinent concepts, and contemporary

work to address limitations in basic FFM structure; 2) Conduct original study of key experimental

factors (measurement error and testing-frequency), and methods of model estimation, that may affect

model accuracy or utility; 3) Identify and raise awareness of alternative FFMs beyond the standard

model, and advanced methods, that reflect more promising avenues for future research; 4) Develop

flexible code tools that facilitate future study and address the current gap in available resources. This

first aim was achieved by comprehensive review balancing mathematical rigor with clarity in the

communication of concepts and methods ranging from the standard model to the most advanced FFMs.

The second aim was achieved by two novel studies that developed in silico experimental designs, and

that represented prerequisite work prior to any further study of model validity. Study 1 quantified the

effects of key experimental factors (measurement noise and testing-frequency) on lower-bound model

accuracy in the standard FFM, demonstrating testing practices comprising high error will provide

unsatisfactory results and greater deleterious effects of error exist at lower testing frequencies. Study

2 focussed on suitability of a traditional quasi-Newton algorithm for fitting FFMs, by assessing starting

point sensitivity and existence/implications of local extrema. Study 2 demonstrated the model-fitting

problem is more challenging than researchers have previously acknowledged, and the presence of

many local extrema even in the standard FFM may now necessitate global optimisation approaches.

Aims 3 and 4 were achieved by development of extensive code resources in the R programming

language for fitting and evaluating FFMs, facilitating future study under the most promising

models/methods. The original research and systematised literature body provides clearer direction for

 iii

future FFM research, guidance with respect to key experimental factors/methods (e.g., measurement

practices, estimation, model testing), and reflects the most up-to-date resource available for researchers

interested in FFMs. The code tools developed meet the need for flexible practical resources for

researchers, and the novel experimental designs developed for the two studies provide a unique and

cost-effective approach to study FFMs and potentially other phenomena in sport science.

 iv

Acknowledgements

I would like to express my appreciation and gratitude to many colleagues, friends, and family, all of

whom have given me their unwavering support throughout this research journey. On countless

occasions I have been moved by their patience and generosity and spurred on by their encouragement.

My sincere thanks and gratitude goes to my superb supervisory team, Dr Paul Swinton, Dr Katherine

Burgess, and Dr Eyad Elyan, whose collective knowledge and expertise have helped shape my thinking

and perspectives across several areas of research. In particular I would like to express special thanks

to my principal supervisor Dr Swinton, whose intellectual brilliance and confidence in the research

topic has been a dependable source of constructive influence. His selflessness, persistent optimism,

and generosity with his time has had a significant positive impact on me, and I have thoroughly enjoyed

his mentorship. Without his efforts, outlook, and feedback at several points in the process, the goals

of this project could not have been realised. I look forward with great eagerness to soon having the

time to work on many of the other interesting research endeavours we have discussed over the years.

There are numerous others who deserve acknowledgement and my thanks, including those who I have

been fortunate enough to collaborate with during this research project. In particular, Dr Ben Ogorek

who assisted with the development of the Kalman filter code in chapter 6. As both a colleague and

friend, I have greatly enjoyed and benefited from all of our discussions spanning performance

modelling, statistics, and data science. Similarly, Christian Rasche deserves my deepest thanks for

providing illuminating feedback and expert knowledge at many points. Further thanks must be

extended to Leon Greig and Mladen Jovanovic, with whom I have thoroughly enjoyed insightful

collaboration, and thanks must also go to Andrea McMillan from the graduate school, whose support

and encouragement throughout this research project has consistently been above and beyond.

To my close friends, thank you for your support during the completion of this work. In particular, to

my housemates Andrew and Cameron, for putting up with me during some of the most stressful points.

Your enthusiasm, encouragement, and interest in the work throughout the process has meant a lot. To

Sam, thank you for your encouragement and words of mathematical wisdom. To Fraser, thank you for

bringing me into the field of strength and conditioning and developing me as a coach. Coaching

together over the years and our regular discussions have greatly informed my understanding of the

practicalities of sport science and strength and conditioning.

Finally, to my parents, Patricia and Philip, thank you for your support, love, and relentless belief in

my abilities. This work is dedicated to you.

 v

Related publications

Peer reviewed

• Stephens Hemingway, B., Burgess, K., Elyan, E., & Swinton, P. (2019). The effects of

measurement error and testing frequency in applying the Fitness Fatigue Model to resistance

training: A simulation study. International Journal of Sports Science and Coaching, 0(0), 1–

12. doi.org/10.13140/RG.2.2.19730.56005

• Greig, L., Stephens Hemingway, B., Aspe, R. R., Cooper, K., Comfort, P., & Swinton, P. A.

(2020). Autoregulation in Resistance Training: Addressing the Inconsistencies. Sports

Medicine. doi.org/10.1007/s40279-020-01330-8

• Swinton, P. A., Stephens Hemingway, B., Saunders, B., Gualano, B., & Dolan, E. (2018). A

Statistical Framework to Interpret Individual Response to Intervention: Paving the Way for

Personalized Nutrition and Exercise Prescription. Frontiers in Nutrition (Open Access).

doi.org/10.3389/fnut.2018.00041

In preprint or currently under peer-review

• Stephens Hemingway, B., Swinton, P. A., & Ogorek, B. (2021). The suitability of a quasi-

Newton algorithm for estimating fitness-fatigue models: Sensitivity, troublesome local

optima, and implications for future research (An in silico experimental design). SportRxiv

(Preprint)2. doi.org/10.31236/osf.io/dx7gm

• Stephens Hemingway, B., Greig, L., Jovanovic, M., Ogorek, B., & Swinton, P. (2021).

Traditional and contemporary approaches to mathematical fitness-fatigue models in exercise

science: A practical guide with resources. Part I. SportRxiv (Preprint).

doi.org/10.31236/osf.io/ap75j

• Swinton, P., Stephens Hemingway, B., Rasche, C., Pfeiffer, M., & Ogorek, B. (2021).

Traditional and contemporary approaches to mathematical fitness-fatigue models in exercise

science: A practical guide with resources. Part II. SportRxiv (Preprint).

doi.org/10.31236/osf.io/5qgc2

Conference proceedings

• Stephens Hemingway, B., Burgess, K., Swinton, P. (2017). The effects of measurement error

and testing frequency in applying the Fitness Fatigue Model to resistance training: A

simulation study. The UK Strength & Conditioning (UKSCA) Annual Conference. (Poster &

Abstract)

 vi

Software

• Stephens Hemingway, B., Ogorek, B. (2020). The fitness-fatigue model project: An open-

source codebase and decentralised scientific research project investigating models of physical

training and performance in sport. fitnessfatigue.com

• Jovanovic, M., Stephens Hemingway, B., & Swinton, P. (2020). dorem: Dose Response

Modelling in R (0.0.9000). doi.org/10.5281/zenodo.3757085; dorem.net

 vii

Availability of materials

An online repository has been established to provide access to the supplementary materials, data (e.g.,

inputs, results), and code files associated with this thesis, particularly relevant to chapter 6. In many

cases these files can be - or have been purposely designed to - be adapted and used by researchers for

their own investigations in fitness-fatigue modelling. Specific files contained in the repository are also

referenced at throughout the work at relevant points.

The main directory of the repository can be found at:

github.com/bsh2/thesis

Files contained within the repository:

Chapter Associated files

2 Literature review Code associated with plots

4 Research study 1 Experimental code and supplementary files

5 Research study 2 Experimental code and supplementary files

6 Software development Code files containing the practical resources developed
for researcher education and future research

All code presented in this thesis was written in the statistical programming language R (r-project.org)

Repository license: GNU GPL v.3 (gnu.org)

Redundancy: A carbon copy of the files contained at the above repository will be stored by RGU

library (library@rgu.ac.uk) and made available to download from their OpenAir system alongside this

thesis at point of archive.

 1

Table of Contents
ABSTRACT .. II

ACKNOWLEDGEMENTS .. IV

RELATED PUBLICATIONS ... V

AVAILABILITY OF MATERIALS .. VII

LIST OF TABLES ... 5

LIST OF FIGURES ... 6

LIST OF CODE ... 10

ABBREVIATIONS .. 13

GLOSSARY OF KEY TERMS .. 15

CHAPTER 1: INTRODUCTION .. 17

1.1 A BRIEF INTRODUCTION TO THE WORK .. 17
1.2 RESEARCH BACKGROUND .. 21

1.2.1 Management of the training process – a tractable optimisation problem? 21

1.2.2 Advances in technology and increased access to field data creating new opportunities 24
1.2.3 Performance and training: Clarifying terms and relationships ... 26

1.2.3.1 Defining physical and competitive performance .. 26
1.2.3.2 The measurement of physical performance and implications for performance modelling 27
1.2.3.3 Physical training and training load ... 28

1.3 SUMMARY .. 29

CHAPTER 2: LITERATURE REVIEW .. 30

2.1 INTRODUCTION .. 30
2.1.2 Organisation of the literature review .. 31

2.2 HISTORICAL DEVELOPMENT .. 32

2.2.1 The standard fitness-fatigue model ... 32
2.2.2 The general model .. 42
2.2.3 A variable baseline performance model ... 44

2.2.4 Influence Curves ... 45

2.2.5 Further developments to model structure ... 48
2.3 APPLICATION OF FITNESS-FATIGUE MODELS IN RESEARCH AND PRACTICE 48

2.3.1 Training load quantification ... 49
2.3.2 Criterion performance selection ... 52

2.3.3 Parameter estimation approaches and limitations .. 54

 2

2.3.4 Model evaluation: Integrating practitioner data into future research 57

2.3.5 The utility of an FFM: Informing training program design ... 62
2.3.6 Current applications: Availability of software and data ... 64

2.4 MODEL DEVELOPMENTS AND EXTENSIONS: A STATE-OF-THE-ART .. 66

2.4.1 Modification to model input and inclusion of non-linearity .. 68
2.4.2 Interaction between training sessions: The variable dose-response (VDR) model 70

2.4.3 Inclusion of uncertainty and feedback: The Kalman filter ... 72

2.4.4 Modification to the model system to include non-linearity ... 77
2.4.5 A recursive delay-differential model .. 78

2.4.6 Time-varying model: Recursive least squares ... 80

2.4.7 An exponential growth model .. 82
2.4.8 Secondary-signal model ... 84

2.5 REVIEW SUMMARY .. 86

2.5.2 A visual timeline of FFM developments .. 89
2.5.3 Reference Table (FFM formulae) .. 91

CHAPTER 3: RESEARCH DESIGN ... 96

3.1 CHALLENGES, RESEARCH MODEL DEVELOPMENT, AND KEY ASPECTS OF THE PROJECT 96
3.2 AIMS AND OBJECTIVES (SUMMARY) .. 104

CHAPTER 4: THE EFFECTS OF MEASUREMENT ERROR AND TESTING FREQUENCY

ON THE STANDARD FITNESS-FATIGUE MODEL APPLIED TO SYNTHETIC

RESISTANCE TRAINING DATA: AN IN SILICO EXPERIMENTAL DESIGN 105

4.1 PREFACE .. 105

4.2 INTRODUCTION .. 107
4.3 MATERIALS AND METHODS .. 111

4.3.1 Experimental approach to the problem .. 111

4.3.2 Development of hypothetical athletes .. 112

4.3.3 Development of training loads ... 114

4.3.4 Development of athlete specific (true) parameters .. 115

4.3.5 Implementation ... 116

4.3.6 Statistical analyses .. 118
4.3.7 Quality control .. 118

4.4 RESULTS .. 119

4.4.1 Prediction errors ... 119
4.4.2 Model parameter estimates ... 123

4.5 DISCUSSION ... 124

 3

4.6 SUMMARY, CONCLUSIONS, AND PRACTICAL RECOMMENDATIONS ... 125

CHAPTER 5: SUITABILITY OF A QUASI-NEWTON ALGORITHM FOR ESTIMATING

FFMS: SENSITIVITY, TROUBLESOME LOCAL OPTIMA, AND IMPLICATIONS FOR

FUTURE RESEARCH (AN IN SILICO EXPERIMENTAL DESIGN) 126

5.1 PREFACE ... 126
5.2 INTRODUCTION .. 129

5.3 MATERIALS AND METHODS ... 131

5.3.1 Experimental approach to the problem ... 131
5.3.2 Development of the synthetic model inputs (training loads) .. 132

5.3.3 Simulated performance data ... 133

5.3.4 Computational framework .. 135
5.3.5 The quasi-Newton search algorithm ... 136

5.3.6 Analyses ... 138
5.4 RESULTS ... 138

5.4.1 Parameter estimates (convergence) .. 138

5.4.2 Prediction errors (model fit) ... 141
5.4.3 Runtime .. 145

5.5 DISCUSSION .. 146

5.6 SUMMARY, CONCLUSIONS, AND PRACTICAL RECOMMENDATIONS ... 149

CHAPTER 6: PATHFINDING: SOFTWARE DEVELOPMENT AND CONSIDERATION OF

PROSPECTIVE APPROACHES FOR FUTURE RESEARCH .. 150

6.1 INTRODUCTION .. 150

6.1.1 Improving the availability of resources for research .. 151
6.1.2 Structure of the chapter ... 153
6.1.3 The R environment ... 154

6.2 WORKING WITH FFMS IN R ... 155

6.2.1 An explicit loop approach – Simulating the standard, fitness-delay, and VDR FFM and

fitting via nonlinear least-squares .. 157

6.2.2 A hidden loop approach (sapply) – Simulating the standard, fitness-delay, and VDR FFM

and fitting via maximum likelihood estimation ... 175
6.2.3 Numerical approaches for solving the underlying ODE system and fitting to data 187

6.2.4 Optimisation algorithms and parameter estimation in R .. 196

6.2.5 Cross validation (Implementing a walk forward approach) ... 210
6.3 EXTERNAL SATURATION OF MODEL INPUTS: CONSIDERATIONS ... 226

6.4 STATE-SPACE REFORMULATION AND KALMAN FILTERING ... 231

 4

6.5 SUMMARY .. 242

CHAPTER 7: SUMMARY AND CONCLUSIONS ... 243

7.1 EXPERIMENTAL FINDINGS ... 243

7.2 IMPACT OF THE WORK ON CURRENT UNDERSTANDING IN RESEARCH AND PRACTICE 244

7.3 LIMITATIONS OF THE WORK .. 244
7.4 DIRECTIONS OF FUTURE STUDY ... 246

BIBLIOGRAPHY ... 248

APPENDIX A: MATHEMATICAL DERIVATIONS .. 261

THE STANDARD MODEL (BANISTER ET AL., 1975) ... 261

FITNESS-DELAY MODEL (CALVERT ET AL., 1976) ... 263

APPENDIX B: LITERATURE TABLES ... 265

TABLE B-1: OVERVIEW OF THE LITERATURE .. 265
TABLES B-2 & B-3: EXPERIMENTAL RESEARCH (POPULATION, METHODS, ESTIMATION) 269

APPENDIX C: ALGORITHMS .. 275

C-1 NLS SENSITIVITY EXPERIMENT (FROM CHAPTER 5) ... 275

C-2 EXPANDING WINDOW CROSS-VALIDATION (FROM CHAPTER 6) ... 277

APPENDIX D: CHAPTER 5 SUPPLEMENTARY MATERIALS ... 278

D-1 PARAMETER ESTIMATE DISTRIBUTIONS (STANDARD MODEL) ... 278
D-2 PARAMETER ESTIMATE DISTRIBUTIONS (FITNESS-DELAY MODEL) .. 279

D-3 UNIQUE SOLUTIONS (STANDARD MODEL) .. 280
100% Fitting Data ... 280
50% Fitting Data ... 280

33% Fitting Data ... 280
D-4 UNIQUE SOLUTIONS (FITNESS-DELAY MODEL) .. 282

100% Fitting Data ... 282

50% Fitting Data ... 282

33% Fitting Data ... 282

 5

List of tables

Table Chapter Section Description Page

2.1 2 2.2.1 Physiological correlates of model fitness and fatigue traces across
prior research 40

2.2 2 2.3.6 Current software resources available for fitness-fatigue modelling
research and education. 64

2.3 2 2.3.6 URLs for current FFM software resources 65

2.4 2 2.5.3 A quick reference table of FFM formulae 91

3.1 3 3.1 Research model for studying performance modelling in the sport
and exercise sciences 102

3.2 3 3.2 Aims and objectives of the thesis 104

4.1 4 4.3.4 Athlete-specific parameter sets creating realistic improvements. 115

4.2 4 4.3.4 Athlete-specific (true) parameters and initial starting values 116

4.3 4 4.3.5
Standard deviation (W) of the Gaussian error distribution with
mean 0, from which random measurement errors were drawn and
applied to each known true value in the simulations

117

4.4 4 4.4.1

Regression coefficient estimates and standard error, residual
standard error, and adjusted R2 values, for the centred
independent variables (error and testing frequency) with and
without an interaction term, on the response variables (centrality
and spread of model error)

120

4.5 4 4.4.2 Correlations between estimated model parameters for scenarios
within athlete-TRIMP groupings 123

5.1 5 5.3.3 True parameters used in the experiment (simulated data) for each
model 135

5.2 5 5.3.4 Bounds on the parameter space and starting grid for each model 136

5.3 5 5.4.1 Convergence rates of the solutions found by the L-BFGS-B
algorithm, to critical points in the parameter space 139

5.4 5 5.4.2 Model fit (in-sample) summary statistics for the fitted solutions 142

5.5 5 5.4.4 Fitting runtime across all scenarios for the L-BFGS-B algorithm 145

6.1 6 6.2.1 Function arguments 158

6.2 6 6.2.4 A non-exhaustive list of prospective optimisation algorithms in R
for fitting FFMs 207

6.3 6 6.2.5 Package dependencies for the cross-validation approach 215

 6

List of figures

Figure Chapter Section Description Page

1.1 1 1.1

An overview of the ‘dual channel’ FFM represented as a grey
box system that combines a partial theoretical structure with
inputs and outputs (to be derived from data) to model the
training response.

18

2.1 2 2.2.1
Dose-response dynamics of the standard model for a single
arbitrary training dose, without scaling and with a scaling ratio
½ acute fitness to fatigue

35

2.2 2 2.2.1 Computational flow of the standard model function 35

2.3 2 2.2.1

Dose-response dynamics of the fitness-delay model for a
single arbitrary training dose and demonstration of the
artificial scaling approach described in the text for reversing
the natural scaling effect of the fitness-delay model.

39

2.4 2 2.2.4

Plotting the influence curve to identify the period maximum
opportunity (𝑡!) and critical time point (𝑡") at which training
should be reduced to avoid an overwhelming influence of
fatigue effects under the standard model dynamics

47

2.5 2 2.3.1 A generalisable framework for quantifying training load for
use in modelling physical performance change 50

2.6 2 2.3.4 Illustrating the process of in- and out-of-sample testing in
model evaluation 59

2.7 2 2.3.4 Two approaches to cross-validation of fitness-fatigue models
(hold-out and expanding-window) 61

2.8 2 2.4.1 Arbitrary behaviour of the hill training load saturation function 70

2.9 2 2.4.6 Graphical representation of series data used when fitting the
time invariant FFM via a nonlinear least-squares approach 81

2.10 2 2.5.2 A timeline of model development 90

4.1 4 4.2 An illustration of the general approach to applying an in silico
design to study FFMs 110

4.2 4 4.3.2 Flowchart describing the in silico experimental approach
developed for the study 113

4.3 4 4.3.3 Distributions of scaled TRIMP values for the two hypothetical
athletes (intermediate and advanced) over 16 weeks 114

4.4 4 4.3.5
True vertical jump power values simulated across 16 weeks
with two training load distributions (TRIMP-1, TRIMP-2) for
the intermediate and advanced athlete

117

4.5 4 4.4.1
Regression planes illustrating relationships between
prediction errors (centrality) and independent variables
(measurement error and testing frequency)

121

4.6 4 4.4.1
Regression planes illustrating relationships between
prediction errors (spread) and independent variables
(measurement error and testing frequency)

122

 7

Figure Chapter Section Description Page

5.1 5 5.3.1 Flowchart describing the experimental approach to the
problem (for both models) 133

5.2 5 5.3.2 Hypothetical training load values for the experiment with
realistic variation and wave-like profile 133

5.3 5 5.3.3 Simulated performance data generated for each model
(standard, fitness-delay FFMs) 134

5.4 5 5.3.3 Simulated model component states (fitness, fatigue) for each
model (standard, fitness-delay FFMs) 134

5.5 5 5.3.4 An illustration of the method used to construct the grids
(generalised toy example) 136

5.6 5 5.4.1
Parameter estimate distributions (boxplots) from the solutions
that did not reach the true values (i.e., global minimum) for the
standard and fitness-delay models

140

5.7 5 5.4.1
Objective function values (RSS) associated with solutions that
did not reach the true values (i.e., global minimum) for the
standard and fitness-delay models.

141

5.8 5 5.4.2
Fitted model predictions (in-sample) reflecting the range of
performance profiles generated by the non-true solutions
(standard model scenarios)

143

5.9 5 5.4.2
Fitted model predictions (in-sample) reflecting the range of
performance profiles generated by the non-true solutions
(fitness-delay model scenarios)

144

5.10 5 5.4.2
Comparison of in-sample goodness of fit (RMSE, MAPE) for
the non-true solutions, obtained for the standard model
searches across the three proportions of fitting data

144

5.11 5 5.4.2
Comparison of in-sample goodness of fit (RMSE, MAPE) for
the non-true solutions, obtained for the fitness-delay model
searches across the three proportions of fitting data

145

6.1 6 6.1.1
Screenshot from the “IR model def” sheet within the Clarke
and Skiba (2013) supplementary spreadsheet. Basic FFM
simulation for a specified set of parameter values with plots.

151

6.2 6 6.1.1

Screenshot from the “IR model fit” sheet (1 of 2) within the
Clarke and Skiba (2013) supplementary file. The sheet
facilitates input of a user’s training data and performance
observations, and RSS can then be minimised by a generic
solver tool which performs nonlinear regression from an initial
guess at the parameters. Fitted output is plotted. Limitations
include a lack of out-of-sample assessment and no flexibility
in the fitting process.

152

6.3 6 6.1.1

Screenshot from the “IR model fit” sheet (2 of 2) within the
Clarke and Skiba (2013) supplementary file. Demonstrating
influence curve calculation and plotting from fitted
parameters.

152

6.4 6 6.2.1
Behaviour of the variable gain term and fatigue component
ℎ(𝑡) of the VDR model for different values of the parameter
𝜏#! (constant load: 𝜔 = 	1, parameters fixed: 𝑘# = 1, 𝜏# = 6).

169

 8

Figure Chapter Section Description Page

6.5 6 6.2.1

Differences between 𝜏#! parameter values (0.2, left, black; 1.2,
middle, green; 2, right, red) reflected in previous loads
contribution to the variable gain term 𝑘#!(𝑡), for 𝑡 = 10,
under 𝜔 = 1 (constant)

170

6.6 6 6.2.1 Training inputs applied to illustrate the behaviour of the VDR
model 170

6.7 6 6.2.1 VDR behaviour (𝑘#!(𝑡), ℎ(𝑡) for varied 𝜏#!, 𝑘$ = 1, 𝜏# = 6
fixed) under different loads 171

6.8 6 6.2.1
Synthetic data: Training load series and simulated
performance values (listing 6.8) for the reproducible example
in section 6.2.1

173

6.9 6 6.2.1 Standard and VDR FFMs fitted to the synthetic data via NLS
under L-BFGS-B (listing 6.9) 174

6.10 6 6.2.2

Simulated performance values (via VDR model) for the
synthetic data (listing 6.17), with and without random
Gaussian error added. Parameters (𝑝∗ = 100, 𝑘! = 1, 𝜏! =
22.5, 𝑘# = 1.2, 𝜏# = 8, 𝜏#! = 1.2)

185

6.11 6 6.2.2 Models estimated from simulated data (listing 6.17) via MLE
(listing 6.18) 187

6.12 6 6.2.3
Replicating figure 1 in Turner et al. (2017), demonstrating
saturation and overtraining model behaviour (reflected as
increasing constant load on steady state performance)

192

6.13 6 6.2.3

Replicating figure 2 in Turner et al. (2017), demonstrating the
compounding effects of fatigue and diminishing returns of
fitness with increasing constant load. Also shown is the point
at which fatigue overwhelms fitness under the steady state
model.

193

6.14 6 6.2.4 A graphical illustration of the update step in Newton’s method 202

6.15 6 6.2.5 An illustration of the expanding-window walk forward CV
method (From chapter 2) 212

6.16 6 6.2.5 Structure of the input data developed in listing 6.29 214

6.17 6 6.2.5 Synthetic data developed to demonstrate the cross-validation
approach (plotted) 214

6.18 6 6.2.5

Boxplots summarising both fitted parameter and train/test
prediction error variation across the expanding-window splits,
within split variation is due to the multiple iterations from
different start points

225

 9

Figure Chapter Section Description Page

6.19 6 6.2.5

Similar boxplots to figure 6.18, summarising fitted parameter
and train/test prediction error variation across the main train-
test split (block 1 train, block 2 test), with the model training
also comprising multiple fitting iterations from many starting
points

225

6.20 6 6.2.5
Plotting the variation in iterations (lines) from the main train-
test split (train on block 1, blue points; test on block 2, red
points) over the time-series

226

6.21 6 6.3 Hill-saturation for increasing loads under different values of
𝛿, 𝛾, with 𝜅 fixed 227

6.22 6 6.3

Left: Sigmoidal curve produced by the hill function for
changing 𝛾 with 𝛿 fixed to 1. Right: Demonstration of the
flattening of the curve and inertia of the hill function to the
threshold value by increasing 𝛿 to 2 and reproducing the plot
on the left with the same values of 𝛾

230

6.23 6 6.4 Simulated state-space FFM with random noise (listing 6.39,
lines 10-12) 224

6.24 6 6.4 Kalman-filtered model under true parameters and simulated
data developed in listing 6.39 237

6.25 6 6.4 Fitted Kalman model 241

6.26 6 6.4
R output: A comparison between the truth model underpinning
the simulated data, and the fitted Kalman-filtered model with
parameters recovered by the optimisation procedure.

241

 10

List of code

All code listed below was written in R (r-project.org.uk)

Listing Chapter Section Description Page

6.1 6 6.2.1 Objective function (RSS): Standard model – For loop approach 159

6.2 6 6.2.1 Modification of listing 6.1 (lines 36-37) to incorporate the
fitness-delay model (RSS objective) 163

6.3 6 6.2.1 Simulation function: Standard model – For loop approach 164

6.4 6 6.2.1 Modification of listing 6.3 to incorporate the fitness-delay
model (simulation) 164

6.5 6 6.2.1 Objective function (RSS): VDR model – For loop approach 167

6.6 6 6.2.1 Modification of listing 6.5 (line 45) to incorporate original VDR
formula (RSS) 167

6.7 6 6.2.1 Simulation function: VDR model – For loop approach 168

6.8 6 6.2.1 Synthetic data: Simulated performance values 172

6.9 6 6.2.1 Fitting the simulated data to the standard and VDR models
under NLS via BFGS 173

6.10 6 6.2.2 General component convolution function 176

6.11 6 6.2.2
An example demonstrating how sapply can be used to
iteratively compute eq. 6.7 (general component) for increasing
𝑡 via the convolveTraining function in listing 6.10

176

6.12 6 6.2.2 Simulation function: Standard model – sapply approach 177

6.13 6 6.2.2 Variable gain term function 𝑘#!(𝑖) for the VDR model 178

6.14 6 6.2.2 Simulation function: VDR model – sapply approach 179

6.15 6 6.2.2 Objective function (log likelihood): Standard model – sapply
approach 183

6.16 6 6.2.2 Objective function (log likelihood): VDR model – sapply
approach 184

6.17 6 6.2.2 Synthetic data developed by simulation of the VDR model
under hypothetical training loads 185

6.18 6 6.2.2 Fitting the standard and VDR models to the simulated data
(listing 6.17) under MLE via L-BFGS-B 186

6.19 6 6.2.3 Defining the standard model ODE system as an R function 188

6.20 6 6.2.3 Applying a numerical integrator to develop a model simulation
function from the original system of ODEs (standard model) 189

6.21 6 6.2.3 RSS wrapper to facilitate NLS estimation of FFM system
parameters and initial conditions 189

 11

Listing Chapter Section Description Page

6.22 6 6.2.3 Solving the original ODE system by numerical methods and
fitting it to data (from listing 6.17) via NLS solver (L-BFGS-B) 190

6.23 6 6.2.3 Adapting the banisterSystem function (listing 6.19, lines 3-4)
for the nonlinear system 190

6.24 6 6.2.3
R functions to compute 𝑝7 (eq. 6.20), 𝜔&'()*+, (eq. 6.23), and
𝜔*+- (eq. 6.22) for the special case of the Turner model system
under constant load

192

6.25 6 6.2.3

Fitting the nonlinear ODE system to synthetic data (listing 6.17)
under NLS via a genetic algorithm from the package GA, with
tuning parameters equivalent to Turner et al. (2017). Also
includes optional local search (L-BFGS-B), and parallelised
fitting process.

195

6.26 6 6.2.4 Standard model fitted to synthetic data (listing 6.17) via MLE
(solved by L-BFGS-B) under the multistart function in optimx 208

6.27 6 6.2.4 Fitting the standard model to synthetic data within an MLE
approach solved via differential evolution 208

6.28 6 6.2.4
Fitting the standard model to synthetic data within an MLE
approach solved via genetic algorithm, covariance-matrix-
adaptive-evolution strategy, and particle swarm optimisation

209

6.29 6 6.2.5 Developing mock data used to demonstrate the cross-validation
implementation 214

6.30 6 6.2.5
Function to compute the mean-average-percentage-error
(MAPE) from two vectors of measured and predicted
performance values

218

6.31 6 6.2.5 Function to develop expanding window splits 218

6.32 6 6.2.5
Function to create a random grid of starting parameters across
the bounds [𝑙, 𝑢] to be used for iterative model fitting from
multiple starting points

219

6.33 6 6.2.5
Function to train/test the VDR model for a given split. The
model is repeatedly trained/tested under different algorithm
starting points for the L-BFGS-B minimiser

221

6.34 6 6.2.5 Main cross-validation function: Expanding-window method
(VDR FFM) – Multistart L-BFGS-B 222

6.35 6 6.2.5 Demonstrating the cross-validation method (function call) for
fitting the VDR model 223

6.36 6 6.3 Threshold saturation function (simulation) 227

6.37 6 6.4 Defining a function to instantiate a state-space FFM from
parameters 232

6.38 6 6.4 Simulation function: State-space model under loads (ss_model
argument obtained via state_space_FFM function under pars) 233

6.39 6 6.4 Simulating the state-space FFM under mock data with random
noise terms 233

 12

Listing Chapter Section Description Page

6.40 6 6.4 Kalman filtering function 236

6.41 6 6.4 Kalman filtering demonstration for the simple case of the
simulated data under true parameters in listing 6.38 237

6.42 6 6.4 Defining a function to fit a state-space model with Kalman filter
to data 239

6.43 6 6.4 Kalman filtering demonstration for the simple case of the
simulated data under true parameters in listing 6.38 240

 13

Abbreviations

Abbreviation Term

BDF Backward differentiation formula

CG Conjugate gradient

CoV Coefficient of variation

CMAES Covariance matrix adaptive evolution strategy

CPU Central processing unit

CRAN Comprehensive R archive network

CSP Constraint satisfaction problem

CV Cross validation

DDE Delay differential equation

DE Differential evolution

E𝑛D Every 𝑛 Days

FFM Fitness-fatigue model

GA Genetic algorithm

GAS General adaptation syndrome (model)

GPS Global positioning system

HR Heart rate

L-BFGS-B (BFGS) (Limited memory modification) of the (Broyden-Flecher-Goldfarb-
Shannon) search algorithm with (Box constraints)

LDH Lactate Dehydrogenase

MAD Median absolute deviation

MAPE Mean average percentage error

MLE Maximum likelihood estimation

NLS Nonlinear least squares

ODE Ordinary differential equation

POMS Profile of mood states

 14

Abbreviation Term

PSO Particle swarm optimisation

RMSE Root mean squared error

RSS / SSE Residual sum of squares / Sum of squared errors

rTSS, TSS (Running) Training stress score

SCM Source code management

SHBG Sex hormone binding globulin

sRPE, RPE (Session) Rate of perceived exertion

TRIMP Training impulse (dose)

VDR Variable dose-response (model)

VO2max Maximal oxygen uptake

VTRS Velocity at ventilatory threshold

 15

Glossary of key terms

Term Definition

Athlete
A person who participates in organised sport, or
competitive physical tasks involving non-trivial levels
of physical exertion

Algorithm
A finite set of instructions that can be implemented
within a computer to solve problem(s) or perform
computation(s)

Closed skill sport
A self-paced sport where the environment is highly
consistent and predictable (e.g., running, swimming,
weightlifting)

Competitive outcome The resultant of a competitive event (e.g.,
win/loss/draw or ranking)

Competitive performance
A term capturing the interaction of multiple dynamic
processes and events contributing to a terminal state
(competitive outcome)

Computer experiment
(in silico system) An experiment used to study a computer simulation

Computer model An algorithm that captures the behaviour of or
replicates the modelled system

Criterion performance The physical performance measure selected as the
modelled output (target) of a fitness-fatigue model

Cross validation
Also called out-of-sample testing, refers to a set of
techniques to assess the generalisability of a statistical
model to an independent data set

Endurance sports
Sports requiring sustained physical exertion over a
long duration, often comprising a large locomotive
component (e.g., distance running or cycling)

Mathematical model An abstraction or representation of a system or
phenomena via mathematical structure(s)

Physical capability

A relatively stable latent variable representing the
athlete’s maximal level of physical performance.
Estimated in practice from maximal-effort physical
performance testing or predictive approaches.

Physical performance

The measured value of a dependent variable (typically
denoted 𝑝 in this work) in a sporting or
biomechanical task or event, that typically reflects
dimensions of fitness (e.g., strength, power, stamina,
speed).

 16

Term Definition

Performance modelling
An area of scientific study in sport science concerned
with identifying accurate models of human response
to training on physical outcomes

Physical training
The purposeful execution of exercise-based tasks with
the goal of positively influencing change in or
retaining current physical capability

Resistance training A single or multi-joint exercise task involving
muscular contraction under external load or resistance

Simulation The process of running a computer model

System Interaction of multiple elements forming a unified
whole

Training load
The input variable manipulated to elicit the desired
training response (further subdivided into external and
internal load variables)

Training program An ordered schedule or detailed plan of future training
activities (physical or skill-based)

 17

Chapter 1: Introduction

1.1 A brief introduction to the work

A key axiom of training theory is that physical response to exercise is systematic and the process is

not random (Stone, Stone and Sands, 2007), such that it can be studied and understood in a way that

may permit the value of different exercise systems to be distinguished and therefore training better

organised (e.g., periodised) (Stone, Stone and Sands, 2007; Verkhoshansky and Siff, 2009; Bompa

and Buzzichelli, 2018; Cunanan et al., 2018). Furthermore, if an accurate model of human response to

physical training can be identified, outcomes of the training process can be better predicted and

possibly influenced more precisely at an individual or group level (Schaefer, Asteroth and Ludwig,

2015). Identifying and operationalising an accurate model of human response to physical training

remains a longstanding goal of sport science, and the principal focus of researchers working in the area

of ‘performance modelling’ (Banister et al., 1975; Perl, 2001; Rasche and Pfeiffer, 2019).

Although the fitness-fatigue model (FFM) was one of the earliest and most popular approaches to

addressing the need for an accurate model of training response (Banister et al., 1975), it was preceded

by, and arguably extends the conceptual model referred to as the general adaptation syndrome (GAS)

model, developed in the 1940s and 1950s by Hungarian-Canadian scientist Hans Selye (Selye, 1946,

1950, 1951). The GAS model was not specifically designed to model exercise response, rather Selye’s

desire was to develop a conceptual model that could explain the core relationship between stress and

adaptation in all biological systems, whereby researchers could adopt and develop it further within

their own fields (Selye, 1951; Cunanan et al., 2018). The GAS model proposed a three-phased response

to stress including an alarm, resistance, and exhaustion phase (Selye, 1951). In the context of training

response, the alarm phase describes short-term negative impact of a stimuli (such as exercise),

commonly termed acute fatigue, resulting in a slight decline in physical performance (Cunanan et al.,

2018). The subsequent resistance phase was then said to occur as the acute negative response resolves

and adaptation occurs ultimately leading to an increase in performance, before a downward trend to

the original baseline begins in the absence of further training. The final phase, exhaustion, was said to

occur if the application of training is too high in magnitude and prolonged that it results in physical

exhaustion, detraining, and ultimately a chronic reduction in performance below baseline (chronic

fatigue and overtraining) (Chiu and Barnes, 2003; Cunanan et al., 2018). The FFM first introduced by

Banister et al. (1975) posits that training results in two separate after-effects, fitness and fatigue, the

combination of which describes change in performance. The fitness-fatigue and GAS models mirror

each other in the basic case, however the FFM splits the physiological response into two channels, that

conceptually can then be split further into acute and chronic effects to facilitate development of training

 18

paradigms (Chiu and Barnes, 2003; Jeffries et al., 2020). In research and practice, conceptual models

such the GAS and FFM are important tools for informing future investigation and provide a reference

point to guide decision making (Cunanan et al., 2018; Jeffries et al., 2020).

Translation of the conceptual FFM into a mathematical model also parameterises this response

framework in a manner that permits, crucially, individualisation and therefore addresses differences in

adaptive and fatigue responses between athletes (Greig et al., 2020). However, it should be clarified

that facilitation of individualisation by model structure does not suggest effectiveness at doing so. In

addition, the mathematical structure of the FFM can be generalised to encompass components that

account for aspects such as nutrition, psychology, and sleep to be incorporated under their own transfer

functions, as was the original intention of Banister et al. (1975). The FFM, its history, conceptual basis,

mathematical detail, and various extensions are covered extensively in chapter 2 and this introduction

is only intended to provide a broader overview of the origins of FFMs and their importance to sport

science, to help situate the work of this thesis. Crucially, the FFM represents one of only two

conceptual models (Banister et al., 1975; Perl, 2001) with unique mathematical properties that have

attempted to generalise the response to training on performance (Jeffries et al., 2020), capturing

behaviour as a whole rather than as the sum of individual mechanistic parts. Although this type of

systems model can be improved by further understanding of integrated physiological processes

involved at a mechanistic level, the grey-box approach of the FFM (Figure 1.1) offers the advantage

that it is both operable, testable, and adaptable from an early stage based only on knowledge and

assumptions of conceptual relationships between inputs (quantified training load) and observed

outputs (measured performance values) arising from the training process (Banister et al., 1975; Calvert

et al., 1976). The model is also flexible enough that it can be extended to encompass factors such as

psychology, nutrition, and sleep as first intended by the original authors with these further components

each possessing their own transfer functions linking inputs to their contribution on performance

(Banister et al., 1975; Calvert et al., 1976).

Figure 1.1: An overview of the ‘dual channel’ FFM represented as a grey box system that combines

a partial theoretical structure with inputs and outputs (to be derived from data) to model the training

response.

 19

As alluded to in the opening of this chapter, the greatest potential application of mathematical FFMs

is to predict the future performance of individual athletes (or small groups) in response to physical

training with sufficient accuracy that these models can be used to assist in the planning of future

training programs and short tapering and peaking periods prior to competition (Fitz-Clarke, Morton

and Banister, 1991; Schaefer, Asteroth and Ludwig, 2015). Despite over 45 years of continued study,

problems remain within the research base and there are clear gaps in existing knowledge that

fundamentally limit both the interpretation of prior FFM research and experimental practices within

future work, collectively precluding sufficient progression in the field to enable implementation in

practice. These include: 1) inadequate methods used to study model accuracy in most previous

research, and an associated insufficiency in the availability of evidence to support or disregard FFMs

as valid models with counterfactual properties; 2) a disorganised literature body without a connective

narrative that links previous work, clearly explains mathematical concepts, and that provides consistent

recommendations for the requirements and directions of future study; 3) limitations in the structure of

basic mathematical FFMs, matched by low awareness within sport science of contemporary extensions

and updates that have been proposed in the literature to address them; 4) no consideration of key

experimental factors and methods that may interact with model accuracy within real-world study, e.g.,

measurement error, measurement frequency, method of estimation of model parameters from data; and

5) very few practical resources elucidating key concepts, and no tools available to facilitate processes

required to fit and robustly evaluate more promising FFMs and advanced methods.

Despite consistent appearance of the model in the sport science literature and its conceptual place in

the discipline (Chiu and Barnes, 2003; Bompa and Buzzichelli, 2018), the issues described above

emphasise the high bar to entry in conducting effective study in the area of performance modelling

and FFMs. Most previous experimental research appears to be replications of itself, focussing on fitting

models to slightly different populations studied under small sample sizes, with only some ingenuity in

how the model inputs were quantified and performance of different individuals measured (summary

literature tables provided in appendix B). Despite the history of the work and enormous creativity the

model framework affords, the issues described highlight how far the field is from assessing the

effectiveness of these models, due to a range of factors that this thesis tries to partly address.

Fundamentally, to be applied in the future within training program design frameworks, researchers

must establish a threshold of evidence to answer the central question of whether a particular FFM can

be identified that reflects an accurate conceptualisation of training response and has strong predictive

power.

The aims of this thesis are briefly outlined here and examined again in detail in chapter 3 accompanied

by the thesis objectives following detailed synthesis of the relevant literature. The aims of the thesis

were: 1) to systematise the FFM literature body, providing sufficient detail and structure to where there

 20

exists a consistent narrative threading the historical literature, pertinent concepts, and contemporary

work to address limitations in basic FFM structure (Chapter 2); 2) to conduct original research studying

key experimental factors (measurement error and testing frequency) and methods of model estimation

that may affect model accuracy or utility (Chapters 4 and 5); 3) to identify and present alternative

FFMs beyond the basic model, and advanced methods, that reflect more promising avenues of future

research (Chapters 2 and 6); and 4) to develop flexible code tools that facilitate future study and address

the current gap in available resources (Chapter 6).

The structure of the thesis is split into 7 chapters. The remainder of this chapter is focussed on

discussing several background topics introduced to provide context to the work, including

management of the training process, definitions and operationalisation of key terms used in the thesis

such as ‘physical performance’ in relation to performance models, and a description of the research

field with respect to an increase in available technology for practitioners to collect regular data. In

chapter 2, the FFM literature is reviewed critically and in depth, with sections building on one another.

By the end of chapter 2, the reader will have a stronger awareness of the timeline of FFM research,

pertinent mathematical concepts, existing limitations, practical considerations (e.g., model inputs,

estimation, evaluation), and advanced FFMs proposed to address limitations in basic model structure.

In chapter 3, a research framework guiding the project is presented and discussed, particularly in

relation to challenges arising early during the research project, and the current state of the research

field. By the end of chapter 3, the reader will have a good awareness of the overall frame of the project,

the thesis’ contribution to knowledge, and the impact of experimental and practical work carried out.

In chapters 4 and 5, original experimental study is conducted investigating the effects of measurement

error, testing frequency, and parameter estimation on model utility. These studies adopted in silico

(i.e., in computer) experimental designs that are largely novel to sport science. At the start of chapter’s

4 and 5 these experimental designs are discussed and appraised. By the end of chapters 4 and 5, the

reader will have a good understanding of the experimental design underpinning the original research,

and an awareness of the practical implications of the results of these studies on prior and future study

of model validity. In chapter 6, an extensive set of code tools are developed in the programming

language R which is becoming increasingly popular among sport scientists. The code tools can be used

to fit and evaluate FFMs from the standard case through to the most advanced models and methods

that have been proposed to address limitations in model structure. By the end of chapter 6, the reader

will have a good awareness and improved understanding of practical techniques and available tools

and resources that can be developed in the R environment to facilitate implementation aspects of FFM

research. Chapter 7 provides a summary of the work, including discussion of the main findings, an

analysis of impact of the thesis on current knowledge, limitations of the PhD, and directions for future

study.

 21

1.2 Research background

1.2.1 Management of the training process – a tractable optimisation problem?

Scientific study and practical application of physical training in athletic populations is primarily

concerned with stimulating and optimising adaptation to training interventions (Bompa and

Buzzichelli, 2018). More specifically, maximising improvement in dimensions of general and sport-

specific fitness (e.g., strength, power, speed, endurance) via planned training programs, robust

nutritional strategies, minimising fatigue (careful ‘dosing’ and planned recovery), and altering

biomechanical factors that may improve (or currently impede) physical performance (Stone, Stone and

Sands, 2007; Bompa and Buzzichelli, 2018). A central premise of training theory is that a structured

training approach can be developed that targets physiological characteristics pertinent to the demands

of a particular sport, and that this is tailored to the individual needs of the athlete (Stone, Stone and

Sands, 2007; Bompa and Buzzichelli, 2018). Management of the training process in athletic groups

involves exposing the athlete to progressive demands structured on a periodic or cyclic basis (Plisk

and Stone, 2003). Planning of structured training evolves from associated processes and outcomes of

human decision making, informed by the integration of scientific knowledge with individual

practitioner experience, general consensus, and constrained by available means (Bompa and

Buzzichelli, 2018). Development and individualisation of training programs is far from an exact

science (i.e., informed by deterministic laws), and arguably the process of planning and conducting

training comprises a significant ‘artistic’ element whereby coaches incorporate guesswork and

heuristics informed by anecdotal evidence and collective coaching experience. It is also typically a

multi-objective problem and almost never unconstrained (Schaefer, Asteroth and Ludwig, 2015), and

there may be several prospective solutions that yield similar (good) outcomes. Furthermore, specific

objectives of a given training period may fall within several distinct categories, each with different

planning implications (Bompa and Buzzichelli, 2018). Categories include, general physical fitness,

sport specific fitness, technical skills, psychological factors, injury resistance, and improvement in an

athletes theoretical and tactic knowledge (Bompa and Buzzichelli, 2018). Logistical constraints may

either be known in advance, such as competitive scheduling, available equipment, facilities and

budget, administrative factors, and contact time with athletes. Or may appear suddenly within a

planned training period, e.g., injury, illness, or personal emergency, routing the athlete on a different

course to that previously intended within the plan.

Most coaches working in high level sport are well versed in prioritising objectives, planning training

within the bounds of identified constraints, tailoring training programs to both general and specific

physical demands of a sport and adjusting to unexpected events or the personal situation of the athlete.

High level coaches are also often able to consistently find ‘good solutions’ which add value to an

 22

athlete’s physical performance. Nonetheless, given that the set of constraints is typically quite large

and often well-defined, and that the possible set of training plans (under these constraints) is also

moderately sized, optimising the planning of training may still reflect a tractable problem that can be

at least partially solved, or more aptly, assisted by quantitative approaches (Schaefer, Asteroth and

Ludwig, 2015; Stein et al., 2017; Connor, Fagan and O’Neill, 2019). The training program

‘optimisation’ problem can be broken down into two aspects: 1) logistics and 2) training response.

Logistics is the much more straightforward aspect to tackle. Even with little knowledge of training

theory, the space of possible training programs can quickly be reduced based on logistical constraints.

For example, times and dates the coach or athlete is available to train, competitive scheduling, and/or

available equipment or facilities provides a template from which possible training plans could emerge.

In certain circumstances a coach may also be able to formulate more subjective constraints surrounding

the logistics of training planning based on their understanding of an athlete’s psychology or character,

particularly with regards to exercises unlikely to be tolerated or that might limit an athlete’s

engagement. In many cases, the use of compute resources is not typical or necessary (although may

still be useful) to solve the logistical aspect in isolation.

The much harder aspect of this optimisation problem is filling in the remaining gaps in the program

space (after logistical constraints have been met) with a robust training plan. Particularly one that

selects activities based on an understanding of or ability to predict individual response to acute or

chronic stressors on the desired training outcome (e.g., performance). At the heart of applied sport

science is the pursuit of new knowledge that can be used to predict population response to training

stressors and enhance performance, toward the ultimate ambition of individualising training (Haff,

2010). However, the research body is a long way off from this ambition. At present, coaches can only

make speculative predictions about individual response, and are often forced to extrapolate from short

term intervention studies where estimated average response (to a given stressor) is reported across a

small sample of participants often drawn from a non-elite populations (Cissik, Hedrick and Barnes,

2008; Jeffreys, 2015). This knowledge is then amalgamated (consciously or unconsciously) within a

mental framework (or painted by coaches as a training system) comprising their own experience and

intuition, and an athletes available training history. However, large inter-individual variability exists

in response to virtually all training interventions (Mann, Lamberts and Lambert, 2014; Swinton et al.,

2018). Furthermore, most intervention based and observational research available to coaches has been

conducted on non-elite populations (e.g., university students, youth athletes, or recreational trainees)

(Haff, 2010), and is frequently weak with regard to aspects of experimental design (e.g., cross-

sectional, low statistical power, unrepresentative or non-specific training programs, short

familiarisation period and duration) (Cissik, Hedrick and Barnes, 2008). Theoretically, to reach a point

within sport and exercise science where coaches can precisely adjust for short term between-athlete

variation and long term within-athlete variation within the process of structuring an individual training

 23

plan, a substantial scientific effort is required. If a purely reductionist paradigm was selected as the

scientific approach toward achieving a counterfactual model of individual response, researchers would

need to identify and deconstruct physiological and biomechanical mechanisms contributing to the

between-athlete variation in training response within elite populations, sub-levels of this population

(e.g., males, females), and for a wide variety of training modalities and measured outcomes. This

would be an extensive undertaking, costs would be exorbitant, and there are no guarantees that such

mechanisms could be identified or measured. Evident is that utilising this type of approach alone is

likely to scale rapidly beyond economic and logistical resources of most academic institutions, even

before difficulties in accessing elite populations are considered. In addition, planning of training

interventions in elite populations via standard controlled approaches is at odds with what would be

expected in a high-performance environment, and likely to be intractable due to conflicts of interest.

Unsurprisingly, elite populations (and their sponsors) are first and foremost, interested in winning in

the present moment, and furthering scientific progress without direct renumeration in the form of

gaining a non-trivial edge in competition or immediately appliable practices is understandably not a

priority (Haff, 2010).

An alternative approach to developing predictions of individual response (and subsequent optimisation

of training) involves combining analytical thinking within a complex systems (modelling) approach.

This was first introduced mathematically to the literature by Banister et al. (1975) in their seminal

FFM paper. Under this type of mixed approach, conceptual components representing relationships

between training and physical performance are identified, and mathematical transfer functions are

ascribed to them forming quantitative relationships between system inputs and output (Calvert et al.,

1976). One advantage of this approach is that the model (mathematical abstraction) does not

necessarily have to map directly to underlying physiological mechanisms to have a chance at

meaningful predictions, but rather considers them indirectly via exchanges between input and output

flows. Modelling is by definition a simplification of reality, and it is in our interests to construct the

simplest mathematical models that can predict observed phenomena. Despite this approach having

existed in sport science since the mid-seventies, when Banister et al. (1975) proposed the first systems

model for describing athletic progress (in response to training) in terms of two model components

(fitness and fatigue), this work has remained largely out of the realms of coaching practice despite the

FFMs conceptual significance (Chiu and Barnes, 2003; Taha and Thomas, 2003). In addition, the

original mathematical model by Banister et al. (1975) provided a scaffold from which several

extensions of this model have since been proposed (Busso et al., 1990), each addressing some

limitation in model structure or incorporating advancements in training theory (Calvert et al., 1976;

Busso, 2003; Hellard et al., 2005; Kolossa et al., 2017; Turner et al., 2017), each employing a systems

approach with no direct link to underlying physiological processes (Taha and Thomas, 2003). Fitness-

fatigue modelling is the focus of chapter 2 (literature review), but its relevance here is its importance

 24

as one of the few counterfactual models within sport science (Jeffries et al., 2020), and its potential

use in predicting training response. The FFM reflects one of the very few proposed avenues to

addressing the problem of individualisation of training planning based on quantitative prediction in

sport science. If a suitable FFM can be identified and fitted to an individual athlete, the optimisation

problem (as a function of both logistics and training response) can be formally specified as a seemingly

solvable mathematical problem (Schaefer, Asteroth and Ludwig, 2015; Kumyaito, Yupapin and

Tamee, 2018; Proshin and Solodyannikov, 2018; Connor, Fagan and O’Neill, 2019). Subsequently,

robust training design solutions may be identifiable within an optimisation framework operationalised

by an FFM, to support practitioner decision making in practice. This concept of training program

optimisation is also the focus of a growing body of research that has investigated applications of the

FFM as a training response framework to study the concept of training program optimisation as a

manipulable computer science problem (Schaefer, Asteroth and Ludwig, 2015; Turner et al., 2017;

Kumyaito, Yupapin and Tamee, 2018; Proshin and Solodyannikov, 2018; Connor, Fagan and O’Neill,

2019). Although promising progress has been made in this area with regard to quantifying program

constraints (e.g., maximum/minimum rates of progress) and identifying adequate solvers, this work

has not concerned with or examined the validity of FFMs. Consequently, the training program

optimisation research neighbouring the FFM literature reflects the step beyond model development

and sets the stage if new or existing FFMs can be proven useful under robust scientific study.

1.2.2 Advances in technology and increased access to field data creating new
opportunities

There are two measures considered important in determining the capacity to compute information: the

number of operations that can be performed per second, and the amount of information that can be

stored (Hilbert and Lopez, 2012). By the start of the millennium and what is commonly referred to as

the start of the information age, improvements in the capacity of general-purpose computers had almost

matched estimates of human cognitive capacity and quickly went on to surpass these significantly. As

early as 2002, several companies recognised the potential for exploiting these increases in

computational power and began to develop systems and technologies for researchers and practitioners

working in sport and exercise science. Notable examples include first-generation automatic video

tracking systems (e.g. Vicon ®, Oxford Metrics; and Quintic, Quintic Consultancy), rudimentary

three-dimensional virtual training environments, the use of radar to capture motion as a function of

time, and force platforms to measure forces across three orthogonal axes (Liebermann et al., 2002). At

that time, novel technologies promised practitioners new means of providing quantifiable and accurate

feedback to their athletes during training and competition, and approaches to inform decisions

surrounding prescription of future training (Liebermann et al., 2002). Much of the original machinery

has evolved significantly since the early 2000s, taking advantage of improvements in areas such as

 25

computation speed, storage capacity, information transmission, microsensor technology, and

automation. These advances have been accompanied by the natural increase in the frequency, volume,

and variety of time-series data generated, purchased and typically stored by individuals and teams

(Morgulev, Azar and Lidor, 2018). Increased access to data in sport science spanning the last twenty

years has increased the uptake of measurement technology to assist in training monitoring and the

study of physical performance response within elite athletic environments (Jobson et al., 2009; James

and Petrone, 2016; Williams et al., 2018). Just some examples of modern technology now in daily use

across high-performance sport environments include: 1) ‘wearable’ kinematic and kinetic devices that

can capture inertial variables such as barbell velocity and acceleration during resistance training

exercises; 2) devices such as watch and strap based GPS, and video tracking technology, that both

provide high-frequency spatial-temporal data; 3) bike computers with paired power-meters that

provide and can transmit via mobile networks detailed information regarding torque, angular velocity,

and power during training and competition; 4) computer-vision machinery to track and record player

actions during team sport events; and 5) heart rate monitors and lactate analysers to assess and adjust

relative training intensity (James and Petrone, 2016).

Increased collection of data spanning the last two decades in modern sport science practice presents a

unique opportunity for researchers and practitioners to utilise techniques from areas such as

informatics, mathematics and statistics to derive new knowledge of the training practice, study

predictions of future response within mathematical frameworks, and derive new approaches to inform

decision making processes. Although there is a balance to be achieved between research conducted in

laboratory and practical environments, advances in technology offer new ways to involve and engage

coaches in the scientific process and integrate domain expertise in developing areas such as data

analytics and predictive modelling (Mello, Leite and Martins, 2014). In typical academic research (i.e.,

laboratory) settings, data collection usually only takes place over a finite and often limited period of

time. However, in practice the training process is cyclical or periodic and involves many test-adjust

feedback loops that are not possible to study in laboratory settings due to prohibitive costs and the

level of commitment required from participants. Therefore, despite certain inherent challenges and

limitations associated with observational field data and retrospective analyses (Passfield and Hopker,

2017), there has never been a better opportunity in the history of the sport science for researchers and

practitioners to collaborate, via sharing and pooling of data that can be used to address issues at the

heart of daily practice.

In the broader context of this PhD project, the hypothesis that collection of high volume data will

continue to rise and be more effectively applied to characterise the physical stress endured by athletes

in training and competition will be considered when identifying practical applications and future

recommendations in fitness-fatigue modelling. It is argued that FFM development depends crucially

 26

on an integrated approach between practitioners and researchers in the future due to the limitations of

data collection in typical research settings.

1.2.3 Performance and training: Clarifying terms and relationships

Prior to the literature review it is beneficial to examine definitions of terms that will be used in

describing the practices involved in fitness-fatigue modelling. These include physical training, training

load, and performance. The former terms, physical training and training load have received sufficient

attention in the literature yielding precise definitions used fairly consistently (Coutts, Crowcroft and

Kempton, 2017; Impellizzeri, Marcora and Coutts, 2019). The latter, performance, appears to have a

wider scope in its usage within the field of sport science, and has been used broadly to refer to both

the processes involved in carrying out a sporting task and its outcome. For example, Haff (2010)

conducted a roundtable discussion of several prominent sport scientists and sought to identify the

central scientific concerns of sport science. In Haff (2010) the word ‘performance’ and associated

terms ‘athletic performance’ and ‘sporting performance’ feature numerous times but are never clearly

defined by any of the authors. In one such instance, in answer to a central question posed, “what is

sport science”, several sport scientists stated that the aim of sport science was to improve sports

performance (Haff, 2010). For example, Bishop states “sport science can be thought of as using the

scientific process to guide the practice of sport with the ultimate aim of improving sport performance”,

and Stone says “sport science deals with sport performance enhancement” (Stone, Sands and Stone,

2004; Haff, 2010). These statements, and the phrases “improving sports performance” and “sport

performance enhancement” imply that the respondents view performance as a measurable or

quantifiable phenomena, possibly via a principal variable or indirectly through multiple related

variables. In the context of performance modelling, the term performance must be defined more

precisely to be operationally useful and refers to a dependent variable (outcome) the model is trying

to predict. Nevertheless, on its own this definition is still too vague, and its use benefits from being

partitioned further into two auxiliary terms: 1) physical performance; and 2) competitive performance;

each with specific definitions and different constructs. This is the main purpose of the following

subsections to 1) briefly define these auxiliary terms (physical and competitive performance) in a

manner that permits them to be understood in relation to the fitness-fatigue modelling process; 2)

discuss measurement of physical performance and implications of noise on performance modelling;

3) discuss the terms physical training and training load.

1.2.3.1 Defining physical and competitive performance

To begin with, physical performance is defined for the purposes of this thesis as a measured value of

a dependent variable (typically denoted 𝑝 in this thesis) captured from a sporting or biomechanical

 27

task, that typically reflects dimensions of fitness (e.g., strength, power, stamina, speed). In closed

sports, such as weightlifting, physical performance (e.g., total weight lifted in the clean and jerk) may

also be directly related to the competitive outcome of the event. In contrast, due to the complex nature

of sport and in particular team sports, competitive performance is arguably more useful when

conceptualised as the interaction of multiple dynamic processes and tasks that terminate with the

system state reaching a final outcome (termed here as the competitive outcome). Viewed in isolation,

the competitive outcome of a sporting event does not provide much information, and any discernible

patterns over time in this type of data cannot be explained without additional context. Therefore,

observation and analysis of the interaction of multiple processes comprising competitive performance

as defined above has developed into a field of its own within sport science, often called ‘performance

analysis’, concerned with the ‘why’ of a sporting result in the hope of informing training practices and

improving future outcomes (McGarry, 2009). The associated role of the performance analyst is well

established as a key component of the backroom staff in professional sport, particularly in team sports

such as soccer, basketball, rugby, and American football (Pappalardo and Cintia, 2017; Morgulev,

Azar and Lidor, 2018).

1.2.3.2 The measurement of physical performance and implications for performance modelling

A common concept for most but potentially not all physical performance variables in sport science is

that there exists an upper limit across all athletes, typically dependent on three interrelated categories

of limiting factors (task, environmental, human) (Beneke and Boning, 2008). In most instances, this

limit is never accurately known, and can only ever be estimated based on observed data and

hypothetical modelling of multiple factors influencing the task (Nevill and Whyte, 2005; Kuper and

Sterken, 2007). For example, between 1 second and the current record of 9.58s it is reasonable to

assume that there exists an absolute limit on time to run a 100m sprint (Nevill and Whyte, 2005). It is

not an individual construct, but rather a level thought to exist globally across all athletes for a specific

sporting task. Its main use here is providing a theoretical reference point that says physical

performance measured for an individual athlete can range from some relative zero point to this

maximum level, and therefore all observations for an athlete will lie between these two points. More

important to a researcher or practitioner is the interpretation of observations of physical performance

for an individual athlete. In most instances, practitioners measure physical performance with an

intention to infer whether change in the athlete’s physical capability has occurred because of training.

Coaches will typically apply standardised maximal-effort testing protocols to try and identify if change

has occurred, that may otherwise be masked if using submaximal effort tasks. However, all maximal

effort tests comprise noise made up of instrumentation error and/or the effects of biological variability

(Mann, Lamberts and Lambert, 2014; Swinton et al., 2018). Even with standardised conditions and

reliable measurement instruments, the influence of normal biological variability makes it unlikely that

 28

a given measurement will reflect a completely an accurate estimate of the latent state of physical

capability (Swinton et al., 2018). Therefore, observed measurements from maximal physical

performance testing are most likely reflect a Gaussian or non-symmetrical estimate distribution. Skew

negative is seemingly more likely as there is a capacity for many reasons such as injury and

psychological disengagement to substantively reduce performance, and these may occur semi-

regularly. In contrast, levels of physical performance closer to the latent state of maximal physical

capability are likely to be a much rarer phenomenon. The implication and importance of this

consideration in the context of FFMs and performance modelling is that if models are overfitted to

decidedly noisy data, then resultant predictions may be unlikely to generalise the athlete’s response to

training leading to difficulties in reliably predicting future observations. In other words, the quality of

the data is likely to be an important factor in interpreting the validity of FFM research employing a

model fitting approach. It follows that researchers interested in performance modelling must carefully

plan the type of data they collect (measure) and have a good awareness of what it tells them about the

athlete. For example, if objective data (e.g., time, speed) is recorded during sub-maximal tasks, this

alone informs very little about what an athlete is typically capable of had they performed a best effort.

However, if more information is added such as average velocity during competition, subjective RPE,

and/or heart rate monitoring then the chance of accurately inferring physical capability may be

improved via comparison with previous data, improving its potential to be applied within a

performance modelling framework. In a strength and conditioning environment, the equivalent

scenario is a coach recording routine weight training data (e.g., sets, reps, weight lifted) without any

additional information that provides insight into the relative difficulty of the task (e.g., reps-in-reserve,

barbell velocity, percentage of previous 1RM). These topics are covered in more detail in chapter 2,

when measures and suitable data for performance modelling are discussed further. The identification

of the effects of measurement error on model predictive accuracy is also investigated in the

computational study comprising chapter 4. This subsection has also introduced the term physical

capability to the thesis and defined its relationship with physical performance testing. That is, physical

performance testing, when applied under maximal effort protocols, can be thought of as the approach

to estimating physical capability (thought of as a latent variable).

1.2.3.3 Physical training and training load

Following the definitions of physical performance and capability developed so far, physical training

is defined in this thesis as the purposeful execution of exercise-based tasks with the goal of positively

influencing or retaining current physical capability. In some cases, particularly within team sport

environments where levels of physical capability are already high among athletes, improvement in

individual skill and team tactics/dynamics may be the primary concern of training, such that the aspect

 29

of physical training is integrated within simulated game-based tasks and drills primarily targeting

technical and tactical factors (Gabbett, Jenkins and Abernethy, 2009).

To conclude this chapter, the term training load is reviewed. This term, along with two ancillary terms,

internal and external load with specific definitions, have been used extensively in practice and research

(Impellizzeri, Marcora and Coutts, 2019). In relation to physical training, training load has been

defined as the “input variable that is manipulated to elicit the desired training response” (Coutts,

Crowcroft and Kempton, 2017; Impellizzeri, Marcora and Coutts, 2019). Training load has been

described as being either external, and/or internal (Impellizzeri, Marcora and Coutts, 2019). In broad

terms, external load reflects the physical work completed in the prescribed training session, and is

normally specific to the type of training conducted (Impellizzeri, Marcora and Coutts, 2019). For

example, in resistance training a measure of external load typically recorded is the load lifted, and in

endurance sports coaches may record variables such as distance covered (Impellizzeri, Marcora and

Coutts, 2019). Contrastingly, measures of internal load are “indicators reflecting the physiological or

psychological response that the body initiates to cope with the requirements elicited by the external

load” (Impellizzeri, Marcora and Coutts, 2019). One example of internal load for endurance training

is heart rate, which responds to the external load as a function of volume (distance) and intensity

(speed). Both internal and external measures of training load may be considered in the context of

performance modelling, and quantification of training load for input into FFMs and other performance

models is discussed in Chapter 2.

1.3 Summary

The purpose of this chapter has been to situate the very specific work of this thesis within the broader

contexts of training theory, performance modelling, advances in technology, and the need to

appropriately define terms to enhance precision and enable systematic research to follow. The structure

of the thesis has also been outlined highlighting the contribution of the work. In addition to the

experimental chapters, substantive study and novelty exists in situating and critiquing the most relevant

aspects of the performance modelling and FFM literature. Combined with extensive code resources

presented in a range of didactic and illustrative formats, this work represents the most comprehensive

and self-contained document to date on FFM and it is intended that an individual can follow the work

and by the end be well versed in the area with the requisite skills to build and appropriately evaluate

models.

 30

Chapter 2: Literature review

2.1 Introduction

FFMs underpin a principal concept guiding the theory and practice of physical training in exercise

science (Chiu and Barnes, 2003). The standard FFM posits that a single bout of training creates two

antagonistic after-effects including a positive long-lasting and low magnitude fitness effect, and a

negative short-lasting and high-magnitude fatigue effect (Banister et al., 1975). It is the combination

of these antagonistic components that is said to describe an individual’s current level of physical

performance over time. In conceptual form, the interaction of fitness and fatigue is frequently used to

guide decisions around exercise prescription, recovery, and tapering strategies (Chiu and Barnes,

2003). However, FFMs can also be expressed as parameterised models, with five free parameters in

the standard formulation (Banister et al., 1975; Calvert et al., 1976), and upward of eight in more

complex representations (Busso et al., 1992; Busso, 2003; Turner et al., 2017; Philippe et al., 2018;

Matabuena and Rodríguez-López, 2019). The initial mathematical framework was devised by Banister

and colleagues over four decades ago (Banister et al., 1975). Study of the underlying mathematical

structure reveals no single model, but instead a collection of related models with similar properties

(Banister et al., 1975; Calvert et al., 1976; Busso et al., 1990, 1992; Morton, Fitz-clarke and Banister,

1990; Busso, 2003, 2017; Gouba et al., 2013; Turner et al., 2017; Kolossa et al., 2017; Matabuena and

Rodríguez-López, 2019). All FFMs take as input a series of quantified daily training doses and

frequently measured performance values and attempt to model - and ultimately predict - performance

across time (Banister et al., 1975). Individual tailoring is achieved by setting parameters in the models

to match elements such as the magnitude and decay rate of the positive and negative after-effects

experienced by the individual. This is achieved by conducting a period of model fitting, where frequent

performance measurements are collected, and parameters fitted retrospectively to best match input and

output data. If a suitable model can be fit, FFM predictions may assist practitioners with training

program design and athlete monitoring (Banister et al., 1975; Schaefer, Asteroth and Ludwig, 2015;

Turner et al., 2017; Kumyaito, Yupapin and Tamee, 2018; Connor, Fagan and O’Neill, 2019). Despite

the central position of FFMs in traditional training theory and their long history of study by researchers,

there has been little uptake across contemporary research and in real world practical environments.

This is likely explained by a combination of factors including: 1) inaccessibility of research that

assumes readers are proficient with requisite mathematical concepts and have good awareness of

historical conventions, nomenclature and terminology; 2) a lack of accessible resources featuring clear

methods, and simple tools for model implementation and robust evaluation; and 3) limited empirical

research evaluating key aspects of data modelling such as prediction accuracy, model stability, and

appropriate methods for parameter estimation. Previous research has summarised various aspects of

FFMs and provided a useful entry point for those interested (Chiu and Barnes, 2003; Taha and Thomas,

 31

2003; Hellard et al., 2006; Pfeiffer, 2008; Clarke and Skiba, 2013; Proshin and Solodyannikov, 2018;

Rasche and Pfeiffer, 2019). However, prior to a recent review series (see citations in footnote 1,2)

forming part of this work, no up to date resource existed that comprehensively summarised historical

developments, methods, and limitations of FFMs. Furthermore, no simple and flexible tools existed to

assist researchers fit, evaluate, and systematically investigate FFMs and associated methods using their

own data. Researchers have typically developed their own implementations exclusive to their specific

needs, limiting uptake and visibility of several potentially useful resources (Pfeiffer, 2008; Schaefer,

Asteroth and Ludwig, 2015; Turner et al., 2017). To address this resource gap which represents a

substantive barrier to progress, a codebase was developed in the increasingly popular statistical

programming language R (R Core Team, 2020). The codebase provides a novel educational resource

and scientific toolbox for fitting and evaluating FFMs. This work forms the focus of attention in

chapter 6.

The aim of this literature review was to synthesise existing knowledge about FFMs and their potential

limitations while balancing technical material with practical considerations relating to the prospective

use of the models in sport and exercise science. In this chapter, key mathematical content is blended

with applied insights, considerations, and recommendations to present the subject history in a rounded

manner. Given the vast quantities of data that practitioners and researchers generate daily, increased

usage is required to better develop FFMs that incorporate training design features employed by

practitioners and to assess the validity of models by their ability to make useful future predictions

under high quality input distributions (data). Training theory and design has developed considerably

since Banister et al. (1975) developed the first FFM. This increased knowledge, combined with a rapid

increase in the volume of data collected by practitioners over the last two decades provides a unique

opportunity to accelerate the development of data-driven modelling approaches to assist with

individualised prescription and decision making.

2.1.2 Organisation of the literature review

This literature review follows a structure that builds progressively from each prior section in terms of

the concepts, research history and thoughts introduced. It is therefore best read the first time in its

natural order. There are three primary sections: (2.2) Historical development of the model; (2.3)

Application of fitness-fatigue models in research and practice; and (2.4) Model developments and

1 Stephens Hemingway, B., Greig, L., Jovanovic, M., Ogorek, B., & Swinton, P. (2021). Traditional and
contemporary approaches to mathematical fitness-fatigue models in exercise science: A practical guide with
resources. Part I. SportRxiv (Preprint). https://doi.org/10.31236/osf.io/ap75j

2 Swinton, P., Stephens Hemingway, B., Rasche, C., Pfeiffer, M., & Ogorek, B. (2021). Traditional and
contemporary approaches to mathematical fitness-fatigue models in exercise science: A practical guide with
resources. Part II. SportRxiv (Preprint). https://doi.org/10.31236/osf.io/5qgc2

 32

extensions (state-of-the-art). Section 2.2 starts with a detailed synopsis of the seminal fitness-fatigue

model and follows its development into what is referred to in this thesis as the standard model and its

more generalised form the general model. In section 2.3, several basic concepts and methods as they

relate to the application of an FFM in research and practice are introduced, including training load

quantification (model input), performance measurement (model objective), model parameters (model

fitting), and model evaluation (testing). Finally, section 2.4 examines the contemporary period of the

historical research body and examines key attempts to address the central limitations of early FFMs

using various model extensions. Section 2.4 also informs work conducted in chapter 6 examining the

implementation of prospective future methods. A summary is provided at the end of this chapter that

reflects on the timeline of FFM research and outlines the scope of key future study of fitness-fatigue

models. This literature review, whilst it does not contain any primary research, represents the most

complete synthesis of the FFM literature to date whilst incorporating central concepts and practices

from the wider fields of performance modelling, statistics and data analysis, much of which is lacking

in current FFM research. As such, the literature review and synthesis represent a substantive

contribution to understanding of the area of fitness-fatigue modelling and its future direction within

sport and exercise science.

2.2 Historical development

2.2.1 The standard fitness-fatigue model

In 1975, Banister and colleagues proposed the first systems model describing athletic performance in

terms of training undertaken and fatigue accumulated (Banister et al., 1975; Calvert et al., 1976). The

authors’ goal was to ultimately develop a predictive model of training that could improve

understanding of relevant physiological processes, and in turn support selection of appropriate training

programs (Banister et al., 1975). Banister et al. (1975) envisioned a complex systems model that could

account for several basic determinants of performance such as psychology, skill, and physical capacity.

As a first step toward a more complete systems model, the authors isolated training inputs, and then

attempted to mathematically quantify their relationship with athletic performance. The product of this

initial approach is commonly referred to as the fitness-fatigue model. As noted in the introduction,

there is no single model and Banister and colleagues’ seminal model - and its common closed form -

is referred to herein as the standard FFM. Initially, the authors suggested that a general relationship

between physical training and performance could be described by a few general principles including:

1) a moderate increase in physical training followed by a plateau in load will cause performance to

rise to a limit approximately 30-50 days later; 2) further rises in training cause further improvements

in performance that are proportional to the presently attained performance level; 3) after the continuous

cessation of training, performance exponentially decays back to a lower level. It was from these general

 33

principles the authors (Banister et al., 1975) believed the physical response 𝑝(𝑡) to training 𝜔! could

be described grossly by the following simple first-order linear differential equation:

𝑝"(𝑡) = 𝜔(𝑡) −
1
𝜏
𝑝(𝑡)	 (2.1)	

Although the authors acknowledged that this first-order system (eq. 2.1) would be unable to capture

all the known complexity between physical training and performance, they believed a simple first-

order system represented a reasonable starting point for further study (Banister et al., 1975). Banister

et al. (1975) reasoned that individual training sessions could be viewed as impulses, due to their short

time duration (i.e. hours) compared to the decay time constants (𝜏) of the system (i.e. 10s of days)

(Banister et al., 1975; Calvert et al., 1976). The abbreviation TRIMP was subsequently coined by the

authors to denote these training impulses. Expanding on their original system, it was then suggested

that these impulses were responsible for exerting both an immediate positive and an immediate

negative training effect that decay at different rates (Banister et al., 1975). As such, performance on a

given day was considered to be the linear sum of two antagonistic responses, a (positive) fitness

response, and (negative) fatigue response. Under the model structure, each training session can be

thought of as ‘dumping’ a quantity of positive fitness and fatigue proportional to the training impulse

𝜔; and it is generally assumed that the initial inflow of fatigue is greater than fitness. Immediately,

these quantities begin to decay and as outlined below the decay is commonly described by an

exponential function with a slower rate of decay for fitness than fatigue (Figure 2.1). The limitation of

an impulse-response structure and conflict with conceptual understanding is discussed shortly. At any

time 𝑡 the total amount of fitness, denoted by the function 𝑔(𝑡), and fatigue, denoted by the function

ℎ(𝑡), is equal to the sum of the remaining quantities for each component. The difference between these

positive functions represents model predicted performance �̂�(𝑡) which is hoped to reflect actual

performance 𝑝(𝑡) throughout the training period (eq. 2.2) (Figure 2). Note, hat notation is used to refer

to a conditional expectation given past training impulses and the true values of parameters, differing

somewhat from the statistical notation of hat to indicate that unknown parameters have been estimated.

�̂�(𝑡) = 𝑝∗ + 𝑘$ ⋅ 𝑔(𝑡) − 𝑘% ⋅ ℎ(𝑡), 𝑔(𝑡) ≥ 0, ℎ(𝑡) ≥ 0, 				𝑘% ≥ 𝑘$ > 0	 (2.2)

In equation 2.2, parameter 𝑝∗ acts as an additive term (i.e., a y-intercept) of the model and can be

interpreted as an estimation of an individual’s baseline performance level. Parameters 𝑘$ and 𝑘% are

the scaling factors that determine the magnitude of the fitness and fatigue realised after a single training

session.

 34

The dynamical system at the core of the standard model is specified by the following set of first-order

differential equations:

𝑔"(𝑡) = 𝜔(𝑡) −
1
𝜏$
𝑔(𝑡)	 (2.3)

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)	 (2.4)

Where 𝜔(𝑡) ≥ 0, and 𝜏$, 𝜏% ≥ 0 are the parameters that describe the rate of fitness and fatigue

decay, respectively. Initial conditions of the system are often set at 𝑔(0) = ℎ(0) = 0 for convenience,

and this approximation may be reasonable if the athlete has not engaged in strenuous training for a

considerable amount of time. Additionally, if performance measurements are abundant, then a “burn

in” period within the fitting process may be used where the cost function is not evaluated for a small

initial time-step. Otherwise, these initial conditions may be set and treated as known (preferably based

upon previous data), or treated as unknown parameters to be estimated (Busso et al., 1992; Ludwig

and Asteroth, 2016). Under the model, larger values of 𝜔(𝑡) represent greater training doses and

therefore a greater stimulus for adaptation. An explicit solution to this linear first-order independent

system of differential equations (eq. 2.3, 2.4) is obtained by convolving the training impulse series

𝜔(𝑡) with exponential functions as follows:

𝑔(𝑡) = 𝜔(𝑡) ∗ 𝑒
&!
'! 	 (2.5)	

= = 𝑒
(&(!&*)'!

,
𝜔(𝑢)𝑑𝑢

!

-

ℎ(𝑡) = 𝜔(𝑡) ∗ 𝑒
&!
'" 	 (2.6)	

																																																																																													= = 𝑒(
&(!&*)
'"

,𝜔(𝑢)𝑑𝑢
!

-

Where in equations 2.5 and 2.6, the symbol ∗ denotes the convolution product. Readers are

directed to the appendix A for a complete mathematical derivation. In practice, equations 2.5 and 2.6

are generally approximated by the following Riemann sums:

𝑔(𝑡) =A𝜔. ⋅ 𝑒
&(!&.)
'! 	

!&/

.0-

, 	𝛥. = 1 (2.7)

ℎ(𝑡) =A𝜔. ⋅ 𝑒
&(!&.)
'" 	,

!&/

.0-

	𝛥. = 1 (2.8)

Where (in equations 2.7 and 2.8) Δ. is the discrete time step-size, typically set to one day.

 35

Recall that parameters 𝜏$, 𝜏% > 0 are constants setting the rate at which the exponential function

decays toward zero. Therefore, their interpretation is related to step size Δ. in that 𝜏$, 𝜏% time-steps

bring the fitness or fatigue to roughly /
1
 of the initial level sans additional training (illustrated in Figure

2). Fitness or fatigue at any given time point can be considered the sum of prior training convolved

with the relevant decay function, and therefore the effect of a once-daily training impulse 𝜔. ≥ 0 on

performance is described by the following series approximation (Busso et al., 1990, 1992; Morton,

Fitz-clarke and Banister, 1990):

𝑝!(𝑡) = 𝑝∗ + 𝑘𝑔$ω𝑖
𝑡−1

𝑖=1

⋅ 𝑒
−(𝑡−𝑖)
τ𝑔

%&&&&'&&&&(
fitness component

− 𝑘ℎ$ω𝑖
𝑡−1

𝑖=1

⋅ 𝑒
−(𝑡−𝑖)
τℎ

%&&&&'&&&&(
fatigue component

(2.9)

Figure 2.1: Dose-response dynamics of the standard model 3 for a single arbitrary training dose (𝜔 =

1), without scaling (left) and with a scaling ratio ½ acute fitness to fatigue (right). Decay constants

𝜏$ = 30, 𝜏% = 10.

Figure 2.2: Computational flow of the standard model function

3 R code for reproducing several of the plots presented in this chapter is available from:
 github.com/bsh2/thesis/c2/plots.R

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scaling equal; kg = kh = 1

Days (after dose)

D
os

e−
re

sp
on

se
 le

ve
l [

a.
u]

τh τg

e−1

Fitness
Fatigue

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scaling applied; kg = 0.5, kh = 1

Days (after dose)

D
os

e−
re

sp
on

se
 le

ve
l [

a.
u] Fitness

Fatigue

!!

"" ⋅ $# 	 %&!

"' ⋅ $
# 	 %&"

Training

impulse

impulse

Fitness

response

∑
−

+
'∗

baseline

+ '((*)

Performance

Δ! = 1 day response

!	
#$%

&'%

!	
#$%

&'%

Fatigue

 36

The solution to the model system (eq.’s 2.2 – 2.4), stated in equation 2.9, may also be specified in

recursive form as follows:

�̂�(𝑡) = 𝑝∗ + H𝑘$ ⋅ 𝑔(𝑡)I − J𝑘% ⋅ ℎ(𝑡)K (2.10)

		𝑔(𝑡) = 𝑔(𝑡 − 1) ⋅ 𝑒
&/
:! +𝜔!	 	 𝑔(0) ≥ 0. (2.11)	

ℎ(𝑡) = ℎ(𝑡 − 1) ⋅ 𝑒
&/
:" +𝜔!	 	 ℎ(0) ≥ 0 (2.12)

The relative magnitudes of the scaling factors J𝑘$, 𝑘%K and the decay time constants J𝜏$, 𝜏%K determine

the primary dynamics of the model. If a relationship 𝜏$ ≥ 𝜏% ≥ 0 holds, a net positive (or zero)

increase in performance is expected over a training cycle provided there is sufficient recovery time.

The values of the scaling factors depend on the units used to measure the training load and

performance, and some authors have suggested the relationship 𝑘% > 𝑘$ > 0, or more aptly a ratio of
;!
;"
< 1 could indicate a more fatigue-dominated individual (according to model structure), and visa-

versa (Morton, Fitz-clarke and Banister, 1990). However, as a single quantity these parameters are

harder to interpret physiologically in the same way as the decay constants (i.e., as values representing

days), as this requires linking the training units to the performance measure. If both the relationships

stated above between the scaling factors and decay time constants are applied as constraints, modelled

performance is supressed during and immediately following periods of high training stress until fatigue

dissipates sufficiently and fitness effects are revealed (Banister et al., 1975). This model behaviour

(commonly referred to as supercompensation) is theoretically consistent with observed effects of high

demand training on performance within a normal training cycle, or during short term periods of

overreaching. However, these dynamics may not be representative for some groups of elite athletes

where training is heavily focussed on maintenance of existing physical performance levels rather than

seeking or expecting large increases. Finally, the parameter 𝑝∗ in equations 2.9 and 2.10 remains the

common additive term used across almost all FFMs that can be thought of conceptually as a base level

of performance that the individual is not expected to fall chronically below, even after a prolonged

absence of training.

The impulse-response dynamics of the standard model in response to a single training dose (as shown

in figure 2.1) have been suggested to be an inaccurate conceptualisation of the fitness response to

training (Calvert et al., 1976; Busso, 2017; Philippe et al., 2018). Specifically, an unrealistic response

of the fitness component obtaining a maximum contribution immediately following training. Noting

this limitation, a year after their seminal model (Banister et al., 1975), the same group of authors lead

by Calvert presented a simple extension (Calvert et al., 1976) that introduces a delay term within the

 37

fitness component (eq.’s 2.13, 2.14), in an attempt to better match real world understanding of training

response. The inclusion of this term creates a period of non-linear growth during the fitness impulse-

response, that reaches a peak before undergoing exponential decay (figure 2.3). The fatigue term still

retains the standard model dynamics in the authors modified model. The additional term with the

fitness component also introduces a scaling effect which is treated shortly. The terms impulse-

response, dose-response and load-response are often used interchangeably. Despite being conceptually

attractive (Calvert et al., 1976; Morton, Fitz-clarke and Banister, 1990; Rozendaal, 2017), this

extension has received limited attention in comparison to the standard model across empirical research.

The fitness-delay model from Calvert et al. (1976) is stated as follows:

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔.

!&/

.0/

⋅ M𝑒
&(!&.)
'!%NOP

effect
− 𝑒

&(!&.)
'!&NOP

delay
Q − 𝑘%A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)
'" 	 (2.13)

In Calvert et al.’s (1976) model, the load-response function of the fitness component is represented by

𝑔<(𝑡):

𝑔<(𝑡) = 𝑒
& !
'!%NOP

=>>=?@
− 𝑒

& !
'!&NOP

A=BCD
, 𝜏$% > 𝜏$& > 1 (2.14)

Although the underlying system of ODE’s is not clearly stated in the authors paper (Calvert et al.,

1976), it can be determined from the transfer functions (eq. 2.15, 2.16) provided in the original work

(Calvert et al., 1976).

 Fitness (transfer function)

𝐺(𝑠) =
U 1𝜏$&

− 1
𝜏$%
V

WU𝑠 + 1
𝜏$%
V U𝑠 + 1

𝜏$&
VX
	 (2.15)

 Fatigue (transfer function)

𝐺(𝑠) =
𝐾

𝑠 + 1
𝜏%

	 (2.16)

From these transfer functions, it is clear that the fitness-delay model (eq. 2.13) arises from a notably

different underlying system to that of the standard model. In particular, one involving a second-order

 38

differential equation for fitness and a first-order differential equation (the same as the original model

system) for fatigue.

The second-order system from Calvert et al. (1976) can be stated as follows:

W
1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/

𝑔""(𝑡) = 𝜔(𝑡) − W
1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/

W
1

𝜏𝑔1
+

1

𝜏𝑔2
X𝑔"(𝑡) − W

1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/ 1
𝜏$%𝜏$&

𝑔(𝑡) (2.17)

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)	 (2.18)

A derivation of the fitness-delay model from the ODE system above is provided in appendix A.

In equation 2.14 (the new load-response for the fitness component), nonlinear growth occurs from 𝑡 >

0 toward a maximum level max𝑔<(𝑡) at which point the function begins to decay exponentially back

toward zero (as seen in figure 2.3). Time to reach maximum response to a single load under 𝑔<(𝑡) is

denoted by 𝑡$&EFG. The time point 𝑡$&EFG can be computed for any values of 𝜏$% , 𝜏$& 	(𝜏$/ > 𝜏$& > 1)

by process of solving 𝑔<′(𝑡) = 0 for 𝑡 as follows:

𝑔<′(𝑡) =
𝑒
(& !
:'&

,

τH&
−
𝑒
(& !
:'% 	

,

τH%
	 (2.19)

𝑡$&EFG =
τH%τH& ln

τH%
τH&

τH/ − τH&
(2.20)

Subsequently, this value can then be used to find max𝑔<(𝑡) , 𝑡 > 0:

max𝑔<(𝑡) = 𝑒
&
!!&()*
:'% 𝑒

&
!!&()*
:'& 	 (2.21)

max𝑔<(𝑡) = W
τH%
𝜏$&
X
&(

:'&
:'%&:'&

,

− W
τH%
τH&
X
&(

:'%
:'%&:'&

,

	 (2.22)

As seen in figure 2.3-A on the following page, and from equation 2.14 itself, the addition of a delay

term also introduces a natural scaling effect. To see this arithmetically, note (in eq. 2.14) the two terms

in the fitness component are of the same form, and differ only by their parameter value, and so as the

difference between choice of 𝜏$% and 𝜏$& decreases, the magnitude of the peak (unscaled) load response

will decrease. This effect can be reversed by scaling the fatigue component response function by

max𝑔<(𝑡) and then scaling the load value for both components by 𝜔/max𝑔<(𝑡) (shown in Figure

 39

2.3-B). In doing so, this will restore the relationship between the scaling constants 𝑘$, 𝑘% as per the

original model.

Figure 2.3: (A) Dose-response dynamics of the fitness-delay model for a single arbitrary training dose;

(B) demonstration of the artificial scaling approach described in the text for reversing the natural

scaling effect of the fitness-delay model. Time decay constants 𝜏$% = 30, 𝜏$& = 8, 𝜏% = 12. Training

dose 𝜔 = 1 (left), 𝜔 = 1/max𝑔<(𝑡) (right).

Several studies have attempted, with limited success, to link the concepts of fitness and fatigue within

FFMs to measurable human processes (i.e., match variation in component traces to variation in

observed measurements of known physiological systems). Toward this end, several studies have

observed the relationships between variation in model fitness and fatigue traces to variation observed

in measured physiological variables over a training period (Taha and Thomas, 2003; Hellard et al.,

2006). These variables have included heart rate (Busso, 2003), maximal oxygen uptake (VO2max)

(Corlett, Calvert and Banister, 1978; Busso, 2003; Wood et al., 2005), various respiratory gas

parameters (Wood et al., 2005), iron markers (Banister and Hamilton, 1985; Candau, Busso and

Lacour, 1992), hormonal fluctuations (Busso et al., 1990, 1992), and enzyme markers (Banister,

Morton and Fitz-Clarke, 1992). In some cases, moderate to strong correlations have been observed (a

summary table is presented on the following page in Table 2.1). However, there is noticeable

inconsistency in these relationships. Although interesting, these results do not necessarily indicate that

FFMs are ineffective. Fitness and fatigue are abstract concepts used to model the resultant effect of a

range of physiological processes positively and negatively influencing the expression of physical

performance. Therefore, perfect correlations with single observed physiological measures should not

be expected. Additionally results may indicate the existence of additional factors which is typical of

the modelling process (Taha and Thomas, 2003; Hellard et al., 2006; Pfeiffer, 2008).

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(A) Scaling equal; kg = kh = 1

Days (after dose)

D
os

e−
re

sp
on

se
 le

ve
l (

a.
u)

max g2(t)

tg2 max

Fitness
Fatigue

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(B) ω = 1 /max g2(t) , kh = max g2(t)

Days (after dose)
D

os
e−

re
sp

on
se

 le
ve

l (
a.

u) Fitness
Fatigue

 40

Table 2.1: Physiological correlates of model fitness and fatigue traces across prior research

Ref n Domain Duration Physiological
Measures Fitness Component Fatigue Component

(Corlett,
Calvert

and
Banister,

1978)

1
Lab-based

general
exercise

4 months
Serum Bilirubin

& Maximal
Oxygen Uptake

Maximal oxygen
uptake

demonstrated
moderate

correlations with
traces of the fitness
component (visual

plot only, no
quantitative data

provided)

Bilirubin
demonstrated

moderate correlations
with traces of the

fatigue component
(visual plot only, no

quantitative data
provided)

(Banister
and

Hamilto
n, 1985)

5

Distance
Running

(Amateur)

300 Days Serum Iron No data provided

All markers of iron
status (Ferritin, RBC
and Haemoglobin)

appear to demonstrate
low-moderate

correlations with
fatigue trace. Inter-
individual variation

evident, with
correlations likely
stronger for some

individuals than others

(Busso
et al.,
1990)

6
Weightlifting

(Elite)

1 year

Serum
testosterone (T),

cortisol (C),
SHBG as well

as ratios
between T:C
and T:SHBG

[Testosterone, r =
	0.61 − 0.92]
(significant for

n=2); [Cortisol, r =
	−0.75 − 0.76];

[SHBG, r =
	−0.64 − 0.75];
[Testosterone :
Cortisol, r =
	0.11 − 0.94]
(significant for

n=2); [Testosterone
: SHBG, r =
	−0.27 −

0.89]	(significant
for n=1)

[Testosterone, r =
	0.34 − 0.88]

(significant for n=1);
[Cortisol, r =
	−0.75 − 0.75];

[SHBG, r = 	−0.75 −
0.76]; [Testosterone :
Cortisol, 	r = 	0.0 −
0.97] (significant for
n=1); [Testosterone :
SHBG, r = 	−0.80 −
0.92] (significant for

n=1)

 41

Ref n Domain Duration Physiological
Measures Fitness Component Fatigue Component

(Banister
, Morton
and Fitz-
Clarke,
1992)

2
Cycling

(Amateur)

28 days

Serum
biomarkers and

enzymes
including:

Lactate
dehydrogenase,
creatine kinase,
and aspartate
transaminase

No graphs or data
reported for
correlations
between any

measured
physiological

marker and fitness
parameter

Fatigue and LDH
showed a degree of

correlation across all
subjects, however

these would likely be
poor-moderate

Temporal trends out
of phase with LDH
generally lagging
behind observed

changes in fatigue.
Similar trend apparent

from fatigue and
creatine kinase.

Greatest correlation
appears to be between
fatigue and aspartate

transaminase with
much less variation

between subjects and
data points fitting

much closer. Likely
moderate-strong.

(Busso
et al.,
1992)

6
Weightlifting

(Elite)

6 weeks

Serum
testosterone,
luteinising
hormone,

SHBG and
T:SHBG ratio

Mean Serum
Luteinising

Hormone (r =
0.97) during

training period 1
[appears to be for all

subjects]

Nothing reported for
fatigue parameter in
either table, graph or
written format. Same

data set utilised in
Busso 1990, however
serum LH results not

reported in earlier
work.

(Wood
et al.,
2005)

1
Running

(Amateur)

12 weeks

Velocity at
ventilatory
threshold
(VTRS),

Profile-of-
mood-states
(POMS) and

VO2Max,
Running
economy

[VTRS, r = 0.94];
[VO2Max, r =
0.42]; [Running
Economy, r =

−0.61]

[POMS, r = 0.75]

 42

2.2.2 The general model

Previous authors have attempted to examine the potential of FFMs to model complex physiological

phenomena via a limited number of resultant components, investigating the statistical adequacy of

different levels of FFM complexity within their experimental studies (Busso, Carasso and Lacour,

1991; Millet et al., 2002, 2005; Busso, 2003, 2017; le Bris et al., 2006b, 2006a; Agostinho et al., 2015;

Philippe et al., 2015). Toward this end, the standard FFM can be specified in a general (closed) form

such that the working of the system is reflected by 𝑁 additive first-order components (Busso, Carasso

and Lacour, 1991). In line with the process for solving the standard system (eq. 2.5-2.8, appendix A),

the discrete solution of the general model with 𝑁 components is obtained by convolving the variable

representing the time-series of training loads 𝜔 individually with 𝑁 exponential functions of the form

𝑒&(! '+)⁄ where (𝑟 = 1, 2, … , (𝑁 − 1), 𝑁), and then taking their sum. The resultant discrete function

representing the solution to the general model is then written:

	�̂�(𝑡) = 𝑝∗ +AM𝑘K ⋅A𝜔. ⋅ 𝑒
&(!&.)
'+

!&/

.0/

Q
L

K0/

	 (2.23)

The general scaling constant 𝑘K in (eq. 2.23) is taken as positive or negative dependent upon whether

the underlying system response represented by the associated component results in a performance

increase or decrease. Several studies have applied the general model with experimental data to assess

different levels of model complexity as a function of additional components, using laboratory study

and/or retrospective analyses of field data (Busso, Carasso and Lacour, 1991; Candau, Busso and

Lacour, 1992; Millet et al., 2002, 2005; Busso, 2003; le Bris et al., 2004, 2006b; Agostinho et al.,

2015; Philippe et al., 2015). Several of these studies have found that additional first-order components

did not significantly increase model fit in the majority of subjects (Busso, Carasso and Lacour, 1991;

Millet et al., 2002, 2005; Busso, 2003; le Bris et al., 2006b, 2006a; Philippe et al., 2015). However, a

large proportion of these studies have been limited by sample size, the population (i.e., limited study

of elite performers) and an inadequate number of data points, advantaging models with a low number

of components. In contrast, none of the studies listed above assessed model prediction accuracy using

out-of-sample data or in the context of external training interventions that may change the input

distribution (Pearl, 2010). Therefore, it remains difficult to identify the extent of overfitting and

whether increasing model complexity provides a predictive advantage. A lack of out-of-sample

assessment is not exclusive to studies assessing different levels of model complexity but is a consistent

limitation throughout research investigating FFMs and is discussed further in section 2.3.4. It is

recommended that future research applying the standard model attempts to assess further levels of

model complexity where possible, to identify prediction differences (particularly out of sample) across

diverse scenarios. Nevertheless, some authors have suggested that a simple two-component model (i.e.

 43

the standard model, or the fitness-delay model) is sufficient on the basis that it is likely to provide

better conceptual and observed agreement with supercompensation phenomena that occurs during the

recovery period in athletes that take part in regular training (Busso, Carasso and Lacour, 1991).

Researchers have also previously considered the case where an FFM is fit to an individual who has

recently trained, or is currently undergoing training and therefore residual fitness and fatigue effects

are expected to carry over into the next modelling period; i.e. 𝑔(0) ≠ 0, ℎ(0) ≠ 0 (Busso et al., 1992;

Ludwig and Asteroth, 2016). To adjust for this, the addition of 𝑃 exponentially decaying initial

components into the general model structure was suggested as a suitable approach by Busso and

colleagues (Busso et al., 1992), as follows:

�̂�(𝑡) = 𝑝∗ +AM𝑘K ⋅A𝜔. ⋅ 𝑒
&(!&.)
'+

!&/

.0/

Q
L

K0/

+A𝑞M- ⋅ 𝑒
&!
',

N

M0/

	 (2.24)

Where the additional parameters (associated with 𝑞M-) denote the initial level of each

component, and 𝜏M is the decay time constant on the corresponding initial level. Conceptually, each

additional parameter can be thought of as an additional ‘extra-large’ load-response at time 𝑡 = 0, the

sum of which will act to translate the function up or down on the vertical axis for a short initial period

depending on the magnitudes with each associated component (i.e., fitness or fatigue). Note that not

every component may require an initial decaying state (Busso et al., 1992). And, as outlined earlier,

the use of a “burn-in period” (alternately named a “grace” period) where early observations are

discarded is a technique used in Bayesian computation and may be suitable (Hamra, MacLehose and

Richardson, 2013). This function is provided alongside methods such as Maximum Likelihood

Estimation within libraries for popular modelling languages such as Python (statsmodels module)

and R (Seabold and Perktold, 2010).

Only a subset of these general FFM variations have been implemented across the literature. In one

experimental study, Busso and colleagues found that the number of statistically significant training

components for each athlete ranged from 1-component (𝑛 = 1) to 2-component’s (𝑛 = 5) (Busso et

al., 1992). The number of initial components (IC) in the final model equation were 0-IC (𝑛 = 2), 1-IC

(𝑛 = 2), and 2-IC (𝑛 = 3). However, even in-sample R2 values in the study ranged substantially from

0.29 to 0.85 and statistical analyses were limited by low numbers of data points making it difficult to

draw meaningful conclusions. The approach was further explored with regard to improvement in

prediction accuracy by Ludwig and colleagues in 2016, and was referred to as an a posteriori ‘pre-

load’ function (Ludwig and Asteroth, 2016). However, p-values may not be the most appropriate

approach to assessing the benefit (or not) of additional components for in-sample data, and out-of-

 44

sample assessment must be considered in future. An increase in model complexity (i.e., the addition

of further filters increasing the number of free parameters) may be used to capture more known

phenomena of the training response. However, it is worth noting that models with large numbers of

free parameters are at a higher risk of overfitting, in particular without a suitable method to assess out-

of-sample prediction accuracy, and the requirements on the training data (i.e., the number of

performance measures) may quickly become impractical. These issues are treated in more depth in

sections 2.3.2 and 2.3.3.

2.2.3 A variable baseline performance model

FFMs generally include an intercept parameter 𝑝∗ (baseline performance) which is conceptualised as

the performance value obtained after a substantive period of physical recovery such that the residual

effects of all previous training sessions have dissipated. However, this perspective is limited as in

many cases baseline performance may change between training periods. The implications of this are

not reflected in the standard model structure, but how problematic this is will depend on the model’s

use. For example, if a coach or practitioner wishes to use the standard model to predict short term

change prior to a tapering and peaking phase, change in the baseline constant may not have occurred

and prior change will have already been factored within the model fitting (estimation) process.

However, if a researcher carries over the parameters during a long-term monitoring period, baseline

performance may require re-estimation, unless expected change in the parameter itself can be

predicted. Gouba et al. (2013) suggested an alternative approach to address this limitation by replacing

the additive term 𝑝∗ with a recursive term (eq. 2.25). The basis of this extension is that performance

on day 𝑡 is influenced by both the previous value of measured performance, and the number of training

doses between them (Gouba et al., 2013). Their model can be stated as follows:

�̂�!- 	= 𝑝!-.% + 𝑘$ A M𝑒
&	
O!-&.P
:! ⋅ 𝜔.Q

!-&/

.	0	!-.%

− 𝑘% A M𝑒&	
O!-&.P
:" ⋅ 𝜔.Q

!-&/

.	0	!-.%

, 𝑗 ≥ 1, Δ. = 1 (2.25)

Where 𝑗 is the number of measured performances, 𝑡Q is the day of the 𝑗-th measured

performance, and 𝑝!-.% is the observed performance value on 𝑡Q&/.

Under experimental intervention data, the authors observed poor model fit for both the standard FFM

(eq.2.9) (R2 = 0.28) and their own novel extension (eq.2.25) (R2 = 0.38). The authors had attempted to

model the data of an elite level monofin swimmer. Little can be drawn from these results due to the

confounding effects of low measurement frequency (n = 6 over a 24-week period), and a lack of out-

of-sample data to test the fitted models for any practical differences in future predictions. Therefore,

more research applying this model extension is still needed to assess whether there exists any

substantive improvement in accuracy and usefulness in practice.

 45

2.2.4 Influence Curves

Influence curves were first introduced to the literature by Morton and colleagues in 1990 (Morton,

Fitz-clarke and Banister, 1990), and then were further examined by Fitz-Clarke et al. (1991) a year

later as a helpful method to demonstrate how a unit of training impulse at a general time 𝑡 will effect

performance at a specific future time 𝑡M under certain conditions. Earlier, when the fitness-delay

modification to the standard model (eq. 2.13) was introduced, these concepts were loosely examined

in terms of the formulae for time to maximum performance and maximum performance (peak)

following a single training dose (see eq.’s 2.19, 2.22, respectively). This subsection will briefly survey

the small volume of literature on influence curves here as their theory is insightful for understanding

underlying dynamics of FFMs and they are often mentioned in other related works. As has previously

been discussed, model performance for a given day 𝑡M is the summation of the previous day’s training

impulses up to 𝑡M − 1 each decayed over the time between the impulse and 𝑡M. Recall also, that the

magnitude of the training impulse determines its contribution to performance through the scaling

factors (𝑘$, 𝑘%) for fitness and fatigue, respectively.

The original derivation of an influence curve from Fitz Clarke et al. (1991) is given as:

𝑝J𝑡MK = 𝑘$ ⋅ 𝑔J𝑡MK − 𝑘% ⋅ ℎJ𝑡MK	

= = i𝑘$ ⋅ 𝑒
&O!,&!P

:! − 𝑘% ⋅ 𝑒
&O!,&!P

:" jω(𝑡)𝑑𝑡
!,

-
	

= = 𝐿(µ)ω(𝑡)𝑑𝑡
!,

-
(2.26)

Where the influence curve is then defined by:

𝐿(𝜇) = 𝑘$ ⋅ 𝑒
&R
:! − 𝑘% ⋅ 𝑒

&R
:" (2.27)

 Where 𝜇 is given by 𝑡M − 𝑡, and therefore represents the time prior to the performance date 𝑡M

for a given dose. The multiplication of the training impulse series by the influence curve 𝐿(𝜇) gives

you a product function, which when integrated represents the performance at 𝑡M. In other words, the

area of this product function represents the performance at time 𝑡M (Fitz-Clarke, Morton and Banister,

1991). As the function 𝜔(𝑡) is typically a discrete series of daily impulses (with time step Δ = 1) the

integral becomes a summation via principles of convolution, and is written:

 46

= 𝐿(𝜇)ω(𝑡)𝑑𝑡
!,

-
=An𝑘$ ⋅ 𝑒

&(!&.):! − 𝑘% ⋅ 𝑒
&(!&.):" o

!

.0/

⋅ ω. ⋅ Δ. 	

= A𝐿(𝜇.)
!

.0/

⋅ ω. ⋅ Δ. (2.28)

The function 𝐿(𝜇) is independent to the training load series and only uses model parameters. Influence

curves may allow identification of a time point (denoted 𝑡K) at which training load should be reduced

prior to competition to maximise performance (Morton, Fitz-clarke and Banister, 1990; Fitz-Clarke,

Morton and Banister, 1991; Borresen and Lambert, 2009). This point 𝑡K is defined as the critical time

point (Fitz-Clarke, Morton and Banister, 1991) at which each training impulse will contribute more to

the model fatigue component than fitness. In other words, if training load is sustained or increased

beyond this time point, performance is likely to decrease significantly by time 𝑡M. Another time point,

𝑡$, was defined as the period of maximum opportunity and is described as the period in which previous

training will be most influential or positive for performance on a specific day 𝑡M under the model

structure. It follows, if used correctly influence curves may provide a unique method to assist in

informing a peaking and tapering strategy for a specific future performance (Morton, Fitz-clarke and

Banister, 1990; Fitz-Clarke, Morton and Banister, 1991; Borresen and Lambert, 2009). However, these

methods rely heavily on the assumption of an FFM that provides characteristic and strong deterministic

response profiles for each athlete, which may be unreasonable over long time periods and with the

standard formulations. Nevertheless, the methods of influence curves are still insightful as they assist

in exploring the complexities of planning training via quantitative methods with respect to single or

multiple key future performances. In particular, influence curves help to highlight in simplistic cases

the challenges of planning for optimal performance in the presence of multiple tightly spaced

competitive events, as the optimal training and tapering period for a single performance is likely to

influence subsequent ones (Fitz-Clarke, Morton and Banister, 1991; Borresen and Lambert, 2009).

This is another example of the lack of independence between real world events (training and

performance) common in sport, that contributes to making modelling human processes such a

challenging endeavour. We briefly explore these time points 𝑡K and 𝑡$ mathematically and graphically

below.

The critical time point 𝑡K is the point at which 𝑘$ ⋅ 𝑔(𝑡K) = 𝑘% ⋅ ℎ(𝑡K), or 𝐿(𝜇) = 0 (Fitz-Clarke,

Morton and Banister, 1991). Thus, at this point a reduction or rest from training is warranted prior to

competition, to avoid overwhelming fatigue effects within the performance response to training.

Critical time (𝑡K) is calculated directly from the individualised model parameters, as follows:

 47

𝑡K = 𝑡M − 𝜇 = 𝑡M − W
𝜏$𝜏%
𝜏$ − 𝜏%

ln W
𝑘%
𝑘$
XX	 (2.29)

The second of point of interest, the period of maximum opportunity 𝑡$ is defined as the point when

𝐿(𝜇) is the greatest, or ST
SR
= 0. This point is then calculated by

𝑡$ = 𝑡M −
τ$τ%
τ$ − τ%

ln
𝑘% ⋅ 𝜏$
𝑘$ ⋅ 𝜏%

		 (2.30)

For a detailed derivation of these formulae, and underlying algebraic arguments, readers are directed

to the appendices of Fitz-Clarke et al. (1991) which contains the step-by-step presentation. Figure 2.4

is a plot demonstrating the time points 𝑡$ (period of maximum opportunity) and 𝑡K (critical time)

according to influence curves for a dummy set of parameter estimates from the original study (Fitz-

Clarke, Morton and Banister, 1991) (𝜏$ = 45, 𝜏% = 15, 𝑘$ = 1, 𝑘% = 2) and a day of interest 𝑡M = 60.

According to model dynamics, Fitz-Clarke et al. (1991) demonstrated that maximal performance (with

respect to the criterion performance value) may be achievable only once in a season according to model

dynamics, due to the rest required to adequately taper and peak, which also represents lost time for

subsequent training events (Fitz-Clarke, Morton and Banister, 1991). Therefore, optimisation of

performance for multiple events across a season with respect to a FFM requires compromise, and the

FFM and simulating influence curves may be a useful approach to ascertain how a compromise might

be met within the structure of a training program. Furthermore, techniques of influence curves could

be used more creatively within model-fitting processes to penalise parameter sets that generate future

predictions that violate basic assumptions or expectations (in terms of rate of change, time to peak

growth, etc), regardless of their in-sample model fit.

Figure 2.4: Plotting the influence

curve to identify the period of

maximum opportunity (𝑡$), and

the critical time point (𝑡K) at which

training should be reduced to avoid

an overwhelming influence of

fatigue effects under the standard

model dynamics.

0 10 20 30 40 50 60

−1
.0

−0
.5

0.
0

0.
5

Day

L(
µ
)

tg tr

 48

2.2.5 Further developments to model structure

Three key limitations have been identified with the basic FFMs presented in previous sections

including: 1) irrespective of training dose presented in any single session, performance is maximised

a fixed number (𝜂) of days later; 2) performance can be arbitrarily increased by simply increasing the

training dose (Hellard et al., 2006); and 3) there is no interaction between training sessions, and

therefore training performed on a given day does not influence the response generated from another

session. Collectively, these limitations indicate that the best training plan (under the standard model

specification) would be to complete all the planned training in one session, 𝜂 days prior to competition.

The general approaches proposed to address these limitations include either constraining or saturating

the model input (i.e., the training dose) (Hellard et al., 2005) or directly manipulating the model

formulation (Busso, 2003; Kolossa et al., 2017; Philippe et al., 2018; Matabuena and Rodríguez-

López, 2019). For example, the use of an external threshold saturation function to restrict the effective

load without changing the relationship between the input and output specified has been proposed

(Hellard et al., 2005), along with the introduction of specific structural modifications to account for

non-linearities (Turner et al., 2017) and interactions between training sessions (Busso, 2003; Kolossa

et al., 2017; Matabuena and Rodríguez-López, 2019). The theory behind these approaches including

the use of a Kalman filter is presented in section 2.4 of this literature review. Furthermore, proposed

extensions within the literature include exponential growth kinetics (Philippe et al., 2018) and

secondary-signal models (Busso, 2017); and these are also examined. In chapter 6, several resources

are presented that deal with practical implementation of these advanced approaches in the R

programming environment (R Core Team, 2020), for applications in future research beyond the scope

of this thesis.

2.3 Application of fitness-fatigue models in research and practice

Fitness-fatigue models depend on constant, or in special cases time-varying (Busso et al., 1997;

Kolossa et al., 2017), parameter values that cannot be inferred through observation and must instead

be estimated from training and performance data, for example, by the method of nonlinear least squares

(Hellard et al., 2006; Soetaert and Petzoldt, 2010; Clarke and Skiba, 2013; Transtrum et al., 2015).

FFMs are nonlinear in their parameters and therefore the model fitting process constitutes a nonlinear

optimisation problem. The process takes as input a time-series of measured performance and training

load values, and provides as output, model parameter estimates that give good (preferably the best

possible in some sense) agreement between iteratively computed model performance values and the

measured performance data. In summary, to fit an FFM a researcher or practitioner requires a set of

suitable training quantification data, performance measurements, and a method to alter the model

 49

parameters to best match these through an optimisation process. Addressing these three requirements

is discussed in this respective order in the following sections.

2.3.1 Training load quantification

Existing FFMs require a time-stepped input in the form of a discrete time-series of training load values

𝜔. ≥ 0, Δ. ∈ ℕ, where a single number represents the training load for the time-step chosen. Typically,

the time-step will be set to one and each numeric value intended to represent the resultant effect of the

daily training session(s) on the physical response being modelled. Reducing athletic training sessions

to numeric values is a highly complex and unresolved problem within fitness-fatigue modelling,

particularly with respect to the broad spectrum of training modalities and performance measures.

Within laboratory settings, training load quantification may theoretically be easier, due to the tightly

controlled nature of a training response study and the use of single training modalities and performance

measures that are expected to map directly to the intervention strategy (Busso and Thomas, 2006).

However, this is rarely practical in the real world, where the necessary training often comprises

different physical capabilities trained concurrently, and adaptive potential may suffer from a number

of interacting factors (e.g., environmental, psychosomatic, social). Proposed solutions to address the

problem of training load quantification thus far can be described as predominantly exploratory,

typically resulting from attempts to identify training variables that are believed to account for the

largest variation of training response in a population. The result of these attempts are usually an

amalgamation of assumptions, coaching experience, and empirical knowledge to construct and

implement one or more methods that seem reasonable but are not extensively validated. The full scope

of the training load quantification problem is too extensive to address in this review and requires

substantial development as both a standalone area and within the context of fitness-fatigue modelling.

However, interested readers are directed toward previous reviews of this topic (Banister, Carter and

Zarkadas, 1999; Borresen and Lambert, 2009; Hayes and Quinn, 2009; Jobson et al., 2009). In the

following sections an overview of the area in the context of fitness-fatigue modelling is provided.

A basic and general form for quantifying session training load (𝜔) using a volume-by-intensity

approach may be written mathematically as:

𝜔. = 𝒟. ⋅ 𝑢(𝐼.)	 (2.31)

Where 𝒟 represents the density of the exercise (e.g., volume, duration, distance), 𝐼 is the

intensity (e.g., percent-of-maximum, perceived intensity) and 𝑢 is a function - potentially non-linear -

that can create relatively large changes in training dose with relatively small changes in intensity (this

schema is illustrated in Figure 2.5).

 50

As described in Moxnes and Hausken (2008), different performance measures are likely to require

different weighting functions based on the understood principles of specificity vs. generality for the

effect of exercise on performance. The interaction between density and intensity to provide appropriate

training load values may vary between individuals and the type of training undergone relative to the

underlying performance measure (Moxnes and Hausken, 2008). However, whether the implications of

any differences are significant enough to consider relevant in practice still represents an open problem

in the context of fitness-fatigue modelling. Considering the principle of training specificity further,

any training load quantification function needs to also scale for differences in the magnitude of

response due to the type of training undertaken. For example, an endurance athlete is likely to include

both high-volume low-intensity and high-intensity low-volume training in varying proportions within

any given training program. At a basic level, these two types of training sessions will be structured to

take advantage of improvements in different underlying energy systems and physiological processes.

The effect of these adaptations on performance as expressed in a measured setting will therefore will

vary depending on the properties of the performance measure selected (e.g., VO2max or 5k Time-trial

(TT) vs. an aerobic threshold test (AeT)), reflected in different magnitudes ascribed to the quantified

dose. Athlete level and prior training history are also likely to be required factors that adjust the

magnitude of response in any training load quantification method. Therefore, it is very reasonable to

suggest that further work is required in this area to develop training load quantification methods that

are sensitive to (at minimum) the differences described. In study of alternative performance models

some prior attempts have been made to address this issue, for example the PerPot DoMo model which

isolates intensity and volume into two concurrent load flows (Perl and Pfeiffer, 2011). In fitness-

fatigue modelling, different input for each component (i.e., 𝜔U.! , 𝜔UF!) may be required to take into

account the effects of certain exercises on systematic fatigue but not fitness in relation to the criterion

performance measure. For example, as a basic example considering resistance training, an exercise

such as the squat may generate a systemic fatigue response affecting physical performance in the bench

press, but not evoke a useful fitness response in relation to measurement of a one-repetition maximum.

Figure 2.5: A generalisable framework for quantifying training

load for use in modelling physical performance change

!"#$"%&#'

!

($"%&#'

)&*#$+
!

!"#$+,-#&."

 51

Variations of the density-intensity approach have featured in the majority of previous fitness-fatigue

model applications, in swimming (Banister et al., 1975; Calvert et al., 1976; Mujika et al., 1996;

Hellard et al., 2005, 2006; Thomas, Mujika and Busso, 2008; Ishii et al., 2008; Chalencon et al., 2012;

Gouba et al., 2013; Chalencon, 2015; Mitchell et al., 2020), cycling (Busso, Carasso and Lacour, 1991;

Busso et al., 1997, 2002; Busso, 2003; Clarke and Skiba, 2013), weightlifting (Busso et al., 1990,

1992), judo (Agostinho et al., 2015), gymnastics (Sanchez et al., 2013), hammer throwing (Busso,

Candau and Lacour, 1994), and running (Wood et al., 2005; Suzuki et al., 2006; Wallace, Slattery and

Coutts, 2014). In 1985, Banister and colleagues introduced Banister’s TRIMPs, which included a ratio

to quantify intensity via elevation in heart-rate relative to basal and maximum (Banister and Hamilton,

1985):

𝒟. × 𝑢 W
[𝐻𝑅1G1KV.W1 −𝐻𝑅XFWFY]
[𝐻𝑅EFG.E*E −𝐻𝑅XFWFY]

X (2.32)

Where in equation 2.32, 𝒟. is the duration (in minutes) on day i, 𝑢 is a non-linear function of

the exercise intensity 0 ≤ 𝐼	 ≤ 1 which is the fractional elevation of the maximal HR, and 𝑢(𝐼) =

0.86 ⋅ 𝑒/.[\⋅^ (coefficients derived for female athletes in the original study). Therefore, 𝑢 weights brief

efforts at higher heart rates positively, relative to sustained steady state effort at lower heart rates.

Banister’s TRIMPs has been used in several applications of fitness-fatigue modelling in running

(Banister and Hamilton, 1985; Morton, Fitz-clarke and Banister, 1990; Banister, Morton and Fitz-

Clarke, 1992; Wallace, Slattery and Coutts, 2014), skiing (Candau, Busso and Lacour, 1992),

swimming (Gouba et al., 2013), triathlon (Zarkadas, Carter and Banister, 1995; Banister, Carter and

Zarkadas, 1999; Millet et al., 2002), and cardiac rehabilitation (le Bris et al., 2004, 2006b, 2006a).

Although Banister’s TRIMPs and similar derived approaches to training load quantification (e.g.

session RPE, summated heart rate zone score, and Lucia’s TRIMPS) (Lucía et al., 2003; Borresen and

Lambert, 2009) comprise the majority of prior research applications, other less known methods may

provide unique avenues for further study. These include adapting models to incorporate multiple inputs

as outlined earlier (e.g. an input specific to each model component, which may also reduce observed

inter dependency between parameters 𝑘$, 𝑘%), and feature selection within a statistical-learning

framework (Rozendaal, 2017). While there is no universal method to quantify training load series

across the multiple possible applications of fitness-fatigue modelling, and work remains to be

completed in this area, reasonable attempts to quantify training load can and should still be made.

From the perspective of fitness-fatigue modelling, care should be taken to ensure that the process of

quantifying a full training session to a single value incorporates elements of the training that are most

likely to map to the performance outcome measure. Furthermore, as a basic pre-requisite to deriving a

new training load quantification method, or utilising existing approaches, researchers and practitioners

are recommended to inspect the quality of their data with respect to measurement frequency,

 52

measurement error, recording accuracy, and the breadth of training data recorded (Rasche and Pfeiffer,

2019). Furthermore, researchers and practitioners should seek to record data at the highest possible

frequency within-session, reduce instrumentation error and biological variability where possible

(Swinton et al., 2018), and consider recording data from associated training or mechanical variables

that may reveal further information or provide higher resolution. For example, subjective variables

such as repetitions-in-reserve and RPE (rating of perceived exertion) may be used to provide high-

frequency mapping of intensity across a training-session. Similarly, objective measures such as heart

rate (Williams et al., 2018; Mitchell et al., 2020), barbell velocity, and accelerometer/positional data

that can be sampled with little obstruction at high frequencies may also provide insight into session

intensity over time, and in particular the relative difficulty of the task compared to previous efforts. As

discussed in the introduction, this these measures reflect common variables collected by practitioners

on a daily basis, particularly as technology gets more affordable and thus widespread across different

levels of practice.

2.3.2 Criterion performance selection

The second major consideration for researchers and practitioners wishing to apply FFMs with their

own data is the selection of an appropriate outcome measure (i.e., model target or objective). This

outcome measure is commonly referred to within the literature as the criterion performance measure.

The use of the term performance in sport is broad and for the purposes of fitness-fatigue modelling

benefits from being conceptualised as either physical or competitive performance. Physical

performance was defined in the introduction as the state of any dependent variable that describes

physical capability in a sporting or biomechanical task, and typically reflects dimensions of fitness

(e.g., strength, stamina, speed). In contrast, competitive performance is composed of the interaction of

multiple dynamic, stochastic, and chaotic processes (e.g., physical performance, psychological state,

team and opposition behaviour, environment). These processes eventually converge to a conclusive

outcome variable (win, loss, draw), which we separated in chapter 1 as the competitive outcome.

Viewed in isolation, competitive outcomes may fail to provide useful information, and any discernible

patterns over time are very unlikely to be explained by concepts of fitness and fatigue alone. Therefore,

future use of performance models such as FFMs, particularly within team sport environments, may

require a shift in emphasis where training data is used to predict response in terms of dimensions of

physical capability measured through common exercises (e.g. one-repetition maximum squat, vertical

jump height, or peak power / impulse produced during an explosive movement) rather than sporting

outcomes which are likely to demonstrate complex and often confounded relationships with training

loads. Exceptions to this may exist in closed skill sports, such as track and field or power/strength-

based sports such as weightlifting where outcomes in competitive events relate closely to physical

capability (e.g., 100m swim sprint, 5k time-trial run or cycle, maximum weight lifted by a powerlifter

 53

in the squat) (Wang et al., 2013). However, this data is only likely to supplement a modelling approach

to increase the number of data points, rather than be the focus of it, due to introduction of other factors

such as those highlighted above. Previous examples of criterion performance measures used in FFM

applications include performance in mock or actual sporting events particularly within endurance

sports (Zarkadas, Carter and Banister, 1995; Hellard et al., 2006; Mitchell et al., 2020), maximum

strength or peak power output produced during specific exercises (Busso, Candau and Lacour, 1994;

Busso, 2003), and outcomes obtained from clinical exercise capacity tests (le Bris et al., 2004, 2006b,

2006a).

Measurement frequency and underlying measurement error should also be considered when selecting

an appropriate performance measure and how these may influence the ability to obtain stable and

accurate parameter estimates (Rasche and Pfeiffer, 2019; Stephens Hemingway et al., 2019). It has

been highlighted that missing data may lead to non-interpretable model behaviour in iteratively

updated (i.e. continuous) modelling applications (Rasche and Pfeiffer, 2019). For multiple linear

regression, a heuristic of a minimum of 15 observations per-parameter is recommended (Stevens,

1986). However, the FFM comprises a non-linear function (in its parameters) with subsequent

statistical analyses based on asymptotic theory (Bates and Watts, 1988; Sen and Srivastava, 1990;

Davidian and Giltinan, 2003). Therefore, more data points are required per model parameter (Hellard

et al., 2006) with previous recommendations of 60-200 performance tests over a period of model

fitting. As a result, the ability to accurately model and predict performance is expected to require

performance tests that can be completed at a high weekly frequency (e.g. at least every 1-3 days)

(Stephens Hemingway et al., 2019). Consequently, it is likely that only non-fatiguing performance

tests (for example, the counter-movement jump) or those without persistent learning effects may be

able to meet this requirement. An alternative strategy that has clear potential but has received limited

investigation in the context of fitness-fatigue modelling is the extrapolation of performance measures

from standard training session data (Al-Otaibi, 2017). Such procedures could incorporate either

objective (e.g., barbell velocity or measurements of power) or subjective variables (e.g., repetitions in

reserve) to predict maximum performance with high frequencies. Combined with the previous

recommendation of a shift to emphasise physical performance in simple physical tasks or exercise

movements, effective use of training monitoring data within fitness-fatigue modelling may generate

increased collaboration between researchers and practitioners. The use of extrapolation methods to

generate high frequency measures may reveal a novel approach to studying FFMs in certain sports,

such as powerlifting, where performance can be considered simultaneously a largely isolated

dimension of physical capability and competitive outcome.

When using FFMs in practice, it is important to acknowledge that all measurement of physiological

systems comprises error (instrumentation error and biological variability) which often makes it

 54

difficult to accurately quantify underlying physical capability (Shrahili, 2014; Swinton et al., 2018).

Thus, true performance can be defined as a random variable where measured (observed) performance

is only ever an estimate (Shrahili, 2014; Scarf et al., 2019). FFMs acknowledge measurement error

through introduction of a model error term, often assumed to be independent and identically distributed

as Gaussian. Even where these assumptions are reasonable, higher error variances generally lead to

lower precision in estimation. Several basic steps can be taken to reduce measurement error and its

influence on any model’s accuracy. These steps include selection of tests that comprise low

measurement error (preferably less than 3-5% of coefficient of variation), standardisation of testing

procedures and where possible taking the average of repeated independent tests (Swinton et al., 2018;

Stephens Hemingway et al., 2019).

2.3.3 Parameter estimation approaches and limitations

Fitting an FFM (i.e., estimating the unknown parameters in the model) constitutes a nonlinear

optimisation problem. The objective is to determine values for the parameters that maximise a

goodness-of-fit function known as a loss, cost, or objective function (Soetaert and Petzoldt, 2010).

Estimation of model parameters in FFMs has been historically approached from a least-squares

(Hellard et al., 2006; Pfeiffer, 2008; Proshin and Solodyannikov, 2018) or maximum likelihood

perspective (Shrahili, 2014; Busso, 2017; Proshin and Solodyannikov, 2018; Scarf et al., 2019). The

nonlinear least-squares approach involves minimising the sum of squared deviations (errors) between

modelled and measured performance via the following cost function:

minA(�̂�. − 𝑝.)<
E

.0/

	 (𝑒𝑞. 2.33)

Where 𝑖 is an index over a set of 𝑚 of data points {(𝑝/, �̂�/), (𝑝<, �̂�<), … , (𝑝E, �̂�E)} that

represent measured (𝑝) and modelled (�̂�) performance values at specific integer time points 𝑡. ∈ ℕ.

The term �̂�. describes the FFM function 𝑓J𝑡. , 𝜃, �𝜔/, … , 𝜔!/�K that not only depends on the time-step

input (i.e., Δ! = 1) up to time 𝑡. (i.e. training load series) �𝜔/, 𝜔<, … , 𝜔!/� but also on 𝑛 model

parameters (𝜃) with 𝑚 ≥ 𝑛. For example, for the standard model the general parameters 𝜃 are the set

{𝑝∗, 𝑘$, 𝜏$, 𝑘% , 𝜏%}, where 𝑝∗ is an additive term representing baseline performance, 𝜏$, 𝜏% are the

decay time constants on fitness and fatigue, respectively, and 𝑘$, 𝑘% are the associated scaling factors.

In general, an optimisation algorithm wraps around the objective function (eq. 2.33) and uses specific

update and stopping criteria to methodically travel over the available parameter space in search of the

best possible set (either the absolute maximum or minimum). NLS regression problems are typically

solved by general minimisation algorithms. First and second order algorithms (including those that

approximate the Hessian by the outer product of the gradient) have predominantly been used to direct

the iterative search to minimise least-squares or maximise likelihood.

 55

Finding suitable parameter values in this manner has been described as “notoriously difficult” in the

study of similar modelling problems (Transtrum et al., 2015). Fitting an FFM assumes that an optimum

solution exists, is unique, and can be easily found within the multidimensional search space. The FFM

even in its most basic form is a model in five dimensions, and therefore solutions cannot be visualised

using standard plotting techniques. Furthermore, if there are truly different parameter sets that have

the same global minimum under standard nonlinear least squares, there exists a situation where

parameters aren’t uniquely identified without additional constraints or regularisation terms. However,

it is more probable that the presence of many local minima and saddle points present the primary

challenge in a typical FFM fitting process. First and second order algorithms can often converge to

local optima, or become stuck on saddles, provoking sensitivities in the fitting process and to the

starting point in the search space (i.e., the jumping-off point for the algorithm). Identification of

suitable model parameters from training and performance data is therefore an outstanding concern in

fitness-fatigue modelling (Hellard et al., 2006; Pfeiffer, 2008), and is an area that has received minimal

attention in experimental or theoretical research.

In most complex models of real-world systems, parameters have compensatory (dependent) effects

relative to the systems collective behaviour (Hellard et al., 2006; Transtrum et al., 2015). For example,

with the FFM it is possible to modify a single decay constant without changing the resultant behaviour

of the system, provided values in other parameters adjust to compensate (Transtrum et al., 2015).

Additionally, FFMs have been shown to be ill-conditioned, such that a small change in parameter

values can reflect large changes in model behaviour (Hellard et al., 2006; Pfeiffer, 2008; Stephens

Hemingway et al., 2019). This ill conditioning, also termed ‘sloppiness’ in systems modelling

(Transtrum et al., 2015) has been said to affect the accuracy and precision of parameter estimates

(Bates and Watts, 1988). It has also been suggested that the fundamental value of FFMs is that they

seek to link underlying physiological concepts to observed data via counterfactual structure, and

therefore interpretability of parameter estimates in the real-world is viewed as a valuable and necessary

property for the models to be useful in practice. However, model sloppiness has not precluded good

predictive power in the application of biological, physical and chemical systems models (Transtrum

et al., 2015). Prediction accuracy, specifically out-of-sample is an area where FFMs have never been

rigorously assessed, particularly under well-designed experimental conditions or using large

retrospective datasets from practice. In studies where poor in-sample model fit has been reported, there

have typically been issues such as low sample size, selection of an inappropriate measure or limited

volumes of fitting data, or little information reported with respect to the fitting process. It is posited

that accurate prediction of future response may still be possible under an FFM, even in the absence of

stable, characteristic model parameters (i.e., those which can be carried over between training

programs). Historically, researchers have fitted FFMs under one set of ‘best guess’ initial candidates

 56

for parameters under first and second order algorithms (Clarke and Skiba, 2013). Given the concerns

outlined above, research reporting a single model solution derived from a ‘one shot’ run of gradient-

based optimisation does not reflect the possibility for uncertainty in parameter estimates. As a basic

starting point for future use, practitioners and researchers fitting FFMs via least-squares using

traditional derivative-based algorithms should re-fit the model under multiple starting points. In

chapter 5, in-silico experimental work under synthetic data is carried out to investigate the magnitude

of starting point sensitivity in the model fitting process for the standard and fitness-delay models, and

then examines implications of these findings for previous and future research. In-sample model

stability can also be assessed through repeated refitting of subsets of the data with points removed

(Hellard et al., 2006; Turner et al., 2017). Out-of-sample prediction accuracy, via some form of cross-

validation should also be implemented in future experimentation. The following section of this

literature review discusses model evaluation, and in chapter 6 practical approaches are demonstrated

in R (6.2.5), followed by reflection on suitable guidelines for further model experimentation (6.7).

Researchers and practitioners interested in fitting FFMs may also look to investigate whether

derivative-free algorithms can achieve better results (Méline et al., 2018; Philippe et al., 2018; Connor

and O’Neill, 2020). These algorithms often perform well with non-convex functions comprising

multiple critical points. Although linear least-squares is guaranteed to be convex, there are no such

guarantees for nonlinear least-squares problems. The class of evolutionary algorithms offers one

promising method and may be effective in cases where constraints or penalty functions are applied via

regularisation terms or custom objective functions. However, evolutionary algorithms including

differential evolution, genetic algorithms, and particle swarm can require significant understanding

and testing of control parameters to tune the algorithm to obtain appropriate results. Evolutionary

algorithms are also slow compared to gradient-based methods that can exploit a smooth surface.

Hybrid approaches may go some way toward offering a resolution to both the problems of finding

suitable initial candidates under first and second order methods, and the lack of guarantee on optimality

when applying evolutionary algorithms. A hybrid algorithm typically comprises a stochastic tunnelling

method to identify convex basins of attraction surrounding optima, and then subsequently passes these

as initial values for gradient-based local search. More advanced optimisation approaches such as the

use of evolutionary algorithms have rarely been used or assessed for fitting FFMs (Turner et al., 2017;

Méline et al., 2018; Philippe et al., 2018; Connor and O’Neill, 2020), however, previous research has

employed evolutionary algorithms to solve training program design problems using pre-defined FFM

parameter estimates (Schaefer, Asteroth and Ludwig, 2015; Kumyaito, Yupapin and Tamee, 2018;

Connor, Fagan and O’Neill, 2019).

Lastly, the problem of over-fitting can occur when the model is fit too closely to a limited set of data

points, reflecting noise in the data (Everitt and Skrondal, 2002). If a model comprises more free

 57

parameters than required to explain most of the variance in observed performance, this may permit

explanation of idiosyncrasies within the data. In summary, resolving these issues often requires a larger

number of data points, lower relative error within the measured data, re-formulation of the optimisation

problem to reduce fitting sensitivity to noise in the data via introduction of distributional error terms

(Shrahili, 2014; Busso, 2017; Scarf et al., 2019), or in some cases re-specification of the model to

reduce complexity (Hellard et al., 2006; Pfeiffer, 2008). Researchers and practitioners in future

collaborations may consider setting relatively tight a priori constraints on likely parameter values (or

use of informative priors using a Bayesian approach). Alternatively, ensemble or hierarchical

modelling approaches may be considered, aggregating parameters over multiple training and

performance sets, or across groups of similar athletes. The introduction of regularisation terms and

associated penalty functions that enforce constraints on the cost function may also assist in obtaining

parameter values that provide stable predictions or limit overfitting.

2.3.4 Model evaluation: Integrating practitioner data into future research

The fundamental stages of mathematical modelling comprise: 1) problem formulation; 2)

determination and examination of solutions; and 3) model evaluation (validity) across diverse cases

applicable in the real world (Domotor, 2011). Of the three phases, FFM research is most limited

regarding model evaluation to establish validity. As an appropriate starting point, in silico approaches

under artificially established ‘true conditions’ can be used to provide an efficient and inexpensive

method to study potential limitations of a model and early indications of predictive performance both

in and out of sample (Morton, 1991; Busso and Thomas, 2006; Thomas, Mujika and Busso, 2009). For

example, fitting-based in-silico approaches under realistic mock data generated via simulation can be

used to identify lower bounds on properties such as prediction error via systematic and iterative

deviation of controlled ‘small world’ conditions (e.g., various levels of measurement error and

different testing frequencies). In these instances, the model can only be assumed to perform worse in

the real world (Stephens Hemingway et al., 2019). Computer-based experiments can also be used to

explore elements such as fitting sensitivity and explore the effectiveness of different optimisation

approaches. If lower bounds on model properties identified via these types of experiments appear

unreasonable or indicate poor performance in real world applications, then further investment in

studying the model under empirical/experimental conditions should be carefully considered, or simply

avoided. If model utility is to be assessed under real-world data, then upmost consideration must be

given to model selection, methods of fitting, and the framework of model evaluation used. Model

selection is given detailed consideration with respect to future research in chapter’s 6 and 7, with the

existence of more advanced models covered shortly in section 2.4 (state-of-the-art). In section 2.3.3

parameter estimation was discussed specifically with regards to the common least-squares method and

prospective algorithmic approaches. In chapter 6, section 6.2.4, practicalities of the optimisation

 58

process in the language R are also discussed. In this subsection, model evaluation is considered,

specifically with respect to prediction of future training response. Similarly, the sister section to this

subsection is section 6.2.5 that presents a full implementation framework in R for model evaluation

(based on theory described shortly).

It is helpful to first clarify definitions and usage of the terms “in-sample” and “out-of-sample”, with

regards to available data and methods of model evaluation. When fitting an FFM to data, we hope to

match a set of observed measures of physical performance with a set of model values (with the same

associated days), that have been computed under a set of parameter estimates and series of training

load values. The model parameters are manipulated by the algorithm with respect to the objective

function, to iteratively seek out parameter values that provide the best correspondence between these

computed model values and the set of observed physical performances. In this process, the training

load values used to compute the model and observed data used to check correspondence with the

predictions are known as in-sample data. If a metric such as the root-mean-square deviation (RMSD)

- also referred to as root-mean-square error (RMSE) - is calculated from the differences between the

modelled and in-sample observed values, this is a form of in-sample testing and reflects in-sample

model fit. These three concepts (in-sample data, in-sample testing, in-sample model fit) are illustrated

in figure 2.6-A. Consider the simple case where a few of the observed performance values are held

back, and not used to train the model. These are then defined as out-of-sample data. If the resultant

model predictions are then compared to these hold-back (or hold-out) datapoints in a similar manner

as described, this represents a form of out-of-sample testing and reflects what is commonly referred to

in the literature as the model performance (not to be confused with physical performance). We will

call it something like model error (out-of-sample) to reduce confusion. These concepts are reflected

in figure 2.6-B. However, this basic form of out-of-sample testing alone still does not give the entire

picture of model predictive validity, and there is another necessary method that involves testing model

predictions against out-of-sample data that is derived from a future training intervention. In this way,

the inputs used to compute the model (from fitted model parameters) arise from a relatively non-

homogeneous training program to the one used to fit the model (e.g., a different interventional

distribution). This concept is illustrated in figure 2.6-C. It is important that both types of out-of-sample

testing are implemented, because they tell us slightly different things. The first, tells us that the model

can predict well (or not) for inputs that are similar to the one used to train the model. This is most

important when considering model prediction for tapering and peaking strategies, where questions

usually surround how best to reduce the magnitude of training over a short period of time whilst the

type of training stays roughly similar. The latter, gives us insight into whether the model can predict

well (or not) for inputs that are not similar (in say, shape, pattern, frequency, magnitude) to the one

used to train it. This type of testing is crucial to understanding the utility of the model for assisting in

training program design, as its very unlikely that coaches will implement the same type of program

 59

block after block, and so the model needs to be able to still predict well for these differences in training

inputs for it to be helpful in this type of use-case. Beyond figure 2.6 on the following page, the topic

and terms surrounding cross-validation are introduced as they pertain to creating a more robust FFM

evaluation approach for future experimental work. A distinct lack of out-of-sample testing represents

the biggest limitation of FFM research to date. Fitness-fatigue models are flexible and authors who

simply fit an FFM to all available data (e.g., Figure 2.6-A) without assessing forecasting accuracy (out-

of-sample model error) limit the potential to assess both the extent of overfitting in the model, and the

accuracy of predictions under future training programs. Historically, this has unfortunately been the

practice in the bulk of prior FFM experimental research.

Figure 2.6: (A) In-sample data and testing; (B) Basic out-of-sample testing; (C) Out-of-sample

testing of future performance predictions under different a different training program (model inputs).

 60

Cross-validation (in its purest form) is a broad term to describe a particular collection of approaches

used in modelling for estimating out-of-sample error (i.e., model accuracy). In the context of FFM

evaluation, the basic principle of cross-validation involves partitioning the available data into two

complementary subsets: 1) A training (or fitting) set; and 2) a testing set. The data within the training

set is used to fit the model (estimate the unknown model parameters) and is therefore referred to as

“seen” by the model. The testing set comprises performance data that has been held back from the

fitting process and is therefore used to assess the accuracy (error) in model predictions. As shown in

figure 2.6, it is the comparison between unseen data and fitted model predictions that provides a

measure of model predictive ability and is of most interest when evaluating FFMs. In-sample

prediction errors will be optimistically high in almost all cases due to the high number of available

parameters for fitting the nonlinear model to data. In contrast, testing against unseen data provides

insight into model misspecification and whether the FFMs counterfactual properties are robust

(particularly when tested against different input distributions). Under most cross-validation methods,

the training and testing process is repeated several times for different partitions of the data. Results are

averaged over the rounds/partitions/splits (multiple terms to refer to the same thing) to reduce

variability. There are many possible approaches to how the data can be partitioned. The simplest is the

hold out method, that does not typically involve more than one round (partition) of fitting and

evaluation (unless a set of future ‘block 2’ dataset is also included, in which case it is reasonable to

return to the full ‘block 1’ dataset) to derive final point estimates of the FFM parameters. As the FFM.

Is a time-series model, cross-validation techniques that mix previous and future data require special

care as they do not respect the temporal order between time-series data nor probable autocorrelation

and therefore are likely to introduce look-ahead bias leading to overconfidence in predictive capability.

Therefore, methods such as random hold-out, and k-fold are not recommended. Combinatorial purged

cross validation offers a more principled approach to mixing past and future, and readers are referred

to Prado (2018) for a detailed explanation. A potential walk-forward approach suitable for FFM

applications is also the expanding window method, where the proportion of data used to train the model

progressively increases. Although it may be tempting to consider tuning the model parameters based

on the cross-validated loss, tuning using a testing set will result in overoptimistic loss estimates. In

contrast, averaging the estimates from the expanding windows may reduce estimator variability in the

same way as “bagging” in machine learning (Breiman, 1996). How to best use estimates from cross-

validation windows to tune models, and advantages and disadvantages are more complicated topics

and possible avenue for future research, although are out with the scope of this work. Figure 2.7 below

illustrates the hold-out method and expanding-window method. In chapter 6, practical resources are

provided in R along with further discussion for implementing of the expanding window method in the

context of fitting and evaluating a fitness-fatigue model.

 61

Figure 2.7: Two approaches to cross-validation of fitness-fatigue models (hold-out and expanding-

window)

With five parameters in the standard model (eq. 2.9) and upwards of eight in more complex

formulations, FFMs would be expected to fit most patterns of data, even those generated from a process

very different to that underlying the FFM. If an athlete’s training loads are consistent and average

performance is trending upwards linearly for example, then both the FFM and a straight line are

sufficiently expressive. Provided this pattern continues from training into the hold-out periods, the

predictions, even those out of sample, say little about the FFM’s ability to meaningfully predict

outcomes. In contrast, if the athlete is presented with a new training plan with substantial variation in

the training loads, a more effective framework is available to determine if the model can make

nontrivial, testable predictions. In statistical Design of Experiments (DoE), variation in the explanatory

factors is purposefully created to establish uncertainty in parameter estimation. Optimal designs for

evaluating FFMs, including configurations of the training impulses best suited for learning about the

model’s predictive utility represent another potential direction for future research. In the meantime,

researchers can draw from essential DoE design concepts. Since the external “factors” in FFMs are

convolutions of training inputs, training loads are required that vary for enough time to modulate these

convolutional quantities. For fatigue, this may mean prescribed rest periods of days to weeks. For

fitness, creating variation is easiest when the individual has low prior levels, as it is a feature of the

model that fitness is relatively stable. For maximal learning, longer rest periods or prolonged lighter

1

2

Hold-out method (Data from only one relatively homogeneous training period)

Data split
(performance)

Model inputs

Model fitting window Model testing window

Data (performance)

Model inputs

Test

Quantified from training block 2

Train

Quantified from training block 1

Quantified from training block 1

Hold-out method (Data from two consecutive periods with non-homogenous load patterns)

A

B

Train Test

Train Test

Split 1

Split 2

Split 3

Split 4

Split 5

Main Set

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Expanding window method

Model inputs Quantified from training block 1 Quantified from training block 2

Data split
(performance)

Time-series data (Block 2)

Train Test

Test

Test

Test

Test

Time-series data (Block 1)

Train

Train

C

Test

(if available)

Train

Train

Train

 62

training after the athlete has attained high levels of fitness may best facilitate this variation but may

potentially create issues for participation and adherence to studies in elite populations.

The use of covariates, i.e., additional variables that help explain performance beyond the FFM’s fitness

and fatigue constructs, have not been explored in the literature. To be a true covariate, the variable

must not be a downstream effect of performance, as this complicates interpretation and leads to

“collider bias” (Cole et al., 2010) if it is also a downstream effect of training. Pre-study, stable variables

like age and gender are thus the safest candidates, though by lagging time-varying covariates by one

period, that risk is diminished. Even so, conditioning on covariates will alter the interpretation of 𝑘$

and 𝑘%, as these are now the effects of fitness and fatigue conditional on values of the covariates.

Finally, note that the use of covariates makes prediction at longer horizons more difficult, since values

of the covariates are needed into the future.

Lastly, consideration must be given to possible sources of suitable data for assessing model utility in

the sport sciences. Laboratory studies (controlled training interventions on recruited participants) to

collect experimental data are expensive, require significant planning, logistical consideration, and are

often of limited ecological validity. It makes little sense to go straight to this type of experimental data-

collection approach when it is both possible and likely (given the increase in means and desire to

collect data in practice) that suitable data may already exist and which could be used to backtest models

to assess model utility. This is exactly what is meant here by integrating practitioners (data) into future

research efforts. More attempts must be made by researchers to reach out into the various bubbles of

sport science practice (e.g., strength and conditioning, performance monitoring, athletics) to assess

whether coaches have both the data and interest to collaborate and further the area of FFM research

via backtesting approaches.

2.3.5 The utility of an FFM: Informing training program design

Currently, exercise prescription in research and practice relies heavily on qualitative reasoning, coach

and athlete experience, and what is known about underpinning physiological mechanisms from the

scientific literature (Scarf et al., 2019). However, individualisation of physical training via quantitative

approaches is an area where many open problems still remain (Scarf et al., 2019), such as appropriate

training load quantification and outcome selection for existing models such as the FFM. It is

recognised that Banister and colleagues were pioneers in advocating for sizeable tapering periods prior

to competition to achieve optimal performance (Morton and Fukuba, 2011). For coaches and

practitioners, the potential value in applying the quantitative representation of the FFM is partial

control of performance potential at specific times or periods during a training cycle. This particular

problem can be defined as how best to determine a training program to produce a desired level of

 63

performance at a specific time (Fitz-Clarke, Morton and Banister, 1991), and is also in the domain of

model predictive control (Kolossa et al., 2017). Although the desired utility of existing FFMs (i.e.

accurate out-of-sample future predictions) has not been rigorously tested, prospective methods for

FFMs to generate future training programs under constraints are available and have been previously

assessed (Schaefer, Asteroth and Ludwig, 2015; Turner et al., 2017; Kumyaito, Yupapin and Tamee,

2018; Connor, Fagan and O’Neill, 2019). If FFMs or alternative models are determined to be

sufficiently accurate, they may be applied within constrained optimisation frameworks to assist in

identifying particular programs that are likely to provide the highest rates of physical improvement or

performance over a planned training period (Busso and Thomas, 2006; Schaefer, Asteroth and Ludwig,

2015). To summarise briefly some of the previous work conducted so far, Schaefer et al. (2015) treated

plan generation as a constraint-satisfaction problem (CSP) and assessed several optimisation

frameworks for solving them to derive training plans. Model parameter estimates were pre-defined

from a previous study, and their work focused solely on assessing whether reasonable training plans

could be under the problem of plan-generation using non-linear solvers (Schaefer, Asteroth and

Ludwig, 2015). Similarly, Connor et al. (2019) used mathematical programming to solve the training

plan generation problem under an FFM framework using grammatical evolution, obtaining reasonable

training programs for an elite team of Gaelic football players (Connor, Fagan and O’Neill, 2019).

Kumyaito et al. (2019) attempted to create practical cycling plans that satisfied physiological

constraints (with regard to monotony, chronic training load ramp rate, and daily training impulse), but

which were reasonable for improving athletic performance. The authors applied adaptive particle

swarm optimisation using 𝜖 constraint methods to formulate the plans and simulate likely performance

outcomes (Kumyaito, Yupapin and Tamee, 2018). In this instance, the epsilon (𝜖) constraint method

is an algorithm transformation approach that facilitates the handling of constraints using an 𝜖 level

comparison that compares search points based on the pairing of their objective function value and any

violation of constraints (Yang, Cai and Fan, 2014). Collectively, these studies represent viable

approaches to deriving future training programs with constraints, following identification of useful

performance models (perhaps FFMs) that attempt to describe the relationship between training and

performance. The importance of this area of research is arguably undervalued at present due to the

lack of strongly predictive models in the field of sport science. However, it is reasonable to suggest

that this growing body of work can be viewed as paving the way for possible future integration of

mathematical models into usable practitioner-focussed software if a useful model is identified or

developed.

 64

2.3.6 Current applications: Availability of software and data

Historically, researchers have developed FFM applications tailored to their own requirements, leaving

several potentially useful resources difficult or impractical to extend; and therefore unlikely to be used

in practice. The two linked tables in this section highlight the current gaps in practical resources for

researchers and practitioners to fit and evaluate FFMs in experimental investigations. Prior to this

project, the area of available resources for research applications was virtually untouched and required

significant investment in time and skill in programming to develop tools that would encourage the

uptake of FFM study in contemporary research. Toward this end, a substantial open-source code

repository was developed in the statistical programming language R to enable FFM implementation

and model testing. These resources are highlighted in the table below for completeness but are

discussed in more depth in chapter 6, when the relevant programming concepts and methods of

implementation are examined in full. Corresponding URLs to table 2.2 are provided in table 2.3.

Table 2.2: Current software resources available for fitness-fatigue modelling research and education.

Highlighted (boxed) row refers to resources developed as part of this research project (further

examined in chapter 6).

No Author(s) Resource Development Type Skill required

1 Golden Cheetah
Software that includes

functionality to compute
the basic FFM

Active (not
specific to FFM
functionality)

GUI
(Desktop
software)

Low (point and click)

2 (Turner et al.,
2017)

Optimiser for non-linear
variant of Banister’s model

using genetic algorithm.
Includes plan generation

optimiser.

Inactive as of
first upload

Source code
only

High (compile and
interface with code,
no documentation)

3 Cooke, Andrew

Interactive training diary
similar to a code notebook.

Has limited FFM fitting
functionality

Active (not
specific to FFM

functions)

Source code
only

High (compile and
interface with code)

4 Training peaks

Subscription based
software to track endurance

training data, that has
limited FFM fitting

functionality

Active (not
specific to FFM
functionality)

GUI (multi-
platform) Low (point and click)

5
(Ludwig,

Schaefer and
Asteroth, 2016)

A custom training portal to
fit FFMs and generate

optimised training plans
under constraints

Inactive as of
first upload

Source code
only

High (compile and
source programmatic

interface)

6

Jovanovic,
Stephens

Hemingway,
Swinton

dorem: A dose-response
modelling package in R

Active (in early
release) R package

Moderate (command
line interface in R but

easy commands)

 65

No Author(s) Resource Development Type Skill required

7
(Stephens

Hemingway et
al., 2021)

Code repository of flexible
FFM functions and didactic

code resources
Active R functions

Moderate (extensive
documentation and

code examples
provided)

8 (Kolossa et al.,
2017)

MATLAB Simulink files
from associated Kalman

filter experiment

Inactive but
well-annotated

code

Source code
files only

Moderate-high, must
have familiarity with
commercial language

Matlab.

9 (Clarke and
Skiba, 2013)

Basic spreadsheet
demonstrating the standard
fitness-fatigue model and

critical power model.
Provides some limited
fitting functionality.

Inactive Excel
spreadsheet Low

Table 2.3: URLs for current FFM software

No Resource URL License Open-source Platform

1 Golden Cheetah
software

goldencheetah.org Free
(GPL 2.0) Yes C++

2 (Turner et al.,
2017)

github.com/jturner314/nl_perf_model_opt Free
(unspecified) Yes C++

3 Cooke, Andrew github.com/andrewcooke/choochoo Free
(GPL 2.0) Yes Python

(primary)

4 Training peaks trainingpeaks.com Paid No Multi

5 (Ludwig, Schaefer
and Asteroth, 2016)

github.com/dawedawe/traipor Free (ISC) Yes Python

6

Jovanovic,
Stephens
Hemingway,
Swinton

dorem.net Free (MIT) Yes R

7
(Stephens
Hemingway et al.,
2021)

fitnessfatigue.com

github.com/bsh2/fitness-fatigue-models

Free
(GPL 2.0) Yes R

8 (Kolossa et al.,
2017)

github.com/rub-ksv/Kalman-Fitness-

Fatigue
Free

(unspecified) Yes MATLAB

9 (Clarke and Skiba,
2013)

pubmed.ncbi.nlm.nih.gov/23728131/ Free
(unspecified) Yes Excel

 66

2.4 Model developments and extensions: A state-of-the-art

Individualised exercise prescription in sport research and practice relies heavily on coach and athlete

experience, prior knowledge of the physiological mechanisms behind average response, and can in

some cases be supplemented with quantitative monitoring approaches (Scarf et al., 2019). The process

of individualised exercise prescription and the subsequent training regimes developed can be further

enhanced through increased quantitative monitoring, modelling and prediction (Scarf et al., 2019).

Each component of this process represents an active area of research where many open problems

remain. Ideally, any performance model developed would possess specific qualities relating training

to the adaptive response with respect to causality, predictability, interdependence, non-linearity,

relevance to specific training variables, and ease of identifying underlying physiological structures

(Rasche and Pfeiffer, 2019). However, development of any performance model is an iterative process

of refinement, and it is unlikely an ideal model will be derived in a first attempt. It is worth noting that

in areas such as modelling, progress can be made even in the absence of what is traditionally defined

as success in other areas of science or industry (e.g., a model that is ready for use in pleno). It is argued

here that as a field we must be careful to be balanced in our criticisms of prior work, and also

appreciative of the historical efforts of researchers and practitioners who have devoted their time and

in some cases a careers worth of work to develop these models to their current iterations. As with any

challenging pursuit, getting it right the first time is an unrealistic ideal and, in most cases, the prior

efforts of others still contribute greatly toward advancing our knowledge and moving us closer to the

end goal (in this case a useful model). Moreover, with the advances in technology and modern

developments in computing, sport science has never before found itself in a position of having so many

opportunities to progress the areas of mathematical and statistical modelling in research and practice,

if collaborative efforts are maximised.

Given the consideration that this literature review is unlikely to be read in its entirety in one sitting,

and in the interest of maximising reader understanding, we briefly refresh some practical interpretation

of model fitting prior to the remainder of this section. Recall that from a technical point of view, the

initial step of the modelling process involves training the model to generate fitted model parameters.

This procedure may be understood as learning the athlete-specific dynamics in terms of an individual

fingerprint, which could help to understand adaptational characteristics. In practice the data usually

consists of measured load and performance data in combination with an initial set of model parameters.

Through an iterative parameter optimisation process aimed at minimising a loss function, a fitted set

of parameters is generated, which results in performance estimates in conjunction with a measure of

in-sample model fit (i.e., coefficient of determination R2). In a second step, the performance model is

tested to validate the optimised parameter set using either a fraction of the measured load, which was

not included in the fitting process, or future training load of interest. The resulting performance

 67

estimates estimate the out-of-sample model fit, and these are compared with known performance

measurements not included in the model training process. In that way, besides predicting future

performance, existing knowledge of researchers and practitioners regarding the individual effects of a

given load on performance may be extended.

It was over forty years ago that Banister et al. (1975) described the first dynamical systems model of

training response and referred to in this thesis as the standard FFM. Despite consistent scientific

attention over a long history, their seminal model and associated extensions remain in the domain of

exploratory research. The first half of this literature review has examined the limitations of the standard

model and identified the existing issue of low uptake of FFMs across contemporary research and in

real world practical environments. Novel approaches were identified that might enhance the use of

basic FFMs including a focus on predicting physical performance via simple tasks or exercises, the

generation of high frequency performance data through routinely collected training metrics, and

development of unique training load weightings to account for multiple modalities (e.g., hypertrophy,

strength or power training) and their specificity according to the performance outcome. Although these

recommendations may provide productive approaches and avenues for future research, it is important

to note that they fail to address some of the limitations inherent to the structure of basic FFMs. It has

been known for an extended period that the standard FFM and subsequent first-order filter extensions

suffer from several limitations that are at odds with the conceptual understanding of training response

(Banister et al., 1975; Calvert et al., 1976; Morton, Fitz-clarke and Banister, 1990; Busso, Carasso and

Lacour, 1991; Busso, Candau and Lacour, 1994; Rasche and Pfeiffer, 2019). Therefore, the second

half of this literature review focusses on these limitations and novel attempts within the existing

literature that have been made to remedy them. Three key limitations include: 1) the linearity

assumption, where performance can be arbitrarily increased by simply increasing the training dose and

for example doubling the training dose leads to double the improvement (Hellard et al., 2006; Rasche

and Pfeiffer, 2019); 2) the independence assumption, where there is no interaction between training

sessions and therefore training performed on a given day does not influence the response generated

from another session; and 3) the deterministic assumption, where uncertainty in model parameters and

observed performance are not modelled directly and are not updated based on incoming information

(Kolossa et al., 2017).

Two general approaches have been proposed to address limitations inherent to basic FFMs: 1) altering

the model input through constraining or saturating training loads (Hellard et al., 2005); and 2) altering

the model formulation (Busso, 2003; Kolossa et al., 2017; Turner et al., 2017). Under the first of these

approaches, Hellard et al. (2005) proposed the use of a threshold saturation function, termed the Hill

function (Krzyzanski, Perez-Ruixo and Vermeulen, 1999) to address the limitations of the linearity

assumption and the result that indefinite increases in training loads result in continual increases in

 68

performance. Their use of a threshold saturation function to transform training loads to a non-linear

input with asymptote worked outside of the model formulation and therefore avoided changing the

structural relationship between the input and output specified (Rasche and Pfeiffer, 2019). In contrast,

under the second approach the structural relationship between model components is changed with

previous research focussing on modifications to account for each of the three key limitations

previously identified. This remaining section of the literature review will therefore introduce and detail

both approaches. In particular: 1) changes to the input via the Hill function (Hellard et al., 2005); 2)

changes to model specifications under the variable dose-response (VDR) model (Busso, 2003) and a

recursive delay-differential model (Matabuena and Rodríguez-López, 2016, 2019), which were both

designed to create a dependence between subsequent training sessions and thus address the issue with

the independence assumption; 3) the Kalman filter to explicitly model uncertainty in model parameters

and update model results based on incoming information to address the deterministic assumption; and

4) inclusion of non-linear power terms in the underlying model system (Turner et al., 2017) to try and

reflect diminishing returns and overtraining effects. Further key model developments that feature in

the literature are also examined, such as an FFM with time-varying parameters (Busso et al., 1997),

an exponential growth model (Philippe et al., 2018), and more recently a novel secondary-signal model

proposed by Busso (2017).

2.4.1 Modification to model input and inclusion of non-linearity

Prior to modifying the formulation of the standard fitness-fatigue model, an approach to address the

limitation of arbitrarily large increases in performance is to apply restrictions to unconstrained training

inputs (𝜔). An initial method to consider is to simply adopt an interpretable scale with a maximum

value (e.g., 0 to 100). If, for example, a maximum value of 100 is set, then from the standard model

(eq. 2.9) the maximum amount of fitness (or fatigue) that can be achieved from a single training session

is 100 × 𝑘$ (or 100 × 𝑘%) where the units of the multiplicative factors match that of the performance

being modelled. Additionally, given the nature of general FFMs and their solutions involving

exponential functions, these fitness and fatigue effects are at their maximum immediately after a

training session. It follows that researchers and practitioners can identify physiological constraints

such as maximum improvements that could reasonably occur over a short period (e.g. 1-week) and use

this value to set upper bounds when estimating model parameters. Whilst this approach assists with

creating more interpretable parameters and training inputs, it does not address limitations of linearity

in training response. A potential solution to this limitation was proposed by Hellard et al. (2005). The

authors proposed the use of a Hill function (Krzyzanski, Perez-Ruixo and Vermeulen, 1999) that

mapped training inputs in a non-linear fashion to a threshold (𝜅), such that higher inputs have no

additional effect on performance. Figure 2.8 demonstrates the behaviour of the Hill saturation function,

 69

as recreated from parameter values provided in the authors original paper (Hellard et al., 2005). The

Hill function is described by the following equation

𝐻𝑖𝑙𝑙(𝜔) = 𝜅 W
𝜔_

𝛿_ +𝜔_X	 (2.34)

 Where the parameter 𝛾 expresses the sensitivity of the training load and controls the time to

reach the threshold 𝜅 (larger 𝛾 leads to shorter times to reach 𝜅), and 𝛿 is the inertia of the function to

the threshold value (low 𝛿 expresses a strong effect of dose on performance). In applying the Hill

function to the standard FFM there are multiple options available. One option includes setting 𝜅 to an

interpretable maximum value (e.g., 100) and then setting 𝛾, 𝛿 to control the non-linearity desired. The

scaling parameters 𝑘$ and 𝑘% would then be used to transform training loads to change values in the

performance measures. Alternatively, there is potential to develop more complex transforms and for a

given input (𝜔), map this to different non-linear fitness {𝜅$, 𝛾$, 𝛿$} and fatigue {𝜅% , 𝛾% , 𝛿%} forms.

Where 𝜅$, 𝜅% could replace the scaling coefficients 𝑘$, 𝑘% and represent the maximum amount of

fitness and fatigue expected from a single training session. The parameters 𝛾$, 𝛿$ and 𝛾% , 𝛿% tune the

degree of non-linearity for fitness and fatigue, with performance estimated via the following

expression:

�̂�(𝑡) = 𝑝∗ +A𝜔$(𝑖)
!&/

.0/

⋅ 𝑒
&(!&.)'! −A𝜔%(𝑖)

!&/

.0/

⋅ 𝑒
&(!&.)'! 	 (2.35)

 Where the fitness component training load function is defined as:

𝜔$(𝑖) = 𝜅$ M
𝜔.
_!

𝛿$
_! +𝜔.

_!Q (2.36)

And similarly, the fatigue component training load function is defined as:

𝜔%(𝑖) = 𝜅$ W
𝜔.
_"

𝛿%
_" +𝜔.

_"X (2.37)

Hellard et al. (2005) investigated whether modifying training input with a Hill function resulted in

better model fit compared with standard linear input across 7 elite swimmers engaging in a long study

period (100-200 weeks). After statistically controlling for the additional parameters, Hellard et al.

(2005) identified slightly improved model fit with the addition of the Hill function (RCA`< = 0.43 ±	0.1

vs. 0.36 ±	0.1). However, goodness-of-fit was still poor across all athletes and both models. The

 70

authors included no out-of-sample assessment of model predictions, and so it is also difficult to

evaluate the extent of model overfit considering the additional flexibility the Hill function affords. It

is possible that fitting the model over a long duration (100-200 weeks) contributed to the generally

poor fit across both models, as parameters obtained may not remain stable for such long periods, either

due to estimation issues or underlying change (discussed in section 2.3.3 of this review). Chapter 6

discusses optimisation routines that could be developed for estimating the Hill function parameters for

fitness and fatigue, and the rate decay constants.

Figure 2.8: Arbitrary behaviour of Hill training load saturation function (eq. 2.29), when 𝜅 = 10, and

𝛾, 𝛿 vary as shown. Plots recreated from parameter values provided in Hellard et al. (2005).

2.4.2 Interaction between training sessions: The variable dose-response (VDR) model

As identified earlier, one of the key limitations of the standard FFM is the issue taken with the

independence assumption, in particular the disagreement that the response to the current training

session is not influenced by previous sessions. Busso (2003) was the first to propose a model to address

this limitation that included the addition of a first-order filter on the fatigue component and is

commonly referred to as the variable dose-response (VDR) model. To account for the interaction

between training sessions Busso focused on the perspective that fatigue was most likely to be

influenced by previous training (with higher previous training loads generating greater fatigue) and so

introduced a further 'gain' term for fatigue with associated time constant 𝜏%< (Busso, 2003). One

specific implementation of the model can be presented as:

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔. ⋅ 𝑒
&(!&.)
'!

!&/

.0/

− 𝑘%A𝑘%&(𝑖)
!&/

.0/

⋅ 𝑒
&(!&.)
'" 	 (2.38)

0 5 10 15 20 25 30

0
2

4
6

8
10

12

Hill Function with changing γ, δ = 1, κ = 10

Training Load (ω)

H
ill(
ω

)

γ = 5
γ = 1
γ = 0.3

0 5 10 15 20 25 30

0
2

4
6

8
10

12

Hill Function with changing δ, γ = 1, κ = 10

Training Load (ω)

H
ill(
ω

)

δ = 5
δ = 1
δ = 0.3

 71

Where the first-order filter 𝑘%&(𝑖) is calculated by a series of decaying exponentials with

scaling factor 𝑘% ≥ 0 and time-constant 𝜏%& ≥ 0	, such that:

𝑘%&(𝑖) =A𝜔Q ⋅ 𝑒
&(.&Q)
'"&

.

Q0/

	 (2.39)

 Where the term 𝑗 is the summation index within the recursive function.

These dynamics are intuitive and appear to be a more reasonable description of the change in fatigue

response with accumulation of previous training (Chiu and Barnes, 2003) compared to the standard

FFM. It can be seen from (eq. 2.38) that both fitness and fatigue components are represented by a sum

of exponentially decaying training loads. For the fitness component each decaying training load is set

by the individual training input 𝜔. .	In contrast, it can be seen from (eq. 2.39) that each decaying

training load for fatigue is set by a weighted average comprising 𝜔. and previous training sessions

(𝜔/, … , 𝜔.). If 𝜏%& is set to a low value, there is limited interaction between training sessions and each

decaying training load is set primarily by 𝜔.. However, for larger values of 𝜏%< there is greater

interaction, and the weighted average is influenced to a greater degree by previous training sessions.

Rasche and Pfeiffer (2019) also developed and presented a recursive form of this model in their chapter

Training from the book Modelling and Simulation in Sport and Exercise (Baca and Perl, 2018). As

follows,

𝑔(𝑡) = 𝑔(𝑡 − 1) ⋅ 𝑒
& /
'! +𝜔! (2.40)

ℎ(𝑡) = Hℎ(𝑡 − 1) + 𝜔(!&/) ⋅ ℎ<(𝑡 − 1)I ⋅ 𝑒
& /
'" 	 (2.41)

ℎ<(𝑡) = ℎ<(𝑡 − 1) ⋅ 𝑒
& /
'"& +𝜔!	 (2.42)

Where the performance model is described by:

�̂�(𝑡) = 𝑝∗ + H𝑘$(𝑔(𝑡) − 𝜔!)I − J𝑘% ⋅ ℎ(𝑡)K	 (2.43)

 Where equations 2.40-2.43 (along with the standard model and most other FFM formulations)

assume a ‘pre-loaded’ model computation. This implies that modelled performance on a given day 𝑡

is computed prior to that day’s training influence rather than after (Rasche and Pfeiffer, 2019). This

assumption is reasonable, as in the real world athletes are highly unlikely to train prior to a competition

or performance (Rasche and Pfeiffer, 2019). In the case where performance values are derived from

 72

training data, these are also likely to be extracted from the first few exercises in a training session when

an athlete is most capable, and also seems to be a reasonable assumption from a modelling perspective.

To assess whether the VDR model could better describe the response to training compared with the

standard FFM, Busso (2003) fit both models to six healthy males undergoing a prospectively designed

training schedule comprising progressive overload followed by training cessation. Whilst the findings

demonstrated the VDR model produced significantly improved fit (RCA`< = 0.931 − 0.958)(𝑃 <

0.001) compared to the standard FFM JRCA`< = 0.917 − 0.943K, the magnitude of the improvement

was small (Busso, 2003). Importantly, Busso (2003) did not include out-of-sample testing and so an

assessment of predictive validity is not provided. As a result, it is possible that the additional parameter

could improve initial model fit but create less accurate predictions to future training programs due to

overfitting. Busso (2003) also demonstrated that the VDR model created an n-shape relationship

between constant daily training thereby partly addressing issues of linearity with the original fitness-

fatigue model. In chapter 6 (section 6.2.1 and 6.2.2), the VDR model is re-visited, with the behaviour

explored and fitting process implemented in the R programming language.

2.4.3 Inclusion of uncertainty and feedback: The Kalman filter

The VDR model and standard FFM do not attempt to model uncertainty in the processes that generate

fitness, fatigue and performance estimates. Additionally, estimates typically remain fixed irrespective

of new incoming data. There have been some limited examples where estimates are updated by

applying constraints that link for example successive sets of parameter estimates via a least squares

algorithm (Busso et al., 2002). However, FFMs could be expressed as linear state-space models

thereby integrating uncertainty. A state-space representation is a mathematical model of a physical

system as a set of input (e.g., training load), output (e.g., performance) and state variables (e.g., fitness

and fatigue), where the unobserved state evolves over time depending on current values (e.g., in a

recursive format as described in equations 2.11 and 2.41) and the system’s input. The linear descriptor

refers to the ability to specify the models in terms of matrices and linear algebra calculations.

The recursive form of the standard FFM (eq.’s 2.10 – 2.12) can be specified as a linear state-space

model using the following matrix calculations.

𝐱ab/ = 𝐀a𝐱a + 𝐁𝒏𝜔a + 𝐯a	 (2.44)

Where in equation 2.44 𝐱ab/ is a vector comprising fitness and fatigue on day 𝑛 + 1, 𝐀a is a

diagonal 2	× 2 “transition matrix” of coefficients that multiply the current fitness and fatigue values,

𝐁a is a 2	× 1 matrix of coefficients that multiplies the scalar training input, and 𝐯a is the state noise

quantified by a 2	× 2 covariance matrix that is generally denoted by 𝑸. The state noise describes the

 73

random changes in state (e.g. fitness and fatigue) above and beyond the deterministic component

involving training and past fitness or fatigue. Kolossa et al. (2017) noted that these random changes

can be considered unmodeled exertions of the athlete and additional features not captured by the fitness

and fatigue relationship with training load.

To match the standard FFM, the matrices in equation 2.44 are set to the following:

𝐱a = U𝑔
(𝑛)
ℎ(𝑛)V , 𝐀a = 𝐀 = �𝑒

& /
'! 0

0 𝑒&
/
'"

� , 𝐁𝒏 = 𝐁 = �𝑒
& /
'!

𝑒&
/
'"

�

Var(𝐯a) = 𝑸 = W
𝜎$< 𝜎$,%
𝜎$,% 𝜎%<

X	 (2.45)

 where the state of the system is not observed directly but is accessible by means of indirect

measurements of performance 𝑝a from the equation:

𝑝a = 𝑝∗ +	𝐂a𝐱a + 𝛈a	 (2.46)

where 𝐂a = 𝐂 = J𝑘$, −𝑘%K a 1×2 matrix and 𝛈a is the observed performance noise described

by actual measurement errors with variance denoted by 𝜉<.

Expressing the FFM as a state-space model has the advantage that uncertainty in the state and measured

performance can be modelled, addressing the reality that all models are limited and contain

uncertainty. Kolossa et al. (2017) also described how the Kalman filter could be combined with a state-

space representation of an FFM to obtain better fitness and fatigue estimates with incoming data. The

ability of the Kalman filter to operate on quantities exhibiting statistical noise over time and iteratively

update may provide practitioners with an effective resource to optimise training prior to important

events.

The goal of the Kalman filter is to generate an “a posteriori” state estimate 𝐱�a based on “a priori”

estimate 𝐳a from the deterministic mechanics and the observed performance 𝑝a. The extent to which

the a priori estimate is updated depends on the relative extent of the uncertainty in the state to the

uncertainty in the measurement (the ratio of 𝑸 to 𝜉<). When the uncertainty in the state is large relative

to the uncertainty in the measurement, the “Kalman gain” will be high and the filter will place more

weight on the incoming performance data and relatively large corrections can be made in the a

posteriori estimate. In contrast, when measurement uncertainty is large relative to uncertainty in the

 74

state, little weight will be placed on incoming data and there will be minimal correction to the initial a

priori estimate.

More formally, the stages of the Kalman filter are expressed in the following procedural flow.

1) Calculate the a priori state estimate 𝐳a

𝐳a = 𝑨𝐱�a&/ +𝑩𝜔a&/ (2.47)

where 𝐱�a&/ is the previous a posteriori state estimate, or for the case where 𝑛 = 1,

𝐱�-	is the initial state which may be set to 𝑔(0) = ℎ(0) = 0 or estimated as unknown

parameters.

2) Calculate the Kalman gain 𝐊a, as a 2 × 1 matrix, defined as

𝐊a = 𝑴a𝑪𝑻J𝜉< + 𝑪𝑴a𝑪𝑻K
&/ (2.48)

where 𝑴a is the covariance matrix of 𝐱�a which is iteratively updated (eq. 2.50). The

Kalman gain scales the transformed matrix 𝑴a𝑪𝑻 by the scalar value (𝜉< + 𝑪𝑴a𝑪𝑻), which

describes the total variance in the state plus the variance in the measurement.

3) Calculate the a posteriori state estimate 𝐱�a, as

𝐱�a = 𝐳a + 𝐊a(𝑦a − 𝐂𝐳a) (2.49)

The third stage of the Kalman filter is the correction stage where the a priori estimate 𝐳a is

updated after observing the performance	𝑝a. The Kalman gain 𝐊a is expressed as a 2 × 1

matrix such that the correction to fitness and fatigue can be distinct and influenced by the state

noise of each component and the error covariance specified. The Kalman gain for each

component is multiplied by a scalar which is equal to the difference between the observed

performance and the initial estimated performance (𝐂𝐳a). Therefore, the larger the difference

between the initial estimated performance and the observed performance the larger the

correction. The fourth and final stage of the Kalman filter is

4) Update the estimation error covariance matrix 𝑴a

𝐌ab/ = 𝑸+ 𝑨𝑴a𝑨𝑻 − 𝑨𝑴a𝑪𝑻J𝜉< +𝑴a𝑪𝑻K
&/𝑪𝑴a𝑨𝑻 (2.50)

After initialisation, the updating of 𝑴a	governs how the Kalman gain evolves over time and the

strength of the filtering effect of the model (for further details on fitting the Kalman filter in practice

see appendix). In a non-stationary case like the FFM (due to non-stationary training driving the

process), initialisation of 𝑴- falls into three categories: 1) “known” initialisation, where values are

 75

set; 2) “approximate diffuse” initialisation, where 𝑴- = 	𝜅𝑰 for large 𝜅; 3) and “exact diffuse”

initialisation which relies on limits as variances approach infinity (Fulton, 2017). The four stages of

the Kalman filter can then be repeated with the estimated state and performance updated based on

training input and corrections applied when performance is measured.

When using the Kalman filter, as is the case when fitting general FFMs, the model parameters must

be estimated from training and performance data. This is achieved through algorithmically minimising

some loss criterion, for example, the residual sum of squares between modelled and measured

performance data, which, in the case of gaussian errors, coincides with the likelihood function

(Mannakee et al., 2016). With even the standard FFM, optimisation is analytically intractable and

numerical procedures are used that require starting values for parameters �𝑝∗, 𝑘$, 𝑘% , 𝜏$, 𝜏%�. While the

available algorithms differ, they all are iterative in nature, stopping when the loss function falls below

some prespecified threshold. When using the Kalman filter, the likelihood is available as a by-product

of filtering operations (Fulton, 2017), and thus the Kalman filter can be fit with the same optimisation

routines as the standard FFM with additional starting values for the extra parameters. Given that an

entire run of the filtering algorithm is required to obtain the likelihood of the sample, a “double loop”

results when paired with a numerical optimisation procedure, and time to convergence may be slow

for long series. Additionally, given the additional parameters that must be estimated in the Kalman

filter model given the same setup as the standard FFM, some “sloppiness” in parameter estimation is

likely. The full 𝑸 matrix may also be challenging to recover, and difficulties with optimisation are

discussed further in the chapter 6 (section 6.4).

Kolossa et al. (2017) outlined that more complex FFMs could be expressed as linear state-space

models. The authors demonstrated that the VDR model could be easily expressed as a linear state space

model and by including the Kalman filter could provide a means of addressing both the limitations of

independence between training sessions and failure to take advantage of incoming data (Kolossa et al.,

2017). To express the VDR model as a linear-state space model a simple change is required from

equation 2.45 where the control matrix 𝑩 is updated each iteration according to the following equation:

	𝐁𝒏 = � 𝑒
& /
'!

𝑘%&
. 	̇𝑒&

/
'"
� (2.51)

Where 𝑘%&(𝑖) is given in equation 2.39.

In an accompanying experimental study, Kolossa et al. (2017) fitted model parameters to the training-

performance profiles of 5 athletes (swimmers) with training load quantified daily according to a

method previously used (Mujika et al., 1996). Daily training load was taken from the sum of quantified

 76

water and dry-land training. Water-based training was calculated by splitting distance (in km) swam

over a session into five levels based on relative speed (i.e., intensity) and then multiplying these

distances by an arbitrary weighting coefficient; taking the total. Land training was calculated via an

approximation of its equivalence to water-based training. In summary, the training load method

followed a basic volume by weighted intensity approach as has been common across the literature. In

their experiment, the authors compare the performance of the VDR model with and without the use of

a Kalman filter. The quality of the Kalman-filtered response was assessed by mean absolute percentage

error (MAPE). For each athlete, an individual model was fitted across the entire range of available

data, as well as just to the first half to allow forecast accuracy of the model to be evaluated through

hold-out cross-validation. Finally, a generalised set of parameters were computed across all individuals

(i.e., a multi-athlete model), with the intention of assessing whether sparse initial data of a new athlete

can be augmented for computation of parameter estimates during an initial training period (Kolossa et

al., 2017). To achieve this, the optimisation process searches for a parameter set that minimises

residual sum of squares over all five test subjects for both the entire data set and just the first half.

For individual models fitted across the entire range of available data, model fit in Kolossa et al. (2017)

assessed via MAPEKALMAN ranged from 1.81-3.06% (mean = 2.31%), vs. 1.94-7.75% (mean = 3.35%)

for the standard VDR model. For individual models fitted to half of the available data, MAPEKALMAN

ranged from 1.95-6.69% (mean = 3.56%) vs. 2.07-7.05 (mean = 4.12%) for the standard VDR model,

and forecast accuracy appeared visually reasonable across the second half of the data. However, no

numerical error value was given specifically for the second half forecasting, although the MAPE values

do reflect model output across the entire prediction series (fitted and forecast). Within their multi-level

model (minimisation of RSS for all subjects to obtain generalised parameters), Kalman-filtering

demonstrated a large reduction in MAPE compared to the standard VDR model (2.43 vs. 3.75%,

respectively). What is interesting is that the generalised model fitted to half of the available data also

performed better on average at forecasting the second half criterion performance values compared to

an individual model fitted to half the available dataset. This implies that individual fitting of the FFM

via a Kalman-filtering or standard approach may not be the best route for forecast accuracy in some

instances, particularly when limited training and performance data is available for the subject. Multi-

level models may offer a productive alternative. In summary, Kolossa et al. (2017) found the Kalman-

filtered responses performed better at explaining large or rapid changes in observed performance,

compared to the standard VDR model which struggled with high variation in observed performance.

Conversely, the Kalman-filter has the disadvantage of being heavily reliant on experimental

observations (Kolossa et al., 2017). The authors novel FFM study and multi-level modelling approach

presents a powerful and exciting perspective for adjusting for the variable nature of measured human

performance. Future investigations should strongly consider this approach for further studies in applied

settings, particularly where performance measurements are derived using methods of extrapolation

 77

from sub-maximal effort (e.g., reps-in-reserve, load-velocity profiling). In chapter 6, an

implementation of the Kalman-filtering process in R is followed and its potential use in future research

is further discussed under the code resources developed.

2.4.4 Modification to the model system to include non-linearity

A common criticism of the standard FFM evolving from Banister and colleagues original model

system (Banister et al., 1975) is that it is based on linear systems theory (i.e., control systems

constructed of linear differential equations), and that this limits accuracy given the observed non-

linearity of most human phenomena and training response (Turner et al., 2017). Turner et al. (2017)

presented a novel refinement of Banister’s model, introducing a generic mathematical framework to

capture the non-linear effects of training (i.e., the problem of increased performance with arbitrary

increases in training load and diminishing rates of return), enabling the search for optimum training

programs in theory. The authors suggested that the standard FFM could be updated and specified as a

system of non-linear differential equations for fitness and fatigue components, as follows:

𝑔"(𝑡) = 𝑘$ ∙ 𝜔(𝑡) −
1
𝜏$
𝑔(𝑡)f 	 (2.52)

ℎ"(𝑡) = 𝑘% ∙ 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)g 	 (2.53)

where 𝛼, 𝛽 are power terms that represent the model’s non-linearities, and where the original
linear systems model can be recovered by simply setting 𝛼 = 𝛽 = 1.

To explore the features of the non-linear systems model, Turner et al. (2017) first investigated the

simplistic case of constant daily training (𝜔). They demonstrated that under this simple analysis

model, a steady-state performance would be reached equal to:

𝑝 = 𝑝- + J𝑘$𝜏$𝜔K
//f

− (𝑘%𝜏%𝜔)//g (2.54)

And that the constant training load that caused maximum steady-state performance was equal to:

𝜔EFG = �U
𝛽
𝛼V

f
g J𝑘$𝜏$K

g

(𝑘%𝜏%)f
	�

//(g&f)	

(2.55)

A limitation of the non-linear model was identified when investigating uniform weekly schedules

where the daily training load could fluctuate but the same weekly schedule was repeated. Turner et al.

 78

(2017) demonstrated that repeated application of this weekly schedule created a periodic steady-state

solution with the maximum obtained when the average training load was equal to that presented in

equation 2.55. The analysis demonstrated under this constraint, the equivalence of different patterns

of training loads within a week, if the average training load was the same. Therefore, the model

addressed the limitations of assumed linearity in the standard FFM but not independence of subsequent

training sessions.

Turner et al. (2017) also investigated the predictive validity of the non-linear model on a data set

collected from a single cyclist. Training load data were collected over 532 days with performance

measured across 18 sessions throughout the period. The non-linear model comprised seven parameters

�𝑝∗, 𝜏$, 𝜏% , 𝑘$, 𝑘% , 𝛼, 𝛽, � and was fit to 9 of the performance measures with cross-validation performed

on the remaining 9 performances. The cross-validation process was repeated many times for 9

randomly selected performances with parameters estimated each time with a genetic algorithm.

Despite the small number of performance sessions and the large number of training days over which

the model was fit, good predictive agreement was obtained. Additionally, the repetition of obtaining

different parameters across the randomly selected performances was used to assess sensitivity in

parameter estimation. Relatively tight variation was identified across all parameters with values

generally ranging from 0.5 to 1.5 times the average estimated value. Turner et al. (2017) also used the

variation in parameter sets to generate uncertainty in performance predictions and presented this

graphically using a normalised 2-D histogram. This model is further examined in chapter 6 with an

emphasis on methods for parameter estimation in research and practice, and examination of the

implications of the additional non-linear terms 𝛼, 𝛽.

2.4.5 A recursive delay-differential model

In a further attempt to address criticisms of the standard model for its lack of interaction between

training sessions (independence assumption) Matabuena and Rodriguez-Lopez (2016; 2019) proposed

a recursive delay-differential model. The authors developed a model variant where athletic

performance depends on both current and previous training doses (Matabuena and Rodríguez-López,

2016, 2019). Extending the original model towards a delay-differential model, previous training

sessions are accounted for inside of the recursion equations (Matabuena and Rodríguez-López, 2016,

2019). In their novel formulation, the Matabuena and Rodrigeuz-Lopez (2016; 2019) retained the

overarching concept that performance was the antagonistic sum of fitness and fatigue, but added

additional delays for the fitness and fatigue components (Matabuena and Rodríguez-López, 2016,

2019).

 79

For a single day delay (denoted 𝑑 = 1), indicated as a 1-day previous dose interaction, the authors

expressed their model as the following system of differential equations (for the fitness 𝑔(𝑡) and fatigue

ℎ(𝑡) components, respectively):

�̂�(𝑡) = 𝑝∗ + 𝑘$ ⋅ 𝑔(𝑡) − 𝑘% ⋅ ℎ(𝑡)	 (2.56)

𝑔"(𝑡) = 𝜔(𝑡) −
1
𝜏$%

𝑔(𝑡) −
1
𝜏$&

𝑔(𝑡 − 1) (2.57)

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%%

ℎ(𝑡) −
1
𝜏%&

ℎ(𝑡 − 1)

From their system, Matabuena and Rodriguez-Lopez (Matabuena and Rodríguez-López, 2016, 2019)

demonstrated that performance on day 𝑛 as described by this system could be approximated using the

following 7-parameter {𝑝∗, 𝑘$, 𝑘% , 𝜏$% , 𝜏$& , 𝜏%% , 𝜏%&} recurrence formula:

�̂�(𝑡) = 𝑝∗ + 𝑘$An𝜔. −
1
𝜏$&

𝑔(𝑖 − 1)o 𝑒
/
'!%

(!&.)
−

!&/

.0/

𝑘%An𝜔. −
1
𝜏%&

𝑓(𝑖 − 1)o 𝑒
/
'"%

(!&.)
!&/

.0/

	 (2.58)

 Where initial conditions 𝑔(0) = ℎ(0) = 𝜔- = 0 were assumed if the athlete has not trained

for a while prior to the intervention period. Otherwise, these initial conditions require estimation within

the fitting process or derivation from a previous modelling period.

Any number of delays can theoretically be added within Matabuena and Rodriguez-Lopez (2016;

2019) system, although this is not likely to be practical with consideration to the required number of

data points to fit the additional parameters and the resultant complexity of the search space. With each

additional delay the number of parameters in the model compared to the standard formulation (eq. 2.9)

increases by two (Matabuena and Rodríguez-López, 2016, 2019), and this is likely to increase the

difficulty of finding the global optima. The authors suggest that no more than 3 delays are likely to be

useful in practice, and that interactions between standard training sessions are unlikely to feature

beyond three days (Matabuena and Rodríguez-López, 2016, 2019). A special case where this may not

apply conceptually is when sessions are extremely depleting or acutely fatiguing, for example long

endurance sessions. However, these types of sessions are unlikely to be high frequency and so it may

be suitable to forego modelling this longer interaction. Model fit appeared to be extremely strong (R2

= 0.99) for 𝑑 = 1 (single delay) compared to the standard model (eq. 2.9) in a single case study of

their model based on data of a cyclist provided within Clarke and Skiba’s supplementary data file

(Clarke and Skiba, 2013). However, the classic limitation of this supplementary data file, the low

 80

number of available data points for model fitting and no extra data available for out-of-sample testing,

reduces the conclusions that can be drawn from this experimental application. In series notation, the

general differential systems with 𝑑 ∈ ℕ delays can be represented as follows:

𝑔"(𝑡) = 𝜔(𝑡) −
1
𝜏$%

𝑔(𝑡) −
1
𝜏$&

𝑔(𝑡 − 1) −⋯−
1

𝜏$(12%)
𝑔(𝑡 − 𝑑)	 (2.59)

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%%

ℎ(𝑡) −
1
𝜏%&

ℎ(𝑡 − 1) −⋯−
1

𝜏%(12%)
ℎ(𝑡 − 𝑑)	 (2.60)

As a final example, for 𝑑 = 3, the authors showed that performance on day 𝑛 can be approximated by

the following recurrence relation:

�̂�(𝑡) = 𝑝∗ + 𝑘$ iA𝜔. ⋅ 𝑒
&(!&.)
'!%

!&/

.0/

−A𝑔(𝑖 − 1)
!&i

.0/

W
1
𝜏$&

+
1
𝜏$4

𝑒
/
'!% +

1
𝜏$5

𝑒
<
'!%X𝑒

&(!&.)
'!%

− 𝑔(𝑖 − 3)W
1
𝜏$&

𝑒
& <
'!% +

1
𝜏$4

𝑒
& /
'!4X − 𝑔(𝑖 − 2)W

1
𝜏$&

𝑒
& /
'!%Xj

− 𝑘% iA𝜔. ⋅ 𝑒
&(!&.)
'"%

!&/

.0/

−Aℎ(𝑖 − 1)
!&i

.0/

W
1
𝜏%&

+
1
𝜏%4

𝑒
/
'"% +

1
𝜏%5

𝑒
<
'"%X 𝑒

&(!&.)
'"%

− ℎ(𝑖 − 3) W
1
𝜏%&

𝑒
& <
'"% +

1
𝜏%4

𝑒
& /
'"%X − ℎ(𝑖 − 2) W

1
𝜏%&

𝑒
& /
'"%Xj																					(2.61)

2.4.6 Time-varying model: Recursive least squares

Under time invariant FFM frameworks, such as the standard model, a unique parameter set is identified

or specified to characterise a single time period. This is in contrast to a time-varying framework which

includes multiple sets of parameters that are recursively updated over a single time-period in the

presence of new data. In 1997, Busso and colleagues proposed a time-varying FFM, and assessed

whether this would provide better model fit to observed data (Busso et al., 1997). In particular, the

authors hoped that the time-varying model would do a better job at describing variation in performance

change during key tapering periods, and when fatigue had accumulated following intense training.

First, recall that the standard model in closed form is described mathematically as below (eq. 2.62). In

this case, with the inclusion of a decaying initial components (𝑞$, 𝑞%) to account for the accumulation

of prior training, for fitness and fatigue respectively.

 81

�̂�(𝑡) = 𝑝∗ + W𝑞$ ⋅ 𝑒
& !
'!X − W𝑞% ⋅ 𝑒

& !
'"X + 𝑘$A𝜔. ⋅ 𝑒

&(!&.)
'!

!&/

.0/

− 𝑘% ⋅A𝜔. ⋅ 𝑒
&(!&.)
'"

!&/

.0/

	 (2.62)

Next, recall that to fit a time invariant FFM via a non-linear least squares approach, the following least-

squares objective function is minimised:

𝑆! =A(�̂�. − 𝑝.)<
.∈k

	 (2.63)

Where Ω is a set of (generally) non-consecutive time-points [𝑖/, 𝑖a] (𝑛 ∈ ℕ) from the time

period [𝑡-, 𝑡], each element representing a position at which a real-world performance measurement

has been taken; 𝑡- is also the position of the first training load value in the time period of interest. This

concept is illustrated graphically below in Figure 2.9.

Figure 2.9: Graphical representation of series data used when fitting the time invariant FFM via a

non-linear least squares approach

In contrast, a recursive least-squares algorithm is a type of adaptive filter, similar to the Kalman filter,

where model parameters are estimated each time new data is collected. The process involves

recursively searching for coefficient estimates that minimise a weighted least-squares cost function. It

is computationally complex, but convergence rates are typically good. In the time-varying FFM, the

effect of new data is artificially emphasised by exponentially weighting past-values such that on day

𝜂 (where 𝜂 corresponds to some day on which performance was measured) fitting the model is

performed by minimising the following recursive function:

𝑆l = 𝑆l&/𝛼 + 𝑆l 											(0 < 𝛼 < 1)	 (2.64)

 82

A small value for the weighting parameter 𝛼 in the recursive formulation of the standard model was

shown to allow rapid change in model parameters in the standard model, but made them sensitive to

noise in the criterion performances (Busso et al., 1997). A large value of 𝛼 was shown to limit the

ability of the fitting process to follow variations in parameters, but helped to reduce this sensitivity

(Busso et al., 1997). In their study, Busso et al. (1997) selected a value of 𝛼 = 0.9 to limit the influence

noise would have in the parameter values. Freedom given to the parameters to vary over time proved,

as the authors expected, to result in a reduction in the residuals of the cost function (RSS), resulting in

better model fit (R2 = 0.875-0.879, 𝑛 = 2) compared to the time-invariant formulation (R2
 = 0.666-

0.682, 𝑛 = 2). In a subsequent experiment, strong model fit (R2 = 0.957-0.982, 𝑛 = 6) was observed

for the time-varying formulation under two configurations (time-varying scaling and decay

parameters, and time-varying scaling parameters only), and under slightly improved measurement

frequency conditions (40-46 per subject over 15 weeks). However, the authors did not include the

time-invariant formulation for comparison (Busso et al., 1997).

While this time-varying model appears to better describe observed data, it lacks a clear method that

allows its use to generate model predictions for comparison with out-of-sample data. In particular,

there is no specified direction set, and therefore the proposed time-varying model in its current form

is simply another method of obtaining improved model fit, and lacks clear predictive benefits unless

it were possible to predict change in the parameters themselves (Pfeiffer, 2008). Conceptually,

however, the time-varying model may be more realistic if attempting to build general principles of the

way individuals respond to inform future training, due to its recursive nature and likelihood of training

sessions interacting with each other. It may be that time-varying models could be used to plan the final

two-weeks of tapering prior to competition if models are built over the whole prior training cycle.

2.4.7 An exponential growth model

As discussed so far, a maximal effect immediately after a training session may be conceptually

appropriate for fatigue, but is unlikely to correctly reflect the fitness response to training (Calvert et

al., 1976; Philippe et al., 2018; Rasche and Pfeiffer, 2019). In particular, the physiological processes

of adaptation (and subsequent effects on performance) are not instantaneous and require time to resolve

(Calvert et al., 1976). In 2018, Philippe and colleagues suggested that exponential growth kinetics may

be more appropriate to describe the biological processes that occur in response to physical training

(Philippe et al., 2018). However, a limitation of incorporating these dynamics is that increases in

degrees of freedom increases the frequency and total number of measures required to adequately fit

the model (Philippe et al., 2018). Philippe and colleagues attempted to test the addition of an

exponential growth term within the positive component of the classical Banister model of training

effects (Philippe et al., 2018).

 83

Recall that in a general FFM, performance at time 𝑡 is found from convolving the transfer function

𝐻(𝑡, 𝜃) with the training load values 𝜔(𝑡), where 𝜃 denotes the set of free parameters characterising

the model behaviour and 𝑝∗ is the additive term; written as:

�̂�(𝑡) = 𝑝∗ +𝜔(𝑡) ∗ 𝐻(𝑡, 𝜃)	 (2.65)

where:

𝜔(𝑡) ∗ 𝐻(𝑡, 𝜃) = = 𝜔(𝑠)
!

-
⋅ 𝐻(𝑡 − 𝑠, 𝜃)𝑑𝑠	 (2.66)

In a general FFM, performance results from the difference of two antagonistic components (fitness

and fatigue), which evolve in parallel, and thus the general transfer function is characterised by the set

of model parameters with two gain and two decay time constants:

𝐻(𝑡, 𝜃) = 𝑘$ ⋅ 𝑒
& !
'! − 𝑘% ⋅ 𝑒

& !
'" 	 (2.67)

where 𝜃 = {𝑘$, 𝜏$, 𝑘% , 𝜏%}.

Philippe and colleagues proposed two exponential-type models, the first of which did not account for

fatigue and so the general transfer function 𝐻(𝑡, 𝜃) is defined by a serial and bi-exponential function

ascribed to the fitness component, as follows:

𝐻(𝑡, θ) = 𝑘$% ⋅ W1 − 𝑒
& !
:!%X ⋅ 𝑈 + 𝑘$& ⋅ W𝑒

&(!&mn):!& ⋅ |𝑈 − 1|X (2.68)

 Where, 𝑈 = 1 when 𝑡 < 𝑇𝐷, and 𝑈 = 0 when 𝑡 ≥ 𝑇𝐷, where 𝑇𝐷 = 4 ⋅ 𝜏$%. TD is the

abbreviation for ‘time-delay’ and represents the time-to-completion of the growth phase before the

decay phase can begin.

In the authors second exponential model, the transfer function 𝐻(𝑡, 𝜃) is defined by the summation of

the serial bi-exponential component ascribed to fitness (positive effects), with an impulse-response

function incorporated for ‘fatigue’ (negative effects). This is equivalent conceptually to the early delay

model by Calvert et al. (Calvert et al., 1976). Both components evolve in parallel, such that 𝐻(𝑡, 𝜃) is

defined by:

𝐻(𝑡, 𝜃) = 𝑘$% ⋅ W1 − 𝑒
& !
'!%X ⋅ 𝑈 + 𝑘$& ⋅ W𝑒

&(!&mn)'!& ⋅ |𝑈 − 1|X − 𝑘% ⋅ 𝑒
& !
'" 	 (2.69)

 84

 Where the additional parameters (𝑘% , 𝜏%) in comparison to the first exponential-type model

(eq. 2.67) are the scaling and decay constants for the impulse-response component ascribed to fatigue.

The other parameters are described as above.

No discrete solution is provided for the proposed models, and they can be solved in a similar fashion

to Turner et al. (2017), via numerical solvers incorporated into an optimisation process. To

experimentally assess their proposed modifications, the authors conducted a rodent (𝑛 = 15)

resistance training intervention, inclusive of 4-weeks daily training and performance measurements

(Philippe et al., 2018). The models were fit to the entire group of rodents (pooling the sample), using

a mixed-effects model with a systematic component for population mean response and a random

component for each rodent’s response around the mean. The time-constants were estimated for the

pooled model using a genetic algorithm, whereas the multiplicative factors were subject-specific and

estimated via iterative minimisation of the mean of the squared errors between modelled and measured

performance values (i.e., opp
a+

, where 𝑛K is the number of rodents and RSS is as shown in eq. 2.33 and

eq. 2.63). Goodness-of-fit analysis (Adjusted R2 and statistical significance assessed by analysis-of-

variance of RSS in accordance with the degrees of freedom of each model) allowed the authors to test

the models of different complexity adjusted for the influence of more free parameters. Decreases in

RSS explained by the introduction of more free parameters in the model was tested using the F-ratio

test. Model fit was significant for all models and ANOVA revealed improvements in fit for the two

complex models (Standard impulse-response and exponential model with impulse-response (eq. 2.69)

compared to the simple exponential model for fitness only (eq. 2.68). However, the time-constants for

the standard impulse-response model were very similar (48.3 and 49.1 days for fitness and fatigue,

respectively) and the authors highlighted that these do not seem realistic and not appropriate in the

context of their experiment. For the exponential model with impulse-response ascribed to fatigue,

model fit was only significantly increased for 6 of the 15 rodents (P < 0.001) and the time-constant

ascribed to this component was not realistic (49.9 days) (Philippe et al., 2018). The proposed models

are certainly an interesting avenue for future research; however, the model is not significantly

dissimilar to the fitness-delay model by Calvert et al. (1976) for which a closed solution already exists

and has not been adequately explored in experimental research.

2.4.8 Secondary-signal model

In the standard two-component fitness-fatigue model, fitness and fatigue components are modelled in

an identical fashion using first-order kinetics, with each component increasing as a function of its

respective scaling factor, and in response to a training session decaying away at a rate determined by

its time-constant (Busso, 2017). These dynamics are widely considered conceptually intuitive as a

starting effort to describe the changes in physical condition with training (Chiu and Barnes, 2003).

 85

However, it has been suggested that physical training should be viewed as the primary stimulus for

training-induced adaptations that in turn activate secondary signals, and it is these secondary signals

that are responsible for driving adaptations, dissipate during post exercise recovery, and the

accumulation of which increases production of a training effect that counterbalances loss of adaptation

(Busso, 2017). To this end, Busso (2017) developed a series of secondary signal models which

consider fatigue as both the counterbalance to the positive response from training and also as an

inhibitory influence on training-induced adaptations. Busso constructed models which can distinguish

between acute fatigue affecting performance, and maladaptation due to excessive loads (Busso, 2017).

The common structure amongst the four proposed secondary-signal models proposed is that

performance is considered the cumulative sum of responses to each training bout over time. Each

response to a training bout is considered to be the result of an indirect mechanism which could

stimulate or inhibit the product of a training effect, and is counterbalanced by its dissipation (Busso,

2017). In the author’s basic secondary-signal model, the response to training is described by the

production of a secondary signal (𝑆𝑖𝑔𝑛𝑎𝑙) which is the mediator for change in performance through

production of fitness effects (𝑃𝑟𝑜𝑑) which counterbalances removal. In this model, greater rates of

removal occur when performance is elevated. Mathematically, this was described by the following set

of recursive equations:

�̂�(𝑡) = J𝑝(𝑡 − 1) ⋅ 𝑒&;677K + 𝑃𝑟𝑜𝑑(𝑡 − 1) (2.70)

Where:

𝑃𝑟𝑜𝑑(𝑡) = 𝑘qa- + J𝑘qaW ⋅ 𝑆𝑖𝑔𝑛𝑎𝑙(𝑡)K (2.71)

And:

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝑆𝑖𝑔𝑛𝑎𝑙(𝑡 − 1) ⋅ 𝑒(;689: &;6;:) +𝜔! (2.72)

Where 𝑘qUU is the first-order rate constant for loss of performance. 𝑘qa- is a parameter representing the

rate of production of performance with no signal (i.e. no training) and which is set so that performance

and removal are balanced at baseline performance 𝑝∗, that is: 𝑘qa- = 𝑝∗ ⋅ J1 − 𝑒&;677K ⋅ 𝑘qaW is the

first-order rate constant that transforms the secondary signal into performance, with 𝑘q*!W the parameter

determining the rate at which the signal dissipates. Finally, 𝜔(𝑡) represents the training load on day 𝑡.

To extend this basic secondary-signal model, Busso then included a variable function term (𝐼𝑛ℎ𝑖𝑏)

which diminishes the production of performance proportional to the training dose (Busso, 2017), as

follows:

𝐼𝑛ℎ𝑖𝑏(𝑡) = 𝑘.a! ⋅ 𝜔! (2.73)

Where 𝑘.a! is the constant of proportionality, and therefore:

 86

𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) = 𝑆𝑖𝑔𝑛𝑎𝑙(𝑡 − 1) ⋅ 𝑒&O;689
: &;6;: ⋅O/&^a%.X(!)P	P +𝜔! (2.74)

𝑃𝑟𝑜𝑑(𝑡) = 𝑘qa- + H𝑘qaW ⋅ 𝑆𝑖𝑔𝑛𝑎𝑙(𝑡) ⋅ J1 − 𝐼𝑛ℎ𝑖𝑏(𝑡)KI (2.75)

In a further model, a fatigue component is added represented by an equation computed as follows:

𝐹𝑎𝑡𝑖𝑔𝑢𝑒(𝑡) = J𝑘.a
U ⋅ 𝜔!&/ + 𝐹𝑎𝑡𝑖𝑔𝑢𝑒(𝑡 − 1)K ⋅ 𝑒;689

7
(2.76)

Where 𝑘.a
U is the rate-constant at which training results in an increase in fatigue, and 𝑘q*!

U is

the rate at which it dissipates. Initial conditions are set to 𝐹𝑎𝑡𝑖𝑔𝑢𝑒(0) = 𝜔(0) = 0.

Modelled performance then becomes:

�̂�(𝑡) = ²J𝑝(𝑡 − 1) ⋅ 𝑒&;677K + 𝑃𝑟𝑜𝑑(𝑡 − 1)³ − 𝐹𝑎𝑡𝑖𝑔𝑢𝑒(𝑡)	 (2.77)

Busso (2017) attempted to experimentally validate his model, using data from a previous experimental

study (Busso, 2003). However, as is common across the literature, the authors did not assess any

measure of out-of-sample prediction accuracy. Across the three secondary signal models proposed,

goodness-of-fit (coefficient-of-determination) adjusted for degrees of freedom (number of parameters

in the model) ranged from R2
adj = 0.826-0.967, demonstrating strong model fit under all three proposed

secondary-signal models. Robust evaluation of this model is required under further datasets and using

out-of-sample data to assess forward prediction accuracy or association with underlying physiological

mechanisms. However, there has been no subsequent experimental work on this model since the

authors initial paper (Busso, 2017).

2.5 Review summary

Modelling complex human processes is not straightforward. The scientific field of systems biology is

at the forefront of modern inquiry and leading the way in several aspects of systems modelling. Even

so, systems biologists are frequently confronted by and still make use of heavily parameterised,

incomplete, or partially inaccurate mathematical models of complex processes (Transtrum et al.,

2015). Moreover, with any mathematical model of the real world there exists an accuracy vs.

complexity trade-off, with misspecification inevitable. With the use of modelling to describe complex

real-world systems now viewed as an important component of modern scientific investigation, it is

hasty to dismiss one of the only existing systems models in sport science without rigorous study, at

the very least to inform and guide future modelling attempts (Transtrum et al., 2015). Sport science

 87

has very few models to describe the interaction of complex human processes underpinning training

and performance (Arandjelovic, 2013; Arandjelović, 2017; Herold and Sommer, 2020; Jeffries et al.,

2020), and this art currently exists at the fringe of our existing literature body and outside the purview

of most practitioners. This literature review, and associated publications (Stephens Hemingway et al.,

2021; Swinton et al., 2021) have attempted to present a methodical history and refreshed perspective

of the study of these models and bring this area of research back into focus. Whilst FFMs are not

exempt from common challenges associated with complex systems modelling, their potential utility

and notional value reside in being theory-driven mathematical models of athletic performance from

cumulative training loads, with counterfactual properties and the ability to generate testable predictions

(Pearl, 2010). Furthermore, as presented in section 2.4 (model developments), there have been several

valuable and informative attempts within the literature to address existing limitations and common

criticisms within the literature body. These model extensions must be studied and tested on their own

merit, rather than grouped with prior criticisms of the standard model structures. It is argued that these

model extensions have been largely ignored with respect to further experimental investigation due to

historical criticisms of the original models, and a lack of awareness amongst sport science researchers

of several recent and innovative advancements in this research area in the last decade. Furthermore,

despite certain theoretical shortcomings of the standard model structure, it forms the kernel of most

FFM systems and therefore remains worthy of continued study, particularly in areas such as model

parameter estimation and where findings may inform methods to be used with other models. Insights

from study of the standard model may also provide enhanced understanding of the lower bound

requirements on study design elements such as fitting data (e.g., volume, frequency, error), and be

used to demonstrate theoretical approaches of their use to inform training program design.

To explain the lack of out-of-sample assessment of model predictions across fitted models, one

suggestion is prior insufficiency in the availability and access to high-quality and high-frequency long

term training and performance data. In the past, some authors have even turned to conducting

interventions on themselves as sole participants to generate sufficient data to conduct FFM research

(Banister, Morton and Fitz-Clarke, 1992). It has only been in the last decade or so that data collection

on training load and performance has substantially increased, making these types of investigations far

more feasible across many sporting domains. Notably, some recent studies have begun to take

advantage of the opportunity to utilise convenient field data with FFMs (Ludwig and Asteroth, 2016;

Kolossa et al., 2017; Rozendaal, 2017; Williams et al., 2018; Scarf et al., 2019; Mitchell et al., 2020).

However, the majority of historical experimental research has focussed on quantifying relationships

between underlying physiological processes of training, through iterative refinement of model

structure and comparison with observed physiological phenomena (Busso and Thomas, 2006).

Although there may still be value in this approach, there is an overwhelming volume of this type of

 88

work compared to the study of FFM predictions, and attempts should now be made to restore a balance

between these two modelling objectives.

To improve the practical application of future research, more effective collaboration between

researchers and practitioners is needed and development required in each of the three practical areas

highlighted in this literature review (training load quantification, criterion performance selection,

parameter estimation). With regards to training load quantification, greater discussion of how to

selectively weight different training modalities, exercises and intensities on the basis of the target

performance is needed. Additionally, researchers may consider including training load quantification

parameters as part of the overall fitting process, potentially with a priori constraints suggested by

practitioners. With regards to criterion performance measures, the biggest challenge with fitness-

fatigue modelling appears to be the frequency of measurement. It is hypothesised that a method that

seems most suited to generating useful high frequency measurements, particularly with regards to

fitness aspects, is individually predicted maximum performances derived from actual training data.

Given the large increase in applied research in this area (e.g., reps-in-reserve, barbell-velocity

profiling) there are a range of candidate measurements that could be used and would benefit from the

collaboration between researchers and practitioners. Finally, with regards to parameter estimation

there is a clear requirement for extensive further development in methods and understanding. Of all

areas of the modelling process, parameter estimation, associated model evaluation, and reporting are

the least well described aspects. In addition to the systematic study of which algorithms perform the

best for obtaining suitable parameters under a range of conditions, there is a need to explore in greater

depth issues such as parameter stability and estimation sensitivity, and methods to obtain parameters

that are best able to predict future training such as the potential of tuning-based cross-validation and

the introduction of regularisation terms. Future collaborations between researchers and practitioners

may wish to consider setting a priori constraints on likely parameter values given the specific athlete

(alternatively using informative priors via a Bayesian approach) or matching athletes and fitting

multiple models simultaneously sharing information to obtain parameter values that are representative

of athletes with similar adaptive responses. As with other practical areas of fitting FFMs, there is

considerable scope for ingenuity and interdisciplinary work that will eventually require and could

utilise large amounts of data routinely collected by practitioners working with athletes.

There is also scope for researchers and practitioners to more creatively apply the standard FFM. In the

context of resistance training and the development of fitness aspects, the FFM has been used in its

conceptual form to highlight that different forms of training (e.g. strength, power, and hypertrophy)

appear to generate distinct fitness and fatigue profiles (Chiu and Barnes, 2003). The general FFM with

𝑁 additive first-order components and other properties such as fitness-delays, variable dose-response

terms, and threshold saturation, may provide a suitable mathematical framework to model these

 89

empirical observations with for example strength, power and hypertrophy training sessions inputting

their effects through specific first-order components with scaling coefficients and decay time constants

dependent on the fitness attribute being modelled. With all such innovative procedures, it is critical

that emphasis is placed on determining the conditions under which suitable predictions to future

training can be obtained.

Finally, it is clear from this review that historical and future research would benefit from increased

transparency and reproducibility around data, assumptions, and methods of implementation. It is

therefore recommended that where possible future experimental study follow basic tenants of

reproducible research when disseminating work in peer-reviewed journals and preprint (Peng, 2011).

These include: 1) documentation of code/software used to implement the models and perform the

analysis; 2) presentation of computational output with explanatory text; 3) inclusion of raw data

alongside code and analysis to facilitate verification and reproduction of findings and methods. Where

public release of raw or anonymised data is unrealistic due to reasonable concerns for privacy or

commercial sensitivity, authors should attempt to make this available to reviewers within the peer-

review process where possible. Code notebooks or analysis files (e.g., written in the markdown

language) hosted on public or private repositories may provide convenient and simple methods for

achieving the recommendations outlined above. The aim of this literature review was to provide a

detailed insight into the historical development of and practical considerations surrounding fitness-

fatigue modelling, and to present the background underlying the justification for the research both

within this thesis and beyond. While acknowledging several limitations in the standard model structure

and criticisms across prior research, it is the position taken in this work that sport science should not

yet give up on FFMs until they have been robustly studied, particularly given several promising

approaches by researchers to address prior limitations in recent times. To achieve progress, this small

field of sport science must pool ideas, concepts, and develop communal tools that spur collaborative

efforts. Establishment of a coherent framework for future study would be a further helpful step,

particularly one that prioritises tackling specific factors currently limiting model utility, and that

outlines steps for rigorous assessment of new and existing models/methods.

2.5.2 A visual timeline of FFM developments

To summarise the literature body and historical journey of FFMs discussed in this review, a graphical

timeline is presented in Figure 2.10. This timeline spans the initial conception of the FFM in 1975 to

key literature up to the current point of this thesis. Complete summary tables of the historical literature

are also included in Appendix B, to provide a quick reference guide to - and overview of - the key

literature.

 90

Figure 2.10: A timeline of model development

1975
1976

1990
1991
1992
1994

1997
2003

2005
2006

2008

2013
2015
2016

2017

2018

2019

2020

2021

Banister et al. (Seminal paper)
Calvert et al. (Fitness-delay model)

Body of applied work, attempting to map
variation in FFM components to observed

physiological variables (see Table 2.1)

Further development to the standard FFM,
introducing the ! component solution with "

initial component extension
Busso et al.

(Experimental Study)

Busso et al; Morton et al. (Experimental Study)
Fitz-Clarke et al.

(Influence curves)

Busso et al. (Time-varying model)

Busso et al. (VDR model)

Hellard et al. (External saturation function)
Hellard et al. (Limitations of standard FFM)

Moxnes & Hausken (Interactive-effects model) Pfeiffer et al. (Limitations of standard FFM and
comparison with PerPot Meta Model)

Clarke & Skiba (Educational review) Gouba et al. (Variable baseline model)

Schaefer et al. (Training plan generation
via constraint satisfaction approach under FFM)

Ludwig et al. (Field data utilisation & pre-load)

Matabuena & Rodriguez-Lopez
(Time-delay differential model)

Busso (secondary signal model)

Turner et al. (Nonlinear model system)
Kolossa et al. (Linear state-space reformulation

of VDR with Kalman filter)

Philippe et al. (Exponential growth model) Proshin et al. (Training plan generation via
adaptive random search approach under FFM)Kumyaito et al. (Training plan generation via

adaptive particle swarm with physiological constraints)

Connor et al. (Training plan generation via
grammatical evolution approach under FFM)
Scarf et al. (Experimental study)

Stephens-Hemingway et al. (Study of the effects
of error and test-frequency on FFM accuracy)

Stephens-Hemingway et al.
(FFM review part 1)

Swinton et al.
(FFM review part 2)

Mitchell et al. (Experimental study)
Imbach et al. (Experimental study)

Piatrikova et al. (Experimental study)

Stephens-Hemingway et al. (Sensitivity of the
fitting problem under a quasi-Newton algorithm)

Rasche & Pfeiffer (Book chapter, performance modelling)

Connor & O’Neill (Estimation via evolutionary strategy)

 91

2.5.3 Reference Table (FFM formulae)

Table 2.4: A quick reference table of FFM formulae

Model Type Formula

Basic model System of
ODE’s

(Banister et al., 1975)

One component (i.e., fitness or “training” only)

𝑝(𝑡) = 𝑝∗ +𝐾𝑝(𝑡)	

𝑝′(𝑡) = 𝜔(𝑡) −
1
𝜏 𝑝(𝑡)

Standard
model

System of
ODE’s

(Banister et al., 1975)

Two components (i.e., fitness and fatigue)

𝑝(𝑡) = 𝑝∗ + 𝑘! ⋅ 𝑔(𝑡) − 𝑘# ⋅ ℎ(𝑡)	

𝑔.(𝑡) = 𝜔(𝑡) −
1
𝜏!
𝑔(𝑡)	

ℎ.(𝑡) = 𝜔(𝑡) −
1
𝜏#
ℎ(𝑡)

Fitness-
delay model

System of
ODE’s

(Calvert et al., 1976)

Two components (i.e., fitness (+ delay) and fatigue)

𝑝(𝑡) = 𝑝∗ + 𝑘! ⋅ 𝑔(𝑡) − 𝑘# ⋅ ℎ(𝑡)

%
1
𝜏<#

−
1
𝜏<$
&
=>

𝑔??(𝑡) = 𝜔(𝑡) − %
1
𝜏<#

−
1
𝜏<$
&
=>

%
1
𝜏<$

+
1
𝜏<#
&𝑔?(𝑡) − %

1
𝜏<#

−
1
𝜏<$
&
=>

ℎ.(𝑡) = 𝜔(𝑡) −
1
𝜏#
ℎ(𝑡)	

Non-linear
model

System of
ODE’s

(Turner et al., 2017)

Two components (i.e., fitness and fatigue)

𝑝(𝑡) = 𝑝∗ + 𝑘! ⋅ 𝑔(𝑡) − 𝑘# ⋅ ℎ(𝑡)

𝑔.(𝑡) = 𝜔(𝑡) −
1
𝜏!
𝑔(𝑡)/	

ℎ.(𝑡) = 𝜔(𝑡) −
1
𝜏#
ℎ(𝑡)0

where 𝛼, 𝛽 are power terms that represent the model’s non-linearities. The

standard model system can be recovered by 𝛼 = 𝛽 = 1

 92

Model Type Formula

Delay-
differential

model

System of
DDE’s

(Matabuena and Rodríguez-López, 2016, 2019)

(Single delay, d = 1)

�̂�(𝑡) = 𝑝∗ + 𝑘! ⋅ 𝑔(𝑡) − 𝑘# ⋅ ℎ(𝑡)	

𝑔.(𝑡) = 𝜔(𝑡) −
1
𝜏!"

𝑔(𝑡) −
1
𝜏!!

𝑔(𝑡 − 1) 	

ℎ.(𝑡) = 𝜔(𝑡) −
1
𝜏#"

ℎ(𝑡) −
1
𝜏#!

ℎ(𝑡 − 1)

Exponential
-growth
model

General
convolution

model

(Philippe et al., 2018)

General convolution model:

�̂�(𝑡) = 𝑝∗ +𝜔(𝑡) ∗ 𝐻(𝑡, 𝜃)

Where performance at time 𝑡 is found by convolving the transfer

function 𝐻(𝑡, 𝜃) with the training load values 𝜔(𝑡):

𝜔(𝑡) ∗ 𝐻(𝑡, 𝜃) = M 𝜔(𝑠)
(

1
⋅ 𝐻(𝑡 − 𝑠, 𝜃)𝑑𝑠

Where 𝜃 denotes the set of free parameters characterising model

behaviour and 𝑝∗ is the normal additive term.

Transfer function 1: A serial and bi-exponential function ascribed to the

fitness component (no fatigue):

𝐻$(𝑡, θ) = 𝑘!" ⋅ Q1 − 𝑒
2 (
3#"S ⋅ 𝑈 + 𝑘!! ⋅ Q𝑒

2((256)3#! ⋅ |𝑈 − 1|S

Where 𝑈 = 1	when 𝑡 < 𝑇𝐷, 𝑈 = 0 when 𝑇 ≥ 𝑇𝐷, and (time-delay) 𝑇𝐷 =

4𝜏!"

Transfer function 2: Serial and bi-exponential function ascribed to fitness

component, impulse-response component for fatigue (conceptually

equivalent to fitness-delay model):

𝐻8(𝑡, 𝜃) = 𝑘!" ⋅ Q1 − 𝑒
2 (
9#"S ⋅ 𝑈 + 𝑘!! ⋅ Q𝑒

2((256)9#! ⋅ |𝑈 − 1|S
Z[[[[[[[[[[[[[[[\[[[[[[[[[[[[[[[]

:)(;<==

− 𝑘# ⋅ 𝑒
2 (
9$Z[\[]

:+()!><

 93

Model Type Formula

Standard
model

Closed form
approximation

(Banister et al., 1975; Morton, Fitz-clarke and Banister, 1990; Busso et al.,

1992)

�̂�(𝑡) = 𝑝∗ + 𝑘! ⋅^𝜔)
(2$

)?$

⋅ 𝑒
2((2))9# − 𝑘# ⋅^𝜔)

(2$

)?$

⋅ 𝑒2
((2))
9$

Alternatively, this can be written with a single summation as follows:

�̂�(𝑡) = 𝑝∗ +^Q𝑘! ⋅ 𝑒
2((2))9# − 𝑘# ⋅ 𝑒

2((2))9$ S
(2$

)?$

⋅ 𝜔)

Or in recursive form:

�̂�(𝑡) = 𝑝∗ + _𝑘! ⋅ 𝑔(𝑡)` − a𝑘# ⋅ ℎ(𝑡)b

𝑔(𝑡) = 𝑔(𝑡 − 1) ⋅ 𝑒
2$
3# +𝜔(𝑔(0) ≥ 0

ℎ(𝑡) = ℎ(𝑡 − 1) ⋅ 𝑒
2$
3$ +𝜔(ℎ(0) ≥ 0

The standard model could also be adjusted to incorporate a single scaling

factor to address criticisms (Hellard et al., 2006; Pfeiffer, 2008) of

parameter interdependence:

�̂�(𝑡) = 𝑝∗ +𝐾 ⋅^Q𝑒
2((2))9# − 𝑒2

((2))
9$ S

(2$

)?$

⋅ 𝜔)	

Fitness-
delay model

Closed form
approximation

(Calvert et al., 1976)

�̂�(𝑡) = 𝑝∗ + 𝑘! ⋅^𝜔)
(2$

)?$

⋅ Q𝑒
2((2))9#" − 𝑒

2((2))9#! S − 𝑘# ⋅^𝜔)
(2$

)?$

⋅ 𝑒2
((2))
9$ 	

The general
model – N

components

Closed form
approximation
(general form)

(Busso, Carasso and Lacour, 1991)

�̂�(𝑡) = 𝑝∗ +^c𝑘" ⋅^𝜔)
(2$

)?$

⋅ 𝑒2
((2))
9% d

@

"?$

	

𝑁 ∈ ℕ; (𝑟 = 1,… ,𝑁)

The general
model with

P initial
components

Closed form
approximation
(general form)

(Busso et al., 1992)

�̂�(𝑡) = 𝑝∗ +^c𝑘" ⋅^𝜔)

(2$

)?$

⋅ 𝑒2
((2))
9% d

@

"?$

+^𝑞'1
A

'?$

⋅ 𝑒
2 (
9&

Where 𝑞'1 denotes the initial level of the component, and 𝜏' is the decay

time constant on the corresponding initial level.

 94

Model Type Formula

VDR Closed form
approximation

(Busso, 2003)

�̂�(𝑡) = 𝑝∗ + 𝑘!^𝜔) ⋅ 𝑒
2((2))
9#

(2$

)?$

− 𝑘#^𝑘#!(𝑖)
(2$

)?$

⋅ 𝑒
2((2))
9$

Where the first-order filter 𝑘#!(𝑖) is calculated by a series of decaying

exponentials with scaling factor 𝑘# ≥ 0 and time constant 𝜏#! ≥ 0, such

that:

𝑘#!(𝑖) =^𝜔B ⋅ 𝑒
2()2B)
9$!

)

B?$

As a recursive system (Rasche and Pfeiffer, 2019)

�̂�(𝑡) = 𝑝∗ + _𝑘!(𝑔(𝑡) − 𝜔()` − a𝑘# ⋅ ℎ(𝑡)b

𝑔(𝑡) = 𝑔(𝑡 − 1) ⋅ 𝑒
2 $
9# +𝜔(

ℎ(𝑡) = _ℎ(𝑡 − 1) + 𝜔((2$) ⋅ ℎ8(𝑡 − 1)` ⋅ 𝑒
2 $
9$

ℎ8(𝑡) = ℎ8(𝑡 − 1) ⋅ 𝑒
2 $
9$! +𝜔(

External
threshold
saturation

-

(Krzyzanski, Perez-Ruixo and Vermeulen, 1999; Hellard et al., 2005)

𝐻𝑖𝑙𝑙(𝜔) = 𝜅 l
𝜔C

𝛿C +𝜔Cm

Hill function parameters 𝛾, 𝛿, 𝜅

Specific and fatigue component training load functions:

𝜔!(𝑖) = 𝜅! c
𝜔)
C#

𝛿!
C# +𝜔)

C#d , 𝜔#(𝑖) = 𝜅! Q
𝜔)
C$

𝛿#
C$ +𝜔)

C$S

Combining the VDR model with Hill saturation and fitness-delay:

�̂�(𝑡) = 𝑝∗ + 𝑘!^𝜔!(𝑖) ⋅ Q𝑒
2((2))9#" − 𝑒

2((2))9#! S
(2$

)?$

− 𝑘#^𝑘#!(𝑖)
(2$

)?$

⋅ 𝑒
2((2))
9$

𝑘#!(𝑖) =^𝜔#(𝑗) ⋅ 𝑒
2()2B)
9$!

)

B?$

With model parameters (𝑝∗, 𝑘!, 𝜏!" , 𝜏!! , 𝑘#, 𝜏#! , 𝜏#) and external Hill

function parameters (𝜅!, 𝛿!, 𝛾!, 𝜅#, 𝛿#, 𝛾#)

 95

Model Type Formula

Baseline
performance

model

Closed form
approximation

(Gouba et al., 2013)

�̂�(' 	= 𝑝('(" + 𝑘! ^ c𝑒
2	
E('2)F
3# ⋅ 𝜔)d

('2$

)	?	('("

− 𝑘# ^ c𝑒2	
E('2)F
3$ ⋅ 𝜔)d

('2$

)	?	('("

Where	𝑗 ≥ 1, Δ@ = 1, 𝑗 is the number of measured performances, 𝑡B is the

day of the 𝑗-th measured performance, and 𝑝('(" is the observed

performance value on 𝑡B2$.

Kalman
filtering

(Standard
and VDR
models)

State-space
model

(Kolossa et al., 2017)

𝐱;G$ = 𝐀;𝐱; + 𝐁𝒏𝜔; + 𝐯;

Where 𝐱;G$ is a vector comprising fitness and fatigue on day 𝑛 + 1, 𝐀; is

a diagonal 2	× 2 “transition matrix” of coefficients that multiply the current

fitness and fatigue values, 𝐁; is a 2	× 1 matrix of coefficients that

multiplies the scalar training input, and 𝐯; is the state noise quantified by

a 2	× 2 covariance matrix that is generally denoted by 𝑸. The state noise

describes the random changes in state (e.g. fitness and fatigue) above and

beyond the deterministic component involving training and past fitness or

fatigue. To match the standard FFM, the matrices above are set as follows:

𝐱A = 3𝑔(𝑛)ℎ(𝑛)6 , 𝐀A = 𝐀 = 8𝑒
= >B% 0

0 𝑒=
>
B&

; ,			Var(𝐯A) = 𝑸 = %
𝜎<C 𝜎<,E
𝜎<,E 𝜎EC

&	

𝐁𝒏 = 𝐁 = v𝑒
2 $
9#

𝑒2
$
9$

w

Where the state of the system is not observed directly but is accessible by

means of indirect measurements of performance 𝑝; from the equation:

𝑝; = 𝑝∗ +	𝐂;𝐱; + 𝛈;

Where 𝐂; == a𝑘!, −𝑘#b a 1×2 matrix and 𝛈; is the observed performance

noise described by actual measurement errors with variance denoted by 𝜉8.

For the VDR model, the matrix B changes to:

𝐁𝒏 = v 𝑒
2 $
9#

𝑘#!
) 	̇𝑒2

$
9$
w

Where 𝑘#!(𝑖) is as above in the formulae table. Such that the state-space

model can be combined with a Kalman-filter to address concerns with

model error and uncertainty in model predictions.

 96

Chapter 3: Research design

This chapter explores the lens through which this project has been conceptualised and developed,

discusses the key aims and objectives that were introduced in Chapter 1, and describes the research

model developed and used to guide to the PhD process. It has been purposely placed after the literature

review so that the reader has an awareness of the FFM literature. Section 3.1 begins by describing

some of the early challenges of the project, and then explains how the original research component

evolves from, and has been guided by, a novel research model developed to match the current state of

the field. At the end of the chapter, in section 3.2, the aims, objectives, and resultant outcomes of the

project are summarised.

3.1 Challenges, research model development, and key aspects of the project

Doctoral projects in the field of sport science are commonly carried out in mature research areas, often

where the path to further development is considerably well mapped by established research

frameworks with applied methodologies and a clear literature body (Bishop, 2008). In contrast, the

small research space of fitness-fatigue modelling within the sport sciences has seen a lack of progress

relative to its long historical timeframe. The area is also largely comprised of a collection of

disorganised experimental work deprived of clear and consistent recommendations for the direction

and requirements of future study. Despite the conceptual significance of the standard FFM (Chiu and

Barnes, 2003; Bompa and Buzzichelli, 2018), there is surprisingly little notice paid toward

mathematical FFMs by the broader sport science community. This is difficult to attribute to a lack of

general interest in mathematical modelling within sport science (Jeffries et al., 2020), for example the

acute-chronic workload ratio and its various extensions are conceptually simple and have drawn

significant attention (both positive and negative) across modern exercise research and practice (Windt

and Gabbett, 2019; Impellizzeri et al., 2020; Wang et al., 2020). There also exists the rapidly

developing and popular area of ‘performance analysis’ in research and practice, that places large

emphasis on quantitative devices (McGarry, 2009; O’Donoghue, 2014). Most probable, a lack of

research interest amongst sport scientists in mathematical FFMs is attributable to the nature of the

underlying literature body, and in particular a combination of factors including: 1) the

multidisciplinary skillset required to understand, implement, and further improve models and methods

in existing research (and associated high bar to entry); 2) several instances of unclear communication

of concepts, methods, limitations, and the processes involved in implementation within studies; 3)

frequent publication of novel FFM research in computing, engineering, and statistical journals that are,

unsurprisingly, out of the purview of most sport scientists; 4) limitations in the conceptualised structure

(and behaviour) of existing models; and 5) very little consideration of key experimental factors that

may affect model accuracy or implementation and a clear deficit in practical guidance. These issues

 97

were first introduced in chapter 1 and have all been discussed in chapter 2, however it is the

combination of these factors that informed the four primary aims of the thesis. These were to:

1. Systematise the FFM literature body, providing sufficient detail and structure to where there

exists a consistent narrative threading the historical literature, pertinent concepts, and

contemporary work to address limitations in basic FFM structure

2. Conduct original research studying key experimental factors (measurement error and testing-

frequency), and methods (parameter estimation), that may affect model accuracy or utility

3. Identify and raise awareness of alternative FFMs beyond the basic model, and advanced

methods, that reflect more promising avenues for future research

4. Develop flexible code tools that facilitate future study and address the current gap in

availability of resources

This first aim was operationalised by two main objectives: 1) composition of a review (Stephens

Hemingway et al., 2021; Swinton et al., 2021) that focussed on balancing clarity with mathematical

rigor in the communication of concepts and methods; and 2) development of educational code

resources to supplement the learning process and in the particular aspects of fitness-fatigue modelling

that were examined by the reviews. The second of these objectives also links to aim four, where a

proportion of the software resources presented as supplementary materials to these reviews have been

extended or incorporated into the resources developed within this thesis to facilitate future study

(Chapter 6). It was anticipated that these two objectives together would suffice to improve accessibility

of the research area and broaden shared understanding of existing limitations. It was also hoped this

may prevent further applied research proliferating a cycle of blindly duplicated methods that suffer the

same underlying afflictions in research design (e.g., a lack of robust model evaluation, insufficient

data reflected in the low frequency of measured physical performances, and/or the selection of noisy

performance measures). Much of the narrative and theory presented in the reviews is absorbed into the

work of chapter 2 in this thesis, and the educational code resources outlined form a share of chapter 6

(the rest of which are directly related to aim 4). Collectively, this thesis and in particular these two

chapters (2 and 6) represent the most up to date and complete critical synthesis of FFM research and

source of practical resources for researchers to learn about and apply FFMs.

The second aim, to carry out original research studying key experimental factors (measurement error

and testing-frequency), and methods (parameter estimation), that may affect model accuracy or utility,

was informed by the limitations of the research body identified in chapter 2 and logistical challenges

associated with typical primary research. What became clear was that investigation into these factors

was a prerequisite to any further experimental study of model validity from training-intervention

designs. Particularly, as no attention had been paid previously as to how these factors interacted with

 98

model accuracy, and methods in experimental FFM research appeared to be replicated from study to

study (see tables in appendix B) without much consideration of how experimental design could bias

(positively or negatively) the quantification of model validity. Historically, the effect of these factors

had been absorbed within conclusions of model misspecification without accurate quantification of or

adjustment for their influence. Toward this end, a novel in silico experimental approach was developed

to facilitate study of these important aspects of FFM implementation. The term in silico (pseudo-Latin

or New-Latin translation: ‘in silicon’) is broadly defined as an experiment performed in or on a

computer (often by computer simulation of a model) and is an allusion to the common Latin terms in

vitro and in vivo within scientific research (Ekins, Mestres and Testa, 2007). The term is also closely

related and often used interchangeably with the term ‘computer experiment’, defined as an experiment

to study a computer simulation. Stated in more formal terms, the first objective associated with aim 2

was to investigate the effects of two factors, measurement error (quality) and testing frequency

(quantity) of typical modelling data, on standard FFM prediction accuracy. The second objective of

aim 2 was to assess the suitability of a quasi-Newton optimisation algorithm for fitting an FFM,

specifically studying the sensitivity of this algorithm to starting point selection and

existence/implications of local extrema in the search space. The theory and specific detail of the

experimental approaches developed to match each objective is covered in detail in the respective

chapter (4, 5). However briefly, the central idea to the designs is the assumption the FFM is

deterministic of training response and therefore allows the confounding effects of model

misspecification to be detached from the study of model accuracy under simulated ‘true’ data. In turn,

this enables lower-bound study of the isolated effects of experimental factors on modelling aspects

including prediction accuracy, whereby in the real world the model would only be expected to perform

worse due to model misspecification and other unknown factors not studied. If certain conditions on

factors such as measurement error (quality) and testing frequency (quantity) can be identified that

cause poor model accuracy, applied future research can avoid similar issues and be better informed

regarding appropriate practice in FFM implementation to minimise negative bias of model validity.

The third aim of this project was to identify and raise awareness of alternative FFMs beyond the basic

model, and advanced methods, that reflect more promising avenues for future work. For example, as

discussed in chapter 2, the VDR model (Busso, 2003) addresses the limitation of a lack of interaction

between training sessions in the standard model, the fitness-delay and exponential-growth models

(Calvert et al., 1976; Philippe et al., 2018) modify the structure of the fitness response to better match

the conceptual notion of parabolic growth rather than an instantaneous impulse, the external threshold

saturation function (Hellard et al., 2005) and non-linear FFM system (Turner et al., 2017) address

nonlinearity in the response to training (in different ways), and the state-space reformulation with

Kalman filter addresses model uncertainty (Kolossa et al., 2017). In addition, substantive critical

analysis was added to discussion of experimental methods such as cross-validation that are arguably

 99

crucial for future experimental research to apply when studying FFMs. Collectively, and particularly

if combined in some respect, these model extensions reflect good avenues for future research, and are

promising attempts at addressing the historical conceptual limitations of FFMs commonly cited by

sport scientists (Taha and Thomas, 2003; Hellard et al., 2006). Chapter 2 and the associated reviews

go some way to toward improving the profile and awareness of these extensions and the vital methods

of model evaluation, however, to maximise impact in this respect it was felt that practitioners would

also benefit from practical tools that can assist with understanding and operationalising these models

for further research purposes. Toward this end, the single objective guiding realisation of aim 4 was to

develop practical and flexible code resources in the programming language R to facilitate future FFM

study in sport science under the models and requisite models identified by aim 3. Chapter 6 takes the

reader through the development of code in an educational style, beginning from fitting the standard

model through to the VDR model, nonlinear FFM system, and state-space reformulation with Kalman

filter. Code is presented inline within the text, and synthetic data developed via simulation to

demonstrate the concepts and keep the work self-contained. Factors such as cross-validation and

parameter estimation (optimisation) are examined at a practical level in Chapter 6, with theory

accompanying implementation in R. Shortly, a research model that was developed to guide this project

is explained, demonstrating how the chapters in this thesis that support the primary aims already

described fit within an overall research methodology. First, additional challenges of the project are

explored that were important influences in shaping the PhD, and in particular justification of the novel

in silico experimental design facilitating the original research. The aims described above are also

summarised in table form in Table 3.2 at the end of this chapter.

At the start of the project, this research area presented a steep learning curve, particularly as a new

graduate researcher with formal training predominantly in the areas of sport, health science and

exercise prescription. Due to the combination of the unorganised literature body, a lack of existing

research frameworks to accommodate modelling in sport, and the necessity to cultivate (rather hastily)

a broad and serviceable interdisciplinary skillset to begin to understand and address these issues. From

the outset, this steered the project toward a structure that is somewhat atypical of a doctoral research

project in sport and exercise science, with an almost equal focus given to the areas of: 1) analysis of

the literature and scientific communication; 2) development of novel cost-effective approaches to FFM

experimentation for studying key experimental factors; and 3) examination of prospective methods for

future study under real-world data. It would have been straightforward in some respects to adopt a

standard data collection approach for this PhD, comprising of primary research studies that adopt

similar experimental practices as previous FFM study and that comprised roughly of the following

process:

 100

1. Design a structured training intervention and recruit participants (typically an accessible

population, i.e., non-elite undergraduate sport science students)

2. Conduct semi-controlled, short duration training study that is not realistic of real world practice

3. Fit a basic FFM via a generic method previously used (e.g., one-shot optimisation of model

parameters by a local optimisation algorithm that minimises NLS)

4. Test the fitted model against in-sample data, reporting model fit

Whilst there is clear value in such an approach and in some ways, there is no getting around their

eventual use to better understand model validity, there are several limitations. The approaches are

expensive, and most importantly would likely have limited the extent of any insights and

understanding that could be gained from this project with the work not particularly well suited to the

existing literature body. For example, at the start of this project there was a clear deficit in the current

recommendations (or lack thereof) for robust experimental assessment of model performance, and no

work separating appropriate models that address existing conceptual limitations from those that don’t.

In other words, beginning with the approach outlined above would have possibly resulted in the big

picture of FFMs being missed (e.g., limited knowledge of FFM limitations, pitfalls with experimental

methods, common flaws in experimental design that can influence modelling results, and little work

to identify suitable practices), with no guarantees any of these issues would have been revealed by the

end of the PhD. Therefore, in contrast to the applied primary research approach outlined, a significant

portion of allotted time within this project was dedicated to deconstructing the implications of several

technical concepts, thoroughly scoping and reconnecting the literature to identify significant gaps in

understanding and to develop an awareness of the limitations that had persistently troubled the field

over its history. In this way, original insight was created from existing knowledge, particularly in the

areas of parameter estimation, model evaluation, and argument for study of these types of models.

Secondary to this but perhaps even more important was communication of these aspects identified in

the FFM literature to the wider sport science community, in as clear a manner as possible, to deliver a

consistent narrative that threads the whole of the historical research up to the present state. The result

of this process was a clearer understanding of the type of experimental research required to progress

the research area. The downside of this process was that it drew significant time from allotted window

to complete the PhD. In addition, a more cost-effective approach had to be developed to study these

models in the absence of any research funding, leading to the development of the novel in silico designs

described. Although cost effective, it was primarily identified that these approaches offered an

extensive approach to studying the effects of these types of factors (e.g., error frequency) and methods

of parameter estimation.

With the final year of the project taking place in an international pandemic, this removed the chance

of collecting primary research data within the remaining timescale, and therefore represents a

 101

limitation of the thesis toward answering the central research question of FFM validity, but also leaves

the door open for continuing the work. However, this led to the alternative decision to develop

extensive software resources that provide the capability to help researchers conduct future

experimental studies, likely with far bigger sample sizes than this project could have achieved within

the constraints of its already limited resources. The decision to develop code resources in lieu of further

experimental study was also informed by the source “Opening Science: The Evolving Guide on How

the Internet is Changing Research, Collaboration and Scholarly Publishing” (Bartling and Friesike,

2014), and in the particular chapter “Open Science: One Term, Five Schools of Thought” (Fecher and

Friesike, 2014). The chapter defines and discusses the “infrastructure school of thought”. This school

of thought in Open Science assumes that the efficiency of research is dependent upon the availability

of tools and applications available to researchers (Fecher and Friesike, 2014). The goal of the

infrastructure school of thought is to “create openly available platforms, tools, and services for

scientists” (Fecher and Friesike, 2014). Arguably, the tools developed in chapter 6 offer more impact

to the FFM research domain and contribution to knowledge than a single small scale primary research

study could have provided given the existing literature body and logistical constraints of the project.

In addition, if researchers now seek to develop collaborations with industry practitioners to obtain data

that could be used to retrospectively backtest FFMs, then stakeholder interest and understanding in the

research area is critical. The material in chapter 2 and associated reviews (Stephens Hemingway et al.,

2021; Swinton et al., 2021) offer a clear source of background information and discussion that can be

offered to potential stakeholders (e.g., practitioners, clubs, teams). The code tools developed provide

well-defined methods for fitting and evaluating various FFMs with data and could be used (potentially

in the form of real time demonstrations) to improve stakeholder knowledge and buy-in to this type of

scientific study, and to expedite the research process. Both are important factors (buy-in, expeditious

timeframes) when it comes to research collaborations at the elite population level.

As discussed, with no existing research framework or model available to guide this type of research

project within sport science, and following the challenges already described at an early stage in this

thesis, a novel research model was developed to guide the project. This research model may hopefully

be useful to other researchers and doctoral students working in the area of performance modelling or

FFMs, particularly for envisioning the steps involved in the progression from research to integration

of performance models into practice. The framework is presented in Table 3.1.

 102

Table 3.1: Research model for studying performance modelling in the sport and exercise sciences

 Stage Description Location in thesis
Description and
evaluation of the

problem
1 Scoping

• Definition of initial modelling
problem to be solved

• Identification of barriers to study
• Development of background and

context

Chapter 1

2

1. Research synthesis

2. Methodology
development

3. Researcher

preparation

• Refinement of central question or
hypothesis

• Identification of gaps in existing
knowledge

• Identification of gaps in
communication of prior research

• Identification of limitations and
quality of prior research

• Identification of barriers, challenges,
and impact of further study including
cost-benefit analysis for prospective
work

• Identification of issues surrounding
scientific communication in the area
in general, and broader awareness of
the subject area in the discipline

• Development of the required skillset
(as appropriate) to facilitate further
required study

Chapters 2 and 3

Experimentation

3

Theoretical study
and/or experimental
assessment (original

research)

A progressive feedback-loop comprising
problem solving research, and involving:

1. Experimental testing and/or

theoretical study of model validity
and factors associated with
experimental design

2. Reorganisation of existing
knowledge to incorporate new
findings, update current state-of-art,
determination of direction for future
work

3. Summary judgement of model
validity or suitability of a method as
a viable option for use in practice.
Only if appropriate based on meeting
a threshold of available research
evidence, else back to step (1).

Chapters 4, 5, 6
(Step 1)

Chapter 6, 7
(Step 2)

Implementation
4 Identification stage Identification of and work to address

barriers to uptake in practice -

5 Development and
integration into practice

Development or refinement of tools and
resources to integrate existing validated
models into practical problem-solving
tools for the field (e.g., tools to assist in
training planning and/or decision making)

-

6 Implementation study
Study of the implementation process and
outcomes from the use or uptake of tools
developed at stage 5 in practice.

-

 103

Finally, methods of scientific communication used within this project are discussed, as they relate to

the research framework in Table 3.1. At stages 2 (research synthesis) and 3 (experimentation)

consideration was given to the typical approach of disseminating scientific findings and knowledge

within sport science, and how this communication model might be improved upon in relation to the

work within this thesis. Historically, the prevailing reporting method for scientific findings has been

formal peer-review and entry into scientific journals. Although peer-review is an important aspect of

science, in its current form the process is slow, unpredictable, and not well suited to sharing

information with other researchers in order to facilitate rapid development in research areas that benefit

from momentum (Binswanger, 2014). In contrast, fields such as computer science place importance

on early dissemination, with preprint (pre-peer-review) publication of findings largely the norm,

usually via conference proceedings and other online platforms (e.g., ar𝜒iv, ResearchGate). Computing

research is also typically accompanied by code, data, and transparent or reproducible analysis (Peng,

2011), naturally increasing the credibility of the work. Open-research and open-science perspectives

can nurture a community driven feedback loop, foster fresh interest amongst researchers and

practitioners, and ideally seed rapid iteration and refinement of methods in expeditious timeframes

compared to the expected timeframe of the peer review model on its own (Peng, 2011; Fecher and

Friesike, 2014). Uptake of preprint dissemination has been slowly increasing in sport science over the

last few years, particularly with the introduction of platforms such as sportR𝑥iv. However, it is still

far away from the norm, conceivably due to pressures to publish in academia and uncertainty regarding

publication success following preprint submissions. Nevertheless, there exists a growing call for

change in the current peer-review model (Binswanger, 2014; Fecher and Friesike, 2014), and the nature

of the aims and objectives of this project lend themselves well to an early communication approach.

Toward this end, the reviews (Stephens Hemingway et al., 2021; Swinton et al., 2021) were published

in preprint, along with the study in Chapter 5 (Stephens Hemingway, Swinton and Ogorek, 2021). This

process generated significant peer feedback, led to multiple iterations of improvement, and collated

invaluable input from sport scientists including those who had contributed to the historical literature

and those with a curious interest in the subject. The results of the preprint process was several informal

peer review cycles, exposing the work to multiple different perspectives in its early stage and

ultimately improving the final version submitted for peer review. This process is restricted in scope

within the standard model of scientific communication, and it is hoped that communicating as much

work as possible within this thesis will play a small role in encouraging others to move toward models

of early dissemination to supplement the peer-review process. This may also be important for

stimulating the field of performance modelling at an acceptable rate relative to the lack of progress

over the historical timeframe.

 104

3.2 Aims and objectives (summary)

Table 3.2: Aims and objectives of the thesis

Aim Objective Thesis location

1

Systematise the FFM literature
body, providing sufficient detail

and structure to where there exists
a consistent narrative threading

the historical literature, pertinent
concepts, and contemporary work

to address limitations in basic
FFM structure

(1) Composition of a review series that focusses
on balancing clarity with mathematical rigor in
the communication of concepts and methods

(2) Development of educational code resources to
supplement the learning process in the particular
aspects of fitness-fatigue modelling examined by
the review

Chapter 2
(Objective 1)

Chapter 6

(Objective 2)

2

Conduct original study of key
experimental factors

(measurement error and testing-
frequency), and methods of

model estimation that may affect
model accuracy or utility

(1) Investigate the effects of two factors,
measurement error (quality) and testing frequency
(quantity) of typical modelling data, on standard
FFM prediction accuracy

(2) Assess the suitability of a quasi-Newton
optimisation algorithm for fitting an FFM,
specifically studying the sensitivity of this
algorithm to starting point selection and
existence/implications of local extrema in the
search space

Chapter 4
(Objective 1)

Chapter 5

(Objective 2)

3

Identify and raise awareness of
alternative FFMs beyond the
basic model and advanced
methods, that reflect more

promising avenues for future
research

(1) Identify and prioritise remaining research
problems in the area of fitness-fatigue modelling

(2) Illuminate the theory of existing models and
methods representing reasonable or requisite
approaches to addressing remaining research
problems

Chapters 2,4,5,7
(Objective 1)

Chapters 2,4,5,6

(Objective 2)

4

Develop flexible code tools that
facilitate future study and address
the current gap in availability of

resources

Develop practical and flexible code resources in
the programming language R to facilitate future
FFM study in sport science under the models and
requisite models identified by aim 3

Chapter 6

 105

Chapter 4: The effects of measurement error and testing
frequency on the standard fitness-fatigue model applied to
synthetic resistance training data: An in silico experimental design

4.1 Preface

The notion that a resistance training stimulus has influential effects on the fitness and fatigue states of

an athlete underpins the practice of strength and conditioning professionals (Chiu and Barnes, 2003;

Bompa and Buzzichelli, 2018). Primary training decisions made by coaches around simple sounding

questions of “how much? and “how often?” are influenced by perception of an athlete’s individual

tolerance to training (in an acute and cumulative sense) before recovery thresholds are surpassed. If

the physical and mental demands of training repeatedly and unremittingly overwhelm an athlete’s

tolerance, such that they cannot recover adequately between training sessions, their ability to adapt,

readiness to perform and effort in training can become suppressed below a normal range. This

phenomenon is referred to in the literature as over-training (Kellmann et al., 2018). Not to be confused

with over-reaching, where periods in which demands higher than an athlete’s tolerance are

purposefully planned by a coach to stimulate adaptation, and which are interspersed by periods of low

demands. If over-training occurs, it can take a lengthy and often unpredictable period of time for the

athlete to return to a normal state of performance and overall well-being. At a more detailed level,

consideration of short- and long-term competitive schedule, training emphasis, training history, age,

gender, location, sporting demands and many other factors are integrated into training decisions.

Nevertheless, it is the fundamental desire of a coach to maximise the rate and magnitude of physical

adaptation (fitness) under known environmental, individual, and logistical constraints; whilst

simultaneously managing and ideally minimising fatigue (Bompa and Buzzichelli, 2018). Thus, the

fitness-fatigue model is ingrained within the workings of most sport scientists and strength and

conditioning coaches as a conceptual framework of response, whereby performance is thought of in

terms of the antagonistic effects of training (fitness and fatigue) with associated decay over time. It is

this conceptual framework that guides thought processes toward preventing an athlete reaching a state

of being over or under-trained. To move beyond a conceptual framework, it can be proposed that it

may be appropriate to have coaches apply existing quantitative fitness-fatigue models to assist with

training prescription (Busso and Thomas, 2006). Additionally, a shift in thinking should occur where

criterion performances used to fit the model are no longer capturing competitive outcome but are

instead measures that comprise more direct relationships with physical training. Toward this end,

initial preparatory work must be conducted on these models to study their behaviour,

conceptualisation, and factors that may negatively influence their performance in practice.

 106

A novel approach for isolating operational factors that may negatively influence prediction accuracy

within real-world research, such as the quality and quantity of data required to fit an FFM, begins by

employing a deterministic assumption that states an FFM completely specifies an athlete’s response

to training. In doing so, the contribution of model misspecification to prediction error is detached from

the problem, and these factors can then be studied directly within an extensive computer experiment

design (in silico). The process involves first simulating the FFM under a series of synthetic inputs

(training loads) and carefully selected parameter values. The output (model simulated performance)

over the length of the training loads represents the true performances for a ‘hypothetical athlete’. The

manually selected parameter values are also regarded as the hypothetical athlete’s true parameters

(i.e., the parameters that characterise their response, as the model is assumed to be completely

deterministic). The set of model-generated true performances are then duplicated a set number of

times, and these duplicates transformed to reflect different conditions of two factors (measurement

error and testing frequency). If for example there were three measurement error conditions (𝜖/, 𝜖<, 𝜖i)

and three testing frequency conditions (𝜈/, 𝜈<, 𝜈i), all combination of the conditions of these two

factors (𝜖, 𝜈) would yield 15 ‘scenarios’ in total. Each scenario is then assigned 104 of the duplicated

sets of true data, with each set transformed to match the scenario by adding random noise sampled

according to a distribution 𝑁(0, 𝜖<), and removal of datapoints according to 𝜈. (for example, so that

there was now a data point only for every other time-step). Note that within each scenario, transformed

sets will differ based on random variation in the sampled noise (uniqueness), and scenarios will differ

based on average magnitude of noise added and frequency of data comprising the sets. Each set of

transformed true performance data in each scenario (i.e., true + noise, subsetted according to 𝜈) is then

fitted back to an FFM via an iterative optimisation algorithm. The parameter estimates obtained from

this process are used to re-simulate the model and derive performance predictions that can be compared

against the true values to generate estimates of model prediction error. Within each scenario, the

average model error is reported over the 104 sets, such that differences between the conditions of each

factor can then be compared. Note that the inputs (training loads) stay consistent across the whole

experiment. Following this approach, lower bounds can be identified on the negative effects of certain

conditions of these factors on model utility, such that in the real-world additional model

misspecification and other unknown factors will likely only result in worse model performance (i.e.,

higher prediction errors). This type of computer experiment design is novel to sport science and is

powerful because it provides a cost and time-efficient approach to studying factors influencing model

utility under a range of distributional and operational conditions, that would otherwise be challenging

to study within standard n-of-1 experimental designs with real data. This approach may also offer a

vehicle for researchers and practitioners to study other phenomena, generate practical insights, and

assist with identifying factors which should be considered in future empirical research.

 107

This chapter follows the implementation of the novel approach described to ascertain minimum

acceptable measurement error and criterion performance frequency conditions that should be met for

the use of an FFM to be considered a worthwhile vehicle for further scientific exploration of

performance modelling 4. It is crucial that future research does not negatively prejudice results of any

model validity work (e.g., estimation of model misspecification) by introducing excessive prediction

errors due to poor operational practices (e.g., poor data quality or low quantity), possibly resulting in

an overestimation of model misspecification and underestimation of model utility. Toward this end,

this study also presents an opportunity to provide clearer recommendations for researchers with regard

to factors such as measurement quality and quantity for use in fitness-fatigue modelling.

4.2 Introduction

Each FFM can be described by a mathematical equation that is tailored to an individual athlete, and

which links the magnitude and decay rate of the positive and negative after-effects experienced by the

athlete (Banister et al., 1975; Chiu and Barnes, 2003; Taha and Thomas, 2003; Jobson et al., 2009).

As has been described in detail in the literature review, this is achieved in practice by conducting a

period of training comprising frequent performance measurement, with model parameters

retrospectively fit to best match the input and output data generated. This fitting process itself is also

commonly referred to as model training and once complete the model and fitted parameters can

theoretically be used to predict future response to physical training and inform program design

(Banister et al., 1975; Calvert et al., 1976; Busso et al., 1990; Taha and Thomas, 2003; Schaefer,

Asteroth and Ludwig, 2015; Stephens Hemingway et al., 2019). Accurate quantification of model

input (training load) and regular best-effort criterion trials (e.g. timed run, or maximal load lifted)

revealing the athlete's current capabilities are therefore required (Morton, Fitz-clarke and Banister,

1990). Across prior experimental research, FFMs have been traditionally applied to endurance athletes

(e.g., runners, swimmers, cyclists and triathletes) as training loads appear simpler to calculate in these

closed-skill sports and criterion trials closely match sporting performance. Additionally, a small

number of studies have investigated fit of FFMs with performance in individual and team sports where

strength and power are the primary fitness components (Busso et al., 1990, 1992; Busso, Candau and

Lacour, 1994; Sanchez et al., 2013; Agostinho et al., 2015). This matches the conceptual framework

adopted by many strength and conditioning coaches, where the physical capability of an athlete is

4 A version of this chapter was published in the International Journal of Sport Science and Coaching:

Stephens Hemingway, B., Burgess, K., Elyan, E., & Swinton, P. (2019). The effects of measurement error and
testing frequency in applying the Fitness Fatigue Model to resistance training: A simulation study.
International Journal of Sports Science and Coaching, 0(0), 1–12. doi.org/10.13140/RG.2.2.19730.56005

Associated files (code): github.com/bsh2/thesis/c4

 108

assessed via standardised movements (e.g. 1RM squat or 40m dash) that comprise relevant dimensions

of fitness (e.g. strength, power) (Carlock et al., 2004; Al-Otaibi, 2017; Revie et al., 2017). In elite

sport, even the smallest change in sporting performance may have a significant influence on the

outcome of a competitive event (Jobson et al., 2009). Likewise, small-moderate variations in

dimensions of an athlete’s physical capability during a competitive period may significantly alter

individual performance in said sporting event. It follows, and has been previously stated, that in order

to be useful in practice as a tool to derive training programs that match the desired time-course of

performance it is important that fitness-fatigue models are able to predict observed performance

change with only a minor error margin (Jobson et al., 2009).

Model predictions from estimated parameters are thought to be highly dependent on the density of

measured performance data over the modelled period (Stevens, 1986; Bates and Watts, 1988; Sen and

Srivastava, 1990; Davidian and Giltinan, 2003; Hellard et al., 2006; Pfeiffer, 2008; Jobson et al.,

2009). However, high frequency performance measurement is challenging to achieve for most

researchers and practitioners (Jobson et al., 2009). There is also little contextual research available to

guide selection of a measurement frequency that is likely to reduce existing concerns around fitting

and testing of FFMs with insufficient data. Several challenges exist in researching the effectiveness of

fitness-fatigue models to predict training response, and to identify the importance of factors such as

measurement error and testing frequency. Within standard research designs, a primary challenge is

recruitment of large enough sample sizes to conduct robust long-duration studies comprising a

substantial training intervention and high frequency performance measurement to accurately isolate

the effects of measurement error and testing frequency on prediction accuracy. Conducting an

experimental study that meets these requirements is likely to necessitate, at the very minimum,

substantial resources in terms of time, money, expertise, equipment. In addition, the existence of error

in all measurements precludes true underlying performance of an athlete to be known (Swinton et al.,

2018), placing limits on the ability to assess predictions. Across the prior literature there are several

limitations that frequently arise, and which may be attributable to challenges discussed that are

common amongst standard research designs. For example, the majority of fitness-fatigue model

experimental studies have comprised an insufficient number of observed performance measurements

to appropriately fit the model, were it even a simple linear polynomial (Hellard et al., 2006; Pfeiffer,

2008). The non-linearity of the model, and degrees of freedom from the large number of parameters

have been suggested to add substantial requirements on the number of data points per model parameter

(Bates and Watts, 1988; Sen and Srivastava, 1990; Davidian and Giltinan, 2003; Hellard et al., 2006).

Additionally, with the exception of a handful of more recent studies (Kolossa et al., 2017; Williams et

al., 2018; Mitchell et al., 2020), prior research has only assessed ability to retrospectively fit input and

output data as part of the model training phase, with no treatment given to model predictive validity

(either with regards interpolation, extrapolation, or both on out-of-sample data). This has represented

 109

a major limitation of the research base to date, as the central premise of the mathematical fitness-

fatigue model is to predict future response to training (Banister et al., 1975; Taha and Thomas, 2003).

For most potential research cases, particularly those without substantial funding, a standard

experimental design appears an ardent first approach to studying either existing or new FFMs.

Furthermore, without some understanding of the effects of factors such as precision and frequency of

measurement on model validity in the basic case, researchers may unknowingly confound their studies.

It follows that all future experimental fitness-fatigue model research must be tailored with some basic

consideration given to factors such as measurement error and testing frequency, to reduce the

likelihood of adding more confounding research to the literature body. However, there is clear need in

the literature for contextual work available to guide these operational decisions.

One novel alternative to the standard research design is a computer experiment (in silico) design that

establishes synthetic data to facilitate study. These types of experimental designs are highly novel in

the sport and exercises sciences but afford a relatively inexpensive approach to studying lower-bound

validity of the model under small-world conditions. Loosely, small-world conditions can be thought

of as the best-case scenario for the phenomena studied. Therefore, the training response is assumed to

be completely specified by a fitness-fatigue model, and observed performances are believed to deviate

only due to defined factors such as the magnitude of measurement error. Adoption of this approach

and associated assumption establishes a lower-bound, whereby similar practices in real-world settings

can on average only lead to greater predictive errors, due to the influence of factors not considered

(e.g., model misspecification). Figure 4.1 attempts to provides an intuitive graphical representation of

this concept. Via computer experiment, thousands of fitted training responses can be systematically

studied under pre-defined distributions of measurement error, and different levels of testing frequency

(i.e., quantity of performance measurements available to fit the model). In this way, operational

conditions that are likely to yield unreasonable results in practice can be identified and hopefully

avoided prior to further investment in real-world laboratory or field-based study. Therefore,

researchers can use extensive computational processes to eliminate prospective applications that are

likely to lead to poor modelling outcomes. This type of experimental design may also provide insight

into the limitations of methods, results, and conclusions within and between historical fitness-fatigue

model research. Unequivocally, an in-silico approach under deterministic assumptions (with

associated synthetic data) is not a replacement for experimental studies modelling data from real world

human intervention trials. Rather, it can be thought of as a shrewd first step to establish whether there

exists further justification for investment in more costly experimental approaches based on the

practicalities of operational requirements. Occasionally, and in particular in this instance, it is argued

that it may be the only cost-effective method for obtaining estimates of the influence of certain factors

such as measurement error and testing frequency in isolation.

 110

Figure 4.1: An illustration of the general approach to applying an in-silico approach to study FFMs

Finally, most high frequency performance measurements are infeasible for practitioners to achieve.

Therefore, prospective FFM applications in the field of strength and conditioning must look to apply

cheap-to-operate performance measures that can be tested daily, have high test-retest reliability, and

do not cause acute or chronic declines in performance. Compiling lists of outcomes that meet these

requirements is still needed, but as a starting point the use of activities such as the vertical jump may

provide one suitable option (Watkins et al., 2017). The vertical jump is a popular means of assessing

an athlete’s physical capability, and can be performed repeatedly within a testing session, and at a high

frequency between sessions, without causing decline in performance (Watkins et al., 2017).

 111

Additionally, a range of mechanical variables (e.g. impulse, power, rate of force development) can be

extracted during vertical jumps to assess various features of the neuromuscular system (Cormack et

al., 2008; Revie et al., 2017). The experimental work presented in this chapter adopts an in silico

experimental approach that develops a computer experiment to assess the effects of testing frequency

and the magnitude of measurement error on the model fit and prediction accuracy, under an extensive

range of possible conditions for each factor. The experiment applies a hypothetical resistance training

intervention to develop synthetic (true) data, and then considers modelled change in the vertical jump

via the standard 5-parameter FFM in the presence of additional noise and varied testing frequencies.

Model fitting within the experiment is completed using a common Hill-climbing algorithm under a

nonlinear least-squares (NLS) approach.

4.3 Materials and Methods

4.3.1 Experimental approach to the problem

As described in the introduction, an in silico approach was adopted to quantify the effects of

measurement error and testing frequency from fitted FFM parameter estimates and associated

predictions of performance for two hypothetical athletes (referred to as intermediate and advanced).

The vertical jump was selected as the theoretical performance tool due to its popularity in athlete

monitoring and potential to be used daily (Watkins et al., 2017). A range of mechanical variables

including power, impulse and jump height were considered as the model target for the study. However,

each of the variables demonstrated similar relative profiles with regard to change in magnitude across

an intervention compared to measurement error, and therefore each outcome would result in the same

conclusions produced by this study. Power (Watts) produced during the vertical jump was ultimately

selected for the model simulations, as it is a commonly understood metric across practice, and as it has

previously been used in mathematical models to predict player fitness in response to training dose in

Rugby union athletes (Revie et al., 2017). To construct the synthetic data, it was first assumed that the

fitness-fatigue model completely specifies a hypothetical athlete’s response to training. Two popular

training load distributions (summated microcycles, and wave-like) were combined with athlete-specific

parameters in a model simulation process to generate realistic daily power values over a 16-week

period. The resultant data reflects the true data, with regard to both the parameters (that ‘define’ the

hypothetical athlete in terms of response) and the simulated performances. The construct of true values

are only accessible within in-silico approaches where the assumption of complete model specification

has been made. Generated values were split in half to create an initial model training set (weeks 1-8)

and a testing set (weeks 9-16), under a simple ‘hold-out’ cross validation approach, to assess prediction

error. The effects of measurement error and testing frequency were assessed by adding realistic errors

to true values in the training set whilst fitting the fitness-fatigue model to varying proportions of this

 112

augmented data representing 'observed' values (i.e., 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	 = 	𝑡𝑟𝑢𝑒	 + 	𝑒𝑟𝑟𝑜𝑟). The process

replicated the situation adopted in real-world settings where observed scores on a physical test

comprise the athlete's true score and measurement error (Swinton et al., 2018). At each iteration,

parameter estimates obtained from fitting the model training set were then combined with training

loads corresponding to time-course of the testing set to obtain predicted power values and their

associated prediction errors. Finally, extensive iterations were completed for each scenario to obtain

distributional estimates of prediction error. A detailed flowchart illustrating the simulation process is

presented in Figure 4.2.

4.3.2 Development of hypothetical athletes

The simulated data representing true performance change (i.e., without additional noise) for two

hypothetical athletes (intermediate and advanced) were developed based on the inverse relationship

between experience and improvement (Appleby, Newton and Cormie, 2012). Research investigating

change in vertical jump power from a single intervention has demonstrated that improvements in peak

power (W) for moderately trained athletes generally range between 0 and 20% (McBride et al., 2002),

whereas improvements for advanced athletes generally range between 0 and 5% (Harris et al., 2000;

Mangine et al., 2008). Based on these findings, increases of 15% and 5% were selected for the

intermediate and advanced athletes over the 16-week period, respectively. The same research base

(Harris et al., 2000; McBride et al., 2002; Mangine et al., 2008) was also used to identify realistic

baseline values for performance 𝑝∗ which was fixed within the study as a known parameter to simplify

the problem of estimating prior performance and reduce the dimensionality of the parameter space.

 113

Figure 4.2: Flowchart describing the in silico experimental approach developed (repeated for each

hypothetical athlete)

Define requisite assumptions
• Fully deterministic response

Develop inputs (TRIMP series)

• 2x realistic profiles (wave like,
summated microcycles)

• Magnitude stage matched for
hypothetical athlete level

In silico approach (computer experiment design)

Set true parameters

• To characterise the
hypothetical athlete

• Use a systematic
approach to identify
suitable true values

Simulate model

• True performance
values generated for
each hypothetical
athlete under true
parameters

(1) Synthetic data (hypothetical athlete)

Setup experimental factors

• 5 measurement error
conditions (CoV 2 - 10%)

• 7 testing frequency
conditions (datapoint every
day to every 7th day, in 1-
day increments)

Establish scenarios

• Scenario defined as a
unique combination of
possible conditions for the
two factors

• Total of 7 x 5 = 35 scenarios
comprising the combination
of all error and frequency
conditions

Apply factor conditions

• For each replicate in each scenario, with conditions of the two
factors set by the definition of the scenario, do the following:

• Add appropriate error to each datapoint from random
draws of a Gaussian distribution

• Sample augmented data at required testing frequency
• Resultant performance data are viewed as ‘observed

values/sets’ as they now contain statistical noise

(3) Experiment (main processing)

Fit the FFM to each augmented replicate set

• Repeated 104 times per scenario (i.e., each set of
augmented true data over ‘model training’ window)

• NLS approach under common quasi-Newton
optimisation algorithm used

• Simulate model again under fitted parameter
estimates and full input series, predicting up to end
of ‘hold out’ data period

Compute fitted model errors

• Each set of fitted model predictions over
hold-out period compared with true hold-
out set

• Within each scenario: Compute centrality
and spread of model prediction errors

• Between scenarios: Assess differences
in centrality and spread to assess
influence of experimental factors on
prediction accuracy

enables

Inputs and true performance values(2) Pre-processing and experimental design

Split true performances
& associated inputs

• ‘Hold out’ CV approach
• Training and testing

sets (8 weeks each)

Replicate training set

• Generate 104 replicates per
scenario (Total of 104 x 35 =
3.5 x 105 for the athlete)

• Once augmented in next
step, each replicate set will
represent ‘measured’ VJ
power (Watts)

Augmented true data (over model training window)

 114

4.3.3 Development of training loads

A practitioner orientated approach was adopted to construct model input values that provide two

realistic training load (TRIMP) series for the two hypothetical athletes across the 16-weeks. The first

(TRIMP-1) followed a summated micro-cycles distribution, in which each four-week mesocycle

comprised three weeks of progressive loading followed by one week of de-loading (Plisk and Stone,

2003). The second (TRIMP-2) followed a wave-like pattern where training load gradually increased

and oscillated over each four week mesocycle (Baker, 1998, 2007). TRIMP values and their scaling

(stage-matching) across the two hypothetical athletes are presented in Figure 4.3.

Figure 4.3: Distributions of scaled TRIMP values for the two hypothetical athletes (intermediate and

advanced) over 16 weeks (measured in arbitrary units; a.u)

0

100

200

300

400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

0

100

200

300

400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

0

100

200

300

400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

0

100

200

300

400

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

INTERMEDIATE ATHLETE ADVANCED ATHLETE

TRIMP Distribution 1

TRIMP Distribution 2

TRIMP Distribution 1

TRIMP Distribution 2

Tr
ai

ni
ng

 im
pu

ls
e

(a
.u

)

Day (t)

Day (t)

Day (t)

Day (t)

(TRIMP-1) (TRIMP-1)

(TRIMP-2)(TRIMP-2)

Tr
ai

ni
ng

 im
pu

ls
e

(a
.u

)

 115

4.3.4 Development of athlete specific (true) parameters

The standard two-component five parameter fitness-fatigue model (eq. 4.1) was used to fit all models

in the simulation study. With parameter 𝑝∗ fixed a priori.

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝑒
&(!&.)
'!

!&/

.0-

𝜔. − 𝑘%A𝑒
&(!&.)
'"

!&/

.0-

𝜔. , 𝜔- = 0 (4.1)

Where �̂�(𝑡) represents model performance on day 𝑡 and parameters 𝑘$, 𝑘% are weighting factors that

translate the units of training load to the fitness and fatigue effects of the performance measure (power

measured in Watts), respectively; 𝜏$, 𝜏% are the decay constants controlling exponential decay profile

of fitness and fatigue effects, respectively; and 𝜔! is the daily TRIMP value. Athlete-specific true

parameters were obtained through a process of systematic parameter-space exploration. Briefly,

desired end-performance values following 16 weeks of raining were calculated for each athlete, and

an interval of ±75W was constructed to provide an initial screening threshold. Model simulations

were run with 3.8 × 10[different parameter sets {𝑘$, 𝑘% , 𝜏$, 𝜏%} constructed by incrementing values

in a grid-like fashion. Approximately 2000 potential parameter sets were obtained for each athlete in

which the end-performance value resided within the threshold set. These parameter sets were then

plotted and visually investigated for realistic developments over the 16-weeks. This process reduced

the number of sets to approximately 10 for each athlete (Table 4.1). Parameter ranges for the

intermediate athlete were 𝑘$:	0.5 − 2.5, 𝑘%:	1.0 − 4.0, 𝜏$:	14 − 37, 𝜏%:	5 − 19; And parameter

ranges for the advanced athlete were 𝑘$:	0.5 − 4.5, 	𝑘%:	1.0 − 5.0, 𝜏$:	6 − 25, 𝜏%:	5 − 15. A final

selection was made (Table 4.2) based on further visual comparison to create upward trends with

plateau, and ensuring parameter values and their ratios (𝑘%/𝑘$ and 𝜏$/𝜏%) were consistent with

previous research (Pfeiffer, 2008).

Table 4.1: Athlete-specific parameter sets (𝑘$, 𝜏$, 𝑘% , 𝜏%) creating realistic improvements. Top row

(highlighted) for each athlete includes the parameter set used for the computer experiments. INT:

Intermediate; ADV: advanced athlete.

Athlete 𝒌𝒈 𝝉𝒈 𝒌𝒉 𝝉𝒉 Athlete 𝒌𝒈 𝝉𝒈 𝒌𝒉 𝝉𝒉
INT 0.5 18 1 5 ADV 4.5 8 5 7
INT 2.5 14 3.5 9 ADV 3.5 6 4 5
INT 2.5 19 4 11 ADV 0.5 12 1 15
INT 0.5 37 1.5 9 ADV 1.4 10 2 7
INT 1 22 2 9 ADV 2.5 10 3 8
INT 1 19 1.5 10 ADV 0.5 20 1 9
INT 0.5 31 1 11 ADV 0.5 25 1 11
INT 1.5 26 2 17 ADV 1 19 1.5 12
INT 2.5 25 3 19 ADV 2.5 16 3 13

 116

Table 4.2: Athlete-specific (true) parameters (𝑘$, 𝜏$, 𝑘% , 𝜏%) and initial starting values (𝑝∗) and final

performance values 𝑝(112). INT: Intermediate; ADV: Advanced athlete.

Athlete Change (%) Baseline performance Final performance True parameters

𝒑(𝟎) 𝒑(𝟏𝟏𝟐) 𝒌𝒈 𝝉𝒈 𝒌𝒉 𝝉𝒉

INT ~ 15% 4500 ~ 5175 0.501 18 1.002 5

ADV ~ 5% 5250 ~ 5500 4.501 8 5.002 7

4.3.5 Implementation

Power values were generated for each athlete with the training loads and parameters described above

by simulating the Fitness-Fatigue model in equation 4.1 to represent true performance (Figure 4.4).

Repeated simulations were then used to investigate the effects of error magnitude and testing frequency

under parameters fitted to augmented true data. Measurement error was added to each true power value

(in the initial eight-week model training block) to replicate testing in a real-world setting. Errors were

added by random draws from a Gaussian distribution with mean zero and standard deviation

representative of that obtained during a vertical jump. A review of literature identified that power is

frequently measured via a force platform or linear position transducer (Cronin, Hing and McNair,

2004; Cormack et al., 2008). The former measurement tool calculates power via force and velocity

values obtained through integration, and the latter calculates power via force and velocity values

obtained from differentiation of displacement data. Reliability studies have reported coefficients of

variation (CoV) ranging from approximately 2 to 10%, with superior reliability obtained when using

a force platform (Cronin, Hing and McNair, 2004; Cormack et al., 2008). As a result, standard

deviations for Gaussian errors were derived for both hypothetical athletes by multiplying each CoV

value (2, 4, 6, 8, 10%) by the athlete's initial baseline power value 𝑝∗ and dividing by 100 (Table 4.3).

The advanced hypothetical athlete case was investigated further by repeating the experiment while

incorporating the same absolute error used in the intermediate case, to facilitate controlled

comparisons. To imitate different testing frequency states, a proportion of power values were isolated

to recreate the real-world setting of measuring performance from once per week to each day (in unit

increments of 1 day). For example, every seventh power value with error was selected from the model

training block when imitating the once per week testing state. A total of 210 scenarios were

investigated with each comprising 10r iterations per scenario (2.1 × 10[total iterations across all

three cases: intermediate, advanced athlete, advanced athlete with intermediate errors). Model fitting

was performed within a parallel computing framework, with parameter estimates obtained at each

iteration via a nonlinear least-squares regression approach applying a limited-memory modification of

the BFGS quasi-Newton algorithm (Byrd et al., 1995a), from the optimisation package Optim (a part

of the R stats package included with the standard kernel (R Core Team, 2020), v.3.4.4). Parameter

 117

estimates from each fitting iteration were combined with the corresponding TRIMPs across the entire

16-week block (Ludwig and Asteroth, 2016), with predictions for the hold-out data used to obtain

prediction errors for subsequent analysis.

Figure 4.4: True vertical jump power values simulated across 16 weeks with two training load

distributions (TRIMP-1, TRIMP-2) for the intermediate and the advanced athlete

Table 4.3: Standard deviation (W) of the Gaussian error distribution with mean 0, from which random

measurement errors were drawn and applied to each known true value in the simulations

 SD of Gaussian error distributions for CoV % states
Athlete 2% 4% 6% 8% 10%

Intermediate 90 W 180 W 270 W 360 W 450 W

Advanced 105 W 210 W 315 W 420 W 525 W

TRIMP-1
TRIMP-2

INTERMEDIATE ATHLETE

Pe
ak

 P
ow

er
 (W

a
s)

Day (t)4250

4400

4550

4700

4850

5000

5150

5300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111

4950

5100

5250

5400

5550

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111

TRIMP-1
TRIMP-2

ADVANCED ATHLETE

Day (t)

Pe
ak

 P
ow

er
 (W

a
s)

 118

4.3.6 Statistical analyses

For each set of 10r fitting iterations, prediction errors were transformed into summary statistics

representing distributional centrality 𝐷𝑃𝐸E and spread 𝐷𝑃𝐸W by calculating the median value and the

distance between the 0.16 and 0.84 quantiles, respectively. Relationships between dependent variables

(centrality: 𝐷𝑃𝐸E, spread: 𝐷𝑃𝐸W) and centered independent variables (measurement error and testing

frequency) were quantified by multiple linear regression. Initially, the linear combination of

measurement error and testing frequency expressed as continuous variables were entered into

regression models. A second series of models featuring the linear combination and product of

measurement error and testing frequency (interaction effect) were then included. Fit and suitability of

each linear model was assessed with adjusted R2 and residual analysis, respectively. Distributions of

parameter estimates were described using descriptive statistics and ill-conditioning assessed via

calculation of Pearson correlation coefficients (Hellard et al., 2006; Pfeiffer, 2008).

4.3.7 Quality control

Systematic examination of the source code (formal code review) was performed pre- and post-

simulation deployment to detect inaccuracies that would prevent successful implementation or cause

erroneous results. Modules performing vital functions within the code were typically also isolated and

unit-tested at the point of development within the main source code. A basic sensitivity analysis was

conducted to assess the effects of different initial values on the non-linear least squares’ optimisation

function. The sensitivity analysis comprised fitting the least-squares algorithm with 100 different

starting values across the parameter space, and no substantive changes on average were noted from

code featuring a single set of starting values comprising the true parameters, although there was

divergence for some starting parameters with poor objective value and toward the bounds.

Optimisation convergence was set using a tolerance of 10-8 in reduction of the objective and found to

be successful for approximately 99% of total parameters estimated within the experiment.

 119

4.4 Results

4.4.1 Prediction errors

All analyses revealed positive associations between dependent variables (prediction error centrality

and spread) and the independent variables (measurement error and testing frequency). 𝐷𝑃𝐸E was well

explained by the linear combination of the two independent variables (Adjusted R2= 0.89 − 0.94)

across all six athlete-TRIMP groupings (Figure 4.5) (Table 4.4). Regression coefficients for testing

frequency (𝛽/ = 19.1 − 26.4) and measurement error (𝛽< = 20.8 − 25.4) were shown to be

significant (P < 0.001) for each model assessed. The inclusion of an interaction term significantly (P

< 0.001) improved the fit of each model (Adjusted R2= 0.96 − 0.98) and demonstrated that the

deleterious effects of increased measurement error on 𝐷𝑃𝐸E was increased at lower testing

frequencies. Similar results were obtained for 𝐷𝑃𝐸W (Figure 4.6, Table 4.4), with strong linear

relationships obtained with testing frequency and measurement error (Adjusted R2= 0.98 − 0.91).

Again, each regression coefficient was found to be significant (P < 0.001), and all models were

improved (P < 0.001) with an interaction effect demonstrating greater deleterious effects of

measurement error at low testing frequencies. Comparisons of prediction errors between the advanced

and intermediate athlete demonstrated a dependence on testing frequency. For high measurement

frequencies, the advanced athlete experiment for both TRIMP distributions demonstrated

systematically lower prediction errors compared to the intermediate athlete. This finding was obtained

for both 𝐷𝑃𝐸E (mean ± sd = 	90 ± 47 vs. 103 ± 93 W, respectively) and 𝐷𝑃𝐸W	(mean ± sd = 168 ±

110 vs. 193 ± 93 W, respectively), despite larger absolute measurement error values inputted to

advanced athlete experiment. However, when testing frequency was low, prediction errors were

similar for both athletes, and in some cases, slightly larger for the advanced athlete. When the

experiment was repeated using the same absolute error magnitude for both athletes, centrality and

spread of prediction error were consistently lower for the advanced athlete across all conditions.

 120

Table 4.4: Regression coefficient estimates and standard error (SE), residual standard error (RSE, 32

degrees of freedom), and adjusted R2 values, for the centred independent variables (measurement error

and testing frequency) with and without an interaction term, on the response variables (centrality

𝐷𝑃𝐸E and spread 𝐷𝑃𝐸W).
 Intermediate athlete Advanced athlete Advanced athlete +

 T1 T2 T1 T2 T1 T2

𝑫𝑷𝑬𝒎

(centrality)

Coefficient

Estimates

𝛽G 150.2 153.7 148.1 152.4 127.1 130.6

𝛽> (Freq) 19.1 20.7 23.8 26.4 20.5 22.6

𝛽C (Error) 20.8 21.1 24.4 25.4 20.8 21.6

Standard

Error

𝛽G

(Intercept)
3.1 3.6 4.4 5.3 3.8 4.5

𝛽> (Freq) 1.5 1.8 2.2 2.7 1.9 2.3

𝛽C (Error) 1.1 1.3 1.6 1.9 1.3 1.6

Fit Statistics

R2
adj 0.94 0.92 0.91 0.89 0.91 0.89

R2
adj

interaction
0.98 0.97 0.98 0.96 0.98 0.96

RSE 18.2 21.5 26.2 31.4 22.5 26.9

𝑫𝑷𝑬𝒔

(spread)

Coefficient

Estimates

𝛽G

(Intercept)
292.1 308.8 304.1 332.5 253.5 277.4

𝛽> (Freq) 41.5 45.4 56.8 64.7 49 55.5

𝛽C (Error) 44.5 46 58.1 63.3 48.6 52.9

Standard

Error

𝛽G 8 9.6 12 14.4 10.4 12.3

𝛽> (Freq) 4 4.8 6 7.2 5.2 6.2

𝛽C (Error) 2.8 3.4 4.3 5.1 3.7 4.4

Fit Statistics

R2
adj 0.91 0.89 0.89 0.87 0.89 0.87

R2
adj

interaction
0.96 0.94 0.96 0.94 0.97 0.95

RSE 47.2 56.6 71.4 85.4 61.5 73

Notes: All fit statistics P < 0.001, 32 degrees of freedom. Advanced athlete + refers to the advanced athlete

experiment that was performed with intermediate athlete measurement conditions (CoV %). T1 (TRIMPs-1), T2

(TRIMPs-2). R2adj is the adjusted coefficient of determination. (interaction) refers to the regression model which

accounts for interactive effects between error and frequency.

 121

DPEM: Distributional centrality of absolute prediction error; CoV: Coefficient-of-Variation (%); W:

Watts (Peak Power output); E𝑛D: Every 𝑛 Days, 𝑛 ∈ {1,2,3,4,5,6,7}

Figure 4.5: Regression planes illustrating relationships between prediction errors (centrality of

distribution) and independent variables (measurement error and testing frequency)

0
50

100

150

200

250

300

350
ED E2

D

E3
D

E4
D

E5
D

E6
D

E7
D

2%
4%

6%

8%
10%

Intermediate Athlete

TRIMP-1 TRIMP-2

Error (CoV)

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency Measurement Frequency

DP
E

 (
W

a
s)

M

0
50

100
150
200
250
300
350
400

2%
4%

6%
8%

10%

Error (CoV)

Advanced Athlete

TRIMP-1 TRIMP-2

0

100

200

300

400

E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

ED

DP
E

 (
W

a
s)

M

2%
4%

6%

8%
10%

Erro
r (C

oV)

0

100

200

300

400

500

E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

ED

2%
4%

6%

8%
10%

Erro
r (CoV)

DP
E

 (
W

a
s)

M

Advanced Athlete
(Intermediate Measurement Error Conditions)

TRIMP-1 TRIMP-2

0
50

100

150

200

250

300

350

DP
E

 (
W

a
s)

M

E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

ED

2%
4%

6%
8%

10%

Erro
r (CoV)

0

50
100
150
200
250
300
350
400

DP
E

 (
W

a
s)

M

E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

ED

2%
4%

6%
8%

10%

Error (CoV)

DP
E

 (
W

a
s)

M

 122

DPES: Distributional spread of absolute prediction error; CoV: Coefficient-of-Variation (%); W:

Watts (Peak Power output); E𝑛D: Every 𝑛 Days, 𝑛 ∈ {1,2,3,4,5,6,7}

Figure 4.6: Regression planes illustrating relationships between prediction errors (spread of

distribution) and independent variables (measurement error and testing frequency)

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

2%
4%

6%
8%

10%

Intermediate Athlete
TRIMP-1 TRIMP-2

Error (CoV)

Measurement Frequency

DP
E

 (
W

a
s)

S

Advanced Athlete
TRIMP-1 TRIMP-2

Advanced Athlete
(With Intermediate Measurement Error Conditions)

TRIMP-1 TRIMP-2

 100
200
300
400
500
600
700
800

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

2%
4%

6%

8%
10%

DP
E

 (
W

a
s)

S

0 0

200

400

600

800

1000

 DP
E

 (
W

a
s)

S

0

200

400

600

800

1000

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

2%
4%

6%

8%
10%

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

2%
4%

6%
8%

10%

0
200

400

600

800

1000

1200
DP

E
 (

W
a

s)
S

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

2%
4%

6%

8%
10%200

400

600

800

0

ED E2
D

E3
D

E4
D

E5
D

E6
D

E7
D

Measurement Frequency

0

200

400

600

800

1000

DP
E

 (
W

a
s)

S

2%
4%

6%

8%
10%DP

E
 (

W
a

s)
S

Erro
r (CoV)

Erro
r (CoV)

Error (CoV)

Erro
r (C

oV)

Erro
r (CoV)

 123

4.4.2 Model parameter estimates

In general, model parameter estimates J𝑘$, 𝜏$, 𝑘% , 𝜏%K displayed a range of different distributions

across scenarios. Estimates for the gain parameters J𝑘$, 𝑘%K were unstable for both athletes, with

boundary values frequently obtained when testing frequency was low. This effect was magnified when

low testing frequency was combined with high measurement error. Distribution of the decay

parameters J𝜏$, 𝜏%K became increasingly right-skewed for both athletes as measurement error

increased. This effect became more pronounced when larger measurement errors were combined with

low testing frequency. Correlations between parameter estimates (𝑁 = 350,000 per athlete-TRIMP

grouping; Table 4.5) revealed strong associations between gain parameters (𝑘$, 𝑘%: 𝑟E1Fa = 0.978 −

0.99) for both athletes, thereby demonstrating ill-conditioning. Low to moderate strength negative

correlations were also obtained between 𝑘$ and 𝜏$ (𝑟E1Fa = −0.57	𝑡𝑜	 − 0.38), and 𝑘% and 𝜏$

(𝑟E1Fa = −0.58	𝑡𝑜	 − 0.39) for both athletes.

Table 4.5: Correlations between estimated model parameters for scenarios within athlete-TRIMP

groupings (N = 10000 parameter sets, per scenario). Highlighted is the main finding indicating ill-

conditioning of the model relating to non-independence of the scaling factors.

 Correlation Coefficient
 INT: TRIMPS-1 INT: TRIMPS-2 ADV: TRIMPS-1 ADV: TRIMPS-2

Model Parameter Mean SD Mean SD Mean SD Mean SD

𝑘! − 𝑘# 0.99 0.009 0.990 0.013 0.98 0.018 0.978 0.025

𝑘! − 𝜏! -0.57 0.031 -0.560 0.036 -0.38 0.057 -0.382 0.056

𝑘! − 𝜏# 0.28 0.231 0.237 0.221 -0.05 0.112 -0.084 0.089

𝑘# − 𝜏! -0.58 0.033 -0.576 0.036 -0.39 0.049 -0.398 0.050

𝑘# − 𝜏# 0.23 0.253 0.186 0.244 -0.11 0.125 -0.151 0.100

𝜏! − 𝜏# 0.16 0.354 0.217 0.348 0.63 0.278 0.689 0.219

𝜏! − 𝑘!/𝑘# -0.09 0.174 -0.073 0.165 -0.13 0.233 -0.049 0.195

𝜏# − 𝑘#/𝑘! 0.06 0.225 0.039 0.213 0.19 0.114 0.150 0.104

INT: Intermediate | ADV: Advanced | SD: Standard Deviation

 124

4.5 Discussion

The present study comprised a unique and efficient design to investigate prediction accuracy of the

standard fitness-fatigue model in a strength and conditioning context. The in silico approach provided

an effective method to systematically assess the effects of two key challenges in athlete training

modelling, namely, controlling measurement error and identifying appropriate measurement

frequencies (Pfeiffer, 2008; Clarke and Skiba, 2013; Bourdon et al., 2017). Whilst it is unrealistic to

expect an athlete will respond deterministically to a series of training loads, the approach and

underlying assumptions adopted in the present study provide important general information and

informative lower bound cases for researchers and practitioners to consider. That is, the approach can

identify and rule out specific practices that have no potential to be successful in real-world settings

(but not rule in other practices). The key findings of this study indicate that increased measurement

error and reduced testing frequency across standard ranges encountered in practice meaningfully

increase prediction errors. Additionally, variation in prediction errors were well explained by the

simple linear combination of measurement error and testing frequency (Adjusted R2 = 0.87-0.94).

Regression coefficients showed that for every 1% increase in CoV, the distribution of prediction errors

increased by approximately 21-25 W in centrality (𝐷𝑃𝐸E) and 45-63 W in spread (𝐷𝑃𝐸W). Similarly,

models showed that for a single day reduction in testing frequency, the distribution of prediction errors

increased by approximately 19-26 W in centrality (𝐷𝑃𝐸E) and 42-65 W in spread (𝐷𝑃𝐸W).

Theoretically, the standard fitness-fatigue model and traditional non-linear least squares methods used

to obtain parameter estimates should demonstrate poor performance with high measurement error. The

results of the experiments across the three hypothetical athletes (intermediate, advanced, advanced +)

support this notion and show that if observed scores in a given performance test comprise error of

more than 2-5% of an athlete’s baseline score, they are unlikely to be suitable for use with the fitness-

fatigue model due to unacceptable prediction accuracy even in this most optimistic scenario where

performance is directly specified by the model. The results demonstrate that when the model is fit to

moderately inaccurate data (comprising error more than 5% CoV) predictive errors become

unacceptably high across all frequency conditions. For example, if measurements comprised ~6%

CoV, the results of this study suggest that even under high testing frequencies, prediction errors of

+150W should be expected for intermediate/advanced athletes. For further context, an error of 150 W

is equal to approximately 3% of the baseline scores, with total improvement across the entire training

phase set at 5 and 15% for the advanced and intermediate athlete, respectively. Furthermore, these

computer experiments under deterministic assumptions represent a lower bound case, where additional

real-world factors will further increase prediction errors.

 125

4.6 Summary, conclusions, and practical recommendations

Whilst the results of the computer experiment presented here provide novel insights into the effects of

measurement error and testing frequency on fitness-fatigue model prediction accuracy, there are a

range of complex additional factors that would be expected to influence model prediction of an

athlete’s response to training. The primary aim of this study was to generate lower bound estimates,

where even in the absence of these additional factors, certain measurement errors and testing

frequencies conditions would be considered ineffective to warrant use in practice or research.

Collectively, the results of this study indicate that practitioners and researchers should focus on

relevant performance tests that generate highly reliable data (≤	4% CoV). Additional processes

including taking the average of multiple trials and filtering techniques can also increase reliability and

should be considered. Even under high frequency conditions, the results of this study demonstrate that

accurate predictions are not likely if measurement error is not minimised. Prior to investing time in

data collection, it is recommended that practitioners and researchers adopt an approach similar to the

one applied here, where various measurement error and testing frequencies can be applied to training

loads and adaptive rates realistic to each athlete being studied. Finally, it is recommended that future

research investigating the use of fitness-fatigue models report prediction accuracy using cross-

validation to appropriately evaluate the utility of the model to practitioners within the field of sport

science.

 126

Chapter 5: Suitability of a quasi-Newton algorithm for estimating
FFMs: Sensitivity, troublesome local optima, and implications for
future research (An in silico experimental design)

5.1 Preface

The typical experimental approach in the study of fitness-fatigue models across prior research has

involved collecting laboratory or field data, using this data to fit unknown FFM parameters via

nonlinear least-squares regression (NLS), and then testing ensuing model predictions on in-sample

data to derive metrics of goodness-of-fit. Explicitly, data spanning one or more training periods is used

which comprises: 1) training logs containing key information (e.g., volume, intensity) to quantify

model input (training load) via a nominated method (e.g., Banister’s TRIMP); and 2) measured values

of physical performance collected at semi-regular or irregular intervals over the time-series. Although

this type of applied research is a necessary component of model evaluation, previous experimental

designs have frequently overlooked both evident and probable issues with applied methods,

introducing a noticeable pattern of unconscious replication across research (see Table B-2, appendix

B). Most significantly, repetition of issues pertaining to model fitting and evaluation of predictions. A

balance should be struck between the volume of applied modelling work, and the theoretical

examination of experimental design and operational aspects of FFM study that should inform applied

research. Criticisms of the singular testing of fitted models on in-sample data, as opposed to inclusion

of some form of out-of-sample testing, have already been outlined in this thesis (chapters 2 and 4) and

recent research (Stephens Hemingway et al., 2019, 2021; Imbach et al., 2020). In Chapter 6, this

problem is solved at a practical level by provision of a time-series cross-validation approach

implemented in the programming language R that can be used by researchers to test and fit FFMs. In

addition, very limited direct attention has been given to the suitability of common approaches used to

fit FFMs, as well as issues that researchers are likely to encounter when attempting to solve the data-

fitting problem, such as the presence of many local minima within the search space.

The optimisation problem of fitting FFMs to data may be split broadly into two steps: 1) problem

formulation, i.e., selection of an appropriate objective function; and 2) problem solving, i.e., selection

of an appropriate algorithm to find the best minimiser or maximiser of the objective under the inputs

(e.g., parameters). Problem formulation for fitting FFMs has typically used the sum-of-squares error

function as the objective (abbreviated RSS or SSE) within a nonlinear least-squares (NLS) approach,

and more recently the log-likelihood function within a maximum likelihood estimation (MLE)

approach (Shrahili, 2014; Busso, 2017; Scarf et al., 2019; Swinton et al., 2021). RSS appears to be a

common choice as an objective function for general model fitting. However, less obvious is which - if

any - prospective algorithm represents a robust and reliable method to solve an NLS problem in the

 127

case of fitting an FFM to data. With the exception of a recent study by Connor and O’Neill (2020), no

direct investigation of algorithms to solve the NLS problem when fitting FFMs to data has been

conducted. In their recent preprint paper, Connor and O’Neill (2020) evaluated the performance of an

evolutionary algorithm (differential evolution) as an alternative to a typical first order algorithm used

previously for fitting FFMs under NLS (Connor and O’Neill, 2020). Specifically, model prediction

errors (RMSE) over a hold-out dataset were quantified and compared from fitted solutions found by

two algorithms, differential evolution and the quasi-Newton algorithm L-BFGS-B (a first-order

method which attempts to mimic a second-order method via a secant method). Data for their study

were drawn from the dataset published in Clarke and Skiba (2013). Use of real data represents the

biggest limitation of Connor and O’Neill’s approach, as although the performance of the two

algorithms is comparable based on obtained solutions (i.e., associated objective function value and

prediction errors), the global minimum of the objective remains unknown and so the approach cannot

be used to identify the reliability of any particular algorithm to globally minimise the NLS problem.

This is because the RSS associated with fitted solutions are almost always non-zero, primarily due to

model misspecification, and therefore no reference value exists for comparison in the real-world. That

is, the absolute minimum (best solution) of the objective function remains unknown, and as such it

cannot be determined that a given solution represents a global minimum in the case of the FFM. The

caveat to this is that with increasing numbers of free parameters in the model, the closer the fitting

algorithm may be able to get to a zero-residual solution for real data, due to larger degrees of freedom.

In contrast, an in silico design may offer an innovative approach for directly studying the optimisation

process, including the suitability of different algorithms to globally minimise the objective under best-

case conditions, and identification of complexities in the search space that may affect algorithm

behaviour and therefore have implications for choice of solver in real world experiments. From the

deterministic assumption of an FFM as the truth function of athlete response, synthetic performance

values can be generated via simulation of the model under a pre-defined set of true parameters and

mock training load values (model inputs), without additional measurement error. In this manner, a

global minimum is known for the model (at the true parameters) associated with the simulated data,

which represents a hypothetical “measured performance” profile. This simulated data can then be fed

into a fitting process to test (in the most basic case of zero noise) the ability for a particular algorithm

to recover the true parameters under an approach such as NLS. For some algorithms, such as first and

second-order methods that are by definition, local optimisers, this process would be repeated from

multiple starting points to derive an estimate of the algorithm’s sensitivity to starting point in the

parameter space (i.e., the frequency with which it can converge to the true parameters). For

evolutionary algorithms that are stochastic by nature, the equivalent is repetition of the fitting process

from many different random starting populations.

 128

This type of experimental approach, contained within an extensive computational framework

comprising multiple iterations, is unique for studying the estimation process as it would otherwise be

impossible to estimate properties such as starting point sensitivity in the same manner when using real

data, due to a lack of a known global minimum for the data. Although there are limitations to this type

of simulation approach, including the knowledge that the FFM does not fully specify the training

response and therefore no zero-residual solution will exist under real-world data, the benefits of this

perspective such as the capability to study the fitting process under a high number of iterations and

extensive range of conditions provide strong argument for its uptake as one part of the theoretical

picture. In addition, it is a cost-effective approach in comparison to laboratory experiments and/or

conducting and monitoring training interventions. It may be also used prospectively to provide an

indication of how to appropriately tune evolutionary algorithms specifically for the FFM fitting

problem, beyond standard rules of thumb.

In the study to follow, it is hypothesised that for the standard and fitness-delay FFMs, there is a low

likelihood of finding a global minimiser under NLS from a “one-shot” optimisation run of a first or

second-order algorithm that requires starting values, due to the presence of many local extrema

(minima and/or saddle points) that cause these types of algorithms to fall short of the best solution

depending on starting point. Correspondingly, it is suggested that the data fitting problem is more

challenging than previous research has assumed or recognised, and that this has gone unnoticed across

the previous experimental literature where estimates have been derived seemingly from one-shot runs

of local optimisers. It is argued that had previous research performed multiple searches (initiated from

different starting points) when fitting FFMs under these types of algorithms the problems suggested

may have been spotted earlier and questions raised surrounding starting-point sensitivity and

subsequent suitability of typical optimisation algorithms adopted. In the spreadsheet of Clarke and

Skiba (2013), researchers are advised to “Run the solver again a few times to ensure convergence”,

suggesting that the authors felt this was sufficient to avoid local sensitivity of a common search

algorithm. In addition, they do not provide reasoning for this statement or discussion of the wider

implications of this type of sensitivity, nor a suggestion or justification of which particular algorithm

to use.

The aim of this chapter, and the associated research paper 5 is to investigate the suitability of a typical

first-order algorithm (with second-order approximation) to solve the FFM fitting problem via NLS.

The simulation methods used are similar to those developed in chapter 4 and described so far in this

preface. Of particular focus is assessment of the hypothesis described above, via study of starting point

5 Stephens Hemingway, B., Swinton, P. A., & Ogorek, B. (2021). The suitability of a quasi-Newton algorithm
for estimating fitness-fatigue models: Sensitivity, troublesome local optima, and implications for future research
(An in silico experimental design). SportRxiv (Preprint). 10.31236/osf.io/dx7gm

 129

sensitivity of the L-BFGS-B algorithm under best case conditions (i.e., deterministic assumption and

no noise), existence of local optima in the search space, and the subsequent implications of any

findings on the interpretation of estimates in prior research and considerations for future work.

5.2 Introduction

The standard FFM emerges from a linear system of first-order ordinary differential equations (Banister

et al., 1975). When solved, this ODE system yields a nonlinear function in the unknown model

parameters (Busso et al., 1990; Morton, Fitz-clarke and Banister, 1990; Clarke and Skiba, 2013). Other

FFMs arise from similar ODE systems, although some involve non-linear system dynamics (Turner et

al., 2017), higher derivatives (Calvert et al., 1976) (see appendix A), and recursion (Matabuena and

Rodríguez-López, 2016, 2019). Therefore, fitting an FFM constitutes a nonlinear optimisation problem

in its model parameters. FFMs dependent on time-invariant parameters (Banister et al., 1975), or in

special cases time-varying parameters (Busso et al., 1997; Kolossa et al., 2017) that cannot be inferred

from observation and must instead be estimated from quantified training load and measured

performance data (Stephens Hemingway et al., 2021). The fitting process takes as input a time-series

of measured performances (denoted 𝑝) and training load values (denoted 𝜔) and provides as output

model parameter estimates (𝜃 ∈ ℝb) that give good or preferably the best possible agreement between

iteratively computed model values (denoted �̂�) and measured data (𝑝). Essentially, to fit an FFM, a

researcher or practitioner requires a series of suitable training load and performance measurement data,

and a method to alter the parameters to best match these through an optimisation perspective.

The most common optimisation approach for fitting FFMs has been NLS (eq. 5.1) (Hellard et al.,

2006; Pfeiffer, 2008; Clarke and Skiba, 2013; Proshin and Solodyannikov, 2018; Connor and O’Neill,

2020), or a maximum likelihood perspective (Busso, 2017; Scarf et al., 2019). Least-squares and

maximum likelihood estimation coincide under the assumption of independent and identically

distributed Gaussian model errors. Of the two, NLS has represented the most accessible approach

across prior research and involves minimising the sum of squared deviations (also called errors)

between modelled and measured performance (eq. 5.1) (a twice differentiable function) using some

iterative algorithm.

minA(�̂�. − 𝑝.)<
E

.0/

	 (5.1)

Where in (eq. 5.1) 𝑖 is an index over a set of 𝑚 of data points {(𝑝/, �̂�/), (𝑝<, �̂�<), … , (𝑝E, �̂�E)}

that represent measured (𝑝) and modelled (�̂�) criterion performance values at specific integer time

points 𝑡. ∈ ℕ. The term �̂�. is determined by the FFM function 𝑓J𝑡. , 𝜃, �𝜔/, … , 𝜔!/�K that not only

 130

depends on the time-step input (i.e., Δ! = 1) up to time 𝑡. (i.e. training load series) �𝜔/, 𝜔<, … , 𝜔!/�

but also on 𝑛 model parameters (𝜃) with 𝑚 ≥ 𝑛. For example, with the standard FFM (eq. 5.2) the

parameters 𝜃 comprise the set {𝑝∗, 𝑘$, 𝜏$, 𝑘% , 𝜏%}, where 𝑝∗ is an additive term representing baseline

performance, 𝜏$, 𝜏% are the decay time constants on fitness and fatigue, respectively, and 𝑘$, 𝑘% are

the associated scaling factors. NLS regression problems are typically solved using general

minimisation methods, where the algorithm evaluates the cost function (eq. 5.1) and uses specific

update and stopping criteria to travel the available parameter space to search for the best possible set

(i.e., the absolute minimum of the function).

Fitting an FFM via NLS in practice assumes that a unique optimal solution exists and can be found by

the algorithm applied. However, this idealistic scenario may not hold for two reasons: 1) the absolute

minimum may not be unique; and 2) local minima, saddle points, and/or plateau features may exist

that cause problems for certain algorithms. The FFM in basic form is a model in five dimensions

(Banister et al., 1975), or six if a delay on fitness is also included (Calvert et al., 1976). Therefore, the

parameter surface cannot be plotted or visually inspected via standard techniques to assess convexity.

If there exist different parameter sets in the domain that share the same global minimum under standard

NLS, then there is a situation where parameters aren’t uniquely identified without additional

constraints or regularisation terms. However, more likely is that problems with the typical FFM fitting

process will stem from the existence of local minima, saddles, or plateau features that cause the

algorithm to converge to a solution not equal to the global minimum, or become lost (Philippe et al.,

2018). Local optima can provoke sensitivities in the fitting process for first and second-order

algorithms that are by definition local optimisers. This manifests as sensitivity to initial parameter

estimates (i.e., the starting point the algorithm initialises the search from). The extent of starting point

sensitivity is largely unknown in the context of FFMs for common algorithms adopted and has not

been studied directly. Given this concern, research reporting a single model solution derived from ‘one

shot’ minimisation of NLS via typical first and second-order algorithms is fundamentally limited by

possible uncertainty as to the suitability of fitted estimates as global minimisers. Therefore, the primary

aim of the experiment was to study the sensitivity of a quasi-Newton algorithm to selection of initial

estimates, and the existence of local optima, when fitting an FFM under an NLS perspective. A

secondary aim was to examine the implications of any findings in relation to previous research as well

as considerations for future investigations. The aims of the experiment were addressed through an in

silico (computer experiment) approach that adopted a deterministic assumption that the FFM

completely specified athlete response. Under this assumption, two FFMs (standard, and fitness-delay

model) were simulated under a set of hypothetical model inputs and manually selected parameter

values (for each model), generating in the process a set of synthetic performance data. The parameter

values represented true values for the model under the deterministic assumption, associated with the

 131

synthetic performance data. The two FFMs were refitted to the synthetic performance data without

any noise by a quasi-Newton algorithm, under the same training load inputs, in a repetitive fashion

starting from multiple points in the parameter space. This allowed starting point sensitivity of the

algorithm to be assessed under best case conditions (no noise), and identification of the presence of

local optima in the search space.

5.3 Materials and methods

5.3.1 Experimental approach to the problem

An in silico approach was developed, employing a first-order search algorithm (with second-order

approximation) to fit two FFMs (eq’s. 5.2, 5.3) from multiple starting values to associated synthetic

performance data, in an iterative fashion. The performance data (a set of) was generated for each model

under pre-defined true parameters and training loads (model inputs) via model simulation. At each

iteration in the experiment, the algorithm was initialised from a different starting point (selected

sequentially from a large grid of pre-determined values) and the appropriate model fit to the associated

performance data via successive minimisation of the NLS objective function (eq. 5.1). The goal of the

optimisation algorithm at each iteration was to try and recover the true parameters (global minimum)

in the case where no additional noise exists. A scenario was defined as the combination of the model

involved, and the proportion of simulated data used in the fitting process, with this latter factor

described shortly. The total number of iterations in each scenario was equal to the total number of

starting sets in the grid, which was therefore also equivalent to the total number of fitted estimates

obtained. The synthetic model input values (i.e., daily training loads) used in the experiment were

manually constructed to exhibit a realistic distribution (with regard to pattern, shape, and relative

magnitude). Additionally, the true parameter values were selected such that the simulated performance

values represented realistic performance change and variation over time.

Although the assumption of a completely deterministic model of athlete response is unrealistic due to

simplification by design within the modelling process, this experimental approach is believed to be

reasonable in a research context to enable lower-bound study of the fitting process in a manner not

possible with real data. Furthermore, the simulated performance data were not unreasonable with

regard to change in the performance profile, and true parameters (such as the decay constants) were

chosen as to be interpretable with regard to model dynamics (Stephens Hemingway et al., 2021). In

the real world, fitting FFMs involves non-zero (possibly large) residual solutions that make it

impossible to be sure that the fitted estimates represent a unique global minimum. In contrast, the

approach developed in this experiment allows the convergence to the true parameters representing a

global minimum to be reliably assessed for different initial estimates (starting values) used by the

 132

algorithm, and when fitting to different proportions of the data (i.e., a lower measurement frequency).

In the experiment, this second factor in each scenario (proportion of fitting data used) was contextually

referred to as the measurement frequency based on its correspondence with the availability of data in

practice. A reduction in measurement frequency was reflected by repeating the process described

above for each model whilst fitting to a reduced subset of the simulated data. Three frequencies were

studied: 1) Every day (ED) equivalent to 100% of the data; 2) Every 2 days (E2D) equivalent to

approximately 50% of the data; and 3) Every 3 days (E3D) equivalent to approximately 33% of the

data. At the heart of the research is to determine whether the fitting algorithm adopted is suitable for

use in practice based on its ability (or lack of) to consistently recover the true parameters regardless of

starting point or a decrease in volume of data supplied (given that no additional noise is incorporated).

A flowchart detailing the computational process is presented in Figure 5.1, and the algorithm for the

experimental flow stated in Appendix C-1.

The standard model (Banister et al., 1975)

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)
:!%

NººººOººººP
fitness component

− 𝑘%A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)
:"

NººººOººººP
fatigue component

(5.2)

The fitness-delay model (Calvert et al., 1976)

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔.

!&/

.0/

⋅ (𝑒
&(!&.)
:!%

»¼½¼¾
1UU1V!

− 𝑒
&(!&.)
'!&

»¼½¼¾
S1YFs

)
NººººººººOººººººººP

fitness component

− 𝑘%A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)
:"

NººººOººººP
fatigue component

(5.3)

 Where for both models, 𝑔(0) = ℎ(0) = 𝜔- = 0.

5.3.2 Development of the synthetic model inputs (training loads)

The series of model input (training loads) used in the experiment were constructed based on concepts

of daily variation and a subtle wave-like profile (Baker, 1998). Pre-simulation scaling of the load series

was set to a maximum of 5% of the true baseline performance (additive term 𝑝∗), to avoid excessively

small values of the scaling parameters (𝑘$, 𝑘%), but the values were otherwise arbitrary. Primary

emphasis was placed on the shape of the distribution (Baker, 1998) and reasonable relative differences

in magnitude (i.e., between session), rather than absolute scale. Figure 5.2 provides a visual plot of

the training loads developed over a 150-day time-series.

 133

Figure 5.1: Flowchart describing the experimental approach to the problem (for both models)

Figure 5.2: Hypothetical training load values for the experiment with realistic variation and wave-like

profile

5.3.3 Simulated performance data

As described, the set of simulated daily performance data for each model were developed by first

selecting a set of ‘true parameters’ associated with each model (Table 5.1) that produced a realistic

profile with regard to magnitude and shape of performance change under the training load series. To

assess magnitude, improvement in the maximum bench press (kg) for a moderately trained athlete over

0 50 100 150

0
1

2
3

4
5

Hypothetical training load series for the simulations

Time (days)

Tr
ai

ni
ng

 lo
ad

 (a
.u

)

 134

a 150-day period was used as a guide. Although the introduction of context is useful, it is also

recognised that is it not necessary here and that these values could be left undefined without affecting

validity of the experiment. The data used to fit (train) the model were developed by isolating a

proportion of the model-generated performance values according to the measurement frequency

condition in the scenario. In contrast to the first experiment in this research project (Stephens

Hemingway et al., 2019) (chapter 4), no noise was introduced to the training data as this would disrupt

the presence and purpose of establishing a known global minimum. The total proportion of values

isolated from the simulated data and used to fit the model was defined by three measurement frequency

conditions described previously (ED, E2D, E3D) and reflected by subsets of 100%, ~50% and ~33%

respectively. Figure 5.3 shows the set of simulated performance data for each model, and figure 5.4

illustrates the underlying component profile.

Figure 5.3: Simulated performance data generated for each model: Standard model (left) and fitness-

delay model (right)

Figure 5.4: Simulated model component states: standard model (left) and fitness-delay model (right);

fitness component (green), fatigue component (red), training load (grey)

0 50 100 150

10
0

10
5

11
0

11
5

Standard model (true performance)

Time (days)

Pe
rfo

rm
an

ce
 (a

.u
)

0 50 100 150

95
10

0
11

0

Fitness−delay model (true performance)

Time (days)

Pe
rfo

rm
an

ce
 (a

.u
)

0 50 100 150

0
5

10
20

30

Standard model: Components (true state)

Time (days)

C
om

po
ne

nt
 le

ve
l (

a.
u)

fitness
fatigue
load

0 50 100 150

0
5

10
15

20
25

Calvert model: Components (true state)

Time (days)

C
om

po
ne

nt
 le

ve
l (

a.
u)

fitness
fatigue
load

 135

Table 5.1: True parameters used in the experimental (simulated data) for each model

 𝑝∗ 𝑘! 𝑘# 𝜏# 𝜏!" 𝜏!!

Standard model 100 0.72 1.2 8.6 28.5 -

Fitness-delay model 100 0.72 1.05 8.6 32.5 4.3

5.3.4 Computational framework

A total of 6 scenarios were investigated comprising conditions of two factors (model [2] ×

measurement frequency [3]), and the following process was employed for each: 1) reasonable bounds

on the parameter space were established on each parameter (see Table 5.2, equivalent across

scenarios); 2) between the bounds, a discrete grid of feasible parameter combinations was constructed,

with equally spaced step changes in each parameter (See Figure 5.5); 3) the value of each parameter

set in the discrete grid was evaluated via the objective function (eq. 5.1) representing the ‘fitness’

(cost) of each starting point prior to fitting; 4) in an iterative and parallelised model fitting process,

each parameter set in the grid was applied as the starting point of the quasi-Newton algorithm; that

takes as input the training load series and simulated criterion performance values (fitting data, see

5.3.3), and returns as output a set of fitted parameter estimates via minimisation of NLS; 5) fitted

parameter estimates were combined with the training load series to generate fitted model predictions

(project performance) and these were transformed into in-sample goodness-of-fit statistics: the root

mean percentage error (RMSE), and mean absolute percentage error (MAPE).

Bounds on the parameter space were imposed in the form of box-constraints and these were chosen to

not be too tight nor to close to the true parameters, but also not too large as to be physiologically non-

interpretable (in particular for decay constants and additive term) or more than five times the

magnitude of the difference between the performance values and the training load values (for scaling

factors). For the scenarios comprising the standard model (eq. 5.2), each grid of starting values

comprised a total of 105 parameter sets, and for the fitness-delay model scenarios (eq. 5.3) each grid

comprised a total of 76 sets. A slightly larger size of grid for the fitness-delay model allowed for a

reasonable step-size between changes in parameter values over the bounds to be maintained. A toy

example of this method used to construct the grid is illustrated in Figure 5.5.

 136

Table 5.2: Bounds on the parameter space and starting grid for each model

 Standard model (eq. 5.2) Fitness-delay model (eq. 5.3)

Parameter Lower Bound Upper Bound Lower Bound Upper Bound

𝒑∗ 60 140 60 140

𝒌𝒈 0.01 5 0.01 5

𝒌𝒉 0.01 5 0.01 5

𝝉𝒉 1 50 1 50

𝝉𝒈𝟏	 1 50 1 50

𝝉𝒈𝟐 - - 1 50

Figure 5.5: An illustration of the method used to construct the grids (generalised example)

5.3.5 The quasi-Newton search algorithm

Most iterative algorithms to find minimisers of smooth NLS problems require computation and storage

of first or second-order derivatives of the objective function (Mohammad and Waziri, 2019). For

example, Newton-type methods require the exact Hessian, Gauss-Newton (GN) and Levenberg-

Marquardt (LM) methods make use of the first-derivative information and ignore the second-order

part of the Hessian, and quasi-Newton (QN) methods approximate the Hessian rather than having to

 137

iteratively compute and store it at each step (Mohammad and Waziri, 2019). However, each of these

methods have associated limitations. For example, the exact second-order derivatives of the objective

function are not normally available at a reasonable cost, and the analytic expression is often intractable

for non-linear problems (Dennis Jr and Schnabel, 1996; Sun and Yuan, 2006). Thus, exact Newton-

type methods that use on the exact Hessian (reflecting a description of the curvature of the function)

are not typically suitable. GN and LM methods are expected to perform well with zero-residual

problems, however when solving large-residual problems these methods can perform poorly and may

not be suitable (Dennis Jr and Schnabel, 1996; Mohammad and Waziri, 2019). Quasi-Newton methods

are a class of methods similar to the full Newton method but instead these approximate the Hessian,

with approximations generally improving at each step. The reader is directed to chapter 6, section

6.2.4, which deals with the basic theory behind these algorithms with regard to derivatives and

direction of the search process. This is one of the few times in the thesis the reader is directed forward,

however, this avoids the need for excessive repetition of basic theory within the thesis. Quasi-Newton

methods are typically computationally cheap, for example the Broydon-Fletcher-Goldfarb-Shannon

(BFGS) algorithm (Byrd et al., 1995a) requires 𝒪(𝑛<) operations per iteration, compared to the full

Newton method that requires 𝒪(𝑛i) (Henao, 2014). Quasi-Newton methods have represented a

popular choice for NLS optimisation in data fitting problems and are often available across a multiple

of programming languages and mathematical suites (e.g., Mathematica, MATLAB, GNU Octave, R,

SciPy). In particular, the BFGS algorithm is a standard tool for the optimisation of smooth functions

(Wright and Nocedal, 1999) and includes an exact or inexact line search method to determine step size

(Henao, 2014). The algorithm used in this experiment to solve the least-squares problem at each

iteration was an implementation of the limited memory modification of the BFGS method (L-BFGS)

in R, with the inclusion of a further modification to incorporate box constraints (L-BFGS-B). The

limited memory modification variant of the BFGS method uses less computer memory to update the

approximation to the inverse of the Hessian, by only storing a record of the last 𝑚 iterations rather

than an 𝑛 × 𝑛 matrix where 𝑚 is a small number and 𝑛 is the number of parameters (Henao, 2014).

As such, L-BFGS only requires 𝒪(𝑚𝑛) operations per iteration so is well suited to problems where

the number of free parameters 𝑛 is large. The inclusion of bounding however increases the cost of the

line search slightly due to extra necessary steps to ensure the algorithm remains in the defined box

with each step (Henao, 2014). The algorithm is available as part of the optim function included as part

of the stats library included in the standard R environment (R Core Team, 2020). Analytic gradients

were not supplied to the function, for reasons described above, and therefore the algorithm attempts to

approximate the gradient using finite differencing, and this increases the possibility that in some

instances abnormal (unsuccessful) termination in the line search may occur. Algorithm convergence

is reported by the optim function as part of the convergence code and message returned following the

search (Henao, 2014). Although supplying precise analytic gradient functions may improve the success

 138

of the algorithm, this is a challenging to impossible task and unrealistic step for a sport science

researcher or practitioner when fitting FFMs Readers are referred to the works of Henao (2014) and

Wright and Nocedal (1999) for more in-depth analysis of the behaviour of this algorithm. The

parallelised searches were run on an 8-Core Intel® Xeon® Gold 6230 CPU @ 2.10GHz, with 8.0GB

available RAM (80% average usage). Note, successful termination (convergence) refers to achieving

an iterative reduction of the objective function that is within a factor (1e7) of the machine tolerance

(2.2e-16), giving an approximate tolerance of 2e-9.

5.3.6 Analyses

Given that the procedure was evaluated on a large deterministic grid, it is sufficient to treat the results

as a “complete population” given that no stochastic element was introduced and therefore there is no

intention to perform inference about a superpopulation. Findings were best communicated by

descriptive statistics and visualisations to summarise spread, shape, and centrality of fitted parameter

estimates, prediction errors, and the rate of convergence to the true parameters (and other local optima)

in each scenario. Local optima were appraised based on the definiteness of the Hessian matrix. For

solutions where the associated Hessian was positive semi-definite and objective value (RSS) not

equivalent to the known global extremum (i.e., 0 at the true parameters), the critical point was indicated

to be a local minimum. Similarly, if the Hessian at a given solution was indefinite this indicated the

point was a saddle. Appendix D provides further distributional summary tables of solutions at a

resolution of each parameter. An online repository 6 is also available which contains the raw results

data, analysis, and the code associated with the experimental implementation.

5.4 Results

5.4.1 Parameter estimates (convergence)

Within each scenario (i.e., model [standard, fitness-delay] × proportion of data [100%, ~50%, ~33%]),

the L-BFGS-B algorithm terminated successfully during 99.71-99.97% of the iterations. The estimates

from searches that terminated successfully are referred to as “solutions”, although this term does not

imply whether the estimates reached the true parameters. For all models, a reduction in the amount of

data did not appear to influence the number of solutions that reached the true parameters (i.e., the

number of fitting iterations that recovered the true global minimum). Within the standard model

scenarios, 69.1-70.3% of solutions found were the true parameters. In contrast, within the fitness-delay

model scenarios, 17.6-17.9% of solutions found were the true parameters. Within the standard model

6 Associated experiment source code, analysis code, and results data can be found at:
 github.com/bsh2/thesis/c5

 139

scenarios, the remaining non-true solutions resolved to other critical points including saddles (27.6-

28.8%) and a small number of local minima (2-2.1%). Within the fitness-delay model scenarios, the

remaining non-true solutions resolved to predominantly local minima (76.1-78.3%) and a small

number of saddle points (4.0-5.9%). Table 5.3 provides comparison between the scenarios with respect

to the results outlined so far. The parameter distributions of the solutions that did not find the true

parameters were similar between the three standard model scenarios (i.e., 100%, 50%, 33% of fitting

data) (see Figure 5.6). This was also the case for the fitness-delay model scenarios (figure 5.6). Tables

of summary statistics describing the fitted parameter estimate distributions are provided in Appendix

D parts D-1 and D-2. Tables of the highest frequency (non-true) solutions found for each scenario

(model × data proportion) are given in Appendix D parts D-3 and D-4.

Table 5.3: Convergence rates of the solutions found by the L-BFGS-B algorithm (to critical points in

the parameter space)

Scenario Totals Convergence rates (Critical points)

Model
Data

(%)

Data

points

Iterations

(total sets)

Successful

termination

Abnormal

termination

True

parameters

Other

local

minima

Saddle

points

Standard 100 % 147 105
99967

(99.97%)

33

(0.03%)

69204

(69.2%)

2047

(2.1%)

28716

(28.7%)

Standard 50 % 74 105
99968

(99.97%)

32

(0.03%)

69145

(69.1%)

1995

(2.0%)

28828

(28.8%)

Standard 33 % 49 105
99960

(99.96%)

40

(0.04%)

70284

(70.3%)

2056

(2.1%)

27620

(27.6%)

Fitness-

delay
100 % 147 76

117305

(99.71%)

344

(0.29%)

20588

(17.6%)

91909

(78.1%)

4808

(4.1%)

Fitness-

delay
50 % 74 76

117492

(99.87%)

157

(0.13%)

20651

(17.6%)

92127

(78.3%)

4714

(4.0%)

Fitness-

delay
33 % 49 76

117551

(99.92%)

98

(0.08%)

21065

(17.9%)

89518

(76.1%)

6968

(5.9%)

 140

Figure 5.6: Parameter estimate distributions from the solutions that did not reach the true values (i.e.,

global minimum), for the standard and fitness-delay models. The red line indicates the true value.

100% Data 50% Data 33% Data

90
95

10
5

11
5

p * − Standard Model

100% Data 50% Data 33% Data

0
1

2
3

4
5

kg − Standard Model

100% Data 50% Data 33% Data

0
10

20
30

40
50

τg − Standard Model

100% Data 50% Data 33% Data

0
1

2
3

4
5

kh − Standard Model

100% Data 50% Data 33% Data

0
10

20
30

40
50

τh − Standard Model

100% Data 50% Data 33% Data

95
10

5
11

5
p * − Fitness−delay Model

100% Data 50% Data 33% Data

1
2

3
4

5

kg − Fitness−delay Model

100% Data 50% Data 33% Data

0
10

20
30

40

τg1 − Fitness−delay Model

100% Data 50% Data 33% Data

5
10

20
30

τg2 − Fitness−delay Model

100% Data 50% Data 33% Data

0.
0

0.
5

1.
0

1.
5

2.
0

kh − Fitness−delay Model

100% Data 50% Data 33% Data

0
10

20
30

40
50

τh − Fitness−delay Model

 141

Figure 5.7: Objective function values (RSS) associated with solutions that did not reach the true values

(i.e., global minimum), for the standard and fitness-delay models (A). The (B) plots offer a ‘zoomed

in’ picture of the distribution following removal of large values (outliers, RSS < 500).

5.4.2 Prediction errors (model fit)

In-sample median model fit across solutions that did not reach the true parameters were similar and

strong in all scenarios and metrics including root-mean-squared error (RMSE) and mean average

percentage error (MAPE). For example, RMSE(median) for the standard FFM ranged from 0.24-0.28 and

RMSE(median) for the fitness-delay model was 0.03-0.06 across all proportions of fitting data. Median

absolute deviation RMSE(m.a.d) was ~0 for the standard model and 0.01-0.03 for the fitness-delay model

searches. Although there were a small number of solutions in each scenario that resolved to poor model

fit (i.e., RMSE = 5.27 and correspondingly high RSS values) (seen visually as the outliers in the fitted

model traces plotted in Figure 5.8 and 5.9). Figures 5.8 and 5.9 also illustrate visually that the range

of daily prediction errors (performance profiles) across fitted parameter sets that did not reach the true

100% Data 50% Data 33% Data

0
50

0
15

00
25

00

RSS − Standard Model
R

SS
 (c

os
t)

100% Data 50% Data 33% Data

0
10

0
20

0
30

0
40

0

RSS − Standard Model (zoomed in, < 500)

R
SS

 (c
os

t)

100% Data 50% Data 33% Data

0
10

00
20

00
30

00
40

00

RSS − Fitness−delay Model

R
SS

 (c
os

t)

100% Data 50% Data 33% Data

0
50

10
0

20
0

RSS − Fitness−delay Model (zoomed in, < 500)

R
SS

 (c
os

t)

A B

A B

 142

parameter values was low, and figures 5.10 and 5.11 provide the associated distributional plots for the

errors. In each scenario, parameter sets returned by the algorithm from searches that resulted in

abnormal termination also resolved to good model fit (RMSE = 0.01 - 1.77, MAPE = 0.01 - 1.30%,

across all scenarios for both models) (Table 5.4) despite differences in the parameter values in these

sets relative to the global minimum point (Tables D-1, D-2, appendix D).

Table 5.4: Model fit (in-sample) summary statistics for the fitted solutions

m.a.d : median absolute deviation

 Descriptive
statistic

Standard model Fitness-delay model
Data Converged RMSE MAPE RMSE MAPE

100% Non-true
solutions

minimum 0.28 0.21 0.01 0.01

maximum 4.53 3.18 5.46 3.87

median 0.28 0.22 0.03 0.02

m.a.d 0.00 0.00 0.02 0.02

100% Abnormal
termination

minimum 0.28 0.22 0.01 0.01

maximum 0.28 0.22 0.06 0.05

median 0.28 0.22 0.06 0.04

m.a.d 0.00 0.00 0.01 0.01

50% Non-true
solutions

minimum 0.28 0.21 0.00 0.00

maximum 5.27 3.98 5.46 3.87

median 0.28 0.21 0.03 0.02

m.a.d 0.00 0.00 0.03 0.02

50% Abnormal
termination

minimum 0.28 0.21 0.01 0.01

maximum 0.28 0.21 0.71 0.54

median 0.28 0.21 0.05 0.04

m.a.d 0.00 0.00 0.02 0.02

33% Non-true
solutions

minimum 0.24 0.19 0.01 0.01

maximum 5.29 4.06 5.56 3.94

median 0.24 0.19 0.03 0.02

m.a.d 0.00 0.00 0.03 0.02

33% Abnormal
termination

minimum 0.24 0.19 0.01 0.01

maximum 1.77 1.30 0.07 0.05

median 0.24 0.19 0.06 0.04

m.a.d 0.00 0.00 0.01 0.01

 143

Figure 5.8: Fitted model predictions (in-sample) reflecting the range of performance profiles

generated by the non-true solutions – Standard model scenarios (green)

 144

Figure 5.9: Fitted model predictions (in-sample) reflecting the range of performance profiles

generated by the non-true solutions – Fitness-delay model scenarios (blue)

Standard Model

Figure 5.10: Comparison of in-sample goodness-of-fit (RMSE, MAPE) for non-true solutions,

obtained for the standard model searches across the three proportions of fitting data

100% Data 50% Data 33% Data

1
2

3
4

5

RMSE

100% Data 50% Data 33% Data

1
2

3
4

MAPE

 145

Fitness-delay model

Figure 5.11: Comparison of in-sample goodness-of-fit (RMSE, MAPE) for non-true solutions,

obtained for the fitness-delay model searches across the three proportions of fitting data trialled.

5.4.3 Runtime

There were large differences in the fitting time between the two models, and within each model when

fitting to additional data. An increase in data for both models (%) resulted in an approximately directly

proportional increase (%) in fitting time per search. The fitness-delay model was also substantially

slower to fit per search (approximately 2.8-2.96 times slower) in comparison to the standard model,

likely due to the presence of the additional free parameter. These results are summarised in table 5.5

at the top of the following page.

Table 5.5: Fitting runtime across all scenarios for L-BFGS-B algorithm

Model Data points Iterations (N) Runtime (Total) Mean runtime (per search)
Standard 100% (N=147) 100,000 74 Hours 2.7 Seconds
Standard 50% (N=74) 100,000 38 Hours 1.4 Seconds
Standard 33% (N=49) 100,000 28 Hours 1.0 Seconds
Fitness-
delay 100% (N=147) 117,649 263 Hours 8.0 Seconds

Fitness-
delay 50% (N=74) 117,649 133 Hours 4.1 Seconds

Fitness-
delay 33% (N=49) 117,649 90 Hours 2.8 Seconds

Runtime (total) given to the approximate hour.

100% Data 50% Data 33% Data

0
1

2
3

4
5

RMSE

100% Data 50% Data 33% Data

0
1

2
3

4

MAPE

 146

5.5 Discussion

This study investigated the typical model fitting process for two common fitness-fatigue models under

a well-known quasi-Newton algorithm (BFGS), with limited memory modification and bounding (L-

BFGS-B). To enable direct study of the effectiveness of the optimisation algorithm, each model was

assumed to fully specify the training response and simulated under pre-selected true parameters and

synthetic load inputs to derive performance data without additional error. It was argued that for this

common algorithm to be robust for FFM fitting problems, it should as a basic capability be able to find

the true minimum (zero residual) known (only) to exist in this simulation framework. It was known

prior to the study that the convexity of the objective function over its domain would influence the

effectiveness of a local optimisation algorithm such as BFGS, but the existence of local optima had

previously never been acknowledged in prior work and ignored as a possible issue with reported

solutions.

When initiated from a wide array of initial points spanning the parameter space in a uniform fashion,

the L-BFGS-B algorithm was successful at finding the true solution in approximately 69-70% of the

searches in each of the standard model scenarios but was only successful in between 15-18% of

searches in the fitness-delay model scenarios (Table 5.3). These results demonstrate concerns with the

algorithms ability to obtain suitable fitted estimates for both models even under the idealistic condition

of no model error. These concerns were further exacerbated for the fitness-delay model, where the

optimiser was only able to find the true values in less than 18% of the searches, with a high frequency

of local optima across the search space demonstrated. It is likely that a substantial reduction in the rate

of successful convergence to the true solution in this experiment in the fitness-delay model scenarios

is due to the added complexity in the search space as a result of the additional fitness parameter (𝜏$&)

and its relationships with other parameters in the model creating a higher incidence of local optima.

There were no discernible patterns in the distribution of initial estimates with respect to starting error

(RSS) for the standard (appendix D-3, figure D-3.1, 3.2) and fitness-delay model scenarios (appendix

D-4, figure D-4.1, 4.2).

Collectively, these results indicate that the typical NLS fitting approach is a harder optimisation

problem for a typical hill-climbing algorithm to solve than previously recognised in the literature, and

in particular when fitting the fitness-delay model. However, these results would benefit from further

confirmatory experimentation under different input distributions to determine average rates across

varying inputs, and alternative standard algorithms (first and second-order methods). It is likely

however, that more advanced global optimisation algorithms such as differential evolution, and genetic

 147

algorithms, may be required to adequately solve the NLS data fitting problem within fitness-fatigue

modelling.

A reduction in the amount of data used to fit the models did not appear to affect the algorithms

convergence rates to the true solution in this experiment, or the distributions of the non-true solutions

(parameter values) and associated model fit (Table 5.3, Figure 5.6). As would be expected, a reduction

in fitting data did improve fitting time. In isolation, this reduction in fitting time is of little practical

interest, as fitting an individual model to data via the method used in this experiment is relatively short

(i.e., seconds), and researchers would always be expected to maximise available data even at the

expense of runtime. However, fitting time may become important when incorporating robust

observational or tuning-based cross-validation approaches to evaluate model validity, and/or when

using complex optimisation algorithms (e.g., genetic algorithms). In these instances, researchers are

advised to allocate reasonable compute resources and sufficient time to the fitting process and consider

the use of parallelisation. Parallelisation in the context of cross-validation is examined at a practical

level in chapter 6 (section 6.2.5), with extensive code provided in R.

Many unique (non-true) solutions (to 1.d.p {𝑝∗, 𝜏$, 𝜏%} and 2.d.p {𝑘$, 𝑘%}) were found in each of the

scenarios involving the standard model (range = 275-353 per scenario) (Appendix D-3). The set of

unique solutions collectively spanned most of the search space in all parameters, and the most were

saddle points. The frequency of each unique solution was highly variable (for example, a given unique

solution appeared between 1 and 25838 times in one standard model scenario). Appendix D-3

demonstrates the top 10 most frequent solutions across each standard model scenario, and

supplementary file 1 (SF-1)7 contains the entire set of unique solutions for the standard model and

fitness-delay model scenarios. In contrast to the standard model scenarios, most of the unique solutions

found in the fitness-delay model scenarios (range = 383-550 per scenario) (Appendix D-4) were local

minima, rather than saddle points. The frequency at which a given unique solution appeared also

demonstrated high variation (for example between 1 and 39401 times in one fitness-delay model

scenario). Collectively, these results demonstrate that there appear to be many points in the search

space at which the algorithm can become stuck, but also that local solutions can be found across the

search space.

The implications of these results on prior and future research are that unless efforts were (or are) made

to improve the likelihood that a solution found is the absolute minimiser of the NLS problem, then

subsequent results relating to prediction accuracy under solutions carried forward may not be

7 SF-1 can be found at the following repository link:
 github.com/bsh2/thesis/c5/analysis/SF-1.xlsx

 148

interpretable or robust generalisations of model error. Although, quite obviously, there is never a

known comparator solution (as is the case in a simulation approach) within real world experiments

due to model misspecification and noise, an appropriate recommendation arising from the results of

this experiment is the re-running of first and second-order algorithms that require starting points from

a large grid of stochastically generated points covering most of the parameter space between the

bounds. The second recommendation arising from this study is further scientific investigation of global

optimisation methods, such as evolutionary strategies for fitting FFMs via NLS, and in particular the

prospective use of global methods with integrated random local search (via first and second-order

methods). Readers are advised to see chapter 6, section 6.2.3, listing 6.25 for implementation of a

genetic algorithm with random local search in R.

Another notable result of this study was that strong in-sample model fit was observed across most

solutions that did not converge to the true solutions for each model (and the associated scenarios)

(Table 5.4, Figures 5.8-5.11). This finding would benefit from further confirmatory experimentation

under different input distributions. However, it is highly conceivable that in prior applications of

FFMs, researchers may have ignored the possibility that solution obtained is not the absolute

minimiser, specifically when measures of in-sample model fit are particularly strong (e.g., RMSE,

MAPE), and where no estimate of fitted estimate uncertainty or starting point sensitivity has been

determined. Therefore, the findings in this experiment add weight to the hypothesis that there exists

substantial doubt in reported estimates across prior research; particularly where optimisation

procedures have not been stated clearly or have lacked the relevant procedural detail to indicate that

these issues have been considered or addressed. The negative implications of this are primarily placed

on the interpretation of prior model validity work, and subsequent decisions made by researchers with

regard to the collective optimism (or lack thereof) toward further study of FFMs.

The main limitation of this study is that there exists a possibility that results may differ under different

input (training load) distributions, and that the exact assumptions required to enable study of the

optimisation process via computation are too unrealistic in the real world, due to extensive model

misspecification. Specifically, fitting to measured performance data is unlikely to ever be zero residual

optimisation problem due to the presence of noise and inherent simplification within the modelling

process resulting in model misspecification. Further, it is unclear the role that model misspecification

will play in these results, and it is possible that algorithm performance may be considerably worse

such that changes in local minima have substantive differences in predictions and model fit. However,

it seems unlikely they would be better. It appears clear that further work in the application of

optimisation approaches for FFM problems is required, and that alternative algorithmic approaches

(e.g., evolutionary or genetic algorithms) should be evaluated, and different perspectives (e.g., the use

of priors under a Bayesian approach) represent sensible pathways for future work.

 149

5.6 Summary, conclusions, and practical recommendations

Collectively, this experiment highlights that significant care must be taken in future research and

practice to ensure that the optimisation problem is appropriately posed, and that the algorithmic

approach selected to fit the selected FFM is sufficient, due to the high likelihood of local optima. In

particular, solutions may not be all that they appear following one-shot minimisation using a hill-

climbing algorithm such as L-BFGS-B, even in the presence of very good in-sample fit. At a minimum,

multiple runs of optimisation should be performed under this approach, starting from many points

spanning the breadth of the search space (sensitivity), and include some form of observational cross-

validation as discussed to estimate uncertainty. Notably, both fitness-fatigue models demonstrated that

different non-true solutions may exhibit the same model behaviour and achieve strong model fit. This

creates a series of challenges for researchers in obtaining solutions in real-world experiments via

similar approaches, as absolute minimisation cannot be confirmed, and uncertainty only estimated. It

also casts doubt across correctness of solutions reported in prior FFM literature. This experiment has

highlighted that the search space of the standard model, and in particular the fitness-delay model are

more complex and challenging for standard algorithms than previously recognised; and it is likely that

we require better algorithmic approaches to solve FFM data fitting problems. Bayesian methods and

evolutionary algorithms may offer two possible routes toward improved fitting of FFMs. However,

the role of cross-validation (out-of-sample testing) in the model evaluation process can also not be

ignored going forward. Out-of-sample testing may also offer a qualitative approach for flagging

solutions that are clearly incorrect, or it may also be used in a more modern sense within tuning-based

cross-validation frameworks. This work, although extensive, is an n-of-1 with respect to the input

distribution, and so would benefit from further replication under different training load distributions

and performance profiles.

 150

Chapter 6: Pathfinding: Software development and consideration
of prospective approaches for future research

6.1 Introduction

The research conducted in chapter 4 has been valuable in identifying key practical issues at the heart

of the application of fitness-fatigue modelling, and in particular experimental factors that may affect

model accuracy, such as the importance of high measurement frequency and recording performance

data with sufficient accuracy (i.e., reduction of measurement error and biological variability). The

study in chapter 5 has also highlighted issues previously not studied in the selection of algorithms

typically used to fit FFMs. In particular, chapter 5 demonstrated the existence of many local optima

that can provoke starting point sensitivity within the fitting process for common first and second order

algorithms. These results indicated that further research must be carried out in parameter estimation

and highlighted that identification of more effective algorithms to fit FFMs is now required. In

particular, evolutionary strategies or hybrid approaches represent reasonable next steps due to their

global optimisation properties (Rozendaal, 2017; Connor and O’Neill, 2020). This chapter draws

together and, in some sections, expands upon key content from the literature review (e.g., discussion

of FFMs, and theory of associated methods for model estimation and evaluation), alongside the

development of a set of extensive code resources for fitting and evaluating FFMs. This chapter

addresses aims 3 and 4 of this thesis, to provide researchers interested in fitness-fatigue modelling with

a comprehensive set of tools to guide practice and promising avenues of future research. Specifically,

code was developed in the programming language R and presented in a progressive manner, beginning

with tools to fit common FFMs (e.g., standard, fitness-delay, VDR) via nonlinear least-squares and

maximum-likelihood estimation approaches, before further treatment of aspects of implementation

including employing non-linear ODE systems, optimisation theory and algorithms, model evaluation

(cross-validation), and incorporating model uncertainty with respect to advanced methods (e.g.,

Kalman-filtering). This chapter is set out in in a manner that requires the reader to engage with code

presented in each section, to maximise the acquisition of skills and understanding relating to key

aspects of model implementation. The approach used here contrasts with the provision of a polished

software suite or packaged code, where underlying mechanisms are mostly hidden, and the user is

separated from the internals of the program. Instead, it was deemed appropriate in the context of

research, and particularly fitness-fatigue modelling, for researchers to be aware of the workings of

tools they are using. This also offers a substantive amount of flexibility for the code to be adapted by

the reader for their specific use case.

 151

6.1.1 Improving the availability of resources for research

The effective development of data driven modelling approaches to assist with individualised

prescription will require greater numbers of researchers to investigate more advanced models than the

standard FFM and adopt methods that reflect the need for robust evaluation of model validity (e.g.,

out-of-sample testing). However, it appears that a lack of uptake of even basic FFMs in research is

constrained by very limited resources to assist with learning, fitting, and even basic computation of

existing models. Historically, resources are limited to the supplementary spreadsheet in Clarke and

Skiba (2013), with this spreadsheet representing one of the only deliberately placed practical resources

available across the FFM literature. At the time, the spreadsheet was an educational resource rather

than a realistic tool for contemporary research, particularly given that it is limited to the basic model

and the built-in solvers available in Microsoft ® Excel. Additionally, no facilities for analysis of the

modelling process were provided beyond in-sample metrics of model fit. Nevertheless, since its

development in 2013 this resource has been useful as an educational device for sport science

researchers interested in this area. However, almost ten years later, and given the current offering of

several more appropriate FFMs and methods in the literature, flexible and more powerful resources

are required that better serve the demands of future work. Increased uptake of powerful programming

languages such as R and Python within sport science also creates an opportunity to extend the

capabilities of any resources offered to researchers, beyond what is typically achievable within normal

spreadsheet packages. Screenshots of key sheets within the Clarke and Skiba (2013) article are

highlighted below for the purposes of this chapter remaining self-contained, but readers may obtain

the spreadsheet 8 themselves.

Figure 6.1: Screenshot from the “IR model def” sheet within the Clarke and Skiba (2013)

supplementary spreadsheet. Basic FFM simulation for a specified set of parameter values with plots.

8 https://doi.org/10.1152/advan.00078.2011

Model parameters

Training loads
Model predicted performance

 152

Figure 6.2: Screenshot from the “IR model fit” sheet (1 of 2) within the Clarke and Skiba (2013)

supplementary file. The sheet facilitates input of a user’s training data and performance observations,

and RSS can then be minimised by a generic solver tool which performs nonlinear regression from an

initial guess at the parameters. Fitted output is plotted. Limitations include a lack of out-of-sample

assessment and no flexibility in the fitting process.

Figure 6.3: Screenshot from the “IR model fit” sheet (2 of 2) within the Clarke and Skiba (2013)

supplementary file. Demonstrating influence curve calculation and plotting from fitted parameters.

Target cell for solver

(RSS)

Parameter estimates
(manipulated by solver)

Training loads

In-sample model fit

Measured performance

Modelled performance

 153

Toward addressing the current gap in available resources, and in relation to the aims of this research

project, an open-source code repository of R tools for fitness-fatigue modelling was created in

collaboration with another researcher (Ben Ogorek) and publicised via a dedicated website

(fitnessfatigue.com). The codebase is under active development, and researchers new or well known

to performance modelling are encouraged to engage with the software via comments, suggestions,

and/or contribution of their own code. Collaboration is facilitated via the GitHub ® platform, where

development of the codebase also took place. GitHub ® offered a suitable platform for hosting and

developing the codebase due to integrated version control and source code management (SCM)

functionality provided by git (git-scm.com). Additionally, tools such as feature requests and bug

tracking improve the efficiency of the development process. Increased utilisation of these types of

platforms in future sport science research involving code and computational designs may help to

support open-science principles including open-access, open-source, and open-data (Peng, 2011).

Some of the resources contained within the repository were also developed for use as supplementary

material to the two-part review series (Stephens Hemingway et al., 2021; Swinton et al., 2021). This

chapter focusses on illuminating the development process of models and functionality included in the

codebase, such as cross-validation, Kalman-filtering, and optimisation via maximum likelihood

estimation. The work in this chapter can be viewed as the documentation and an educational resource

aligning with this repository, examining the development of code and associated theory, rather than

just demonstrating how the functions are used. Toward this end, the code relating to and presented in

this chapter (and specifically each subsection) is segregated from the open-source project in a separate

repository, found at github.com/bsh2/thesis/c6). Pointers are also given throughout the chapter to

relevant files within this separate repository. As previously identified, the aims of this chapter address

aims 3 and 4 of this PhD (Table 3.2, chapter 3), by providing resources and skills to support future

applications of FFM research, education, and highlighting promising approaches to address existing

problems with the standard model.

6.1.2 Structure of the chapter

The chapter is split into 5 sections (6.1 – 6.5) that build progressively on concepts presented and

accompanying code. Section 6.2 forms the largest body of work in the chapter, introducing the reader

to working with FFMs in R, including discussion of the use of concepts such as vectorisation, loops,

and the apply family of base R functions. Functions are developed in subsections 6.2.1 and 6.2.2 for

simulation or use as objective functions (sum-of-squares or likelihood) within parameter estimation

approaches (nonlinear least-squares or maximum likelihood), for the standard, fitness-delay, and VDR

FFMs. Two contrasting approaches: 1) explicit for-loops (6.2.1); and 2) the apply family of base R

functions (6.2.2); are presented for developing these functions (simulation, objective). Self-contained

examples are then provided at the end of 6.2.1 and 6.2.2 for fitting the models to synthetic data, via

 154

nonlinear least-squares and maximum likelihood estimation, respectively. In section 6.2.3, code is

presented for numerically solving the original linear system of ODE’s (Banister et al., 1975) and fitting

the model parameters. This approach is then adapted to enable the fitting approach required for the

nonlinear ODE system proposed by Turner et al. (2017) to capture the effects of overtraining in model

behaviour. In subsection 6.2.4, the theory behind several common optimisation algorithms is examined

from gradient descent to evolutionary strategies, and the availability of several algorithms already

available in R discussed. Minimum recommendations are discussed for fitting FFMs via first and

second order (local) methods. The last subsection, 6.2.5, of section 6.2, develops a cross-validation

approach for fitting and testing the VDR model, that is theoretically adaptable for any FFM or

optimisation approach. In section 6.3, the threshold saturation function (Hellard et al., 2005) is briefly

revisited, and in section 6.4 a from-scratch implementation of a Kalman filter in R is demonstrated

under a state-space reformulation of the standard model, as first presented in the literature by Kolossa

et al. (2017). Finally, section 6.5 presents a brief summary of the chapter.

Although extensive in text, this chapter attempts to present a large volume of information both essential

and detailed to fit with the diverse backgrounds and expertise of readers that may use this material.

Code is presented inline alongside text and figures, as opposed to in appendices of supplementary file

to provide a better pedagogical approach for maximising practical understanding, anecdotally

supported by the structure of the highly popular Q&A site for programmers, Stack Overflow

(stackoverflow.com). Although ‘code heavy’ accompanying explanation attempts to concisely

describe concepts where annotation alone is not sufficient understanding (such as when applying

certain control flows). However, in many cases the reader is expected to be able to follow the code and

annotation to grasp essential elements within a given implementation.

6.1.3 The R environment

The R programming environment (R Core Team, 2020) was viewed as the most appropriate language

for developing the codebase and working with FFMs, due to perceived increased popularity amongst

sport scientists seeking more powerful alternatives to spreadsheet packages and limited data

visualisation tools. The primary benefit (and intrinsic challenge) of using R is that it is highly

expressive, and therefore flexible and robust solutions to various modelling and statistics problems can

be constructed from first principles or via dedicated packages. In turn, the programmer is likely to

become more involved and interested in aspects of model implementation than they may otherwise

have been if using point-and-click software. Writing code necessary to fit an FFM requires

understanding of the optimisation problem formulation, and associated methods for solving it. This

can naturally reveal gaps or raise questions in a researcher’s understanding, that otherwise might have

been missed working in simpler hands-off environments (e.g., spreadsheet software). In addition,

 155

advanced methods of cross-validation, automated multi-start optimisation, and parallelisation are not

realistic nor sensible tasks to attempt in a spreadsheet package when more efficient and suitable

alternatives exist.

Crucially, this chapter does not represent a first introduction to the language R and shouldn’t be treated

as such. There is an expectation that the reader already has some familiarity with the language,

including the standard syntax, object types and data manipulation, and basic programming structures.

Several excellent resources currently exist providing sound introductions to R to make the most of this

chapter. For example, the swirl package (swirlstats.com) is an interactive learning environment

comprising 4 courses and 15 modules reflecting the fundamentals of the R environment. Concepts

covered in swirl include basic building blocks of R, workspace and files, sequences, vectors, missing

values, arrays, logic, functions, dates and times, and graphics (e.g., plotting).

Finally, it is hoped that this chapter may provide helpful resources that can be used creatively within

R courses for undergraduate and postgraduate sport science students. It is this authors opinion that

early career sport scientists hamper their development by avoiding tools of modern research such as

programming languages and should become familiar with their use as early as possible. In the right

circumstances, programming languages, and in particular R, offer excellent interactive environments

for learning about aspects of modelling, statistical analysis, and research.

6.2 Working with FFMs in R

This section covers the development of code suitable for simulating and fitting the standard, fitness-

delay and variable dose-response (VDR) models (Banister et al., 1975; Calvert et al., 1976; Busso,

2003) via two contrasting approaches: 1) explicit for-loops; 2) the apply family of R functions. The

two approaches were demonstrated rather than just one to increase the breadth of the readers skillset

when working with FFMs. Fitting the models is demonstrated under nonlinear least squares and

maximum likelihood estimation perspectives. VDR model behaviour is also examined in greater depth

than the literature review with plots provided for different values of 𝜏%& in the variable-gain term.

Processes related to optimisation are then examined and the availability of different algorithms in R

highlighted. After this, the expanding-window CV method developed for fitting and testing FFMs. At

several key points over the course of the section, reproducible examples are presented that are self-

contained in that they do not require external data files due to the generation of synthetic data under

the simulation functions developed. These can therefore be run by the reader more easily to

demonstrate the processes described and provide an interactive element for learning about aspects of

the experimental work within this thesis.

 156

First, the section begins by examining the standard model, described by:

�̂�(𝑡) = 𝑝∗ + 𝑘$ ⋅A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)'! − 𝑘% ⋅A𝜔.

!&/

.0/

⋅ 𝑒&
(!&.)
'" (6.1)

Implementation of equation 6.1 in R requires care to avoid small errors. One potential source of

confusion when implementing equation 6.1 relates to the index (𝑖) placed on the sum within each

component. Consider the case of where a researcher wishes to compute �̂�(𝑡) for day 𝑡 = 1, calculation

of each component (fitness and fatigue) then involves a sum running from 𝑖 = 1 to 0, which by

mathematical convention is zero, and so �̂�(1) = 𝑝∗. However, R does not default to this convention,

particularly when a loop is used to compute each component sum. A useful workaround to this is to

include the initial condition 𝜔- = 0 at the first position in the model inputs (𝜔), and execute the loop

over the index running from 𝑖 = 1 to 𝑡, such that for 𝑡 = 1 the model component would simply be

𝜔- ⋅ 𝑒
& I
J! = 0, yielding �̂�(1) = 𝑝∗, implicitly retaining the (𝑡 − 1) condition on the upper sum index.

This approach will become less abstract as code is presented shortly but is described first as it is

important to highlight that implementation of models can accidently run into ‘off-by-1’ type errors,

shifting the computation by one day in either direction. Over the long run such rounding errors are

unlikely to be of practical significance but can cause confusion when comparing solutions.

Additionally, the component’s run from 𝑖 = 1 to 𝑡 − 1, rather than to 𝑡 in equation 6.1 to reflect the

notion that training performed on day 𝑡 is not considered within model predicted performance �̂�(𝑡).

This convention is often referred to as a ‘pre-loaded’ model (i.e., performance occurs prior to load on

a given day 𝑡) (Rasche and Pfeiffer, 2019). Conceptually, in most circumstances this matches practice

as physical performance testing is likely to take place prior to any heavy training session or period of

physical exertion that may influence the measurement.

Lastly, recall that initial fitness and fatigue effects can be included in the model formulation via the

use of two further terms with parameters 𝑞$, 𝑞%, as shown in equation 6.2 (Busso, Carasso and Lacour,

1991)

�̂�(𝑡) = 𝑝∗ + 𝑞$ ⋅ 𝑒
& !
'!NººOººP

.a.!.FY	U.!a1WW

− 𝑞% ⋅ 𝑒
& !
'!NººOººP

.a.!.FY	UF!.$*1
+ 𝑘$A𝜔(𝑖) ⋅ 𝑒

&!&.'!

!&/

.0/

− 𝑘%A𝜔(𝑖) ⋅ 𝑒&
!&.
'"

!&/

.0/

	 (6.2)

Where, residual and fatigue effects are assumed to dissipate at the same rate as future response (𝜏$, 𝜏%).

In this section, functions for the standard and VDR models have been developed to incorporate these

initial components as optional ‘add-ons’ that can be estimated or included in model simulation.

 157

6.2.1 An explicit loop approach – Simulating the standard, fitness-delay, and VDR
FFM and fitting via nonlinear least-squares

Two types of user-defined R functions are presented here for three FFMs (standard, fitness-delay,

VDR): 1) a sum-of-squared residuals (RSS) objective function for calculation of ∑(𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 −

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)< over the set of measured performances; 2) a simulation function for computing model

predictions under a set of inputs and specified model parameters. Note, the term function is mainly

used in this chapter to refer to a module of code to accomplish a specific task, rather than the

mathematical context of mapping domains to a range. The term ‘user defined’ is included in some

cases to help distinguish this meaning. The objective functions for RSS will take as input:

1. A series of consecutive training loads, over a period [0, 𝑇], where 𝜔- = 0
2. A vector of numeric parameter values (of length and order dependent upon the model

involved)
3. A set of 𝑛 measured performance values (𝑝/, … , 𝑝a) collected within the period [1, 𝑇]

And return as output the sum-of-squared residuals (errors) between modelled and measured

performance values, i.e., ∑ (�̂�. − 𝑝.)<a
.0/ . When FFMs are fitted to data, minimising the value returned

from this function under different parameters becomes the objective of an optimisation algorithm,

hence its name.

The model simulation functions (also sometimes called the ‘prediction function’ or ‘computation

function’) require as input only a series of training load values and suitable parameter values, returning

as output model simulated performance values over the length of the input series, along with the

associated fitness and fatigue traces. This type of function is most useful for generating modelled

performance values once suitable parameters have already been obtained/identified (e.g., via fitting to

data), or for exploring model behaviour. Implementations presented in this section make use of one of

the most basic and powerful programming structures, the loop. In the next subsection (6.2.2) that

examines maximum likelihood estimation, an alternative approach to developing objective and

simulation functions is demonstrated utilising the ‘sapply’ function from the apply family of base R

functions. The apply functions are a form of ‘loop hiding’ that can result in “cleaner” and thereby more

efficient code. Throughout subsections 6.2.1 and 6.2.2, inputs passed to functions described are

consistently structured as described in Table 6.1. Readers are encouraged to be hands on with the code

throughout this chapter, and code related to this subsection is available to download from

github.com/bsh2/thesis/c6/nls.R.

 158

Table 6.1: Function arguments

Argument Description Structure Example

loads

Model prediction functions: Start at day 0 (𝜔* =

0), of any length, 1-day time steps, use of a zero

value on a given day denotes the absence of

training on that day.

For the objective functions: Start at day 0 (𝜔* =

0), only need to run to some day 𝑇 (where 𝑇 is

the same day as the final performance

measurement within the model training set), 1-

day time steps, use of a zero value on a given day

denotes the absence of training on that day.

Data frame

Observations of 2

variables:

day, load

data.frame("day" = c(0, 1, 2,

3, 4, 5), "load" = c(0, 100, 0,

100, 0, 100))

perfVals

Measured physical performance values 𝑝+ from

within the period 𝑡 = 1 to 𝑇, these values are

used to fit the model via the objective function.

Data frame

 Observations of 2

variables: day,

performance

data.frame("day" = c(1, 2, 5),

"performance" = c(500, 495,

505))

pars
Model parameter values of a specific length and

order (specified as required in the relevant code).
Vector (numeric)

pars <- c(100, 1, 25, 1.2, 6)

c(p*, k_g, T_g, k_h, T_h)

for the standard model

initialPars
For the simulation functions only:

Initial model parameter values 𝑞,, 𝑞-
Vector (numeric) initialPars <- c(qg,qh)

initial

For the objective function only:

A logical value indicating if the initial model

parameter values 𝑞,, 𝑞- are to be estimated. The

vector pars would also be updated to reflect this.

Logical

(TRUE / FALSE)

initial = FALSE

(default)

maximise

For the objective function only:

Adjusts the objective function (whether it be

NLS or MLE) to account for optimisation

algorithms that maximise (maximise = TRUE). If

an algorithm minimises, then maximise =

FALSE.

Logical

(TRUE / FALSE)

maximise = FALSE

(default)

Presented below in listing 6.1 is an implementation of a for-loop based approach to develop a sum-of-

squares objective function for the standard model. Although loops written in high-level languages such

as R are not always efficient, they remain a powerful programming structure and in many cases are

quick to write and simple to debug. If required, the user can manually step through each iteration to

identify where operations are breaking down. However, when nested loops are used, control flows can

quickly become complicated and challenging to follow. In such instances, alternative approaches such

as the apply family of base R functions (which provide a form of ‘loop hiding’) (Burns, 2011) may be

simpler to work with and reflect better programming practice (Wickham, 2019). It is hoped that by

 159

presenting and discussing both approaches in R, this material will serve to expedite the skill acquisition

process for researchers who may be considering these same issues. It also offers appropriate

educational material for those involved in teaching R to developing sport scientists, providing both

context and introduction to concepts such as loops, vectorisation, writing functions, and the apply

family. Arguably, the FFM reflects a good vehicle for teaching both quantitative modelling in sport

(Clarke and Skiba, 2013), and aspects of the R programming language.

Listing 6.1 Objective function (RSS): Standard model – For loop approach
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

standardObjectiveSS <- function(pars, loads, perfVals, initial = FALSE,
 maximise = FALSE){

 # (pars) NOTES:
 # --
 # Pos. [1] [2] [3] [4] [5] [6] [7]
 # pars = c(p*, kg, Tg, kh, Th) (if initial = FALSE)
 # pars = c(p*, kg, Tg, kh, Th, qg, qh) (if initial = TRUE)
 # --
 nMeasurements <- length(perfVals$performance) # Number of performance measurements

 # Zeroed vector of length equal to number of performance measurements
 squaredResiduals <- numeric(length = nMeasurements)

 # For each performance measurement calculate (modeled - measured)^2 under pars
 for (n in 1:nMeasurements){

 dayT <- perfVals$day[n] # Day of measured performance
 measured <- perfVals$performance[n] # Measured performance value on dayT

 # Isolate the required load data to compute the model up to dayT
 # Note: 1:dayT rather than 1:(dayT - 1) as the first row in the loads array is w(0)=0
 inputSubset <- loads[1:dayT,]

 if (initial == TRUE){
 # Include residual effects (initial components)
 initFitness <- pars[6] * exp(-(dayT) / pars[3])
 initFatigue <- pars[7] * exp(-(dayT) / pars[5])
 } else{
 initFitness <- 0
 initFatigue <- 0
 }

 # Compute modelled performance on dayT
 model <- pars[1] + initFitness - initFatigue +
 pars[2] * (sum(inputSubset$load * exp(-(dayT - inputSubset$day) / pars[3]))) -
 pars[4] * (sum(inputSubset$load * exp(-(dayT - inputSubset$day) / pars[5])))

 # Compute the squared residual value (model - measured)^2
 squaredResiduals[n] <- (model - measured)^2
 } # Loop updates until iterated over all available measurements

 # Output
 if(maximise == FALSE){ return(sum(squaredResiduals))}
 if(maximise == TRUE){
 # For optimisation algorithms that maximise by default
 return(-1 * sum(squaredResiduals))
 }
}

We now discuss elements of listing 6.1 that are helpful to unpack, and that are used frequently

throughout the following sections, such as vectorisation. In addition, only once in this subsection will

the control flow be described in so much detail, as the remainder of the code presented for the more

advanced models (fitness-delay, VDR) follows much the same structure and so only differences need

 160

to be examined to avoid unnecessary repetition. In listing 6.1, the user-defined R function

(standardObjectiveSS) takes as input a numeric vector of ordered parameter values (pars) for the

standard model, a dataframe of training load values (loads) (with 1-day time-step between rows, from

day 0), and a dataframe of performance values (perfVals) where the time-step between rows variable

and is not necessarily regular (See Table 6.1). Additional arguments include (initial) and (maximise),

that are also described in table 6.1. The order of the elements in (pars) depends on initial = TRUE

(default) such that pars = (𝑝∗, 𝑘$, 𝜏$, 𝑘% , 𝜏%) or initial = FALSE such that pars =

(𝑝∗, 𝑘$, τH, 𝑘% , 𝜏% , 𝑞$, 𝑞%). The function returns as output a single value, the RSS between the set of

measured performance values and modelled performance values (computed under loads and pars). At

line 10, a scalar object (nMeasurements) is assigned to the number of measured performance values in

the dataframe (perfVals). Subsequently, at line 13, a zeroed vector (squaredResiduals) of length equal

to (nMeasurements) is assigned. This vector is updated at each iteration of the loop (at the position

denoted by the current value of the loop index (i), i.e., squaredResiduals[i]. As the length has been pre-

assigned, it does not need to ‘grow’, which is generally advised against for memory allocation and

efficiency reasons (Burns, 2011). The action of the for-loop structure between lines 16 and 41 is to

iterate over the set of measured performance values (perfVals), and at each measured performance

value 𝑝., calculate modelled performance �̂�(𝑖) under (loads) and (pars), and record the squared

difference of the two. This difference is collected, as described, in the (squaredResiduals) vector, before

the loop updates to the next step. This process repeats (i.e., loops) until the complete sum of squared

residuals for all measured values has been calculated, before returning this value as the output of the

function.

Next, we briefly discuss the use of vectorisation and how it applies in listing 6.1, specifically between

lines 36-37 in computing modelled performance on some day 𝑡. R is a high-level language, and the

default implementation is ‘interpreted’. In practice, this means consideration of concepts such as

memory allocation, floating points, and type declarations are largely taken for granted and dealt with

internally. This is particularly useful in environments where scientists and practitioners seek to solve

problems quickly and prototype, without layers of complexity within the implementation process.

These types of issues require investment to understand and be proficient with. A downside of high-

level interpreted languages is that they are often much slower at performing certain tasks compared to

lower-level compiled languages such as C++, Fortran, and Rust. In these languages, the programmer

must consider more closely their code particularly with respect to the issues outlined above. However,

many basic functions available in base R are written in compiled languages such as C. In fact, R simply

provides a ‘wrapper’ function (doorway) to this compiled code. Often, an R user will seek to perform

the same operation on multiple elements of a similar type (e.g., integers), stored in vector objects.

Instead of having to call a function repeatedly for each value of the vector via the use of an explicit

 161

loop structure (as above), the whole vector can often be passed through a ‘vectorised’ function that

will typically also provide access to fast compiled code. In this circumstance the code is almost always

faster because the interpretation step happens only once, and the software can execute the computation

to each element (so long as it is of the same type). As a basic illustration, consider the case where a

user wishes to calculate the natural log of each value of a vector (z) using the base R function (log).

There are two contrasting approaches that could be used:

Approach 1 (explicit loop) Approach 2 (vectorised)

for (i in 1:length(z)){ log(z[i]) } log(z)

Approach 1 is overly verbose, and more importantly creates unnecessary overhead as the R loop must

iteratively call the natural log function on each element. In this case, the interpretation step is

happening at each iteration (i.e., the computer has to re-check what it is being asked to do). In contrast,

the second approach is more efficient. In approach 2 the entire vector (z) is passed to the (log) function,

performing the equivalent operation at a much lower computational cost. This is because the (log)

function has been written in a lower-level compiled language that accepts an entire vector as input

through an R function that acts as the wrapper. Although the whole vector is still processed inside a

loop (or similar construct) within this lower-level code, it is faster because as stated the interpretation

step happens only once, and also loops are often faster when written in lower-level code. Differences

in speed are demonstrated via the code below:

Create a large vector
 z <- seq(1, 10^8, 1)
Pre-assign output length to detach influence of vector growth in the loop
 outcome <- numeric(length = length(z))

The following runtimes emerge:

Approach 1 (explicit R loop)
 system.time(for (i in 1:length(z)){
 outcome[i] <- log(z[i])})

user system elapsed
7.719 0.036 7.854

Approach 2 (vectorisation)
 system.time(outcome <- log(z))

user system elapsed
1.104 0.317 1.491

This example demonstrates that the explicit loop is almost 7 times slower than the vectorised approach

(for a large vector). When the use of vectorisation is discussed in R, it is not expected that the user will

be writing their own functions in low-level compiled code (which would defeat the main advantage of

R in the first place). Rather, that they should make use of functions within base R or other packages

that provide various ‘free’ forms of vectorisation via compiled functions. For example, functions such

 162

as: (sum, log, mean, prod, max, min, range, mean, mode) all facilitate vectorisation of some form.

Arithmetic operators in R (+, *, -, /) also provide a cheap way to perform arithmetic operations on

elements that are in the same index position in two or more vectors of equal length. For example,

consider two vectors:

x <- c(1, 2, 3, 4) y <- c(5, 6, 7, 8)

Then the code:

z <- numeric(length = 4)

for (i in 1:length(x)){ z[i] <- x[i] + y[i] }

Is equivalent (in outcome) to (z <- x + y). In both approaches, the following is happening (could be

restated as):

z <- c((1+5),(2+6),(3+7),(4+5))

However, the latter approach is faster, marginally in this case because of the small length of the vector,

but results in noticeably cleaner code. Returning to listing 6.1, it becomes clearer how vectorisation

has been used to compute the FFM by first calculating each component state using a vectorised

application of the (sum) and (exp) functions in base R, alongside correct application of the arithmetic

operators (+, *, -, /).

This can be seen by breaking down a portion of line 36, that is:

(sum(inputSubset$load * exp(-(dayT - inputSubset$day) / pars[3])))

Consider an example such that the objects used in the code above posses the following values:

inputSubset$load <- c(0, 100, 200) # Vector
inputSubset$day <- c(0, 1, 2) # Vector
pars[3] <- 2 # Scalar
dayT <- 3 # Scalar

 163

If the control flow of the above extract of line 36 (listing 6.1) is looked at more closely, vectorisation

as it applies becomes clearer, as follows:

dayT – inputSubset$day

ó c((3-0), (3-1), (3-2))

exp(-(dayT – inputSubset$day) / pars[3])

ó c(exp(-1 * (3-0)/2), exp(-1 * (3-1)/2), exp(-1 * (3-2)/2))

inputSubset$load * exp(-(dayT – inputSubset$day) / pars[3])

ó c((0 * exp(-1 * (3-0)/2)), (100 * exp(-1 * (3-1)/2)), (200 * (exp(-1* (3-2)/2))))

sum(inputSubset$load * exp(-(dayT – inputSubset$day)/pars[3]))

ó (0*exp(-(3-0)/2)) + (100*exp(-(4-2)/2)) + (200*(exp(-(3-2)/2))

ó (denotes ‘equivalent in outcome to / can be restated as’)

The other component in listing 6.1 is computed via the same concepts. Hopefully now the control flow

of listing 6.1 is clearer as well as the concepts underpinning its implementation. It should also become

clear from listing 6.2 next that the only modification required to implement the fitness-delay model

(Calvert et al., 1976) is a change at lines 36-37 of listing 6.1.

Listing 6.2 Modification of listing 6.1 (lines 36-37) to incorporate the fitness-delay model (RSS objective)

1
2
3
4

pars[2] * (sum(inputSubset$load *
 (exp(-(dayT - inputSubset$day) / pars[3]) -
 exp(-(dayT - inputSubset$day) / pars[4])))) -
pars[5] * (sum(inputSubset$load * exp(-(dayT - inputSubset$day) / pars[6])))

Notes (listing 6.2):

• If initial = TRUE, pars is now a vector of length 8 with order: c(p*, k_g, Tau_g1, Tau_g2, k_h,
Tau_h, qg, qh)

• If initial = FALSE, pars is now a vector of length 6 with order: c(p*, k_g, Tau_g1, Tau_g2, k_h,
Tau_h)

• This modified function has been presented in full in: github.com/bsh2/thesis/c6/nls.R

Via a similar approach to the one shown so far using an outer loop, a simulation function

(simulateStandard) can be developed to compute performance �̂�(𝑡) and isolate the fitness/fatigue traces

of the standard FFM for a training load series of any length (under an associated set of model

parameters). This function is presented in listing 6.3.

 164

Listing 6.3 Simulation function: Standard model – For loop approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

simulateStandard <- function(pars, loads, initialPars = c(0,0), returnObject = "all"){

 # pars = c(p*,kg,Tg,kh,Th)

 # Set up zeroed vectors of required length
 seriesLength <- tail(loads$day, 1)
 performance <- numeric(length = seriesLength) # Model performance
 fitness <- numeric(length = seriesLength) # Model fitness
 fatigue <- numeric(length = seriesLength) # Model fatigue
 initialFitness <- numeric(length = seriesLength) # Residual effects (initial component)
 initialFatigue <- numeric(length = seriesLength)

 # Calculate model fitness g(t), fatigue h(t), and
 # performance p(t) for t = 1:seriesLength
 for (t in 1:seriesLength){

 # Isolate the required load data for calculating p(t)
 # (i.e., loads from day 0 to day t-1)
 inputSubset <- loads[loads$day < t,]

 # Residual effects from initial components at time point t
 initialFitness[t] <- initialPars[1] * exp(-(t) / pars[3])
 initialFatigue[t] <- initialPars[2] * exp(-(t) / pars[4])

 # Compute g(t), h(t), p(t) for current (t)
 fitness[t] <- pars[2] * sum(inputSubset$load * exp(- (t - inputSubset$day)/ pars[3]))
 fatigue[t] <- pars[4] * sum(inputSubset$load * exp(- (t - inputSubset$day)/ pars[5]))
 performance[t] <- pars[1] + fitness[t] - fatigue[t] +
 initialFitness[t] - initialFatigue[t]

 } # Loop index updates (t <- t+1) until t = seriesLength

 # Output
 if (returnObject == "performance"){return(performance)}
 if (returnObject == "fitness"){return(fitness)}
 if (returnObject == "fatigue"){return(fatigue)}
 if (returnObject == "all"){
 return(data.frame("day" = 1:seriesLength,
 "initial_fitness" = initialFitness,
 "initial_fatigue" = initialFatigue,
 "fitness" = fitness, "fatigue" = fatigue,
 "performance" = performance))
 }

} # End function (closing bracket)

In listing 6.3, the returnObject argument is added, by default returning all the information (fitness,

fatigue, performance, states of the initial effects) as a dataframe, however, vectors of individual model

components or performance can be returned by supplying the appropriate character string to this

argument, which can be useful for plotting purposes. This argument simply adds more flexibility to

the function. Just as in the objective function for the standard model (listing 6.1), the model simulation

function above (listing 6.3) can be adapted to accommodate the fitness-delay model, by replacing lines

21-25 as follows (listing 6.4).

Listing 6.4 Modification of listing 6.3 (lines 21-25) to incorporate the fitness-delay model (simulation)

1
2
3
4

initialFatigue[t] <- initialPars[2] * exp(-(t) / pars[6])
fitness[t] <- pars[2] * sum(inputSubset$load * (exp(-(t - inputSubset$day) / pars[3]) -
 exp(-(t - inputSubset$day) / pars[4])))
fatigue[t] <- pars[5] * sum(inputSubset$load * exp(-(t - inputSubset$day) / pars[6]))

 165

Notes (listing 6.2):

• pars is now a vector of length 6 with order: c(p*, k_g, Tau_g1, Tau_g2, k_h, Tau_h)
• This modified function has been presented in full in: github.com/bsh2/thesis/c6/nls.R

Considered next in this section is the conceptually more attractive variable dose-response (VDR)

model from Busso (2003). Before developing code for the objective function and simulating this

model, key theoretical concepts are revisited. Recall the VDR model was stated mathematically in this

thesis as follows:

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔.

!&/

.0/

⋅ 𝑒
&!&.'! − 𝑘%A𝑘%<(𝑖) ⋅

!&/

.0/

𝑒&
!&.
'" 	 (6.3)

Where:

𝑘%&(𝑖) =A𝜔Q

.

Q0/

⋅ 𝑒
&.&Q'"& 	 (6.4)

The variable gain term (equation 6.3) adds an extra level of recursion to the R functions developed so

far, and therefore requires some care to implement. Inclusion of this additional term can be achieved

by incorporating an additional for-loop, nested within the main loop, that generates a vector of 𝑘%&(𝑖)

terms from 1 to some 𝑖. In the following subsection it is shown that there is a ‘cleaner’ way to complete

this task, via the use of the apply family of base R functions. But for now, this section will proceed

with the loop-based approach developed so far.

In Busso (2003), the model stated is also slightly different compared to equations 6.3 and 6.4. The

difference isn’t an unintentional error, but rather a purposeful modification. The original Busso (2003)

model was described by:

�̂�(𝑡) = 𝑝∗ + 𝑘$A𝜔.

!&/

.0/

⋅ 𝑒
&!&.'! −A𝑘%<(𝑖) ⋅ 𝜔. ⋅

!&/

.0/

𝑒&
!&.
'" 	 (6.5)

Where:

𝑘%&(𝑖) = 𝑘%A𝜔Q

.

Q0/

⋅ 𝑒
&.&Q'"& 	 (6.6)

 166

The noticeable differences between the VDR model formulae in equations (6.3, 6.4) vs. (6.5, 6.6) are:

• The training load term (𝜔) appears twice in the fatigue component in equations (6.5, 6.6),

versus once in equations (6.3, 6.4). Note the 𝜔. term in equation 6.5 and 𝜔Q in equation 6.6.

• The 𝑘% term in equation 6.6 was moved to the outside of the fatigue component sum in

equation 6.3. This change generates no computational difference.

The former of these differences, the inclusion of an additional training load term in the original Busso

(2003) VDR model, is only significant when approximating the model over a short period of time.

This is because FFMs are defined by systems of differential equations whose solutions require

integration. The summations presented as FFM equations therefore represent approximations with

integration replaced by rectangular summation. Over very short periods modifications to indexing etc,

may substantively influence approximations and therefore differences. However, over-longer periods

suitable approximations will present differences that are not practically significant. The formula for

the VDR model in equations 6.3 and 6.4 (i.e., the form as consistently stated through this thesis) also

makes the purpose of the variable gain term clearer. That is, the purpose of the term is to weight the

fatigue effect of training based on previous training doses (proximity and magnitude). In essence, the

process acts as an exponentially weighted average of previous training loads with more weight applied

to more recent loads. Listing 6.5 presents the VDR model objective function, based on its mathematical

form as presented in this thesis so far (equations 6.3, 6.4), and listing 6.6 demonstrates a modification

to listing 6.5 in order to return to the original formulae (equations 6.5, 6.6).

 167

Listing 6.5 Objective function (RSS): VDR model – For loop approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

vdrObjectiveSS <- function(pars, loads, perfVals, initial = FALSE, maximise = FALSE){

 # INPUT NOTES:
 # --
 # [1] [2] [3] [4] [5] [6] [7] [8]
 # Pars: c(p*, kg, Tg, kh, Th, Th2) initial = FALSE
 # Pars: c(p*, kg, Tg, kh, Th, Th2, qg, qh) initial = TRUE
 # --

 nMeasurements <- length(perfVals$performance) # Number of performance measurements

 # Zeroed vector of length equal to number of performance measurements
 squaredResiduals <- numeric(length = nMeasurements)

 # For each performance measurement calculate (modelled - measured)^2 under pars
 for (n in 1:nMeasurements){

 dayT <- perfVals$day[n] # Day of measured performance
 measured <- perfVals$performance[n] # Measured performance value on dayT

 # Isolate the required load data to compute the model up to dayT
 inputSubset <- loads[1:dayT,]

 # Initial components
 if (initial == TRUE){
 initFitness <- pars[7] * exp(-(dayT) / pars[3])
 initFatigue <- pars[8] * exp(-(dayT) / pars[6])
 } else{
 initFitness <- 0
 initFatigue <- 0
 }

 # Set up a zeroed vector to hold the variable gain term values kh2(i) for i=0 to dayT - 1
 kh2 <- numeric(length = dayT) # Variable gain term vector

 # Calculate the variable gain term kh2(i) for i=0,1,2,...,dayT-1 (Recursive)
 for (i in 1:dayT){
 kh2[i] <- sum(inputSubset$load[1:i] * exp(-((inputSubset$day[i]-
 inputSubset$day[1:i])/pars[6])))
 }

 # Compute modelled performance on dayT under pars
 model <- pars[1] + initFitness - initFatigue +
 pars[2] * (sum(inputSubset$load * exp(-(dayT - inputSubset$day) / pars[3]))) -
 pars[4] * (sum(kh2 * inputSubset$load * exp(-(dayT - inputSubset$day) / pars[5])))

 # Compute the squared residual value (model - measured)^2
 squaredResiduals[n] <- (model - measured)^2

 }

 # Output
 if(maximise == FALSE){return(sum(squaredResiduals))}
 if(maximise == TRUE){return(-1 * sum(squaredResiduals))}
}

Reflecting the original Busso (2003) model (eq.’s 6.5, 6.6) is straightforward and involves only

changing listing 6.5 at line 45, as follows:

Listing 6.6 Modification of listing 6.5 (line 45) to incorporate original VDR formula (RSS)

1 pars[4] * (sum(kh2 * inputSubset$load * exp(-(dayT - inputSubset$day) / pars[5])))

The last function presented in this subsection is a VDR model prediction function. The code in listing

6.7 follows all of the same concepts discussed so far throughout this work, and so is not explained

beyond the annotation itself.

 168

Listing 6.7 Simulation function: VDR model – For loop approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

simulateVDR <- function(pars, loads, initialPars = c(0,0), returnObject = "all"){

 # pars = c(p*, k_g, Tau_g, k_h, Tau_h, Tau_h2)

 # Set up zeroed vectors of required length
 seriesLength <- tail(loads$day, 1)
 performance <- numeric(length = seriesLength) # Model performance
 fitness <- numeric(length = seriesLength) # Model fitness
 fatigue <- numeric(length = seriesLength) # Model fatigue
 initialFitness <- numeric(length = seriesLength) # Residual effects (initial component)
 initialFatigue <- numeric(length = seriesLength)
 kh2Dat <- matrix(data = NaN, nrow = tail(loads$day, 1), ncol = tail(loads$day, 1))

 # Calculate model fitness g(t), fatigue h(t), and
 # performance p(t) for t = 1:seriesLength
 for (t in 1:seriesLength){

 # Isolate the required load data for calculating p(t), (i.e., loads from day 0 to day t-1)
 inputSubset <- loads[loads$day < t,]

 # Residual effects from initial components at time point t
 initialFitness[t] <- initialPars[1] * exp(-(t) / pars[3])
 initialFatigue[t] <- initialPars[2] * exp(-(t) / pars[4])

 # Set up a zeroed vector to hold the variable gain term values kh2(i) for i=0 to dayT - 1
 kh2 <- numeric(length = t) # Variable gain term vector

 # Calculate the variable gain term kh2(i) for i=0,1,2,...,dayT-1 (Recursive)
 for (i in 1:t){
 kh2[i] <- sum(inputSubset$load[1:i] *
 exp(-((inputSubset$day[i]-inputSubset$day[1:i])/pars[6])))
 }
 # For each iteration t+1 of the outer loop, save kh2(i) values where i = 0 to t-1
 kh2Dat[1:t, t] <- kh2

 # Compute g(t), h(t), p(t) for current t
 fitness[t] <- pars[2] * sum(inputSubset$load * exp(- (t - inputSubset$day)/ pars[3]))
 fatigue[t] <- pars[4] * sum(kh2 * exp(- (t - inputSubset$day) / pars[5]))
 performance[t] <- pars[1] + fitness[t] - fatigue[t] + initialFitness[t] - initialFatigue[t]

 } # Loop index updates (t <- t+1) until t = seriesLength

 # Output
 if (returnObject == "performance"){return(performance)}
 if (returnObject == "fitness"){return(fitness)}
 if (returnObject == "fatigue"){return(fatigue)}
 if (returnObject == "all"){
 return(data.frame("day" = 1:seriesLength,
 "initial_fitness" = initialFitness,
 "initial_fatigue" = initialFatigue,
 "fitness" = fitness, "fatigue" = fatigue,
 "kh2_t" = kh2Dat[, tail(loads$day, 1)],
 "performance" = performance))
 }
} # End function (closing bracket)

Next the function (simulateVDR) for simulating the VDR model from listing 6.7 is applied to study the

behaviour of the fatigue component ℎ(𝑡) and in particular the variable gain term 𝑘%&, via plots where

the value of parameter 𝜏%& is varied under different training load patterns (e.g., constant, binary,

increasing, undulating, mixed/variable). This begins with the simple case of constant training load

(Figure 6.4).

 169

Figure 6.4: Behaviour of the variable gain term and fatigue component ℎ(𝑡) of the VDR model for

different values of the parameter 𝜏%& (constant load: 𝜔 = 	1, parameters fixed: 𝑘% = 1, 𝜏% = 6).

Note: 𝑘%&(𝑡) = ∑ 𝜔(𝑗)!
Q0- 𝑒

&t9.-J"&
u

Code associated with figure 6.4 is contained in github.com/bsh2/thesis/c6/nls.R., with the plots in

figure 6.7 generated in a similar fashion. The plots in figure 6.4 illustrate that for lower values of the

parameter 𝜏%&, the VDR limited interaction in the fatigue component with previous training sessions.

This is reflected in the variable gain term in response to a new load. To see this, examine the left hand

plot for 𝜏%& = 0.2 (black line), compared to 𝜏%& = 2 (red line). Note that as 𝑡 increases from day 1 to

10, the variable gain term (𝜏%& = 0.2, black line) stays approximately constant. This tells us that on

any day 𝑡, the loads on days (1,2, … , 𝑡 − 1) have very little scaling effect on the response to a new

load within the fatigue component (for small values of 𝜏%&). In contrast, for the red line, the effect of

previous training doses spans further back and is higher in magnitude. Larger values of 𝜏%& model

greater interaction with previous training sessions in the response to a new load. For the example

above, the response in the fatigue component to a new load on day 𝑡 for 𝜏%& = 0.2 could be

approximated by just 𝑒
& %
J". To illustrate this further, Figure 6.5 below shows the difference between

these same values of 𝜏%& by the associated contribution of previous loads to the variable gain term

𝑘%&(𝑡) on 𝑡 = 10, under constant load 𝜔 = 1 [a.u].

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Constant Load, ω = 1 | τh2 varying

Day (t)

k h
2(

t)

τh2 = 2
τh2 = 1.5
τh2 = 1.2
τh2 = 0.8
τh2 = 0.5
τh2 = 0.2

2 4 6 8 10

0
2

4
6

8
10

Constant Load, ω = 1 | τh2 varying | τh = 6 | kh = 1

Day (t)
fa

tig
ue

 |
 h

(t)

τh2 = 2
τh2 = 1.5
τh2 = 1.2
τh2 = 0.8
τh2 = 0.5
τh2 = 0.2

 170

Figure 6.5: Differences between 𝜏%& parameter values (0.2, left, black; 1.2, middle, green; 2, right,

red) reflected in previous loads contribution to the variable gain term 𝑘%&(𝑡), for 𝑡 = 10, under 𝜔 = 1

(constant).

Several further training inputs (Figure 6.6) are now plotted (Figure 6.7) via similar means to further

exhibit the behaviour of the variable gain term 𝑘%&(𝑡) and fatigue ℎ(𝑡) component in the VDR model.

Figure 6.6: Training inputs applied to illustrate the behaviour of the VDR model

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τh2 = 0.2

Day (j)

ω
(j)

 e
−(

t−
j)

τ h
2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τh2 = 1.2

Day (j)
ω

(j)
 e

−(
t−

j)
τ h

2
2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τh2 = 2

Day (j)

ω
(j)

 e
−(

t−
j)

τ h
2

2 4 6 8 10

0.
0

0.
6

Binary load (on/off)

Day (t)

ω
t

2 4 6 8 10

1.
0

1.
4

1.
8

Increasing load (linear)

Day (t)

ω
t

2 4 6 8 10

0.
0

1.
0

2.
0

Undulating load

Day (t)

ω
t

2 4 6 8 10

0.
0

1.
0

2.
0

Mixed load

Day (t)

ω
t

 171

Figure 6.7: VDR behaviour (𝑘%&(𝑡), ℎ(𝑡) for varied 𝜏%&, 𝑘/ = 1, 𝜏% = 6 fixed) under different loads

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

Binary Load, ω = 1 or 0 | τh2 varying

Day (t)

k h
2(

t)

2 4 6 8 10

0
1

2
3

4
5

Binary Load, ω = 1 or 0 | τh2 varying

Day (t)

Fa
tig

ue
 |

 h
(t)

2 4 6 8 10

0
1

2
3

4

Increasing (linear) Load, ω = 1 or 0 | τh2 varying

Day (t)

k h
2(

t)

2 4 6 8 10

0
2

4
6

8
10

12
14

Increasing (linear) Load, ω = 1 or 0 | τh2 varying

Day (t)

Fa
tig

ue
 |

 h
(t)

2 4 6 8 10

0.
0

1.
0

2.
0

3.
0

Undulating Load, | τh2 varying

Day (t)

k h
2(

t)

2 4 6 8 10

0
2

4
6

8
10

Undulating Load, | τh2 varying

Day (t)

Fa
tig

ue
 |

 h
(t)

2 4 6 8 10

0.
0

1.
0

2.
0

3.
0

Mixed Load, | τh2 varying

Day (t)

k h
2(

t)

2 4 6 8 10

0
2

4
6

8
10

Mixed Load, | τh2 varying

Day (t)

Fa
tig

ue
 |

 h
(t)

 172

Fitting an FFM to data via nonlinear least-squares (A self contained example)

Closing this subsection, a reproducible example is presented, demonstrating how the RSS objective

functions developed for the three FFMs can be applied in a nonlinear least-squares fitting process to

estimate FFM parameters from data. The L-BFGS-B algorithm from the popular general purpose

optimisation package optimx (Nash et al., 2020) available on the comprehensive R archive network

(CRAN, cran.r-project.org) is used in the example. However, appropriate choice of optimisation

algorithm and arguably better alternatives are discussed in section 6.2.4. As demonstrated in section

6.2.4, applying different algorithms available from various packages in R is largely a plug and play

task, and so choice of algorithm here matters very little for demonstrating the overall picture. In other

words, focus here is not on the suitability of algorithm used, parameters obtained, synthetic data

developed, or model predictions. Instead, the focus is on providing an introduction to the approach for

fitting an FFM in R. Despite being self-contained, users may wish to download the code rather than

copy-paste to run this themselves, and this can be found at github.com/bsh2/thesis/c6/nls.R.

The optimx package must be installed and loaded into R from CRAN by running the following code

install.packages(“optimx”)
library(optimx)

Using the objective functions developed so far with real data requires the user to import data into R

and aligning it with the format described in Table 6.1. For the purposes of this example and to remain

self-contained, synthetic data was developed via simulation (listing 6.8, Figure 6.8), including a set of

training loads, and simulated performance data (function simulateStandard) under a set of manually

specified parameters.

Listing 6.8 Synthetic data: Simulated performance values

1
2
3
4
5
6
7
8
9
10
11
12
13

Specify some arbitrary loads
loads <- data.frame("day" = 0:100,
 "load" = c(0, rep(c(1,1.2,0.5,1.8,2,0.25,0.7,0.9,0,0.5,1,
 0.8,1.2,1.3,0.9,0,0,2,1.1,0.5), 5)))

Simulate the standard model to build some synthetic performance data
mockParameters <- c(100, 1, 22.5, 1.2, 8) # c(p*, kg, Tg, kh, Th)

mockPerformances <- data.frame("day" = 1:100, "performance" =
 simulateStandard(mockParameters, loads, returnObject = "performance"))

Subset to reduce no. of datapoints
mockPerformances <- mockPerformances[seq(1, 100, 3),]

 173

Figure 6.8: Synthetic data: Training load series (orange) and simulated performance values (red)

(listing 6.8) for the reproducible example in section 6.2.1

Fitting the standard and VDR models to the synthetic data (listing 6.8, figure 6.8) is then completed

via a simple function call to the ‘wrapper’ function (optimx) found in the optimisation package optimx.

This function is a ‘wrapper’ in that it provides access to multiple algorithms (functions) in the package

via the argument (method), shown next. Algorithms available in optimx include Nelder-Mead (a

downhill simplex method), BFGS (a quasi-Newton method with optional contraints), a Newton-type

algorithm, and a conjugate gradient method. These algorithms are discussed in section 6.2.4. Listing

6.9 below makes use of the objective functions developed (listings 6.1, 6.5) to fit the standard and

VDR models to the simulated data via a NLS regression approach using the BFGS algorithm (Result

plotted in figure 6.9).

Listing 6.9 Fitting the simulated data to the standard and VDR models under NLS via BFGS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

library(optimx) # Load the required package

Start values for the optimisation algorithm
startValsStandard <- c(90, 0.8, 26, 1.5, 11) # c(p*, kg, Tg, kh, Th)
startValsVDR <- c(90, 0.8, 26, 1.5, 11, 0.65) # c(p*, kg, Tg, kh, Th, Th2)

Fit the standard model via Nonlinear least-squares
standardFitted <- optimx::optimx(par = startValsStandard, # Starting values
 fn = standardObjectiveSS, # RSS
 method = "BFGS", # Method (see ?optimx)
 loads = loads, # Passed to fn (inputs)
 perfVals = mockPerformances) # Passed to fn (target)

Fit the VDR model via Nonlinear least-squares
vdrFitted <- optimx::optimx(par = startValsVDR, # Starting values
 fn = vdrObjectiveSS, # Objective function (RSS)
 method = "BFGS", # Method (see ?optimx)
 loads = loads, # Passed to fn (inputs)
 perfVals = mockPerformances) # Passed to fn (target)
Inspect results
standardFitted
vdrFitted

0 20 40 60 80 100

10
0

10
2

10
4

10
6

10
8

11
0

Synthetic data

Day [a.u]

Pe
rfo

rm
an

ce
 [a

.u
]

Tr
ai

ni
ng

 lo
ad

 [a
.u

]

0.
0

0.
5

1.
0

1.
5

2.
0

 174

Figure 6.9: Standard and VDR FFMs fitted to the synthetic data via NLS under L-BFGS-B (listing

6.9). Code for the plots found in github.com/bsh2/thesis/c6/nls.R

0 20 40 60 80 100

10
0

10
4

10
8

Standard Model (Fitted)

Day [a.u]

Pe
rfo

rm
an

ce
 [a

.u
]

Fi
tn

es
s

an
d

Fa
tig

ue
 [a

.u
]

0
5

10
15

20Synthetic data
Model performance
Model Fitness
Model Fatigue

0 20 40 60 80 100

10
0

10
4

10
8

11
2

VDR Model (Fitted)

Day [a.u]

Pe
rfo

rm
an

ce
 [a

.u
]

Fi
tn

es
s

an
d

Fa
tig

ue
 [a

.u
]

0
5

10
15Synthetic data

Model performance
Model Fitness
Model Fatigue

 175

6.2.2 A hidden loop approach (sapply) – Simulating the standard, fitness-delay, and
VDR FFM and fitting via maximum likelihood estimation

This subsection begins by working toward developing an alternative simulation function for the

standard model by means of a base R function from the apply family, equipping the reader with a

contrasting approach to the explicit loop structures used in the previous subsection (6.2.1). The apply

family of functions enables the user to perform repetitive action on data stored in various objects

including arrays (e.g., data frames, matrices) and lists. These actions can range from simple

calculations (e.g., multiplication), to complicated operations processed by user-defined R functions. If

used correctly, the utilisation of the apply family of functions can improve the readability of code

(particularly when nested loops are involved), facilitate parallelisation, and can be well suited to

recursion (Wickham, 2019). However, it must be noted that the apply family is not the same as

vectorisation, it is effectively loop-hiding with a for-loop in its definition, and has execution times

roughly equal to an explicit for-loop (Burns, 2011). The primary benefit of the apply family of

functions is improvement in the readability of code. In general, it is important that the control flow of

any code is as simple as possible to achieve the task (within the bounds of not trying to overoptimise

the code), and so that debugging is easier. Therefore, presentation of the apply approach in this

subsection may be useful for some readers who are still struggling with the terse nature of the loop

structures presented in the previous subsection. Inputs for this subsection remain the same as those

described in section 6.2.1 (see table 6.1). The fitness-delay model adaptations are not demonstrated to

avoid unnecessary repetition, as it is assumed readers are to be now aware of the ease with which the

objective or prediction functions developed can be modified for use with the fitness-delay model.

However, they are included in the associated code file for this subsection:

github.com/bsh2/thesis/c6/maximum_likelihood.R

The secondary aim of this chapter is to discuss the theory of and demonstrate maximum likelihood

estimation for fitting FFMs to data. This section can represent a steeper learning curve to become

acquainted with the control flow of the code associated with the theory of maximum likelihood

compared to section 6.2.1 where a conceptually simpler NLS approach was examined.

The R function sapply is one function within the family of apply functions in base R. The function

sapply takes as input a vector of values, and each element (of that vector) is then passed through another

function (often with other inputs), returning the result from each iteration in as simple a data structure

as possible (typically another vector or a data frame).

 176

To begin to understand how the sapply function can be used in lieu of an explicit for-loop to implement

FFMs, recall the general form of the FFM components (Busso, Candau and Lacour, 1994):

A𝜔(𝑖) ⋅ 𝑒&
!&.
'

!&/

.0/

	 (6.7)

Next, considering what may be required to implement equation 6.7 in R, if a user sought to repeatedly

compute this expression for iteratively increasing values of 𝑡 (say, where 𝑡 goes from 𝑡 = 1 to 𝑇 in

time steps of 1 day). Based on the description given above for the sapply function it should be apparent

that it this function a well placed approach for completing this task. Following this further, we first

define an R function to compute equation 6.7 for any given value of 𝑡 (listing 6.10).

Listing 6.10 General component convolution function

1
2
3
4
5
6
7
8

convolveTraining <- function(loads, tau){

 # Value of t relevant to (eq 6.9)
 dayt <- length(loads)

 # Note that loads[1:dayt] will yield c(w(0), w(1), ... , w(t-1))
 return(sum(loads[1:dayt] * exp(-(dayt:1 / tau))))
}

The function in listing 6.10 (convolveTraining) takes as input a vector of load values (loads) running

from day 0 to day 𝑡 − 1 and the relevant time decay constant (𝜏) for the component, and returns the

sum expressed in equation 6.7 for a value of 𝑡 implied by the length of the load vector supplied. Note

that as before, the load vector is supplied with the first element as 𝜔-, and so for some day 𝑡 we do not

have to specify 𝑡 − 1 at any point in the code as we naturally retain this condition. This function can

now be used in conjunction with sapply to iteratively compute the component values for changing

(increasing) 𝑡, as shown in the example in listing 6.11.

Listing 6.11 An example demonstrating how sapply can be used to iteratively compute eq. 6.7 (general
component) for increasing 𝑡 via the convolveTraining function in listing 6.10

1 base::sapply(1:T, function(t) convolveTraining(loads[1:t], tau))

In listing 6.11, sapply takes a numeric vector of length T, defined by c(1:T). In an iterative process,

the value of t is updated to match the value of each element in this vector, and at each iteration of

changing t the convolveTraining function is called with the input vector of load values cut to length t-

1 (recall that 𝜔- is the first element in the loads vector so loads[1:t,] naturally yields loads from day

0 to 𝑡 − 1). Returned back to the sapply function at each iteration is the result of equation 6.7 for

increasing t, and these results are then compiled and returned to the user as an ordered vector.

 177

Now that this concept has been introduced, it should become clearer how a simulation function to

compute equation 6.6 could be developed for both the standard and VDR models, that is now devoid

of explicit loops (recall that loops are still used, they are just hidden by sapply). These functions are

presented next, beginning with a simulation function for the standard model that uses an sapply

approach.

Listing 6.12 Simulation function: Standard model – sapply approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

simulateStandard2 <- function(pars, loads, initialPars = c(0,0)){

 # Parameters supplied as: pars <- c(p*, k_g, Tau_g, k_h, Tau_h)

 # Ancillary function (required)
 # --
 convolveTraining <- function(loads, tau){

 # Value of t relevant to (eq 6.9)
 dayt <- length(loads)

 # Note that loads[1:dayt] will yield c(w(0), w(1), ... , w(t-1))
 return(sum(loads[1:dayt] * exp(-(dayt:1 / tau))))
 }
 # --

 # Length of the training load series (final day)
 T <- tail(loads$day, 1)

 # If initial parameters q_g and q_h are supplied (otherwise evaluates to 0)
 initialFitness <- initialPars[1] * exp(-(1:T) / pars[3])
 initialFatigue <- initialPars[2] * exp(-(1:T) / pars[4])

 # Calculate the fitness and fatigue effects (Utilizing sapply function)
 fitness <- pars[2] *
 base::sapply(1:T, function(t) convolveTraining(loads$load[1:t], pars[3]))

 fatigue <- pars[4] *
 base::sapply(1:T, function(t) convolveTraining(loads$load[1:t], pars[5]))

 performance <- pars[1] + initialFitness - initialFatigue + fitness - fatigue

 # Return model predicted performance, fitness, and fatigue
 return(data.frame(day = 1:T,
 performance = performance,
 fitness = fitness,
 fatigue = fatigue,
 load = loads$load[2:(T + 1)]))
}

Adapting the standardPredict function in listing 6.12 to accommodate the VDR model involves the

requirement for an additional function (kh2Compute) (listing 6.13), to compute the additional variable

gain term 𝑘%&(𝑖) = ∑ 𝜔(𝑗).
Q0/ ⋅ 𝑒&(.&Q) '"&⁄ within the fatigue component (see equations 6.3 and 6.4

from section 6.2.1). The kh2Compute function will be used later in conjunction with an additional sapply

function call to compute 𝑘%&(𝑖) for changing values of 𝑖.

 178

Listing 6.13 Variable gain term function 𝑘E!(𝑖) for the VDR model

1
2
3
4

kh2Compute <- function(loads, tau){
 day_i <- length(loads)
 return(sum(loads[1:day_i] * exp(-((day_i - 1):0 / tau))))
}

In listing 6.13, for any value of day_i, the computation (day_i-1):0 will yield the resultant vector:

((day_i-1), (day_i-2), …, 0)

Which is equivalent to repeatedly computing (𝑖 − 𝑗) for 𝑗 = (1, 2, … , 𝑖).

And so, in the listing 6.13 (line 3), the RHS of the expression:

exp(-((day_i-1):0 / tau))

yields the vector (𝑒&
/.%
J , 𝑒&

/.&
J , … , 𝑒&

(/./)
J).

Also recall that vector operations in R are performed on paired elements (by position in the vector)

and so if performing the multiplication of two vectors, say c(1,2,3) * c(2,3,4), the resultant will

be the vector c((1*2), (2*3), (3*4)). It follows that the vector multiplication within listing 6.13

above will yield a vector representing repeated calculation of the expression:

W𝜔(𝑗) ⋅ 𝑒
&.&Q'"&X	 (6.8)

for values of 𝑗 = (1,… , 𝑖).

Therefore 𝑘%&(𝑖) is simply found by taking the sum of the elements in this vector. With these aspects

in mind, the VDR model prediction function can be developed as follows in listing 6.14 using the

functions from listing 6.13 (kh2Compute) and 6.10 (convolveTraining).

 179

Listing 6.14 Simulation function: VDR model – sapply approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

simulateVDR2 <- function(pars, loads, initialPars = c(0,0)){

 # Parameters supplied as: pars <- c(p*, k_g, Tau_g, k_h, Tau_h, Tau_h2)

 # Ancillary functions (required)
 # --
 # Listing 6.10
 convolveTraining <- function(loads, tau){

 # Value of t relevant to (eq 6.9)
 dayt <- length(loads)

 # Note that loads[1:dayt] will yield c(w(0), w(1), ... , w(t-1))
 return(sum(loads[1:dayt] * exp(-(dayt:1 / tau))))
 }

 # Listing 6.13
 kh2Compute <- function(loads, tau){
 day_i <- length(loads)
 return(sum(loads[1:day_i] * exp(-((day_i-1):0 / tau))))
 }
 # --

 # Length of the training load series supplied = final day (T)
 T <- tail(loads$day, 1)

 # If initial parameters q_g and q_h are supplied (otherwise evaluates to 0)
 initialFitness <- initialPars[1] * exp(-(1:T) / pars[3])
 initialFatigue <- initialPars[2] * exp(-(1:T) / pars[5])

 # Compute modeled fitness
 fitness <- pars[2] *
 base::sapply(1:T, function(i) convolveTraining(loads$load[1:i], pars[3]))

 # For each i=1:T, compute k_h_2(i) = sum_(j=0)^(i){w(j)e^(-(i-j)/tau_h_2)}
 # s.t. k_h_2(t) = sum(k_h_2(i)) for i = 1,2,...,(t-1)
 kh2 <- base::sapply(1:T, function(i) kh2Compute(loads$load[1:i], pars[6]))

 # Compute modeled fatigue
 fatigue <- pars[4] *
 base::sapply(1:T, function(i) convolveTraining(kh2[1:i], pars[5]))

 # Compute modeled performance
 performance <- pars[1] + initialFitness - initialFatigue + fitness - fatigue

 # Return model predicted performance, fitness, and fatigue
 return(data.frame(day = 1:T,
 performance = performance,
 fitness = fitness,
 fatigue = fatigue,
 kh2 = kh2,
 load = loads$load[2:(T + 1)]))
}

To understand the key concepts in the implementation of the VDR prediction function in listing 6.14,

note that line 37 applies the sapply function to repeatedly compute the function 𝑘%&(𝑖) for changing

values of 𝑖 from 𝑖 = 1 to 𝑇 − 1 (where 𝑇 is the final day in the load series). The index 𝑖 will implicitly

run to 𝑇 − 1 rather than 𝑇 as the load values passed to the function kh2Compute by sapply begin at day

zero (𝜔- = 0). This concept was discussed at the start of section 6.2. Recall that the fatigue component

of the VDR model computed for a given day 𝑡 is also as follows:

𝑘%A𝑘%<(𝑖) ⋅
!&/

.0/

𝑒&
!&.
'" 	 (6.9)

 180

By the process described for the function in listing 6.13, the sum in equation 6.9 can then be computed

by making use of vector multiplication in R. For a given day 𝑡, computing eq. 6.8 in R requires us to

snip the resultant vector of length 𝑇 obtained at line 18, to the required length 𝑡, giving us the vector

of 𝑘%&(𝑖) values from 𝑖 = 1 to 𝑡 − 1. This vector is then multiplied with a vector containing the values

of 𝑒
&9./J" for 𝑖 = 1 to 𝑡 − 1, and the sum of the elements in the resultant vector (scaled by 𝑘%) yields

equation 6.8 for 𝑡. Recall in listing 6.10 that the convolveTraining function was introduced, and note

that if in that function if the values supplied to the loads argument were replaced with the obtained

𝑘%&(𝑖) values for 𝑖 = 1 to 𝑡 − 1, this would achieve exactly the required process just described. In

essence, this represents the recursive aspect of the VDR model. To take this one step further, remember

that the prediction function developed is concerned with being able to compute modelled fatigue for

each day between days 1 and 𝑇 in 1-day time-steps, and so the sapply function is utilised once again

to repeat the above process for changing values of 𝑡 (𝑡 = 1,2, … , 𝑇) (line 41).

Now that several of the most important concepts have been covered to help the reader understand the

flow of the functions developed so far, and in particular the use of the sapply function, attention is

turned to parameter estimation from data and in particular the theory behind a maximum likelihood

approach. Similar to section 6.2.1, appropriate objective functions will be developed, and then applied

at the end of the section within a reproducible example to fit the models to synthetic data.

First a general introduction to likelihood is given. For a set of observations (𝑥), the probability density

is known as the joint probability density if the independence assumption can be made, where the joint

probability density is the product of the individual densities (Zieffler, 2019), described as:

𝑝(𝑥/, 𝑥<, … , 𝑥a) = 𝑝(𝑥/) ⋅ (𝑥<) ⋅ … ⋅ 𝑝(𝑥a)	 (6.10)

The probability distribution of a normal distribution for a value 𝑥 is defined as:

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒&

(G&R)&
<v& 	 (6.11)

To compute the probability density in R (of 𝑥) from a normal distribution with mean 𝜇 (mu) and

standard deviation 𝜎 (sigma) there is a simple function available in standard R (dnorm) that can be

applied, as follows:

prod_density_x <- dnorm(x, mean = mu, sd = sigma)

 181

The likelihood (ℒ) is defined as the probability of a particular set of parameters given the data and

assumption that the data are from a particular distribution (Zieffler, 2019), described by:

ℒ = P(Parameters	|	Distribution	&	Data)

For example, given a set of observed data 𝑋 = (𝑥/, 𝑥<, 𝑥i, 𝑥r) assumed to come from a normal

distribution, a researcher might be interested in answering what the likelihood (probability) is that the

mean (of that distribution) is 𝑎 (𝜇 = 𝑎) and standard deviation is 𝑏 (𝜎 = 𝑏). Computing this likelihood

is just the case of computing the joint probability density of the data under the parameters (𝜇 = 𝑎,

𝜎 = 𝑏). In R this is then achieved as follows:

Likelihood_X <- prod(dnorm(c(x1, x2, x3, x4), mean = a, sd = b))

Maximum likelihood is concerned with which values of 𝜇 and 𝜎 are most likely to generate the

observed data 𝑋, for example “is (𝑎, 𝑏) the best, or some other values, say (𝑐, 𝑑)?”. This is the main

concept in maximum likelihood estimation (MLE) (Zieffler, 2019). In MLE, the goal is to find the set

of parameters (𝜇, 𝜎) that maximises the likelihood given the data and a distribution (Zieffler, 2019).

This could be done using brute force approaches such as a grid search that compare a handful of

different possible values, or via optimisation algorithms that methodically search the parameter space.

Often, likelihood values are quite small due to the multiplication of multiple probabilities and so taking

the natural logarithm of the likelihood can help alleviate this issue and can become important when

applying optimisation algorithms as excessively small values can cause early convergence to the

wrong solution (due to changes in the objective function becoming smaller than tolerance). Assuming

normality and independence, this is written symbolically as follows:

ℒ(parameters	|	data) = 𝑝(𝑥/) ⋅ 𝑝(𝑥<) ⋅ … ⋅ 𝑝(𝑥a) (6.12)

Such that:

ℓ(parameters	|	data) = lnJℒ(parameters	|	data)K = lnJ𝑝(𝑥/) ⋅ 𝑝(𝑥<) ⋅ … ⋅ 𝑝(𝑥a)K	

= lnJ𝑝(𝑥/)K + lnJ𝑝(𝑥<)K + ⋯+ lnJ𝑝(𝑥a)K	 (6.13)

From equation 6.13, it is clear that the log-likelihood is the sum of the log-transformed densities. In R

the dnorm function provides an additional argument for this (log = TRUE), such that:

Log_likelihood_X <- sum(dnorm(c(x1, x2, x3, x4), mean = a, sd = b, log = TRUE))

 182

Where maximisation of log-likelihood yields the same parameters as maximising the likelihood

(Zieffler, 2019). When fitting models, it is the residual (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	– 	𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑) values that are of

interest to us, and the values on which we place the distributional assumptions (Zieffler, 2019). The

goal in fitting FFMs via maximum log-likelihood estimation is to find the set of model parameters 𝜃

that maximise the log-likelihood for a set of residuals (𝜖) that come from a normal distribution defined

by:

𝜖	are	𝑖. 𝑖. 𝑑	𝑁~(𝜇, 𝜎<)	 (6.14)

Where residuals (errors) are assumed to be independent and identically distributed. For the purposes

of fitting the standard and VDR models in this section we assume the mean of the normal distribution

on the errors to be 𝜇 = 0, leaving a sixth parameter 𝜎 to be estimated when fitting the standard model,

or seventh for the VDR (excluding initial component parameters). Such that the log likelihood is given

by:

ℓ(θ	|	data) = lnJ𝑝(𝜖/) ⋅ 𝑝(𝜖<) ⋅ … ⋅ 𝑝(𝜖a)K (6.15)

Where,

𝜖. = (𝑝. − �̂�.), 𝑖 = (1,2, … , 𝑛)	 (6.16)

In R, under equation 6.11, this can be computed as follows by utilising the dnorm function (Assuming

the two vectors of (modelled) and (measured) values have already been obtained), as follows:

errors <- (modelled – measured)

Log_likelihood_errors <- sum(dnorm(errors, mean = 0, sd = sigma, log = TRUE))

Given the concepts described so far for MLE, the reader should now have enough awareness to follow

the R functions in listing 6.15 and 6.16, that defines a negative log-likelihood objective function for

the standard model (with or without initial components) and VDR model, respectively. This objective

function computes the log likelihood of the residuals for the parameters 𝜃, including 𝜎. A data fitting

process is demonstrated at the end of this subsection in a self-contained reproducible example. Also to

note in listing 6.15 and 6.16, the negative log-likelihood is returned, as the optimisation package optimx

(and the majority of others in R) minimise the objective function by default, and minimisation of a

negative function is equivalent to maximisation (Nash, 2014). However, the logical argument maximise

is included in the function (false by default) in the case that a maximiser is used in which case if

maximise = TRUE, the log likelihood is returned (and maximised by the algorithm).

 183

Listing 6.15 Objective function (log likelihood): Standard model – sapply approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

standardObjectiveLL <- function(pars, loads, perfVals, initial = FALSE,
 maximise = FALSE){

 # INPUT NOTES:
 # ---
 # [1] [2] [3] [4] [5] [6] [7] [8]
 # Pars: c(p*, kg, Tg, kh, Th, sigma) initial = FALSE
 # Pars: c(p*, kg, Tg, kh, Th, sigma, qg, qh) initial = TRUE
 # ---

 # Ancillary function (required)
 # --
 convolveTraining <- function(loads, tau){

 # Value of t
 dayt <- length(loads)

 # Note that loads[1:dayt] will yield c(w(0), w(1), ... , w(t-1))
 return(sum(loads[1:dayt] * exp(-(dayt:1 / tau))))
 }
 # --

 finalMeasurement <- tail(perfVals$day, 1)

 if (initial == TRUE){
 initFitness <- pars[7] * exp(-(1:finalMeasurement) / pars[3])
 initFatigue <- pars[8] * exp(-(1:finalMeasurement) / pars[5])
 }

 # Compute modeled performance from t=1 to t=finalMeasurement
 fitness <- pars[2] * sapply(1:finalMeasurement,
 function(t) convolveTraining(loads$load[1:t], pars[3]))
 fatigue <- pars[4] * sapply(1:finalMeasurement,
 function(t) convolveTraining(loads$load[1:t], pars[5]))

 if (initial == FALSE){
 performance <- pars[1] + fitness - fatigue
 }

 if (initial == TRUE){
 performance <- pars[1] + initFitness - initFatigue + fitness - fatigue
 }

 # Extract modeled performance values on days where measurement exists
 performance <- performance[perfVals$day]

 # Compute errors
 errors <- perfVals$performance - performance

 if (maximise == FALSE){
 return(-1.0 * sum(dnorm(errors, mean = 0, sd = pars[6], log = TRUE)))
 }
 if (maximise == TRUE){
 return(sum(dnorm(errors, mean = 0, sd = pars[6], log = TRUE)))
 }
}

Notes (listing 6.15):

• The length and order of the argument pars supplied will differ depending on whether initial = TRUE or

initial = FALSE (default) – See lines 4-9

 184

Listing 6.16 Objective function (log likelihood): VDR model – sapply approach

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

vdrObjectiveLL <- function(pars, loads, perfVals, initial = FALSE,
 maximise = FALSE){

 # INPUT NOTES:
 # ---
 # [1] [2] [3] [4] [5] [6] [7] [8] [9]
 # Pars: c(p*, kg, Tg, kh, Th, Th2, sigma) initial = FALSE
 # Pars: c(p*, kg, Tg, kh, Th, Th2, sigma, qg, qh) initial = TRUE
 # ---

 # Ancillary functions (required)
 # --
 convolveTraining <- function(loads, tau){

 # Value of t
 dayt <- length(loads)

 # Note that loads[1:dayt] will yield c(w(0), w(1), ... , w(t-1))
 return(sum(loads[1:dayt] * exp(-(dayt:1 / tau))))
 }

 kh2Compute <- function(loads, tau){
 day_i <- length(loads)
 return(sum(loads[1:day_i] * exp(-((day_i-1):0 / tau))))
 }
 # --

 finalMeasurement <- tail(perfVals$day, 1)

 if (initial == TRUE){
 initFitness <- pars[8] * exp(-(1:finalMeasurement) / pars[3])
 initFatigue <- pars[9] * exp(-(1:finalMeasurement) / pars[5])
 }

 # Compute modeled performance from t=1 to t=finalMeasurement
 fitness <- pars[2] * sapply(1:finalMeasurement,
 function(t) convolveTraining(loads$load[1:t], pars[3]))
 kh2 <- sapply(1:finalMeasurement, function(i) kh2Compute(loads$load[1:i], pars[6]))
 fatigue <- pars[4] * sapply(1:finalMeasurement,
 function(t) convolveTraining(kh2[1:t], pars[5]))

 if (initial == FALSE){
 performance <- pars[1] + fitness - fatigue
 }

 if (initial == TRUE){
 performance <- pars[1] + initFitness - initFatigue + fitness - fatigue
 }

 # Extract modeled performance values on days where measurement exists
 performance <- performance[perfVals$day]

 # Compute errors
 errors <- perfVals$performance - performance

 if (maximise == FALSE){
 return(-1.0 * sum(dnorm(errors, mean = 0, sd = pars[7], log = TRUE)))
 }
 if (maximise == TRUE){
 return(sum(dnorm(errors, mean = 0, sd = pars[7], log = TRUE)))
 }
}

Notes (listing 6.16):

• The length and order of the argument pars supplied will differ depending on whether initial = TRUE
or initial = FALSE (default) – See lines 4-9

 185

Fitting an FFM to data via maximum likelihood estimation (MLE) (A self contained example)

To finish this subsection, a self-contained example is provided for fitting an FFM to simulated

performance data similar to that generated at the end of subsection 6.2.1, but the addition of noise

(listing 6.17). The transformed data is fitted to both the standard and VDR models, from the functions

developed so far in this subsection (listings 6.15, 6.16). As in the previous subsection, the L-BFGS-B

algorithm is used to estimate the model parameters, from the package optimx (Nash et al., 2020). The

reader may find it helpful to work through this example in their own development environment to

cement their understanding. This example can also be found within the code at

github.com/bsh2/thesis/c6/maximum_likelihood.R

Listing 6.17 Synthetic data developed by simulation of the VDR model under hypothetical training loads

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Synthetic load data
loads <- data.frame("day" = 0:100,
 "load" = c(0, rep(c(1, 1.2, 0.5, 1.8, 2, 0.25, 0.7, 0.9, 0, 0.5,
 1, 0.8, 1.2, 1.3, 0.9, 0, 0, 2, 1.1, 0.5), 5)))

Using the standard model to build the synthetic performance data
mockParameters <- c(100, 1, 22.5, 1.2, 8, 0.5) # c(p*, kg, Tg, kh, Th, Th2)
mockPerformances <- simulateVDR2(mockParameters, loads)[,1:2]
mockPerformances_noerror <- mockPerformances

Add some random error from a Gaussian distribution
sigma <- 1
set.seed(1)
mockPerformances$performance <- mockPerformances$performance + rnorm(100, 0, sigma)

Subset to reduce number of data points
mockPerformances <- mockPerformances[seq(1, 100, 3),]

Figure 6.10: Simulated performance values (via VDR model) for the synthetic data (listing 6.17),

with and without random Gaussian error added. Parameters (𝑝∗ = 100, 𝑘$ = 1, 𝜏$ = 22.5, 𝑘% =

1.2, 𝜏% = 8, 𝜏%& = 1.2)

0 20 40 60 80 100

10
0

10
2

10
4

10
6

10
8

11
0

Without Gaussian error

Day

Pe
rfo

rm
an

ce
 (a

.u
)

Simulated data (VDR model)

0 20 40 60 80 100

10
0

10
4

10
8

11
2

+ random Gaussian error (σ = 1)

Day

Pe
rfo

rm
an

ce
 (a

.u
)

Simulated data (VDR model)

 186

Lastly in this subsection, code and output is presented for fitting the standard and VDR models to the

synthetic data in listing 6.17, including estimation of error variance 𝜎<. The process again utilises the

optimx function however this time enforcing bounding on the BFGS algorithm unlike in listing 6.9 (L-

BFGS-B algorithm) to compute the parameters under a maximum-likelihood estimation approach

(listing 6.18). This algorithm is discussed in depth in subsection 6.2.4. The results of listing 6.18 are

presented in Figure 6.11.

Listing 6.18 Fitting the standard and VDR models to the simulated data (listing 6.17) under MLE via L-BFGS-
B

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Standard: c(p*, kg, Tg, kh, Th, sigma) | VDR: c(p*, kg, Tg, kh, Th, Th2, sigma)
startPars <- list("standard" = c(95, 0.85, 26, 1.4, 5, 0.6),
 "vdr" = c(95, 0.85, 26, 1.4, 5, 1, 1.3))

Fit the standard model
standardFitted <- optimx(par = startPars[["standard"]],
 fn = standardObjectiveLL,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 method = "L-BFGS-B",
 loads = loads,
 perfVals = mockPerformances,
 control = list(maxit = 10000))

Fit the VDR model
vdrFitted <- optimx(par = startPars[["vdr"]],
 fn = vdrObjectiveLL,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1, 0.1),
 upper = c(200, 3, 50, 3, 50, 5, 10),
 method = "L-BFGS-B",
 loads = loads,
 perfVals = mockPerformances,
 control = list(maxit = 10000))

Notes (listing 6.18):

• maxit is a control parameter for optimx for the number of iterations (objective function calls)
• Other option control arguments for the optimiser are available including arguments to scale (e.g., normalise)

the parameter values (parscale), receive tracing information during the optimisation process (trace), and
to control the convergence of the “L-BFGS-B” method based on reduction of the objective function (factr).
See associated help files for further information (run ?optimx in R).

• The use of the L-BFGS-B algorithm does not reflect a recommendation for research as an appropriate solver
for the optimisation problem, and is merely used here as an introduction to optimisation in R. See chapter 5
for discussion of the issues surrounding the use of the L-BFGS-B algorithm with the standard and fitness-
delay models. When incorporating an additional parameter 𝜎 and the additional parameters of the VDR model
and optional initial components, it is expected that this algorithm will perform even worse. Further research
is required in this area, and discussion of available optimisation algorithms in R can be found in section 6.2.6
further on in this chapter.

• To estimate initial components, adapt the optimx function call as follows:
o The starting parameter vector supplied to par now needs to be of length and order

§ c(𝑝∗, 𝑘<, 𝜏<, 𝑘E, 𝜏E, 𝜎, 𝑞<, 𝑞E) for the standard model
§ c(𝑝∗, 𝑘<, 𝜏<, 𝑘E, 𝜏E, 𝜏E# , 𝜎, 𝑞<, 𝑞E) for the VDR model

o Supply the additional argument initial = TRUE (passed to fn)
o Adapt the lower and upper bound vectors to incorporate the additional parameters, in the order as

shown above

 187

 𝒑∗ 𝒌𝒈 𝝉𝒈 𝒌𝒉 𝝉𝒉 𝝉𝒉𝟐	 𝝈 −𝓵 𝓵 𝓛/𝒏

Standard 100.3 2.68 17.1 3.00 11.6 - 0.96 47.2 -47.2 0.25
VDR 100.5 0.92 22.3 1.33 1.7 5 0.92 45.3 -45.3 0.26

−ℓ (negative log likelihood, i.e., the objective function value at the solution),

ℓ (log likelihood), ℒ/𝑛 (average likelihood)

Figure 6.11: Models estimated from simulated data (listing 6.17) via MLE (listing 6.18)

6.2.3 Numerical approaches for solving the underlying ODE system and fitting to data

This section follows the development of code to numerically solve the standard model system in its

ordinary differential equation (ODE) form, and then demonstrates how this process can then be

enveloped by a data fitting framework (nonlinear least-squares). A numerical integration approach is

useful when working with ODE models where obtaining a solution is difficult or not analytically

(symbolically) tractable, such as for the non-linear FFM proposed by Turner et al. (2017). As the

original FFM (Banister et al., 1975) is a first-order system of ordinary differential equations (chapter

2, equations 2.2 - 2.4), it is an initial value problem (IVP) with initial conditions 𝑔(𝑡-) = 𝑔-, ℎ(𝑡-) =

ℎ-, 𝑝(𝑡-) = 𝑝!I, and can also be solved by numerical methods. When wrapped around by a data-

fitting framework these initial conditions are also estimated without the need for further components.

Various numerical methods exist for solving first-order IVPs, and in R the package deSolve (Soetaert

and Petzoldt, 2010) provides access to many of these integrators from both the linear multistep (e.g.,

Adam’s methods, backward differentiation (BDF) methods) and Runge-Kutta (e.g., Euler’s method)

categories. The package also provides methods from the Livermore family such as the default lsoda

algorithm, as used in the implementations later on, that can automatically switch between stiff (BDF)

and non-stiff (Adams) methods, dynamically monitoring data and deciding which method to use,

meaning the user does not have to determine whether the problem is stiff or not. To engage with the

resource the user does not need to know this level of detail however, it is provided for the more

0 20 40 60 80 100

10
0

10
4

10
8

11
2

Fitted Model’s (Standard FFM and VDR)

Day

Pe
rfo

rm
an

ce
 [a

.u
]

Standard Model (fitted)
VDR Model (fitted)
Measured Performance

 188

advanced reader. The purpose of this section is to illustrate the process of numerically solving an ODE

systems model in R, and fitting the model parameters to data. However, in-depth discussion of

integrator choice or numerical methods is an area out with the scope of this thesis, and readers are

directed to other works (Lambert, 1991). Recommendations to try from the deSolve package therefore

include the default lsoda algorithm, or possibly Euler’s method for the standard FFM. However, the

choice of solver will depend on the problem at hand and is an area of study best approached with help

from experts (applied mathematicians). Anecdotally, testing the subsequent standard model

implementation indicated little to no differences in solutions obtained between the lsoda and Euler

solver.

As a first step, the user must install and load the deSolve package from CRAN. Next, the system of

differential equations is defined as a seperate R function (banisterSystem) that computes the derivatives

𝑔′, ℎ′ in the ODE system (i.e., the model definition) according to the independent variable (e.g., time

𝑡) and load 𝜔! (Soetaert, Petzoldt and Setzer, 2010). This function is later passed as an argument in a

main loop that iteratively calls the ODE function from the deSolve package for each time 𝑡, and as

such Soetaert, Petzoldt and Setzer (2010) state that it:

 “Must be defined as

function(t, y, parms, ...)

where (t) is the actual value of the independent variable (e.g., the current time point in the

integration), (y) is the current estimate of the variables in the ODE system, parms is the parameter vector, and

(…) can be used to pass additional arguments to the function”

In listing 6.19 below, the additional argument (…) is used to pass the object 𝜔! (the current training

load value at time 𝑡). The return value (output) of the function banisterSystem is a list containing a

vector r that holds the derivatives of the state variables with respect to t.

Listing 6.19 Defining the standard model ODE system as an R function

1
2
3
4
5
6

banisterSystem <- function(t, y, parms, currentLoad){
 r = c()
 r[1] <- (parms[2]*currentLoad) - ((1/parms[3]) * y["G"])
 r[2] <- (parms[4]*currentLoad) - ((1/parms[5]) * y["H"])
 return(list(r))
}

In listing 6.20 on the following page, a function banisterPredict is defined, that takes as input a set of

model parameters and load values, numerically solving the IVP specified by banisterSystem via the

deSolve package. At each iteration of the loop at lines 9-41, the estimates of the state variables 𝑦 are

initialised at the value of the previous iteration 𝑦!&/ and the model solved numerically. At time 𝑡 < 2,

these values are simply initialised at the conditions 𝑔-, ℎ- (which also reflect the initial conditions to

be fitted as parameters within the model fitting routine covered shortly).

 189

Listing 6.20 Applying a numerical integrator to develop a model simulation function from the original
system of ODEs (standard model)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

banisterSimulate <- function(parms, loads){

 dat <- loads
 dat$G <- c(rep(0, length(loads$day)))
 dat$H <- c(rep(0, length(loads$day)))
 dat$pHat <- c(rep(0, length(loads$day)))

 # Solve model numerically at each time point (j)
 for (j in 1:length(dat$day)){
 currentLoad <- dat$load[j]
 if (j < 3){
 stateInit <- c(G = parms[6], # Fitness (initial condition)
 H = parms[7]) # Fatigue (initial condition)
 } else{
 # Initialize based on previous value (j-1)
 stateInit <- c(G = dat$G[j-1], # Fitness on previous day
 H = dat$H[j-1]) # Fatigue on previous day
 }

 # Vector of time-steps up to next day (j+1)
 t <- 0:1

 # Solve model for current time point (j)
 out = ode(y = stateInit, times = t, func = banisterSystem, parms = parms,
 method = c("lsoda"), currentLoad = currentLoad)

 # Extract solutions (j)
 if (j < 3){
 dat$G[j] <- unname(out[1,2])
 dat$H[j] <- unname(out[1,3])
 } else{
 dat$G[j] <- unname(out[2,2])
 dat$H[j] <- unname(out[2,3])
 }

 # Modelled performance at time j
 dat$pHat[j] <- parms[1] + dat$G[j] - dat$H[j]

 } # Update loop (j+1) and repeat
 return(dat)
}

Notes (listing 6.20):

• The length and order of parms supplied in the function call is as follows:
o c(𝑝∗, 𝑘<, 𝜏<, 𝑘E, 𝜏E, 𝑔G, ℎG)

• The argument loads is as before in Table 6.1

Enveloping the simulation function in 6.20 into an NLS fitting framework is then rather

straightforward and can be accomplished as follows:

Listing 6.21 RSS wrapper to facilitate NLS estimation of FFM system parameters and initial conditions

1
2
3
4
5
6

banisterObjective <- function(parms, perfVals, loads){
 dat <- banisterSimulate(parms, loads)
 datSubset <- dat[c((perfVals$day) + 1),] # +1 due to day zero first row
 RSS <- sum((datSubset$pHat - perfVals$performance)^2)
return(RSS)
}

 190

The function banisterObjective in listing 6.21 can then be used to solve fit the ODE system in the

original FFM to data (from listing 6.17) as shown in listing 6.22. This is a slightly verbose approach

given the closed form approximation for the standard model exists and as shown earlier is simple to

work with (Busso et al., 1992). However, when it comes to the nonlinear ODE system (Turner et al.,

2017), this is the only way to fit the FFM as the analytic solution is intractable. Hence, the purpose of

this section so far has been to set the reader up with a basic awareness of the approach necessary to fit

an FFM ODE system, before leading into the nonlinear system which we will treat next.

Listing 6.22 Solving the original ODE system by numerical methods and fitting it to data (from listing
6.17) via NLS solver (L-BFGS-B)

1
2
3
4
5
6
7
8
9
10
11

Create some starting values for the search c(p*,kg,Tg,kh,Th,g0,h0)
startParameters <- c(100, 0.9, 26, 1.2, 5, 0, 0)

Bounds <- c(p*,kg,Tg,kh,Th,g0,h0)
fittedModel <- optimx(par = startParameters,
 fn = banisterObjective,
 method = "L-BFGS-B",
 lower = c(50, 0.1, 1, 0.1, 1, 0, 0), # Lower bounds
 upper = c(150, 3, 50, 3, 50, 20, 20), # Upper bounds
 perfVals = mockPerformances, # Same data as listing 6.17
 loads = loads)

In 2017, Turner and colleagues proposed a non-linear variant of the original ODE system:

𝑝(𝑡) = 𝑝∗ + 𝑘$ ⋅ 𝑔(𝑡) − 𝑘% ⋅ ℎ(𝑡)	 (6.17)

𝑔"(𝑡) = 𝜔(𝑡) −
1
𝜏$
𝑔(𝑡)w	 (6.18)	

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)g (6.19)

where 𝛼, 𝛽 are power terms that represent the model’s nonlinearities. The standard model system

can be recovered by 𝛼 = 𝛽 = 1. Adjusting the functions developed so far (listings 6.19-6.21) to

numerically solve and fit this nonlinear systems model is straightforward and involves only minor

modifications presented on the following page. Code from this section is available to download

directly from github.com/bsh2/thesis/c6/banister_and_turner.R

Modification 1) At lines 3 and 4 in listing 6.19, with listing 6.23

Listing 6.23 Adapting the banisterSystem function (listing 6.19, lines 3-4) for the nonlinear system

1
2

r[1] = (parms[1]*currentLoad) - ((1/parms[3]) * y["G"]^(parms[8]))
r[2] = (parms[2]*currentLoad) - ((1/parms[4]) * y["H"]^(parms[9]))

 Where parms[8] and parms[9] are the elements containing the values of 𝛼, 𝛽 respectively

 191

Modification 2) At line 2 in the example data-fitting code (listing 6.22), adjustment needs to made to

the starting parameter vector and bounds to incorporate the additional parameters 𝛼, 𝛽 at positions 8

and 9 in the vectors. i.e., parms <- c(𝑝∗, 𝑘!, 𝜏!, 𝑘#, 𝜏#, 𝑔1, ℎ1, 𝛼, 𝛽).

Modification 3) Apart from simple cosmetic changes to the rest of the code, such as renaming of the

functions (e.g., swapping banisterSystem for turnerSystem) and so forth, there are no other functionally

important changes required to incorporate the non-linear model system from Turner et al. (2017).

Code is now presented to replicate several of the plots from Turner et al. (2017), including those that

demonstrate saturation of training load effects, and the negative implications of excessive loads (i.e.,

overtraining). The authors considered the special case of constant daily training load to illustrate these

concepts, and analytically obtained an equation for steady state performance:

𝑝Ô = 𝑝∗ + J𝑘$ ⋅ 𝜏$ ⋅ 𝜔K
/
f − (𝑘% ⋅ 𝜏% ⋅ 𝜔)

/
g 	 (6.20)

Turner et al. (2017) report two key values of interest that can be derived from this special case: 1) the

constant training load that causes maximum performance (denoted 𝜔qM!.EFY); and 2) The value at

which a training load would result in no improvement in performance (denoted 𝜔EFG). Where:

𝜔qM!.EFY = �U
𝛽
𝛼V

fg J𝑘$𝜏$K
g

(𝑘%𝜏%)f
�

/
g&f

	 (6.21)

𝜔EFG = �
(𝑘%𝜏%)f

J𝑘$𝜏$K
g�

/
g&f

	 (6.22)

Although equation 6.21 is written above exactly as it appears in Turner et al. (2017) it contains minor

errors in the first and second fraction. These errors are not reflected in the plots within their study

implying a simple reporting error that can be corrected here. The correct formulae for 𝜔qM!.EFY is as

follows:

𝜔qM!.EFY = �U
𝛼
𝛽V

fg (𝑘%𝜏%)f

J𝑘$𝜏$K
g�

/
g&f

	 (6.23)

In their study, the authors chose a set of parameters and initial conditions that adequately simulated

these concepts, however these were chosen arbitrarily to produce a realistic response, and model

parameters are conceptually dependent on an athletes individual characteristics (Turner et al., 2017).

 192

The parameters used by the authors were: (𝑝∗ = 155, 𝑘$ = 0.10, 𝑘% = 0.12, 𝜏$ = 61, 𝜏% = 5.5, 𝑔- =

70.9, ℎ- = 24.5, 𝛼 = 1.16, 𝛽 = 0.85). Three R functions in listing 6.24 below can be used for

computing the values of these three formulae (equations 6.20, 6.22, 6.23) under the relevant parameter

values and constant model input (𝜔).

Listing 6.24 R functions to compute 𝑝' (eq. 6.20), 𝜔LMN@OPQ (eq. 6.23), and 𝜔OPR (eq. 6.22) for the special
case of the Turner model system under constant load

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

The training load that causes optimal (max) performance under constant load
w_optimal <- function(alpha, beta, kg, Tau_g, kh, Tau_h){
 out <- (((alpha/beta)^(alpha * beta)) *
 (((kh * Tau_h)^(alpha)) / ((kg * Tau_g)^(beta))))^(1/(beta-alpha))
 return(out)
}

The training load value that would result in no performance improvement
w_max <- function(kg, Tau_g, kh, Tau_h, alpha, beta){
 return((((kh*Tau_h)^(alpha)) /
 ((kg*Tau_g)^(beta)))^(1/(beta-alpha)))
}

Steady state performance under constant load
p_tilde <- function(p_0, kg, Tau_g, kh, Tau_h, alpha, beta, w){
 return(p_0 + (kg*Tau_g*w)^(1/alpha) - (kh*Tau_h*w)^(1/beta))
}

In figure 1 of Turner et al. (2017), steady state performance is plotted for increasing values of constant

load (𝜔 = 0 − 750), to demonstrate saturation of load and over-training (whereby larger loads than

𝜔EFx	result in a decrease in 𝑝Ô. The values of 𝜔qM!.EFY and 𝜔EFG are also indicated on the plot. In

figure 2 of Turner et al. (2017), the diminishing returns of load on fitness and compounding effects of

fatigue are demonstrated under the steady state model described. Both plots are easily reproduced in

R from the functions developed in listing 6.24 (Figures 6.12 and 6.13). The code associated with

Figures 6.12 and 6.13 can be found in the code file associated with this chapter.

Figure 6.12: Replicating figure 1 in Turner et al. (2017), demonstrating saturation and overtraining

model behaviour (reflected as increasing constant load on steady state performance)

0 200 400 600

10
0

15
0

20
0

25
0

30
0

ω [Constant load]

p~ [p
er

fo
rm

an
ce

]

pω
~
p *
ωoptimal
ωmax
performancemax

Training beyond 𝜔'() results

in a detriment to performance

(overtraining)

 193

Figure 6.13: Replicating figure 2 in Turner et al. (2017), demonstrating the compounding effects of

fatigue and diminishing returns of fitness with increasing constant load. Also shown is the point at

which fatigue overwhelms fitness under the steady state model.

However, this analysis only considers the unrealistic case of constant daily training load, and even in

this steady-state model, small changes in a single model parameter (whilst keeping others constant)

can result in large changes in model behaviour with respect to these concepts such as saturation and

overtraining. Furthermore, with the inclusion of the power terms (𝛼, 𝛽), relationships between model

parameters are unclear, and in particular how changes in these power terms (either alone, or together)

affect model behaviour when the remainder of parameters are kept constant, and visa-versa.

Practically, this is important as it may influence the difficulty of the optimisation problem, reducing

the ability to find the appropriate solution (i.e., the global minimum of the objective function). One

approach to investigating this in the future is applying a derivative field method and represents an area

for future work. Of clear relevance to the purpose of this chapter and in particular sections 6.2.4 and

6.2.5, we will briefly consider the model fitting approach used by Turner et al. (2017) as it reflects a

helpful start to addressing the problem of insufficient model evaluation processes in prior literature.

When fitting the model, Turner et al. (2017) used a cross-validation approach to estimate overfitting

and generalisation in the experimental portion of the work (i.e., fitting the model to real-world data).

0 200 400 600

0
20

0
60

0
10

00
14

00

ω [Constant load]

g~ a
nd

 h~ [a
.u

]

g~

h~
ωoptimal
ωmax

 194

Cross-validation approach from Turner et al. (2017)

1. Of the 18 real-world performance measurements (trials), 9 were randomly selected and their model was
fitted via a genetic algorithm (tuning parameters: tournament selection, BLX-𝛼 crossover, Gaussian
mutation).

2. This process of random trial selection and fitting was repeated 333 times in total. Giving an estimation
of the distribution of all possible sets of 9 unique trials and yielding a total of 333 fitted parameter sets to
different subsets of the data.

3. Using the sets of (sets of) parameters found from fitting the randomly selected trials (333 sets), model
predictions were generated for each over the entire data period, and these were compared with the full
series of performance measurements (𝑛 = 18) to generate a distribution of model-fit inclusive of out-of-
sample prediction accuracy.

4. Results of this process were presented as follows:
a. The single parameter set that provided the best model fit (out of the 𝑛 = 333) was extracted
b. The full set of fitted model predictions (i.e., from the 𝑛 = 333 parameter sets) was visualised

by a density plot (figure 19 in Turner et al. (2017))
c. Histograms of model parameters obtained over the 333 sets were plotted demonstrating

variability in fitted estimates.

The cross-validation approach in Turner et al. (2017) is representative of some awareness amongst

contemporary researchers working in the experimental FFM literature of the requirements for

appropriate model evaluation. However, it may still be improved with incorporation of model testing

against out-of-sample data obtained under different inputs (i.e., a future training block or tapering

period). In addition, walk-forward rather than random hold-out type approaches offer a more

principled approach to mixing past and future data and respecting the temporal order of time-series

data (Prado, 2018). This was discussed in the literature review of chapter 2, and is given further

attention in subsection 6.2.5, where an implementation of a walk-forward cross-validation approach is

developed to guide researchers working in R. Therefore, the exact approach from Turner et al. (2017)

is not replicated here to avoid confusion on the recommended future approach within this work.

However, demonstration of a genetic algorithm from the package GA (Scrucca, 2013) to fit the

nonlinear model system to the synthetic data from listing 6.17 is demonstrated (listing 6.25). This is

in contrast the derivative-based (quasi-Newton) algorithm used in listing 6.22 where the original model

system was fitted. Tuning evolutionary algorithms to obtain the best results can often be challenging,

and researchers are referred to the literature for discussion of these aspects (Smit and Eiben, 2010),

and encouraged to consult with experts in optimisation when utilising evolutionary algorithms within

experimental designs. The genetic algorithm function call in listing 6.25 replicates approximately the

same tuning parameters used by Turner et al. (2017) (tournament selection, BLX-𝛼 crossover,

Gaussian mutation) but includes the optional addition of constrained local search via the L-BFGS-B

algorithm and also parallelises the fitting process via default architecture applied by the GA package.

More discussion of the parallelisation architecture available in R is given in subsection 6.2.6 (cross-

validation) along with discussion of its relevance to FFM research.

 195

Listing 6.25
Fitting the nonlinear ODE system to synthetic data (listing 6.17) under NLS via a genetic algorithm
from the package GA, with tuning parameters equivalent to Turner et al. (2017). Also includes
optional local search (L-BFGS-B), and parallelised fitting process.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Packages required
require(parallel)
require(doParallel)
require(GA)

Need to bound Turner as optimiser struggles when alpha or beta nears <=0
constraints <- data.frame(lower = c(50, 0.1, 1, 0.1, 1, 0.1, 0.1, 0.4, 0.4),
 upper = c(200, 10, 50, 10, 50, 20, 20, 3, 3))

fittedModel <- GA::ga(type = "real-valued", # Type
 fitness = turnerObjective, # Objective function
 perfVals = mockPerformances, # Measured performance values
 loads = loads, # Training loads
 lower = constraints$lower, # Lower bound
 upper = constraints$upper, # Upper bound
 maxiter = 1000, # Maximum number of iterations
 monitor = TRUE, # Console output during process
 popSize = 90, # Population size
 optim = FALSE, # Include local search (Y/N)
 # if (optim = TRUE) the following reflect the local search args
 # optimArgs = list(method = c("L-BFGS-B"),
 # poptim = 0.1, # [0,1] probability of performing a local search
 # pressel = 0.5, # [0,1] pressure selection (default 0.5)
 # lower = constraints$lower,
 # upper = constraints$upper,
 # control = list(maxit = 1500)),
 elitism = 7.5, # Survival at each generation (%)
 selection = gareal_tourSelection, # Tournament selection
 crossover = gareal_blxCrossover, # BLX-alpha crossover
 mutation = gareal_rsMutation, # Random Gaussian mutation
 run = 150, # Halt value
 parallel = "multicore", # Multi-platform parallelisation
 seed = 12345 # Seed for replication later
) # End of GA call

Notes (listing 6.25):

• The function and package GA maximises by default, and its clear that maximising the RSS is not
desired, so it needs to be converted to a maximisation problem by multiplying the objective function
by -1. This must be done in the objective function code itself (at the return line), before running the
function call in listing 6.25 in order to get adequate (any) results.

• Readers can see (github.com/bsh2/thesis/c6/banister_and_turner.R) where this is demonstrated.
• Bounding is necessary on the alpha, beta parameters in particular as when they tend to zero the fitting

process bumps into errors.

 196

6.2.4 Optimisation algorithms and parameter estimation in R

In this chapter so far, fitting FFMs using the objective functions developed (for NLS or maximum

likelihood estimation) has been performed almost entirely by the box-constrained limited-memory

modification of the quasi-Newton BFGS algorithm (L-BFGS-B), from the general-purpose

optimisation package, optimx (Nash et al., 2020). However, no attention has been paid to the theory

behind this algorithm, or optimisation in general, with the emphasis in previous sections directed

toward the structure of code for fitting FFMs in R, rather than any particular algorithm that might be

used to solve the optimisation problem. At the end of the previous subsection (6.2.3), a genetic

algorithm was shown for fitting the nonlinear model system from Turner et al. (2017). This included

replication of the same tuning methods as used by the authors, facilitated via the R package GA

(Scrucca, 2013). However, no theory behind this algorithm was provided. Although model fitting is

an area of FFM research in need of investment, it is an area best tackled in a collaborative setting with

the involvement of optimisation experts (e.g., applied mathematicians). Nevertheless, it is still

important that sport science researchers have a basic understanding of the associated theory, can

manipulate models in languages such as R, and have an awareness of the options available for

formulating model fitting problems (e.g., NLS, MLE) and available solvers.

More generally, it is this authors opinion and experience within this project that if sport scientists are

encouraged more often and particularly during their early training to upskill in quantitative areas, more

opportunities are likely to arise for future interdisciplinary collaboration to tackle these types of

research problems. Upskilling is also important to avoid common barriers to interdisciplinary research,

including an absence of common language and knowledge of other disciplinary traditions and

conventions that causes discrepancies between each side’s understanding of the task or appropriate

methods to be used (Siedlok and Hibbert, 2014). These types of issues may also extend beyond the

research process and manifest in the wider communication of methods, results, and practical

recommendations arising from collaborative work. In the context of FFM research, previous studies

have either offered very limited reporting and communication of technical aspects, or the work has

been placed in technical journals and therefore often overwhelmed by mathematics that does not match

the focus of a general sport science audience. There is a clear balance to be struck in FFM research as

to how and where findings are communicated. The quantitative experts on one side must recognise

that the general sport science audience (i.e., the prospective stakeholders) are typically not interested

in the particular details of an algorithm or method used to estimate model parameters. Rather, they

need to be pointed to the potential impact of the work on practice or implications for research, and its

ability (or not) to contribute toward efforts to solve real-world training design problems via modelling.

This aspect of information needs to be front and centre wherever possible in future work. On the

opposite side, sport scientists can benefit the process from having increased awareness of technical

 197

aspects of the modelling process. Arguably, this is the benefit of appendices and supplementary

material, to make sure no useful information is lost but that the key information and context is placed

front and centre. The hypothesis is that if sport scientists begin to play a more active role in the

technical aspects of interdisciplinary work (i.e., do some of the ‘heavy lifting’), this communication

problem will naturally resolve in a substantive way, and they will be able to act as pivot points between

experts in different domains. To assist in equipping sport science researchers with baseline knowledge

in fitness-fatigue model fitting, this section focusses on briefly outlining the basic theory of certain

optimisation algorithms and availability of different solvers in the R environment. To begin with, a

general overview of optimisation is provided, followed by brief discussion of common gradient-based

methods used to solve nonlinear data fitting problems, and then finally moves on to a discussion of

evolutionary methods as a potential avenue of future research in fitness-fatigue modelling.

The principal concept in optimisation is the use of a rigorous mathematical model to determine the

most efficient solution to a defined problem (Nash, 2014). At the heart of an optimisation problem is

the so-called ‘objective’. The objective is a quantitative measure of the suitability of a given solution,

and in many cases may reflect a single (scalar) real-world quantity such as financial cost (£) or time

and is typically a real-valued function. Therefore, solving an optimisation problem involves either

maximisation or minimisation of some objective, through iterative evaluation of a mathematical

representation under new inputs in the feasible domain (typically described by the constraints or just

a number set, e.g., ℝ). This task is performed by an optimisation algorithm (also sometimes termed a

solver), that uses an iterative scheme to methodically choose new input values to find the solution that

yields the absolute maximum or minimum value of the objective. In data-fitting problems, the variable

inputs in the objective function is commonly a set of model parameters (𝜃) that are adjusted until the

model (𝑦�(𝜃)) matches a set of real-world datapoints (𝑦). Other inputs may be fixed in the data fitting

problem, such as the model predictors 𝑥. Recall that the general least squares problem is described

mathematically by:

minA(𝑦�(𝜃, 𝑥.) − 𝑦.)<
L

.0/

	 (6.24)

The likelihood objective function was also demonstrated in subsection 6.2.2 as an alternative to NLS.

The objective function may also be referred to in some texts as the ‘cost function’, ‘loss function’,

‘utility function’ or ‘fitness function’, often depending on the field in which the problem has arisen

and whether maximisation or minimisation is sought. Optimisation is also sometimes referred to as

‘mathematical programming’, often used to mean the satisfaction of constraints whilst attempting to

minimise (or maximise) an objective function (Nash, 2014). The definition appears to arise from the

use of mathematical models, theory, and computation to inform decision making about the best use of

 198

limited resources to solve a real-world problem. Although the basic concepts of optimisation are

broadly graspable, the area is a large research field at the centre of which are the crossed domains of

applied mathematics, statistics, and computer science. Development of an optimisation problem and

selection of an appropriate algorithm in many cases may require careful consideration and is best

approached under the supervision or collaboratively with an expert or well-informed party. In fitness-

fatigue modelling, optimisation of existing models (i.e., model fitting to data, parameter estimation) is

an area that has been largely ignored by researchers, further suffering as described earlier by limited

reporting of methods used in experimental study (see literature summary tables in appendix B, table

B-3).

Recent work, including a study in this thesis (chapter 5) and a recent study by Connor & O’Neill (2020)

has examined concerns with the historical approaches used, and the adequacy of common solvers that

may be applied in experimentation to solve the nonlinear least-squares problem. It is crucial to

appreciate that the methods used to fit FFMs to experimental data cannot be separated or downplayed

in the interpretation of results. If in say a least-squares problem, the global minimum can’t or isn’t

found due to the problem containing many local extrema, it is impossible to determine if the parameters

obtained can be considered physiologically interpretable, and if carried forward to out-of-sample

testing will ultimately effect estimation of the model’s ability to predict future response. In other

words, in this case the problem has not been adequately solved as it was posed, the solutions reported,

and interpretation of associated results is not necessarily sound. In reality, we can rarely ever know

whether a solution found is the absolute minimum as most problems are large residual in nature due

to some model misspecification. However, some practical efforts can be made to reduce the chances

that a given solution is reasonable. For example, fitting the model from multiple starting points over

the feasible domain (box constraints) for derivative-based methods, and assessment of the hessian for

positive-definiteness indicating that the solution is a minimum and not a saddle (Nash, 2014).

Optimality conditions say that, if a point is a minimum of a function it will possess a zero gradient and

positive-definite Hessian (Nash, 2014). Another practical step may be the use and comparison of

multiple algorithms to fit the models, to identify the optimal set found across multiple approaches. It

is concerning that a significant proportion of previous experimental research has ignored basic

questions surrounding the suitability of estimation methods and has simply adopted approaches from

previous study without further consideration. The ramifications of this on the broader interpretation of

the literature are significant as described above, with the efforts clouded by little appreciation for how

the solutions were obtained. Though, many of these experimental studies only ever considered in-

sample model fit, which already tells us very little about model utility as it pertains to future use in

training program optimisation.

 199

The FFM is a nonlinear optimisation problem in its model parameters, and estimation to fit an FFM to

available data involves minimising an objective function (e.g., sum of squared errors between

modelled and measured performance values) or maximising a likelihood function (Nash, 2014). If a

model is linear its parameters, e.g., 𝑎𝑥/ + 𝑏𝑥< + 𝑐 (i.e., parameters appear only to the first power),

standard calculus could be used to arrive at the normal equations and solve the optimisation problem

analytically via matrix algebra (Nash, 2014). However, if minimising the sum-of-squared residuals

(error) of a nonlinear model (e.g., 𝑎𝑥/ × 𝑥<X × 𝑐) an iterative method is generally required, that begins

at some set of starting values for the model parameters 𝑎, 𝑏, 𝑐. In chapter 5, the practical implications

of the existence of multiple minima in the standard and fitness-delay FFM fitting problem were

demonstrated, as it impacts on starting point selection, a classic problem in optimisation of many

nonlinear models (Nash, 2014). Most methods to solve optimisation problems rely on traditional

calculus and can find local minima and maxima in an efficient manner. However, in instances when

functions have multiple local extrema, often they do not often guarantee that the solution found is the

right one (e.g., the global minimum). In chapter 5, this concept was demonstrated when the model was

re-fit from many different starting points. As predicted, the quasi-Newton algorithm used to solve the

NLS problem was able to find multiple local minima in addition to the artificial global minimum, with

solutions obtained depending on starting point. Another key aspect of the optimisation process is the

incorporation of constraints. The reality of most real-world problems is that they have constraints,

although in some cases the optimisation problem can be solved without explicit inclusion (Nash, 2014).

In the case of fitting an FFM to data, the most obvious constraint is the use of bounding or box

constraints on the model parameters, imposing some upper (𝑢) and lower (𝑙) bound, (𝑙 ≤ 𝜃 ≤ 𝑢) on

each. The 𝜏 parameters in particular may be chosen based on the number of decays over which fitness

and fatigue are expected to decay. Another type of constraint that could be enforced is an inequality

constraint (e.g., 𝑘$ < 𝑘%). In some cases, bounds on the inputs may even be necessary to prevent an

optimiser attempting to evaluate the objective function at values that are mathematically intractable

(e.g., division by zero, or taking the log of a negative number).

Gradient descent is perhaps the most basic approach to finding a local minimum of an objective

function 𝑓 (e.g., eq. 6.24), by computing the gradient of 𝑓 at a point, then travelling a certain distance

in the direction in which this gradient is reduced (i.e., “downhill”), before repeating this step. If 𝑓 is

an 𝑛-dimension function (i.e., multidimensional), the gradient is simply the 𝑛-dimensional slope of 𝑓

(Nash, 2014). In other words, the approach doesn’t really change. Gradient descent forms the basis of

the general methods of steepest descents, and is one of the foremost approaches to optimisation,

generally attributable to the work of the mathematician Cauchy (Nash, 2014). If the gradient descent

algorithm is at a point 𝑘 in the feasible domain of the parameter space 𝜃, denoted 𝜃;, and the objective

function 𝑓 is defined and differentiable around 𝑥;, then the objective function decreases fastest in the

 200

direction of the negative gradient of 𝑓 from the point 𝑥;, that is −∇𝑓(𝑥;). Where ∇𝑓(𝑥) is the Jacobian

matrix (generalisation of first-derivatives in multivariable problems). If we consider a step-size (or

learning rate) of 𝜆, i.e., how far we move downhill, it follows that the gradient descent algorithm finds

the next position to evaluate 𝑥;b/ by:

𝑥;b/ = 𝑥; − 𝜆∇𝑓(𝑥;)	 (6.25)

Although gradient descent can be effective when a function is straightforward and 𝐹 convex over its

feasible domain (i.e., all local minima are global minima), such as in the case of fitting linear models,

it can often struggle with pathological functions in 𝑛-parameters, requiring many iterations (Nash,

2014). It is also a local optimiser by nature, and if initiated from a single point in the case where many

local optima exist, it has a good chance of returning a local extremum rather than the global minimum

we are normally interested in. The best choice of step-size (𝜆) is also an area of much debate and

relevant practical problem in the implementation of gradient descent. Too large a step-size, and you

may overshoot the minimum, too small, and convergence will be much slower than necessary (Nash,

2014). Gradient descent is also defined as a first order algorithm, because it uses knowledge of a

functions first-derivative.

Newton’s method is another equally well-known approach in optimisation. It is also attributable to the

mathematician Joseph Raphson and so is sometimes referred to as the Newton-Raphson method. In its

origin, it was an iterative root-finding method for a twice differentiable function 𝑓, and when applied

in its modern form within optimisation applications is a second-order method for finding the minimum

of 𝑓 (Nash, 2014). The generalisation of the second derivative of 𝑓 in the multivariable (𝑛-parameter)

case is called the Hessian (∇<𝑓) matrix. In contrast to gradient descent, which attempts to find the

minimum value of 𝑓 directly, Newton’s method iteratively attempts to move toward where the

derivative of 𝑓 is zero, i.e., the location of the function where there is no slope (Wright and Nocedal,

1999; Nash, 2014). In other words, the gradient descent approach moves in a direct manner, whereas

Newton’s method uses the curvature of the function. To understand how this works, it is helpful to

first examine the method in its original root finding form for the 1 variable case, say for the function

𝑦 = 𝑓(𝑥). The root-finding method begins at some initial point J𝑥-, 𝑓(𝑥-)K, which can be thought of

as an initial guess to the solution of 𝑓(𝑥) = 0 (i.e., the root of 𝑓). The method then computes a linear

approximation of 𝑓(𝑥-) (a tangent line of 𝑓 at 𝑥-) and then solves this to find the 𝑥 intercept of the

linear approximation. Recall that a linear approximation of 𝑓 at 𝑥- is given by the line 𝑦 = 𝑓(𝑥-) +

𝑓′(𝑥-)(𝑥 − 𝑥-). Letting the 𝑥 intercept of this linear approximation be denoted 𝑥/, 𝑥/ can then be

found by solving 0 = 𝑓(𝑥-) + 𝑓′(𝑥-)(𝑥/ − 𝑥-), which gives:

 201

𝑥/ = 𝑥- −
𝑓(𝑥-)
𝑓"(𝑥-)

	 (6.26)

If we repeat the process above from the next point J𝑥/, 𝑓(𝑥/)K, and so on…then a sequence emerges:

𝑥;b/ = 𝑥; −
𝑓(𝑥;)
𝑓"(𝑥;)

	 (6.27)

Which in theory will converge to the solution (root) of 𝑓, 𝑓(𝑥) = 0. In optimisation applications, the

problem changes from finding 𝑓(𝑥) = 0, to 𝑓′(𝑥) = 0, because we are interested now in finding the

point on the function at which the derivative is zero (i.e., the slope is at the bottom of the valley or the

top of a hill). Therefore, we instead require (at least) a second-order polynomial approximation

(quadratic equation) of 𝑓 at 𝑥; which we can then find the minimum of and repeat the process. This is

the crux of the difference in the method as it evolved for us in optimisation. Taylor expansions provide

us with one such tool to do this, and following the steps above a sequence (at the iterates) will emerge

shortly from the truncated (second order) Taylor approximation below:

𝑓(𝑥; + Δ𝑥) ≈ 𝑓(𝑥;) + 𝑓"(𝑥;)Δ𝑥 +
1
2
𝑓""(𝑥;)Δ𝑥<	 (6.28)

And therefore, the next point J𝑥;b/, 𝑓(𝑥;b/)K emerges from 𝑥;b/ = 𝑥; + Δ𝑥, where J𝑥; +

Δ𝑥, 𝑓(𝑥; + Δ𝑥)K is the minimiser of this quadratic approximation (i.e., the stationary point). Setting

the derivative of this quadratic approximation to zero and solving gives:

𝑑
𝑑Δ𝑥 (𝑓

(𝑥;) + 𝑓"(𝑥;)Δ𝑥 +
1
2𝑓

""(𝑥;)Δ𝑥< = 0	 (6.29)

𝑓"(𝑥;) + 𝑓""(𝑥;)Δ𝑥 = 0	 (6.30)

Δ𝑥 =
𝑓"(𝑥;)
𝑓""(𝑥;)

	 (6.31)

And therefore, Newton’s method iteratively performs the following step to find 𝑓"(𝑥) = 0:

𝑥;b/ = 𝑥; −
𝑓"(𝑥;)
𝑓""(𝑥;)

	 (6.32)

This concept is illustrated graphically in figure 6.14 at the top of the next page.

 202

Figure 6.14: A graphical illustration of the update step in Newton’s method

Finally, formally defining Newton’s method in the multivariable case. Let 𝑓:ℝa → ℝ be sufficiently

smooth, and the algorithm is initialised at 𝑥- ∈ ℝ,

𝑥;b/ = 𝑥; −
∇𝑓(𝑥;)
∇<𝑓(𝑥;)

, 𝑘 ≥ 0 (6.33)

Where 1/∇<𝑓(𝑥) is the inverse of the Hessian. This method may also be modified to include a smaller

step size (0 < 𝜆 ≤ 1). If 𝜆 ≠ 1 Newton’s method may be referred to as relaxed or damped. Readers

are referred to (Wright and Nocedal, 1999), for further discussion of rationale behind the use of a

modified step size in Newton’s method, particularly in the areas of convergence and their use in quasi-

Newton methods.

General advantages of second-order methods such as Newton compared to first-order methods such as

gradient descent are that they are generally much faster if the second derivative is known or easy to

compute. However, if the analytic expression for the second derivative is complicated or

mathematically intractable, numerical approaches for computing the second derivative are required

and are expensive. In addition, Newton’s method may fail to converge if the starting point 𝑥- is too

far away from the solution. The method is also not generally globally convergent on 𝑓, and the

presence of multiple minima can cause problems. For high dimension problems, these risks are

typically higher (Nash, 2014). It may seem obvious from the definition, but the method also does not

 203

work if the inverse of the Hessian is not tractable. Certain features in the objective function, such as

saddle points, can be problematic for Newton’s method, even causing it to move in the wrong direction

in some cases and requiring a regularisation term (𝛼) along the diagonal of the Hessian to offset

negative eigenvalues of the Hessian, such that the multivariable case would then be defined:

𝑥;b/	 = 𝑥; −
∇𝑓(𝑥;)

(∇<𝑓(𝑥;) + 𝛼𝑰)
	 (6.34)

For further discussion of regularisation terms and the issues surrounding the use of Newton’s method

to train complex models with equally complex objective functions, readers are referred to (Goodfellow

et al., 2016). There also exist quasi-Newton methods, which have featured in the work so far,

specifically the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and its limited memory

modification and box constrained variants (Byrd et al., 1995b; Henao, 2014). These involve an

approximation of the Hessian matrix (or more directly its inverse). The primary benefit of quasi-

Newton methods is that they are computationally cheaper to the full Newton method as the Hessian

does not need to be computed at each step and they require 𝒪(𝑛<) operations per iteration, compared

to the full Newton method that requires 𝒪(𝑛i) (Henao, 2014). Therefore, in instances where the

analytic expression for the second derivative is unavailable, and therefore the Hessian must be

computed numerically, quasi-Newton methods may prove a useful alternative. The BFGS algorithm

is a well-known optimisation algorithm with implementations available in many programming

languages and mathematical suites (e.g., mathematica, MATLAB, R, and the sciPy extension to

Python). In the standard BFGS algorithm (without the limited memory modification) an approximation

(𝐵) to the Hessian is slowly improved by a secant method (finite-difference approximation) that uses

first-derivative information. The algorithm follows the following steps:

1. Initiate from a starting point 𝐱- and approximate Hessian matrix 𝐵-

2. A direction 𝛅; is obtained from 𝛅; = −∇𝑓(𝑥-)𝐵;&/

3. A one-dimensional line-search (of some kind) is performed to find an acceptable step-size

𝜆; in the direction 𝛅; found from the first step. Such that, 𝐬; = 𝜆𝐩;

4. 𝐱;b/ = 𝐱; + 𝐬;, there 𝐲; = ∇𝑓(𝐱;b/) − ∇𝑓(𝐱;)

5. Finally, the approximate Hessian matrix 𝐵 is updated to

𝐵;b/ = 𝐵; +
𝐲;𝐲;y

𝐲;y𝐬;
−
𝐵;𝐬;𝐬;y𝐵;y

𝐬;y𝐵;𝐬;

The BFGS algorithm

 204

In some cases, for the standard BFGS algorithm, 𝐵- may be initialised to the identify matrix 𝑰, in

which case the first step is equivalent to gradient descent, but subsequent updates are improved by

better approximation to the Hessian. In the implementation of this algorithm in the R package optim,

this is the process used. During the line search, failure to improve the function value is a component

of the termination tests (Nash, 2014). The limited memory modification of the BFGS algorithm is the

default algorithm used in the optimx R package when box constraints are required (the BFGS algorithm

with bounding is not available in R). The L-BFGS algorithm uses less memory to update the

approximation to the inverse of the Hessian, by only storing a record of the last 𝑚 iterations (rather

than an 𝑛 × 𝑛 matrix where 𝑛 is the number of variables in the problem). As such, L-BFGS only

requires 𝒪(𝑚𝑛) operations per iteration so is well suited to problems where the number of free

parameters 𝑛 is large; as is the case of the fitness-fatigue model.

There are many practical resources (including those already mentioned) that are available for readers

to obtain greater familiarity with the technical aspects relating to these algorithms and written by more

experienced individuals and educators. With this in mind, it is important to refresh the purpose of this

section for the reader, which is to introduce the most relevant technical material in the context of fitting

FFMs, whilst attempting to avoid tangential information. Therefore and prior to discussing

evolutionary algorithms, the following section will only highlight the existence of two further

‘classical approaches that may be of interest to solving nonlinear least-squares problems: The Gauss-

Newton algorithm, and Levenberg-Marquardt method. Gauss-Newton can be thought of as a Newton

method with rectangular Jacobian matrix, where each update is a linear least squares problem (i.e.,

assuming the least-squares function is locally quadratic and finding the minimum). Problems can arise

using the Gauss-Newton method if the objective function is highly nonlinear and for large residual

problems. More detail surrounding this algorithm can be found in (Nash, 2014). However, many prefer

the Levenberg-Marquardt method that combines gradient descent with the Gauss-Newton method. It

is generally more robust, due to its ability to find solutions far away from the final minimum in well-

behaved functions as it behaves more like a gradient-descent approach when far from 𝑥∗ but more like

the Gauss-Newton method when close.

Some data fitting problems, including the FFM, are awkward and challenging to solve. If the field is

to progress, this reality must be recognised and embraced by researchers, not ignored. In the context

of fitness-fatigue modelling, the main issue with application of algorithms discussed so far is that they

are local minimisers. They can struggle when problems do not behave well, and in the presence of

multiple local minima and other features such as saddle points (as shown in chapter 5). It is therefore

important that future research look toward methods that may facilitate global optimisation, including

approaches as simple as refitting the algorithms discussed so far from multiple random starting points

(a basic stochastic local search) (Nash, 2014). These are the focus of the remaining written part of this

 205

subsection. At the end of the subsection, a table of available algorithms is presented, accompanied by

a code listing that demonstrates some of them in R from the model implementations and mock data

developed in subsection 6.2.2 for MLE.

The class of evolutionary algorithms are of particular interest in fitness-fatigue modelling, representing

a slightly more brute force approach to the problem of finding global optima. There has been very little

previous study of these in FFM experimental (Turner et al., 2017; Méline et al., 2018; Philippe et al.,

2018) or theoretical (Connor and O’Neill, 2020) research. The evolutionary class are a group of

algorithms that are based on patterns and concepts observable in nature, specifically evolution

(survival of the fittest, genetic inheritance) as reflected in mechanisms (tuning parameters) such as

selection, mutation, reproduction, and recombination that control the behaviour of the search (Bäck

and Schwefel, 1993; Philippe et al., 2018). The area of evolutionary algorithms is extensive and too

vast to cover in any meaningful depth here, and readers are directed to a wealth of resources available

that consider the specifics of the many algorithms that exist. However, this section will discuss broadly

some advantages and disadvantages of evolutionary strategies as a tool for global optimisation, as well

as practical implications that arise with their use. This short brief is intended to stimulate ideas for

alternatives to common local optimisation methods that the reader may wish to investigate further

themselves. The key advantage of evolutionary algorithms is that they can scale well to high

dimensionality problems, particularly where there is a high number of local minima, as the search

direction does not rely on derivatives. They are often robust to poorly behaved objective functions and

may be able to find better solutions to problems that have not consistently been solved well by other

more standard techniques (Fleming and Purshouse, 2002). A key disadvantage of evolutionary

algorithms is that some way of ending the search process must be devised. Typically, an evolutionary

algorithm can either reach a maximum runtime (number of iterations allowed), or a threshold that is

set by the user either on reduction of the objective function or some other measure if the minimum

value was known (which it isn’t in fitness-fatigue modelling). This contrasts with methods such as

gradient descent that can provide guarantees on optimality under some conditions due to the use of the

curvature of the functions. In addition, they often require understanding of the underlying theory (i.e.,

genetics) or computational study to tune the parameters for the problem at hand and maximise

performance of the algorithm. This can be a time-consuming process, and so more generalised

recommendations for tuning parameters are turned to, that may not provide the best results possible

with regards to time efficiency or solutions found. Connor & O’Neill (2020) examined the differential

evolution (DE) algorithm as an alternative approach to the quasi-Newton L-BFGS-B algorithm,

comparing optimality of solutions found. Differential evolution is based on the evolution of an initial

population (of candidate solutions) under genetic operators such as crossover and mutation. It is a

direct search method in that it investigates points close to current positions to find the lowest objective

without gradient information, generating new parameters via a set of evolutionary parameters,

 206

repeating the process until it reaches a solution below a specified threshold or runs out of iterations.

The authors identified in their study that this approach had shown promise for nonlinear dose response

modelling in the realm of toxicology and pharmacology (Ma, Bair and Motsinger-Reif, 2020), and so

may be a good candidate for further study with the FFM. The authors also reported that the differential

evolution method produced a less variation in model fit, parameter variability, and hold-out

performance compared to the L-BFGS-B algorithm, although noted that it took more time on average

to fit. With no ‘true conditions’ established, as would be possible within a simulation approach, the

authors were unable to determine whether the best set of parameters were found, however, it did appear

as though differential evolution was able to find a lower absolute objective value than BFGS. DE is

available within R within the package DEoptim (Mullen et al., 2011), along with several other

evolutionary and natural strategies (see table 6.2). Of other significant note is the package GA (Scrucca,

2013), which also provides derivative-based local search via the L-BFGS-B algorithm in optim at

pseudorandom intervals across the iterations. This type of functionality is particularly helpful, as it

increases the chance of finding the absolute minimum by incorporating guarantees on optimality that

come with some derivative-based methods with robustness to poorly behaved nonlinear functions with

many local minima and is certainly one that appeals as an avenue for further work.

To summarise, this subsection has drawn attention to the availability of multiple algorithms in R for

solving the nonlinear least-squares and maximum likelihood problems that might be used for fitting

collected training and performance data to FFMs. These have included standard first and second-order

methods (e.g., gradient-descent, quasi-Newton, and Gauss-Newton), as well as those from the class of

evolutionary strategies (e.g., genetic algorithms, differential evolution, particle swarm, and covariance

matrix adaptive evolution) that are stochastic, derivative-free methods for global optimisation that can

do well in the presence of many local extrema. The purpose of the section was to introduce the reader

to the theory behind optimisation and classical algorithms and provide an overall picture of the data

fitting problem and provide some ideas as to existing tools (algorithms) that may be investigated within

R for experimental research. The primary recommendation is that researchers be alert to the existence

of local minima, a problem that represents one of the most likely causes of issues in future work.

Additionally, it is recommended that researchers explore approaches that utilise stochastic methods,

compare multiple approaches, and include some basic checks on solutions found. As a minimum

standard, if using a first or second-order algorithm that requires starting points, stochastic local search

is appropriately implemented as repeated refitting of the FFM from multiple starting points (and

selecting the best, whilst reporting the variability). There are many further (and more complete)

resources available for researchers to better understand concepts in optimisation (Wright and Nocedal,

1999; Goodfellow et al., 2016), including those specifically for R (Nash, 2014). Furthermore,

researchers should be aware of the documentation that exists for specific packages (such as those listed

in table 6.2). These are often thorough and should be read to ensure correct usage. Finally, it is

 207

recommended for sport science researchers conducting experimental research and are unsure of

practical methods and theory of model fitting should look to draw knowledge, advice, and help from

experts in this area. Many of these experts can be found in the faculty of computer science departments

in their own institutions, so they often need not look too far.

Table 6.2: A non-exhaustive list of prospective optimisation algorithms in R for fitting FFMs.

Package Description Algorithm Function Function details Documentation

optimx
Functions for

minimisation of
general

optimisation
problems

Wrapper for
stochastic local

search
(multiple

algorithms)

multistart

Wrapper function use of several
starting-point algorithms available
in optimx. Supports a matrix of
starting parameters as input (that
can be generated randomly prior).
Results compiled and returned as a
dataframe.

(Nash et al.,
2020)

optimx
BFGS,

Conjugate
Gradient

optimx

Wrapper function for several
algorithms including BFGS (and
L-BFGS-B), CG (conjugate
gradient), Nelder-Mead (direct
search)

(Nash et al.,
2020)

stats R statistical
functions Gauss-Newton nls

Function to determine the NLS
estimates of model parameters of a
nonlinear model via Gauss-Newton
(some other algorithms available)

see ?nls in R

DEoptim

Global
optimisation by

evolutionary
strategy or

natural strategy

Differential
evolution DEoptim

Derivative-free optimisation
approach, similar in function call
to optimx but requires some care.
Several tuning parameters
available.

(Mullen et al.,
2011)

pso Particle swarm psoptim

General implementation of particle
swarm optimisation. Same basic
function call structure as optimx
(plug-and-play). Some tuning
parameters available.

(Bendtsen and
Bendtsen, 2011)

GA Genetic
algorithms ga

Similar in function call to optimx
but requires some care. Maximises
by default, so objective function
may need to be multiplied by -1.
Several tuning parameters
available. Includes a random local
search option via L-BFGS-B.

(Scrucca, 2013)

cmaes

Covariance
matrix adaptive

evolution
strategy

cmaes

Same basic function call structure
as optimx (plug-and-play). Some
tuning parameters to play around
with.

(Trautmann et
al., 2015)

Finally, code listings are provided to demonstrate the plug and play nature of using different available

optimisation algorithms in R (highlighted in the table 6.2), to fit models to the synthetic data developed

in listing 6.17 (subsection 6.2.2), via the functions developed so far in this chapter. Readers are

encouraged to download code files associated with this subsection (listings 6.26 to 6.28).

 208

Example 1: multistart wrapper function (Optimx package) - L-BFGS-B algorithm

Listing 6.26 Standard model fitted to synthetic data (listing 6.17) via MLE (solved by L-BFGS-B) under the
multistart function in optimx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

require(optimx) # install.packages("optimx")

Develop matrix of parameter values (you could do this randomly)
pars <- as.matrix(expand.grid("p0" = seq(80, 120, length.out = 2), "kg" = seq(0.5, 2,
length.out = 2),
 "Tg" = seq(5, 40, length.out = 2), "kh" = seq(0.5, 2, length.out = 2),
 "Th" = seq(5, 40, length.out = 2), "sigma" = seq(0.1, 1, length.out = 2)))

Apply the multistart algorithm under the "L-BFGS-B" algorithm in optimx
standard_model1 <- optimx::multistart(parmat = pars,
 fn = standardObjectiveLL,
 method = "L-BFGS-B",
 # ORDER: c(p0, kg, Tg, kh, Th, sigma)
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 loads = loads,
 perfVals = mockPerformances_noerror)
head(standard_model1)

 (Output returned as a dataframe with each row representing a fitting iteration from a different start)

Of note, with this approach to multi-start local search it can expand rapidly when attempting to cover

the parameter space in small incremental distances. This is inevitable (a classic issue with grid search

approaches in general), and why a stochastic approach is more likely a better method to devising

starting points (rather than trying to incrementally cover the parameter space in a uniform grid). If

large computer resources are available, for large grids parallelising the fitting iterations is also a good

approach but would require albeit simple development of your own parallel multi-start type function.

Parallelisation is discussed and demonstrated in the next subsection (6.2.5) via the use of a simple

looping construct. Very few studies have applying derivative-based methods have reported the

utilisation of some form of multistart procedure (Rozendaal, 2017; Scarf et al., 2019).

Example 2: DEoptim function (DEoptim package) – Differential Evolution algorithm

Listing 6.27 Fitting the standard model to synthetic data within an MLE approach solved via differential
evolution

1
2
3
4
5
6
7
8

standard_model2 <- DEoptim::DEoptim(standardObjectiveLL,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 DEoptim.control(
 iter = 1000,
),
 loads = loads,
 perfVals = mockPerformances_noerror)

Notes (listing 6.27):

• In this implementation, the algorithm is set to terminate at the maximum number of iterations (1000).
Alternatives exist for specifying a ‘value to reach’ (argument VTR). See (Mullen et al., 2011)

• Other control arguments for DEoptim include strategy (6 available), number of population members,
evolutionary parameters (crossover probability, differential weighting factor) and the ability to specify an initial
population and store populations at each iteration. See Mullen et al. (2011).

 209

Example 3: ga function (GA package), cmaes function (cmaes package), pso function (psoptim

package) – Genetic algorithm, Covariance-matrix-adaptive-evolutionary strategy, Particle swarm

optimisation

Listing 6.28 Fitting the standard model to synthetic data within an MLE approach solved via genetic
algorithm, covariance-matrix-adaptive-evolution strategy, and particle swarm optimisation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

GA, cmaes, psoptim packages
standard_model3 <- GA::ga(type = "real-valued",
 fitness = standardObjectiveLL,
 perfVals = mockPerformances_noerror,
 loads = loads,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 maxiter = 1000,
 monitor = TRUE, # Provide output to console
 optim = TRUE, # With L-BFGS-B local search at random
 maximise =TRUE # Passed to standardObjectiveLL
)

standard_model4 <- pso::psoptim(par = c(NA,NA,NA,NA,NA,NA,NA),
 fn = standardObjectiveLL,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 control = list(maxit = 1000),
 loads = loads,
 perfVals = mockPerformances_noerror)

standard_model5 <- cmaes::cma_es(par = c(95, 1, 28, 2, 5, 0.1), # guess
 fn = standardObjectiveLL,
 lower = c(60, 0.1, 1, 0.1, 1, 0.1),
 upper = c(200, 3, 50, 3, 50, 10),
 control = list(maxit = 1000),
 loads = loads,
 perfVals = mockPerformances_noerror)

Notes (listing 6.28):

• As described at the end of the previous subsection, the value returned by the standardObjective function must
be changed for ga, as the package maximises by default. Recall earlier that the maximise argument in
standardObjective allows us to change the returned value to either negative log-likelihood (maximise =
FALSE, default) or the log-likelihood (maximise = TRUE). Hence, we can pass this as an additional argument
within the ga function call.

• The par argument in psoptim is simply there to tell the algorithm the dimensionality of the problem, hence NA
values can be used in the vector supplied to this argument. See (Bendtsen and Bendtsen, 2011) for discussion
of algorithm parameters that may be adjusted to control the behaviour of the search.

• The algorithm CMA-ES requires initial values. See (Hansen, 2016) for further discussion of this algorithmic
strategy.

 210

6.2.5 Cross validation (Implementing a walk forward approach)

When evaluating an FFM for forecasting accuracy, or to assess its counterfactual properties, we are

interested in how well it does at predicting data not used to train it (i.e., its generalisability). Sole

evaluation of an FFM on training data, as has historically been the case, can only provide overly

optimistic estimates of the model’s performance. It also does not provide insight into how well the

model may perfrom if it were used operationally, such as for predicting future response to different

training programs. This is a fundamental flaw in the previous FFM experimental literature, and also

the reason why model predictive validity is still not clear over 40 years later. However, some more

recent studies have made attempts to improve the quality of model evaluation through inclusion of

some form of cross validation (Chalencon et al., 2015; Kolossa et al., 2017; Turner et al., 2017;

Williams et al., 2018; Stephens Hemingway et al., 2019; Imbach et al., 2020). The central question of

this thesis, and arguably the central question that should be encompassed in all future research, is

whether FFMs can be used operationally within training program design frameworks. To make steps

toward answering this question, approaches used to model evaluation in experimental work must be

addressed, more consistently highlighted as a key aspect of FFM experimental research, and available

resources improved. In chapter 2, cross-validation (CV) was briefly examined, and terms such as “in-

sample” and “out-of-sample” were described. Refreshing these concepts, cross-validation involves

splitting the available data up in some way. A portion of the data is then used to train the model, and

some are held back. The model is then asked to make predictions for that hold-back period (testing).

The data that are held back are typically referred to as out-of-sample, or ‘unseen’, and similarly the

data used to train the model are referred to as in-sample or ‘seen’. The term data in an FFM context

refers to timeseries data comprising both measured performance values (observations) and inputs

(quantified training loads).

In the context of FFM’s, it was also discussed in chapter 2 that out-of-sample data may be categorised

further, dependent on whether the associated inputs (𝜔) were:

1. Quantified from a relatively homogeneous training program (i.e., similar to or from the one used

to train the model)

2. Quantified from an evidently non-homogeneous training program (i.e., different to the one used

to train the model). For example, from a future training block where the structure, shape, frequency

is markedly different.

In the relation to FFM research, evaluation of model predictions against these two types of hold-back

(out-of-sample) data serves slightly different purposes. The first provides an estimate of overfitting in

the model, the latter provides the crucial insight into the central question of whether fitted FFMs can

 211

be used to derive future training programs. Arguably, there is no reason beyond a lack of available

resources and knowledge as to why future experimental research cannot assess both.

In chapter 2, it was highlighted that cross-validation approaches such as k-fold cross-validation and

bootstrap resampling are not suitable for time-series data, as they assume there is no relationship

between observations (independence), which is almost never true in this context. It is better to apply

approaches that respect the temporal order, and one method forms the focus of this subsection and will

be described shortly.

First consider simple a ‘hold-out’ cross validation approach (as it was described in chapter 2), in the

case where data are only available for one training program. In other words, all of the out-of-sample

data that can be made available comes from a homogeneous training program to the one used to fit the

model. If hold-out cross validation were to be applied, choosing where to split the timeseries will likely

affect the results (estimation of model prediction errors on out-of-sample data). To avoid this, and to

achieve a more robust estimation of model performance, a walk-forward approach may be more

preferential (de Prado, 2018). In a walk-forward approach, multiple splits are made across the

timeseries with the amount of data used to train the model incrementally increasing (expanding) at

each split. The results are then averaged across the splits for a chosen metric such as the mean-average-

percentage-error (MAPE) or root-mean-squared-error (RMSE). In some cases, an ‘optimal’ set may

be extracted based on either best model fit (e.g., the lowest objective value in minimisation), or more

routinely, the best predicting set (e.g., the set with the lowest associated MAPE or RMSE value on

out-of-sample data). In the more advanced case where training and performance data from a

subsequent (consecutive) training program exists (and this program is dissimilar from the first (block

1)) the researcher may also wish to fit a model to the entirety of the block 1 data, and test resulting

predictions computed up to the end of the consecutive block 2 loads, against block 2 performance data.

In this manner, both model overfit is assessed as well as the counterfactual properties of the model,

e.g., whether the model can accurately predict what happens under a different set of circumstances

(loadings). Collectively, this approach is a more robust method of model evaluation than previous in-

sample only testing adopted in the literature (see Table B-2, appendix B), with the exception of a few

more recent studies that have included some form of cross-validation or out-of-sample assessment

(Chalencon et al., 2015; Ludwig, Schaefer and Asteroth, 2016; Kolossa et al., 2017; Turner et al.,

2017; Williams et al., 2018; Stephens Hemingway et al., 2019; Imbach et al., 2020).

Implementing an expanding-window walk forward type method is the practical focus of this

subsection, to put researchers in a position where a clear and flexible resource exists for implementing

this type of approach and can serve as a template and educational tool. The VDR model is used,

although given the extensiveness of subsections previously it is hoped that the reader can by now adjust

 212

this function further (and other code as required) to incorporate aspects such as a fitness-delay. The

walk-forward method implemented is illustrated graphically below in Figure 6.15 (from chapter 2).

Figure 6.15: An illustration of the expanding-window walk forward CV method (From chapter 2)

As a first step in this implementation, synthetic data are developed representative of the general

structure and type that researchers are expected to be working with. This is presented first so readers

are aware of the structure of the data required as input to the functions developed shortly.

Rather than develop a dataset to illustrate the process in a freehand manner, say by manually entering

reasonable values in a spreadsheet package, it was simpler and more reproducible (for the reader) to

follow the previous sections and use the model simulation functions developed so far to a set of

generate performance values under two different load series (representing different training programs).

It is also important to recognise that the purpose of any synthetic data developed here - and in previous

subsections of this chapter - is to illustrate the control flow of the fitting and evaluation approach. The

results of the process, particularly predictive validity (or even ability for the optimiser to return the

true parameters) are not under investigation or of interest in this section. In a similar fashion, the

optimisation algorithm used is nonspecific in its selection, and could be swapped out for any of those

described in section 6.2.4 (or other) with some modification. Although the method of synthetic data

development will be outlined in detail, readers are advised not to become concerned with the minutia

of this aspect, as the focus of this section is on the subsequent CV implementation and establishing a

flexible framework that can be applied when real world training and performance data are held. In

simple terms, the most important aspect for the reader is the manner in which the data are structured

as input to the fitting function, rather than the values of the data. Also note that functions developed

for model fitting under expanding-window CV will be rigid in the sense that they will not be able to

handle data that isn’t passed in the same format as described shortly. It was considered that input

checking could be added to these functions, and flexibility to handle different formats, but this would

have increased the size of the code substantially decreasing readability and diluting the focus of this

subsection. The code is also written in a modular fashion to that several preliminary procedures are

Split 1

Split 2

Split 3

Split 4

Split 5

Main Set

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100% (if available)

Train

Train

Train

Train

Train

Test

Expanding window method

Model inputs Quantified from same training program Quantified from different training

Data split
(performance)

Time-series data (Block 2)

Train Test

Test

Test

Test

Test

Time-series data (Block 1)

 213

carried out by subprograms (separate functions) to avoid the main function becoming excessively

crowded and masking the overall control flow.

A timeseries dataset of 150 days in length was developed, split into two consecutive blocks of 100 and

50 days (block 1 and block 2, respectively). Each block comprises a series of training load values and

associated performance measurements generated via simulation. The load series of block 1 (𝐵1) and

block 2 (𝐵2) are distinct in shape, pattern, frequency, and magnitude. To generate associated

performance measurements linked to these training load values, for each block, the VDR model was

simulated under a set of pre-determined ‘true’ parameter values under consecutive loads 𝜔 =

{𝜔z/, 𝜔z<}. The true parameter values selected were arbitrary in that they solely based on their rough

ability to produce a realistic profile, and that the 𝜏 parameters were not physiologically unrealistic. A

moderate value of parameter 𝜏%& was chosen to model a relationship between previous loads, reflected

in the performance profile. The values selected for the true parameters are clearly stated within the

code of listing 6.29 on the following page.

The VDR model simulation function developed so far in section 6.2.2 generates performance at 1-day

time steps, so some datapoints were removed in a random fashion to reflect a slightly less regular and

lower-frequency measurement pattern in the mock data; as would be expected in the real world. A total

of 56 measurements over a 150-day period were extracted. The two blocks were again distinct in that

synthetic performance measurements evolved from different training load distributions, reflecting the

concept of a non-homogeneous training program in the subsequent training period (necessary for

robust evaluation/estimation of model utility). However, as described previously the simulated data is

arbitrary, in that the same set could have been constructed by random guesswork as its purpose is to

illustrate the CV approach to follow. Figure 6.17 presents plots of the mock data developed in listing

6.29, and Figure 6.16 shows a print-out of the structure of the input data. In the subsequent

implementation of the CV approach, it is block 1 that will be partitioned (split) into train and test sets

as required to estimate model uncertainty, and block 2 data will be retained as the testing data for

future performance under a different load distribution to the one used to train the model.

Code from this section is available to download directly from:

github.com/bsh2/thesis/c6/cross_validation.R

First, the following code was run to load the necessary prediction and objective functions into the R

environment. Recall that these functions facilitate the mock data to be developed, and fitting of the

VDR model. Specifically, the functions simulateVDR2 and vdrObjectiveLL developed in subsection 6.2.2

were loaded. Recall that vdrObjectiveLL is based on a maximum likelihood estimation approach.

 214

Listing 6.29 Developing mock data used to demonstrate the cross-validation implementation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

block1_loads <- rep(c(1, 1.2, 0.5, 1.8, 2, 0.25, 0.7,0.9, 0, 0.5, 1, 0.8,
 1.2, 1.3, 0.9, 0, 0, 2, 1.1, 0.5), 5)
block2_loads <- round(abs(rnorm(50, 1.3, 0.5)),1)

loads <- data.frame("day" = 0:150,
 "load" = c(0, block1_loads, block2_loads),
 "block" = c(rep(1, 101), rep(2, 50)))

Generating two blocks of associated performance data
true_parameters <- c(95, 0.85, 26, 1.2, 5, 1) #c(p*,kg,Tg,kh,Th,Th2)
performances <- simulateVDR2(true_parameters, loads = loads)
performances$block <- loads$block[2:151]

Reduce measurement frequency and regularity
set.seed(101)
performances <- performances[c(1, sort(as.integer(sample(2:149, 56), replace = FALSE),
 decreasing = FALSE), 150),]

Develop some bounds for the parameter space
bounds <- data.frame("lower" = c(80, 0.1, 2, 0.1, 2, 0.2, 0.2),
 "upper" = c(120, 3, 50, 3, 50, 3, 5))

Collate the data (input format for the CV function)
dat <- data.frame("day" = loads$day,
 "load" = loads$load,
 "performance" = rep(NA, length(loads$load)),
 "block" = loads$block)
dat$performance[performances$day + 1] <- performances$performance

Figure 6.16: Structure of the input data developed in listing 6.29

[NA values are used to indicate no measurement was taken on a given day]

Figure 6.17: Synthetic data developed to demonstrate the cross-validation approach (plotted)

0 50 100 150

95
10

0
10

5
11

0

Synthetic (simulated) performance

Day

Pe
rfo

rm
an

ce
 [a

.u
]

Block 2Block 1

0 50 100 150

0.
0

1.
0

2.
0

3.
0

Synthetic training loads

Day

Tr
ai

ni
ng

 lo
ad

 [a
.u

] Block 1 Block 2

 215

The process of implementation of the expanding window method is now followed, beginning with an

overview of parallelisation in R followed by presentation of ancillary functions developed, and then

finally discussion of the main control flow (function). These ancillary functions take care of the smaller

tasks (procedures) that will be executed within the main function, including:

• Calculating the mean average percentage error (function mape)

• Creating a grid of random starting values for the algorithm (function create_grid)

• Generating the time-series splits (function generate_splits)

• Executing the train-test splits (function train_test)

Furthermore, the code presented shortly relies on several R packages available from the comprehensive

R archive network (CRAN). These include some packages necessary for the train-test splits to be

carried out in a parallelised manner, maximising available compute resources and improving time

efficiency of the overall process. This aspect of computation become more important when alternative

algorithms are used that often require a high number of iterations to find good solutions (e.g.,

derivative-free methods and derivative-free methods that also include a local search component). The

package dependencies for this section are shown in Table 6.3 on the following page, and these must

be installed and loaded into the environment for the code to work.

Table 6.3: Package dependencies for the cross-validation approach

Package Purpose / provides Install packages Load packages

optimx

L-BFGS-B algorithm with multi-

start (facilitates repeated fitting from

a grid of starting parameters)

install.packages(“optimx”,
“caret”, “RcppAlgos”,
“doSNOW”, “foreach”)

library(optimx, caret,
RcppAlgos, parallel,
doSNOW, foreach)

caret

Contains a useful function that we

make use of that takes care of

splitting up the data

(createTimeSlices)

RcppAlgos

Contains a useful function

(comboSample) that allows us to

randomly sample from a vector of

values over the bounds

parallel Specifying the socket cluster

doSNOW
Registering the cluster (parallel

backend)

foreach
Parallelised loop for training and

testing the splits at the same time.

 216

Parallel computing involves the specific use of computing resources to perform multiple tasks

simultaneously, that otherwise would normally be carried out in a sequential fashion. Imagine the real-

world example of a landscaper that has 10 holes to dig in the ground. They can only ever dig one hole

at a time (sequentially). However, if they were to recruit 9 other landscaper (workers), and direct each

of them to the remaining holes (one each), the process could be sped up significantly as all the holes

would be dug in parallel. This crude metaphor describes what happens when we parallelise a

computation or task. A master worker organises and distributes the tasks to a group of other workers

that perform their required duty, return the results back to the master, and collect a new task (if

available) until all are complete. In some cases, these workers are referred to as nodes. The CPU

(central processing unit) is at the heart of every computer. Each CPU will typically have multiple cores

(e.g., dual or quad-core). In simplistic terms, each core can carry out one task, so in a quad-core

processor there are four workers available. If more than one machine (physical or virtual) is combined,

this is known as a cluster, and the number of available workers can be expanded from a handful to

over a thousand. In its default state, R only ever initiates one process on a single core to perform a

task, known as single threading. In normal use cases this is preferable as many users of R will often

run several other applications at a given time. However, when performing many iterative tasks that

individually or collectively require a substantial amount of time, parallelisation provides one way of

reducing the overall time required if these tasks or iterations can be easily distributed. In some cases,

problems cannot be parallelised and are often referred to as “inherently serial” (e.g., when one task is

dependent on the output of another). In others, they may be described as “perfectly parallel” (e.g.,

when no dependency between tasks exists and one can start and end at any point regardless of the

status of another). There are several packages in R that provide facilities to parallelise operations, with

their function depending on the method that they use. In general, there are two methods of

parallelisation: 1) sockets; and 2) forking. A socket approach creates a new instance of R on each core

and uses principles of networking (just in an internal sort of manner on the machine). A forking

approach copies the version of R as it is currently exists, placing it on the new core. There are several

advantages and disadvantages to both of these approaches, but for the purposes of this work we will

focus on the socket method because it works on any operating system (e.g., windows, Linux, MacOS).

The forking method does not work on windows, and thus is not the most useful approach to

demonstrate. However, if the reader is working on a non-windows system then forking may prove a

more efficient approach and worthwhile investigating depending on use-case.

The parallel package in R is the amalgamation of two predominant former packages (SNOW, and

multicore) that provide a parallel backend. We will also make use of the package foreach, that provides

a looping construct similar to the normal for loop in R, but that also supports parallel execution.

However, to use the foreach package, we must first set up the parallel backend. A SNOW-like parallel

backend for the foreach package is most versatile for the following implementation as it works on both

 217

windows and unix-like systems. To create the parallel socket cluster and register the SNOW parallel

backend we make use of the functions makeCluster and registerDoSNOW from the packages parallel and

doSNOW (Weston and Computing, 2015) respectively. In addition, the function detectCores from the

parallel package can be used to find out how many cores the machine has available. Briefly, logical

cores are the number of physical cores multiplied by the number of threads that can run on each core

(via a concept called hyperthreading). If a core can run two threads for example, and we have two

cores, there are 2 × 2 = 4 logical cores available. The function detectCores provides the number of

logical cores by default. In summary, the cluster is created and registered as follows:

cores <- detectCores(logical = TRUE) # Determine no. cores
cluster <- makeCluster(cores, type = “SOCK”) # Specify the socket cluster
registerDoSNOW(cluster) # Register the cluster/backend

In the above example code, we have created copies of R running in parallel on the specified number

of cores, that are communicating via sockets. This gives us the parallel backend set up ready for use

with the parallel foreach loop. The foreach loop is then declared via the following basic structure:

foreach(i = 1:5) %doPar% { sqrt(i) } # Parallelised foreach loop (example)

Depending on the task, it is also sometimes necessary to export objects from the master instance and

other required packages to the available nodes on the parallel backend. This can be done during the

foreach call through the .export and .packages arguments, respectively (see help files of the package:

run ?foreach). Any object passed as an argument in a function within the foreach loop is automatically

exported to the workers. We also need to stop the cluster when we are done with it, as follows:

stopImplicitCluster(cluster) # Stop the cluster (example)

In the context of the cross-validation approach, it is helpful to parallelise the train-test splits,

particularly given that this process will be repeated several times for each split as the algorithm must

retrain the model from multiple starting points to reduce starting point sensitivity affecting the obtained

solutions. This is discussed shortly, and highlighted in the algorithm written in pseudocode, provided

in Appendix C-2. Parallelisation in the context of fitness-fatigue modelling, as this thesis has shown,

has multiple applications (computational experimentation under simulation, model fitting and cross

validation), and may be useful when applying multiple rounds of evolutionary algorithms each

requiring a high number of iterations due to the differences in termination criteria. This aspect of

implementation may also have uses within hierarchical modelling, where models are trained on data

from multiple athletes and train-test splits take a long time to run.

 218

Given that parallelisation via foreach has been discussed, the ancillary functions described earlier are

now presented. These will be used in the main CV function (control flow) for the approach. The first

function that is straightforward and requires no further explanation beyond the code is one to compute

the mean average percentage error (MAPE) from two vectors of measured and model predicted

performance. Recall that the MAPE function is as follows:

𝑀𝐴𝑃𝐸 = M
1
𝑛
A

|𝑝;à − 𝑝;|
𝑝;

a

;0/

Q ∗ 100	 (6.35)

Listing 6.30 Function to compute the mean-average-percentage-error (MAPE) from two vectors of measured
and predicted performance values

1
2
3

mape <- function(measured, predicted){
 return(mean(abs((measured - predicted)/measured))*100)
}

Next, the function generate_splits is presented to derive the index values associated with the train-test

splits over a set of data. To complete this task, we make use of the package caret (Kuhn et al., 2020),

that provides a helpful function createTimeSlices for splitting up data into train and test sets that

move in time. In the context of creating expanding window test-train splits, the function

createTimeSlices takes as input: 1) the time-series data; 2) the initial number of consecutive values in

each training set sample (initialWindow); 3) the number of consecutive values in a test set sample

(horizon); 4) whether all samples begin from the first element (fixedWindow = FALSE); and 5) a value

reflecting by how much each sample should expand over the time series (skip). Returned by the

function is a list containing the index values relating to the original data set defining each train and

test split. At this point, the data itself hasn’t been isolated or split up into separate objects.

The generate_splits function developed below, that makes use of createTimeSlices (from caret

package), itself takes as input a set of arguments that define the required values described above, but

as percentages, converting them to days (consecutive values) before passing them on to

createTimeSlices.

Listing 6.31 Function to develop expanding window splits

1
2
3
4
5
6
7
8
9
10
11
12
13

generate_splits <- function(initialWindow, testHorizon, expandRate, dat){
 # Convert supplied arguments for CV into 'days'
 initialWindow = round(length(dat$day) * initialWindow/100, 0)
 testHorizon = round(length(dat$day) * testHorizon/100, 0)
 expandRate = round(length(dat$day) * expandRate/100, 0)
 # Create splits
 splits <- createTimeSlices(dat$day,
 initialWindow = initialWindow,
 horizon = testHorizon,
 fixedWindow = FALSE,
 skip = expandRate)
 return(splits)
}

 219

The next function developed below creates a grid of starting values by randomly sampling from inside

the defined bounds of the parameter space (nStarts times). We move slightly inside the bounds for this

sampling process to avoid starting the algorithm on the bound of any particular parameter, which can

sometimes cause strange behaviour. The function makes use of the comboSample function from the

RcppAlgos package that provides high performance tools for combinatorics. There are multiple possible

implementations for this sampling in R, but this is just one simple method. The function takes as input

the bounds and the number of sets to generate and returns a matrix of parameter values (the

combination of each element in a row of the matrix represents a set).

Listing 6.32 Function to create a random grid of starting parameters across the bounds [𝑙, 𝑢] to be used for
iterative model fitting from multiple starting points

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

create_grid <- function(bounds, nStarts, initial){

 if (initial == FALSE){
 set.seed(101)
 parmat <- data.frame(
 "p0" = comboSample(seq(bounds$lower[1] + 1, bounds$upper[1] - 1, 2.5),
 m = 1, n = nStarts),
 "kg" = comboSample(seq(bounds$lower[2] + 0.1, bounds$upper[2] - 0.1, 0.1),
 m = 1, n = nStarts),
 "Tg" = comboSample(seq(bounds$lower[3] + 1, bounds$upper[3] - 1, 1.5),
 m = 1, n = nStarts),
 "kh" = comboSample(seq(bounds$lower[4] + 0.1, bounds$upper[4] - 0.1, 0.1),
 m = 1, n = nStarts),
 "Th" = comboSample(seq(bounds$lower[5] + 1, bounds$upper[5] - 1, 1.5),
 m = 1, n = nStarts),
 "Th2" = comboSample(seq(bounds$lower[6] + 0.1, bounds$upper[6] - 0.1, 0.1),
 m = 1, n = nStarts),
 "sigma" = comboSample(seq(bounds$lower[7] + 0.1, bounds$upper[7] - 0.1, 0.1),
 m = 1, n = nStarts)
) # We also add or subtract a little to get away from starting on the bounds
 }

 if (initial == TRUE){
 set.seed(101)
 parmat <- data.frame(
 "p0" = comboSample(seq(bounds$lower[1] + 1, bounds$upper[1] - 1, 2.5),
 m = 1, n = nStarts),
 "kg" = comboSample(seq(bounds$lower[2] + 0.1, bounds$upper[2] - 0.1, 0.1),
 m = 1, n = nStarts),
 "Tg" = comboSample(seq(bounds$lower[3] + 1, bounds$upper[3] - 1, 1.5),
 m = 1, n = nStarts),
 "kh" = comboSample(seq(bounds$lower[4] + 0.1, bounds$upper[4] - 0.1, 0.1),
 m = 1, n = nStarts),
 "Th" = comboSample(seq(bounds$lower[5] + 1, bounds$upper[5] - 1, 1.5),
 m = 1, n = nStarts),
 "Th2" = comboSample(seq(bounds$lower[6] + 0.1, bounds$upper[6] - 0.1, 0.1),
 m = 1, n = nStarts),
 "sigma" = comboSample(seq(bounds$lower[7] + 0.1, bounds$upper[7] - 0.1, 0.1),
 m = 1, n = nStarts),
 "qg" = comboSample(seq(bounds$lower[8] + 0.1, bounds$upper[8] - 0.1, 0.1),
 m = 1, n = nStarts),
 "qh"= comboSample(seq(bounds$lower[9] + 0.1, bounds$upper[9] - 0.1, 0.1),
 m = 1, n = nStarts)
) # We also add or subtract a little to get away from starting on the bounds
 }
 return(as.matrix(parmat))
}

 220

Before the main control function is developed, a final ancillary function (train_test) is presented on

the following page, that is called within the main control flow to process the train-test splits (i.e., fit,

evaluate) iteratively in a parallelised for-loop. This function takes as input the required data, a list

containing the index values of all the splits, a reference value for the current split (i.e., the index of the

loop), and a set of starting values and bounds for the optimisation algorithm. Returned as output is a

list that contains the fitted parameter values from each set of starting values along with associated out-

of-sample test scores (MAPETEST). Also returned is the average performance (average of MAPE(TEST))

across all iterations of the current split processed by the function. Readers may find it most helpful to

refer to the algorithm in Appendix C-2 at this point, to clarify the exact control flow of the

implementation in its entirety prior to presentation of the main function next.

Notes (listing 6.32):

• initialWindow is the size of the training set in the first split (supplied by user as % of the timeseries, default
60%)

• testHorizon is the size of the testing set in a given split (supplied by user as % of the timeseries, default 20%)
• expandRate is the size at which the training data expands over the timeseries from each previous split (supplied

by the user as a % of the timeseries, default 4%)

 221

Listing 6.33 Function to train/test the VDR model for a given split. The model is repeatedly trained/tested
under different algorithm starting points for the L-BFGS-B minimiser

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

train_test <- function(dat, parmat, bounds, main, splits = NA, currentSplit = NA, initial){

 if(main == FALSE){
 # If we are training-testing on splits vs. training on the whole of block 1
 training_data <- dat[splits$train[[currentSplit]],]
 testing_data <- dat[splits$test[[currentSplit]],]}

 if(main == TRUE){
 # If training on the whole block 1 and testing on block 2
 training_data <- dat[dat$block == 1,]
 testing_data <- dat[dat$block == 2,]
 }

 # Isolate a vector of days on which measurements exist for train and test data
 measure_idx_train <- subset(training_data$day, !is.na(training_data$performance))
 measure_idx_test <- subset(testing_data$day, !is.na(testing_data$performance))

 # Isolate a vector of measurements in for train and test data
 measurements_train <- subset(training_data$performance, !is.na(training_data$performance))
 measurements_test <- subset(testing_data$performance, !is.na(testing_data$performance))

 # Put data in required format for objective function vdrObjective()
 dat_temp <- data.frame("day" = measure_idx_train, "performance" = measurements_train)
 load_temp <- training_data[, c("day", "load")]

 # Fitting iterations
 fittedModel <- optimx::multistart(parmat,
 fn = vdrObjectiveLL,
 lower = bounds$lower,
 upper = bounds$upper,
 method = "L-BFGS-B",
 control = list(maxit = 500,
 trace = FALSE),
 loads = load_temp,
 perfVals = dat_temp,
 initial = initial)

 # Compute predicted performance for the entire time-series (blocks 1 + 2)
 temp_predictions <- sapply(1:dim(parmat)[1],
 function(i) simulateVDR2(pars = as.numeric(fittedModel[i, 1:6]),
 loads = dat[,c("day", "load")],
 if (initial == TRUE){
 initialPars = as.numeric(fittedModel[i, 8:9])
 } else {
 initialPars = c(0,0)
 })$performance)
 # Extract predictions at required days to evaluate model performance
 predictions_training <- temp_predictions[measure_idx_train,]
 predictions_testing <- temp_predictions[measure_idx_test,]

 # Compute metrics (MAPE)
 mape_train <- sapply(1:dim(predictions_training)[2],
 function(i) mape(measured = measurements_train,
 predicted = predictions_training[,i]))
 mape_test <- sapply(1:dim(predictions_testing)[2],
 function(i) mape(measured = measurements_test,
 predicted = predictions_testing[,i]))

 # Collect these metrics and calculate average split statistics
 fittedModel <- cbind(fittedModel, mape_train, mape_test)
 stats <- c("mean_mape_train" = mean(mape_train),
 "mean_mape_test" = mean(mape_test),
 "sd_mape_train" = sd(mape_train),
 "sd_mape_test" = sd(mape_test))

 # Develop output
 output <- list("fittedModel" = fittedModel, "predictions" = temp_predictions,
 "stats" = stats)
 return(output)
}

 222

Finally in developing the CV approach, the main function (control flow) for the expanding-window

CV method can be defined (listing 6.34).

Listing 6.34 Main cross-validation function: Expanding-window method (VDR FFM) – Multistart L-BFGS-B

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65

expandingWindow_CV <- function(dat,
 bounds,
 initialWindow = 60,
 testHorizon = 20,
 expandRate = 4,
 nStarts = 10,
 cores = NULL,
 initial = FALSE){

 # Generate splits (note split vectors gives you an index position vs. a 'day', think t-1!)
 splits <- generate_splits(initialWindow, testHorizon, expandRate, dat[dat$block == 1,])
 nSplits <- length(splits$train) # Number of splits

 # Create an array of random starting values over the bounds
 parmat <- create_grid(bounds, nStarts, initial = initial)

 # Iterate over the splits (train-test)
 if (is.null(cores)){
 cores <- detectCores(logical = TRUE)
 } # If cores not specified by user
 cl <- makeCluster(cores, type = "SOCK") # Make cluster
 registerDoSNOW(cl) # Register cluster
 fitted_splits <- foreach(i = 1:nSplits, .verbose = TRUE, .packages = c("optimx"),
 .export = c("train_test", "vdrObjectiveLL", "simulateVDR2",
 "mape")) %dopar%{
 train_test(dat, parmat, bounds,
 main = FALSE, splits = splits,
 initial = initial,
 currentSplit = i)}
 # By default results returned as a list
 stopCluster(cl) # Stop cluster
 names(fitted_splits) <- paste0("split_",1:nSplits) # Add names to the list for each split

 # Compute model performance across splits and add to the existing list object
 mape_train_across <- matrix(NA, nrow = nStarts, ncol = nSplits)
 mape_test_across <- matrix(NA, nrow = nStarts, ncol = nSplits)
 for (i in 1:nSplits){
 mape_train_across[,i] <- fitted_splits[[i]]$fittedModel$mape_train
 mape_test_across[,i] <- fitted_splits[[i]]$fittedModel$mape_test
 }
 fitted_splits$across_splits <- list("training_mape" = c("mean" = mean(mape_train_across),
 "sd" = sd(mape_train_across)),
 "testing_mape" = c("mean" = mean(mape_test_across),
 "sd" = sd(mape_test_across)))

 fitted_splits$starting_pars <- parmat

 # Fit the model to all block 1 data, and test on block 2 (Main train/test split)
 mainModel <- train_test(dat, parmat, bounds, main = TRUE, initial = initial)

 # Extract the best set by lowest -logLik value and by prediction on test set
 mainModel$bestSet$fit <- mainModel$fittedModel[mainModel$fittedModel$value ==
 min(mainModel$fittedModel$value),]
 mainModel$bestSet$test <- mainModel$fittedModel[mainModel$fittedModel$testing_mape ==
 min(mainModel$fittedModel$mape_test),]

 fitted_splits$main <- mainModel
 fitted_splits$splits <- splits
 fitted_splits$nSplits <- nSplits
 fitted_splits$nStarts <- nStarts

 # Output results
 return(fitted_splits)
}

 223

In listing 6.33, it is pointed out the function multistart in the package optimx (Nash et al., 2020)

provides a simple way to repetitively fit a given model for multiple starting points, with the results of

this process collected in a dataframe (lines 28-37). This function train_test also accounts for the case

when you wish to fit to the entire block 1 data and test predictions on block 2, as will be demonstrated

shortly using the mock data developed earlier; facilitated via the function argument main = TRUE

assuming object passed to argument dat is the full dataset of both block 1 and block 2 data.

Finally in this subsection, and capping off section 6.2, this CV implementation is demonstrated using

the synthetic data developed, and a basic set of plots that can be derived from this cross-validation

process are then presented, similar to those in Turner et al. (2017). At this stage, if the user wishes to

replicate this process in their own R environment, it is recommended they download the necessary

code file (github.com/bsh2/thesis/c6/cross_validation.R) to avoid having to copy out the code as it has

been listed so far. Given the mock data (dat) developed so far in listing 6.29, and the bounds given

below, calling the cross-validation process for this data is now as simple as (whilst assuming default

settings for non-declared arguments, but increasing the number of random starting parameters per

train-test split to 100):

Listing 6.35 Demonstrating the cross-validation method (function call) for fitting the VDR model

1
2
3
4
5
6
7

example <- expandingWindow_CV(dat = dat,
 bounds = bounds,
 initialWindow = 60,
 testHorizon = 20,
 expandRate = 4,
 nStarts = 10,
 cores = 1)

The output of this function, assigned to example, is discussed next and then plots developed to visualise

the results.

Notes (listing 6.34):

• initialWindow is the size of the training set in the first split (supplied by user as % of the timeseries, default
60%)

• testHorizon is the size of the testing set in a given split (supplied by user as % of the timeseries, default 20%)
• expandRate is the size at which the training data expands over the timeseries from each previous split (supplied

by the user as a % of the timeseries, default 4%)
• Argument cores allows the user to specify the number of cores for to use in the parallelisation of the train-test

splits (supplied as a scalar, integer) - Defaults to all available cores.
• Argument nStarts is a scalar (integer) specifying the number of starting sets to use in the optimisation process

for the L-BFGS-B algorithm.
• Data objects supplied to argument dat should be in the format described toward the beginning of this subsection

when mock data was developed (see listing 6.29).
• Argument bounds should be supplied as a dataframe of two columns, as follows (where 𝑙 < 𝑢):

bounds <- data.frame(“lower” = c(𝑝∗,(Q), 𝑘<
(Q), 𝜏<

(Q), 𝑘E
(Q), 𝜏E

(Q), 𝜏E#
(Q), 𝜎(Q)),

 “upper” = c(𝑝∗,(S), 𝑘<
(S), 𝜏<

(S), 𝑘E
(S), 𝜏E

(S), 𝜏E#
(S), 𝜎(S))

 224

Output from the cross-validation function: Returned from expandingWindow_CV is a list containing

• A further list example$split_i (one for each split 𝑖 = 1 − 𝑁) containing:

o A dataframe of fitted parameters and associated measures of model error from the multiple fitting

iterations (from different starting points)

o A dataframe of model simulated performance values over the whole length of the input data (dat) for

each set of fitted model parameters

o Average MAPE (training and test sets) across the fitted parameters

• A list containing the average MAPE for the train and test sets across all splits (example$across_splits)

• A matrix containing the starting parameter values used to fit the model for each train-test split

(example$starting_pars)

• The index values used for each split over the input data (example$splits)

• The total number of train-test splits (example$nSplits)

• A list containing the results of training on the whole block 1 data, and testing on the whole of block 2

(example$main). See discussion of this concept at the start of the subsection. Contains all the same elements

as example$split_i, as well as the ‘optimal’ set across the iterations by objective value and MAPETEST.

To provide some ideas on how these results may be visualised, three sets of plots are presented on the

following pages, developed from the key output of this cross-validation example under the synthetic

data (listing 6.35). To begin with, in Figure 6.18, boxplots are presented to illustrate variation in

parameter values and model errors within and across the splits (not including the ‘main’ split, i.e., train

on block 1, test on block 2). Recall that within-split variation occurs because each test-train split

comprises multiple runs of the fitting algorithm initiated from different starting points (the total

number being specified by the user). The between-split variation occurs due to the natural differences

in where the dataset is split (as discussed with the simple case of the hold-out approach earlier). In

Figure 6.19, boxplots were also used to summarise the distribution of parameters for the main train-

test split (i.e., train on all of block 1 data, test on block 2). In Figure 6.20, a time-series plot is developed

that tracks all the fitted model predictions across all iterations for the main train-test split, revealing

variation in the model’s ability to predict unseen future response under a different input distribution.

This plot is simply an overlaid line plot, but more sophisticated region (shaded) plots could be

developed using the polygon function in base R’s graphics (plotting) system. The code for figures

6.18, 6.19, 6.20 are available in the associated code file for this section.

 225

Figure 6.18: Boxplots summarising both fitted parameter and train/test prediction error variation

across the expanding-window splits, within split variation is due to the multiple iterations from

different start points

Figure 6.19: Similar boxplots to figure 6.18, summarising fitted parameter and train/test prediction

error variation across the main train-test split (block 1 train, block 2 test), with the model training also

comprising multiple fitting iterations from many starting points.

1 3 594
.9

85
95

.0
05

Split No.

p*

1 3 5

1.
0

2.
0

Split No.
k g

1 3 5

20
25

30

Split No.

τ g

1 3 5

1.
5

2.
5

Split No.

k h

1 3 5

2
4

6
8

10

Split No.

τ h

1 3 5

0.
5

1.
5

2.
5

Split No.

τ h
2

1 3 5

0.
15

0.
25

Split No.

σ

1 3 5
0.

00
0.

06
0.

12

Split No.

M
AP

E
(tr

ai
n)

1 3 5

0.
0

0.
2

0.
4

Split No.

M
AP

E
(te

st
)

1 3 5

−1
8

−1
5

−1
2

Split No.

−
lo

g(
L)

94
.9
94

94
.9
98

p*

1.
0

2.
0

k g

18
22

26

τ g

1.
5

2.
5

k h

5
7

9

τ h

0.
4

0.
6

0.
8

1.
0

τ h
2

0.
15

0.
25

σ

0.
00

0.
06

0.
12

M
AP

E T
R
AI
N

0.
00

0.
15

0.
30

M
AP

E T
ES

T

−2
6

−2
0

−1
4

−l
og
(L
)

 226

Figure 6.20: Plotting the variation in iterations (lines) from the main train-test split (train on block 1,

blue points; test on block 2, red points) over the time-series

6.3 External saturation of model inputs: Considerations

Recall from chapter 2 that the external threshold function introduced by Hellard et al. (2005) to saturate

the training response to increasing loads (external to the model structure) is described mathematically

by the following function:

ℎ𝑖𝑙𝑙(𝜔) = 𝜅 W
𝜔_

𝛿_ +𝜔_X	 (6.36)

The behaviour (shape) of this function depends on choice of its parameters 𝜅, 𝛿, 𝛾. The parameter 𝜅 is

the ‘absolute’ threshold level for which loads beyond this point will provide no further benefit, under

the FFM mechanics described by the time-invariant parameters (𝑘, 𝜏) for each component. The

parameters 𝛿 and 𝛾 control the shape of saturation profile, such as the sensitivity (𝛾) to a new training

load, and inertia (i.e., resistance) of the function to (reaching) the threshold value. High values of the

𝛿 parameter have a suppressive effect on response across the curve. Collectively, the resulting shape

(curve) of the function is affected by choice of these two parameters (𝛿, 𝛾). To explore the behaviour

of this function in R, it is helpful to define a simple function that takes as input these parameters and

a vector of training loads, providing as output the saturated values (listing 6.36). Code for this section

is available from github.com/bsh2/thesis/c6/threshold_saturation.R.

0 50 100 150

95
10

0
10

5
11

0
Main train (block 1) − test (block 2)

Day

Pe
rfo

rm
an

ce
 [a

.u
]

Block 1 Block 2

Observed Data (seen)
Observed Data (unseen)
Model Predictions (fitted)

 227

Listing 6.36 Threshold saturation function (simulation)

1
2
3
4

hillTransform <- function(kappa, delta, gamma, loads){
 hill_w <- kappa * (loads^(gamma) / (delta^(gamma) + loads^(gamma)))
 return(hill_w)
}

The hillTransform function in listing 6.36 can be evaluated for a vector of increasing loads, and called

repeatedly in some iterative structure (e.g., a loop or apply) to examine several different values of the

parameters 𝛿, 𝛾 and produce plots illustrating the behaviour of this function for different choices of

𝛿, 𝛾. Such plots were first presented in Hellard et al. (2005) and recreated in chapter 2 at the point

where the reader was introduced to this modification. They are recreated again here in figure 6.21 to

remain self-contained in this section.

Figure 6.21: Hill-saturation for increasing loads under different values of 𝛿, 𝛾, with 𝜅 fixed

Although the behaviour of this hill function is relatively clear for different choices of the parameter

values in figure 6.21, what remains less clear is how these parameter values should be chosen or

estimated in practice. Selecting 𝜅 manually and not fitting it within an optimisation procedure is

perhaps the most straightforward of the three parameters from a conceptual standpoint, as it represents

the maximum load at which further responses will cause no additional increase. In effect it is the upper

‘cap’ on training load response to any single session. One possible approach in practice for deriving

an estimate of 𝜅 is to have a coach elicit an estimate as follows: 1) the coach imagines the hardest

possible training session (possibly informed from previous recorded data) that their athlete could

tolerate before failure with respect to substantial breakdown in quality, ability, or performance in the

movement and/or exhaustion, that would also result in extremely high fatigue at the expense of future

training; 2) The session is then quantified within the training load framework and the resultant used as

the value of 𝜅. One possible issue that arises from discussion of 𝜅 is that the threshold for fatigue may

differ to that of fitness, in particular it may be considerably higher as increases in training load may

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

κ = 3 (fixed)

ω

H
ill(

 ω
)

δ = 1 , γ = 3
δ = 1 , γ = 2
δ = 1 , γ = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

κ = 3 (fixed)

ω

H
ill(

 ω
)

δ = 3 , γ = 1
δ = 2 , γ = 1
δ = 0.5 , γ = 1

 228

still stimulate further increases in fatigue (leading to overtraining). This could necessitate the need for

two separate hill functions, one for each component, increasing the number of free parameters in the

problem even further and potentially exacerbating existing issues with overfitting and existence of

local minima. As a starting point in an optimisation framework, appropriate bounding of these terms

may provide some benefit to these issues. However, researchers could also seek to reduce the scope of

the estimation problem further by developing methods to reduce the number of parameters that need

to be estimated in the first place. For example, developing manual methods to derive fixed estimates

of 𝜅, 𝛿, 𝛾 based on knowledge of the expected load-response profile. However, deriving either or both

of the 𝛿 and 𝛾 parameters is seemingly less straightforward than 𝜅, and it is perhaps inevitable that at

least one of these will require some form of fitting to data. Based on these concepts, there are a few

avenues that could be investigated in the further when considering the use of the saturation threshold

function in research:

1) The FFM is fitted under hill transformed inputs with the parameters 𝜅, 𝛿, 𝛾 optimised by

a search algorithm, and allowed to vary over:

a. Relaxed bounds on each parameter (little consideration given)

b. Tight bounds on each parameter based on consideration of the behaviour of the

hill function (sensitivity, resistance) and likely values of 𝜅

2) The FFM is repeatedly fitted under hill transformed inputs via fixed values of 𝜅, 𝛿, 𝛾

varying at each iteration over a grid. This approach can be thought of as forming an outer

loop around the fitting process where at each iteration the hill parameters are fixed to a

new set and the model then refit by some optimisation algorithm (which is itself an

iterative loop). Selection of values carried forward may then be based on:

a. The lowest achieved sum of squared errors over the grid and an inspection to

check that this solution appears to provide a reasonable response saturation

profile.

3) Estimation of 𝜅, 𝛿, 𝛾 within a Bayesian framework where priors are elicited for each

parameter.

4) Fix one or more of 𝜅, 𝛿, 𝛾 via prior estimation, taking into account expected threshold and

behaviour of the function, with any remaining parameters estimated within the FFM fitting

process (either via approach 1 or 2 above). This reduces the scope of the fitting problem

from 3 to 1-2 parameters per external saturation function.

It makes sense that option 1a would be expected to perform worst out of the four avenues presented as

this level of complexity appears likely to induce too many local optima, although evocation of tighter

bounds may help (1b). Option two theoretically reflects an improvement in terms of reducing the

chance that the additional parameters disrupt the ability for the optimisation algorithm to find the best

 229

solution for the FFM. Option three represents an interesting avenue of future investigation. Bayesian

approaches may provide an effective means of bridging the gap between researchers and practitioners.

Physical training is frequently referred to as a discipline that incorporates both science and art.

Bayesian approaches provides a means to directly incorporate the intuitions and tacit knowledge of

practitioners to the modelling process. Where practitioners are very confident of the adaptation

response of a specific athlete, they can provide relatively tight priors, thereby strongly influencing the

predictions of an FFM, particularly where the amount of performance data are limited. In contrast,

where large amounts of data are present, priors will have less influence on the FFM predictions.

Minimal alteration to the code presented in this thesis would be required to run Bayesian FFMs. Where

research and processes are required to effectively implement Bayesian approaches includes the means

of extracting appropriate priors for coaches and the extent to which these priors are univariate or

multivariate. Option four represents an informal approach that crosses over into aspects of prior

elicitation for Bayesian methods.

Discussed already, 𝜅 could be fixed based on an estimated derived from available data, coaching

intuition, and quantified training loads. Not yet discussed is whether there is an approach or avenue of

investigation for generating estimates of 𝛾 or 𝛿 or both based on intuition or measurement. Examining

the behaviour of the hill function once more, we note that for certain values of 𝛾, 𝛿, the curve follows

a sigmoidal ‘S’-shape that goes from convex to concave at an inflection point. This is visible in the

additional plots in figure 6.22 below, that demonstrate that as 𝛾 decreases from high values (𝛾 = 6) to

low values (𝛾 = 1) when 𝛿 = 1 is fixed (𝜅 = 3,𝜔 = 0.1 − 3), the curve changes from S-shaped to

concave over the whole domain (approximately when 𝛾 < 2). Also notable in figure 6.22 is that when

𝛿 is increased to 2, the same plots are flattened over the domain, with the inflection point also moving

to the right (larger values of 𝜔). Described conceptually, this sigmoidal shape for the load-response

profile says that response starts off small for low values of 𝜔 (relative to 𝜅), then enters a proportional

(approximately linear) period for moderate loads, before saturating toward high values of 𝜔. Such a

functional form matches many biological phenomena and is likely to be of use in the context of fitness-

fatigue modelling.

 230

Figure 6.21: Left: Sigmoidal curve produced by the hill function for changing 𝛾 with 𝛿 fixed to 1.

Right: Demonstration of the flattening of the curve and inertia of the hill function to the threshold

value by increasing 𝛿 to 2 and reproducing the plot on the left with the same values of 𝛾.

Given that the hill function can transform loads under a sigmoidal profile under the right conditions

for 𝛾 and 𝛿 (for different 𝜅 and 𝜔 the values might differ to those used in the plots), visual inspection

of the saturation function for varied values prior to optimisation may provide a simplistic approach for

deriving estimates (or at least tighter bounds) for parameters 𝛾 or 𝛿 or both. For example, in the context

of the loads used for the plots presented in figures 6.21 and 6.22, 𝛿 = 1 could be fixed, such that it

becomes more common for a given larger load (approximately loads above 𝜔 = 1.5) to reach the

maximum transformed value 𝜅 (also dependent on largeish 𝛾). Alternatively, if 𝛿 = 2 only very high

loads will be transformed to values close to 𝜅 (but still far off). This is shown in figure 6.22. If 𝛿 cannot

be fixed, it seems reasonable at the very least that tighter bounds could be established for the

optimisation problem via this approach, for example 1 ≤ 𝛿 ≤ 2 in our example. Similarly, if a value

of 𝛾 is fixed, or tight bounds are derived, such that a sigmoidal response curve for transformed loads

is achieved, this might be done based on the behaviour of the curve after the inflection point. For lower

values of 𝛾 the curve becomes flatter after this point, such that increasing loads still have relatively

different and increasing transformed values. For higher values of 𝛾, after the inflection point there is a

steep portion of the curve that reaches a peak, beyond which transformed loads are relatively constant

(similar). Much of the discussion here is theoretical and has not been tested under experimental

conditions.

The aim of this section was to provide some initial options for researchers considering investigation

of this saturation function. This area is in clear need of attention, as the potential benefit of the function

(i.e,, introduction of non-linearity in response) is clouded by the complexity it adds to the optimisation

problem.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

κ = 3 (fixed)

ω

H
ill(

 ω
)

δ = 1 , γ = 6
δ = 1 , γ = 5
δ = 1 , γ = 4
δ = 1 , γ = 3
δ = 1 , γ = 2
δ = 1 , γ = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

κ = 3 (fixed)

ω

H
ill(

 ω
)

δ = 2 , γ = 6
δ = 2 , γ = 5
δ = 2 , γ = 4
δ = 2 , γ = 3
δ = 2 , γ = 2
δ = 2 , γ = 1

 231

6.4 State-space reformulation and Kalman filtering

Recall in chapter 2 it was shown that the standard FFM can be put into state space form, as first shown

in Kolossa et al. (2017). The state variables (fitness and fatigue) at time 𝑛 + 1 could be described by:

𝐱ab/ = 𝐀a𝐱a + 𝐁a𝜔a + 𝐯a	 (6.37)

Where 𝐱AT> is a vector comprising fitness and fatigue on day 𝑛 + 1 (and therefore 𝐱A is the state vector

comprised of fitness and fatigue at time 𝑛), 𝐀A is a diagonal 2 × 2 “transition matrix” of coefficients

that multiply the current fitness and fatigue values, 𝐁a is a 2 × 1 matrix of coefficients that multiplies

the scalar training input 𝜔, and 𝐯a is the state noise quantified by a 2 × 2 covariance matrix that is

generally donated by 𝐐. The state noise describes the random change in state (e.g., fitness and fatigue)

above and beyond the deterministic component involving training and past fitness or fatigue.

The state (𝐯a) and observation (𝜂a) error terms are distributed independent and identically Gaussian

distributed. Matching these terms to the standard FFM, these matrices are described as follows:

𝐱a = U𝑔
(𝑛)
ℎ(𝑛)V	

(𝑠𝑡𝑎𝑡𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠	𝑣𝑒𝑐𝑡𝑜𝑟	|	6.38)

𝐯a = 𝑁~(𝟎,𝐐a), 𝜂a~𝑁(0, 𝜉<)	 (𝑠𝑡𝑎𝑡𝑒	𝑎𝑛𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑒𝑟𝑟𝑜𝑟	|	6.39)

Therefore,

Var(𝐯a) = 𝐐a = 𝐐 = W
𝜎$< 𝜎$,%
𝜎$,% 𝜎%<

X	 (𝑄	𝑚𝑎𝑡𝑟𝑖𝑥	|	6.40)

 Where the covariance 𝜎$,% can be rewritten 𝜎$,% = 𝜎$ ⋅ 𝜎% ⋅ 𝜌$,% where 𝜌$,% is the correlation

between the state error term elements.

𝐀a = 𝐀 = �𝑒
& /
'! 0

0 𝑒&
/
'"

�	 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛	𝑚𝑎𝑡𝑟𝑖𝑥	|	6.41)

𝐁𝒏 = 𝐁 = �𝑒
& /
'!

𝑒&
/
'"

�	 (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑚𝑎𝑡𝑟𝑖𝑥	|	6.42)

𝐱- = U𝑔
(0)
ℎ(0)V	

(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛	𝑣𝑒𝑐𝑡𝑜𝑟	|	6.43)

Where, 𝐱- is treated as an unknown vector parameter, 𝜔- is set to 𝜔å and the matrix 𝐌- =

𝑉𝑎𝑟(𝐱-) is typically set to have large values on the diagonal to represent the uncertainty in the initial

value.

 232

The state of the system is not observed directly but is accessible by means of indirect measurement of

performance 𝑝a, from the equation:

�̂�a = 𝑝∗ + 𝐂a𝐱a + 𝜂a	 (𝑠𝑦𝑠𝑡𝑒𝑚	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒	|	6.44)

Where 𝐂a = 𝐂 = J𝑘$, −𝑘%K a 1×2 matrix and 𝜂a is the observed performance noise described

by actual measurement errors with variance denoted by 𝜉< (“xi”).

To modify the above state-space model to reflect the VDR model, the matrix 𝐁a can be modified to:

𝐁a = � 𝑒
& /
'!

𝑘%&
{ ̇ 𝑒&

/
'"
� , 𝑘%&

. =A𝜔Q ⋅ 𝑒
&(.&Q)
'"&

.

Q0/

	 (𝑉𝐷𝑅	𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	|	6.45)

Taking this a step further, the hill saturation function could also be included, as follows:

𝑘%&
. =A𝜔%(𝑗) ⋅ 𝑒

&(.&Q)
'"&

.

Q0/

	 , 𝜔%(𝑗) = 𝜅$ M
𝜔Q
_"

𝛿%
_" +𝜔Q

_"Q		 (𝑉𝐷𝑅	𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + ℎ𝑖𝑙𝑙	|	6.46)

Where 𝜅% , 𝛿% , γ% are the hill model parameters for the fatigue state.

All code presented onwards in this section is available from github.com/bsh2/thesis/kalman_filter.R

First, a function is developed to instantiate a state-space FFM from a set of parameters and initial

conditions (Listing 6.37).

Listing 6.37 Defining a function to instantiate a state-space model from parameters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

state_space_FFM <- function(pars){

 # Transition matrix
 A <- matrix(c(exp(-1 / pars$tau_g), 0, 0, exp(-1 / pars$tau_h)), ncol = 2)

 # State intercept
 B <- matrix(c(exp(-1 / pars$tau_g), exp(-1 / pars$tau_h)), ncol = 1)

 # Measurement matrix
 C <- matrix(c(pars$k_g, -1 * pars$k_h), ncol = 2)

 # Variances
 Q <- matrix(c(pars$sigma_g^2, rep(pars$rho_gh * pars$sigma_g * pars$sigma_h, 2),
 pars$sigma_h^2), ncol = 2)
 xi <- pars$xi

 # Prior distribution of fitness and fatigue (initial conditions)
 x_0 <- c(pars$g_0, pars$h_0)
 M_0 <- matrix(c(pars$sd_g0^2,
 rep(pars$rho_gh0 * pars$sd_g0 * pars$sd_h0, 2), pars$sd_h0^2),
 ncol = 2)

 model <- list(A = A, B = B, C = C, Q = Q, xi = xi, x_0 = x_0,
 M_0 = M_0, p_star = pars$p_star)

 return(model)
}

The named list pars should contain an element for each of: N𝑝∗, 𝑘<, 𝑘E, 𝜏<, 𝜏E, 𝜉, 𝜎<, 𝜎E, 𝜌<,E, 𝑔G, ℎG, 𝜎<* 	𝜎E* , 𝜌(<,E)*Q

 233

Training loads 𝜔 are taken to be exogenous (i.e., evolving from a predetermined plan rather than a

downstream impact of performance). A simulation function can then be defined to evaluate the state-

space model under a training load series and parameters. This simulation function is developed in

listing 6.37 and makes use of the package MASS (Ripley et al., 2013) to draw from a multivariate

normal distribution for state noise.

Listing 6.38
Simulation function: State-space model under loads (ss_model argument obtained via

state_space_FFM function under pars)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

simulate_ss_model <- function(ss_model, loads){

 # Set up vectors and state matrix structures
 T <- length(loads$load)
 performance <- numeric(length(loads$load))
 X <- matrix(rep(NA, 2 * T), ncol = 2)

 # Simulate (note %*% is matrix multiplication operator in R)
 for (n in 1:T){
 # A priori mean and variance of state
 if (n == 1){
 X[n,] <- ss_model$x_0 # Unconditional: x_0
 } else{
 # Conditional: x_n | x_(n-1)
 X[n,] <- mvrnorm(1, (ss_model$A %*% X[n - 1,] +
 ss_model$B * loads$load[n - 1]), ss_model$Q)
 # Uses MASS package function mvrnorm(n, mu, sigma) to draw from
 }
 # Simulate conditional system state: p_n | x_n
 performance[n] <- rnorm(1, ss_model$p_star + ss_model$C %*% X[n,], ss_model$xi)
 }

 simulation <- data.frame("day" = 1:T, "load" = loads$load, "performance" = performance,
 "fitness" = X[,1], "fatigue" = X[,2])
 return(simulation)
}

Therefore, specifying a set of parameters (including for the noise terms and initial conditions), and

applying the same loads from listing 6.29 (subsection 6.2.5), it is possible to apply these two functions

sequentially to simulate the state-space model with random noise terms (listing 6.39).

Listing 6.39 Simulating the state-space FFM under mock data with random noise terms

1
2
3
4
5
6
7
8
9
10
11
12

loads <- rep(c(1, 1.2, 0.5, 1.8, 2, 0.25, 0.7, 0.9, 0, 0.5, 1, 0.8, 1.2, 1.3,
 3, 0.9, 0, 0, 2, 1.1), 5)
loads <- data.frame("day" = 0:length(loads), "loads" = c(0,loads))

pars <- list(p_star = 95, k_g = 0.85, k_h = 1.2, tau_g = 26, tau_h = 5, g_0 = 10,
 h_0 = 6, xi = 2.5, sd_g0 = 2, sd_h0 = 1, rho_gh0 = 0, sigma_g = 2,
 sigma_h = 1.2, rho_gh = 0.3)

Instantiate Kalman model and simulate under the parameters
ss_model <- state_space_FFM(pars)
set.seed(109)
simulated_ss_model <- simulate_ss_model(ss_model, loads)

 234

Figure 6.23: Simulated state-space FFM with random noise (listing 6.39, lines 10-12)

Next, the filtering aspect is introduced. Expression of an FFM as a state-space model linearised around
the set point 𝑝∗ has a key advantage that uncertainty in the system state and measured performance
can be modelled, addressing the reality of model error and uncertainty (Kolossa et al., 2017). One
approach to this, as first demonstrated within the FFM literature by Kolossa et al. (2017), is to combine
the state-space model with a Kalman filter to improve estimates of fitness and fatigue in the presence
of new observed data. At time step 𝑛 Kalman filter aims to generate an a posteriori state estimate 𝐱�a
based on an a priori estimate 𝐳a from the system dynamics and the observed performance value 𝑝a.
The extent to which the a posteriori estimate is updated depends on the relative extent of the
uncertainty in the state to the uncertainty in the measurement (the ratio of 𝐐 to 𝜉<). When the
uncertainty in the state is large relative to the uncertainty in the measurement, the “Kalman gain” will
be high and the filter will place more weight on the incoming performance data resulting in relatively
large corrections in the a posteriori estimate. In contrast, when measurement uncertainty is large
relative to uncertainty in the state, little weight will be placed on the incoming data and there will be
minimal correction to the initial a priori estimate. At each time step n the fitness and fatigue estimates
are updated for all observations up to and including 𝑝a, via the following recursive flow:

Kalman-filtering procedural flow:

1) An a priori state estimate 𝐳a predicts the expected performance �̂�a through the matrix

𝐂

2) Expected performance �̂�a is then compared with measured performance 𝑝a if available,

and the residual error (𝜖) calculated or otherwise set to zero if no measurement is

available

3) Kalman gain 𝐊a is calculated depending on state and observation noise variances:

𝐊a = 𝐌a𝐂yJ𝜉< + 𝐂𝐌a𝐂yK
&/	 (6.47)

 Where 𝐌a is the covariance matrix of 𝐱�a, iteratively updated by:

0 20 40 60 80 100

90
10

0
11

0
12

0

Simulated state−space FFM with random noise

Day

Pe
rfo

rm
an

ce
 [a

.u
]

 235

𝐌ab/ = 𝐐+ 𝐀𝐌a𝐀y − 𝐀𝐌a𝐂yJ𝜉< + 𝐂𝐌a𝐂yK
&/𝐂𝐌a𝐀y	 (6.48)

4) The filter uses the error feedback to correct the state estimates, affecting the prediction

of performance at the next time step. The a posteriori state estimate is updated by the

feedback:

𝐱�a = 𝐳a + 𝐊a(𝑝a − 𝐂𝐳a)	 (6.49)

5) The training impulse 𝜔a is multiplied by the time-varying coefficient matrix 𝐁 and

added to the state variables such that at the start of the next time-step a predicted a

priori state estimate 𝐳a is formed by the deterministic mechanism of the system, where

𝐳; = 𝐀𝐱�a&/ + 𝐁a&/ωa&/	 (6.50)

After initialisation, the updating of matrix 𝐌a governs how the Kalman gain evolves over time and

the strength of the filtering effect of the model. In a non-stationary case (such as the FFM) initialisation

of 𝐌- falls into three categories: 1) “known” where values are set; 2) “approximate diffuse” where

𝐌- = 𝜅𝑰 for large 𝜅; or 3) “exact diffuse” which relies on limits as variances approach infinity (Fulton,

2017).

When using the Kalman filter, in the context of general FFMs, the model parameters must be estimated

from training and performance data. This is achieved through algorithmically minimising some loss

criterion, for example, the residual sum of squares between modelled and measured performance data,

which, in the case of gaussian errors, coincides with the likelihood function (Mannakee et al., 2016).

With even the standard FFM, optimisation is for all practical purposes analytically intractable and

numerical procedures are used that require starting values for parameters �𝑝∗, 𝑘$, 𝑘% , 𝜏$, 𝜏%�. While the

available algorithms differ (as discussed in subsection 6.2.4), they all are iterative in nature, stopping

when the loss function falls below some prespecified threshold. When using the Kalman filter, the

likelihood is available as a by-product of filtering operations (Fulton, 2017), and thus the Kalman filter

can be fit with the same optimisation routines as the standard FFM with additional starting values for

the extra parameters and initial conditions. Given that an entire run of the filtering algorithm is required

to obtain the likelihood of the sample, a “double loop” results when paired with a numerical

optimisation procedure, and time to convergence may be slow for long series, in particular because R

is by definition single threaded. Additionally, given the additional parameters that must be estimated

in the Kalman filter model given the same setup as the standard FFM, some “sloppiness” in parameter

estimation is likely (Transtrum et al., 2015). The full 𝑸 matrix may also be challenging to recover.

This procedure is followed next, beginning with the development of a Kalman filtering function based

on the steps described previously, that takes as input: 1) a set of training load and measured

 236

performance data; and 2) a state-space model instantiated under a set of parameters via the function

state_space_FFM developed in listing 6.37. This filtering function forms the ‘inner loop’ in the

optimisation procedure, with the outer loop modifying the state-space model supplied under iteratively

changing parameters.

Listing 6.40 Kalman filtering function

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

kalman_filter <- function(ss_model, dat){

 # Extract properties of the dataset
 T <- nrow(dat)
 loads <- dat$load
 measured <- dat$performance

 # Set up object structures
 loglike <- numeric(T)
 X <- matrix(rep(NA, 2 * T), ncol = 2) # a posteriori state estimate
 M <- matrix(rep(NA, 4 * T), ncol = 4) # Vectorised state vcovs
 Z <- matrix(rep(NA, 2 * T), ncol = 2) # a priori state estimates

 # Kalman updating equations
 for (n in 1:T){
 if (n == 1){ # Initialisation
 z_n <- ss_model$A %*% ss_model$x_0 + ss_model$B * mean(loads)
 P_n <- ss_model$Q + ss_model$A %*% ss_model$M_0 %*% t(ss_model$A)
 } else{
 z_n <- ss_model$A %*% X[n-1,] + ss_model$B * loads[n-1]
 P_n <- ss_model$Q + ss_model$A %*% matrix(M[n-1,], ncol = 2) %*% t(ss_model$A)
 }

 # Likelihood of performance measurement
 S_n <- ss_model$xi^2 + ss_model$C %*% P_n %*% t(ss_model$C)
 e_n <- measured[n] - (ss_model$p_star + ss_model$C %*% z_n)
 loglike[n] <- dnorm(e_n, mean = 0, sd = sqrt(S_n), log = TRUE)

 # A posterori mean and variance
 K_n <- P_n %*% t(ss_model$C) %*% (1 / S_n) # Kalman gain
 X[n,] <- z_n + K_n %*% e_n
 M[n,] <- as.vector((diag(2) - K_n %*% ss_model$C) %*% P_n)
 Z[n,] <- z_n

 } # End for loop
 p_hat <- ss_model$p_star + X %*% t(ss_model$C) # Filtered predictions of performance
 output <- list(p_hat = p_hat, g_hat = X[, 1], h_hat = X[, 2], M = M, Z = Z,
 loglike = loglike)
 return(output)
}

Following an example of the operation of this function in listing 6.40, Kalman filtering is demonstrated

when all the parameters are set to the ‘truth’ as per listing 6.38, using the simulated performance data

generated in listing 6.39 as the input for the argument dat. Even in this case when the truth parameters

are known, the state is still latent (due to the noise terms incorporated in listing 6.38) and needs to be

estimated.

 237

Listing 6.41 Kalman filtering demonstration for the simple case of the simulated data under true
parameters in listing 6.38

1
2
3
4
5
6
7
8

filtered_model <- kalman_filter(ss_model, dat = simulated_ss_model)

Plot the results
plot(filtered_model$p_hat, type = "l", lty = 2, col = "blue", ylab = "Performance [a.u]",
 xlab = "Day", lwd = 1.5)
points(simulated_ss_model$performance, lty = 1, pch = 16, col = "red")
legend("topleft", c("Kalman filtered FFM under true parameters", "Simulated data"),
 lty = c(2, NA), pch = c(NA, 16), col = c("blue", "red"), lwd = c(1.5, NA), cex = 0.75)

Figure 6.24: Kalman-filtered model under true parameters & simulated data developed in listing 6.39

Examining the output of the Kalman filter for the example in listing 6.41, the likelihood of a

performance trajectory for experimental data is easily computed within the filtering flow, with

maximum likelihood therefore representative of the most convenience choice. However, the term

‘easy’ does not necessarily apply to the optimisation problem. Consider the case where the simulated

data generated in listing 6.39 was in fact real-world data, and we didn’t know the true parameters

associated with it, when fitting the state-space FFM with Kalman filter we may need to first initialise

the state-space model under a set of initial guesses. This qualifies as a more than slightly tricky problem

compared to selecting starting parameters for the classic ad-hoc approach to fitting the standard model

without noise terms or initial components. Given the additional parameters, initial conditions, and

noise terms to consider, and issues identified in chapter 5, pathological curvature of the objective

function and existence of local optima are only likely to be exacerbated in this fitting problem.

Nevertheless, if attempting to fit the Kalman filter within an MLE perspective via a first or second-

order search algorithm, some possible suggestions are given in Swinton et al. (2021) as to how starting

point values may be derived. These included:

• 𝐌𝟎 (Unconditional variance of the initial state) – ½ the magnitudes of the initial state vector

for the standard deviations, carrying the interpretation that 2 standard deviations is 100% of

the initial state guess. Setting zero as the covariance.

0 20 40 60 80 100

95
10

5
11

5
12

5

Day

Pe
rfo

rm
an

ce
 [a

.u
]

Kalman filtered FFM
Simulated data

 238

• The initial state update of the Kalman filter depends on an initial state value (fitness and

fatigue) but also on a training load for 𝑡 = 0. Rather than setting 𝜔- = 0, or creating yet

another parameter to estimate, the reader may choose to use the average training load in the

data set.

• For 𝜎$, 𝜎%, a rough state error prediction can be obtained by computing 𝑔(𝑡) − 𝑒&
%
J𝑔(𝑡 − 1)

and taking the standard deviation over the time-series (doing the same for fatigue).

• The initial state correlation 𝜌($,%)I set to zero

Considering the attention given to optimisation earlier in section 6.2.4 and the issues described above,

it makes some sense to jump straight to global optimisation methods (e.g., evolutionary strategies)

when developing a function to fit the state-space model with Kalman filter via MLE. These algorithms

typically do not require the user to specify initial values, commonly using a starting population seeded

randomly over the bounds.

Below (listing 6.42), an R function for data fitting is developed that applies a genetic algorithm to fit

the space-state model with Kalman filtering to available data. The fit_filtered_model function only

requires the user to supply modelling data and a set of box-constraints for the parameters (although we

fix 𝑝($,%)I = 0, leaving 13 free parameters in the problem). With this many parameters, there is no

evidence to suggest that an algorithm such as L-BFGS-B would perform well on its own, considering

the discussion of local optima and evidence thereof presented in chapter 5. However, the genetic

algorithm can be combined with the L-BFGS-B algorithm such that a local search is still performed at

stochastic intervals throughout the iterative process. This is a preferable approach, given the ability to

satisfy optimality conditions with local optimisers, and the overall reach of global optimisers. The user

can also tune whether the local search is initiated from members of the population with good fitness,

or via some kind of quasi-uniform assignment. The function in listing 6.42 can be thought of as the

‘outer loop’ described earlier in the use of Kalman-filtering for fitness-fatigue modelling. As it is

presented below, the genetic algorithm is not tuned in any particular way beyond the defaults provided

in the package GA (Scrucca, 2013).

 239

Listing 6.42 Defining a function to fit a state-space model with Kalman filter to data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

fit_filtered_model <- function(dat, box){

 extract_pars <- function(par){
 pars <- list(p_star = par[1],
 k_g = par[2],
 k_h = par[3],
 tau_g = par[4],
 tau_h = par[5],
 g_0 = par[6],
 h_0 = par[7],
 xi = par[8],
 sd_g0 = par[9],
 sd_h0 = par[10],
 rho_gh0 = 0, # Fix rho_gh0 to zero
 sigma_g = par[11],
 sigma_h = par[12],
 rho_gh = par[13])
 return(pars)
 }

 log_likelihood <- function(par){
 pars <- extract_pars(par)
 temp_model <- state_space_FFM(pars)
 filtered_model <- kalman_filter(ss_model = temp_model, dat = dat)
 # Note as GA is a maximiser by default, we just need the log likelihood
 return(sum(filtered_model$loglike))
 }

 maximise_likelihood <- GA::ga("real-valued",
 fitness = log_likelihood,
 lower = box$lower,
 upper = box$upper,
 maxiter = 5000,
 monitor = TRUE,
 optim = TRUE, # Local search via L-BFGS-B (random interval)
 optimArgs = list(method = "L-BFGS-B",
 lower = box$lower,
 upper = box$upper,
 poptim = 0.2, # Probability of search
 pressel = 0.3),
 popSize = 100,
 parallel = TRUE
)

 pars <- extract_pars(maximise_likelihood@solution)
 plot(maximise_likelihood)

 fitted_model <- state_space_FFM(pars)
 return(list("fitted_model" = fitted_model, "optimisation" = maximise_likelihood))
}

Demonstrating this function in practice, listing 6.43 returns to the simulated data from listing 6.8,

imagining that it reflects some form of ‘real-world’ measured data for which we do not know the

underlying true parameters (which requires recovery via optimisation). In listing 6.43, generous but

reasonable bounds are supplied for the parameters, discussion of which is also given in the appendices

of Swinton et al. (2021). Supplying the simulated data and these bounds to the function

fit_filtered_model yields the parameters from the fitted state-space model under the Kalman filter, in

the form of the instantiated state-space model. To retrieve the associated filtered performance values

the result must be passed back again through kalman_filter (listing 6.40). It was decided that it was

more illuminating to do this outside of the fitting function, but could easily be included within such

 240

that the filtered performance values were returned rather than the fitted state-space model. A high

number of iterations (2000) were used in this example, which will be excessive for the reader when

playing around with these models in their own environment. However, this was intended to give the

genetic algorithm a good shot (in this example) at recovering close to the true parameters, given the

high dimensionality of the fitting problem. Toward this end, and for the purposes of the example

(listing 6.42) the genetic algorithm used was tuned further as follows:

• The probability of the algorithm performing a local search at each iteration of was increased

to 0.2 (default 0.1), increasing the overall number of local searches performed.

• The local search is started from a random solution selected with probability proportional to its

‘fitness’ (objective value). The pressure selection argument of the local search was set to 0.3

(default 0.5) such that a lower value assigns quasi-uniform probabilities to any solution. The

argument for this was that local searches should try to span the search space rather than cluster

(take place) at potential local minima already found. Particularly given the ill-conditioning of

the problem space.

• The population size was increased from the default 50, to 100.

• A parallel = TRUE argument was supplied, parallelising the fitting process via SNOW type

functionality (windows) or multicore (on OSX, Unix, Linux).

This change in the implementation is visible in github.com/bsh2/thesis/c6/kalman_filter.R. The

choice of these tuning parameters tended toward options that inherently decrease the efficiency of the

algorithm, but possibly improve its chances of recovering the true parameters for the FFM fitting

problem. What is apparent from the results of this process (figures 6.25 and 6.26) is that although the

approach reflects a reasonable initial effort, the optimisation problem is clearly rather challenging with

this high a number of free parameters (model parameters, initial conditions, noise terms), and an ad-

hoc fitting approach is unlikely to be sufficient. However, genetic algorithms provide a lot of power

when tuned correctly with regard to genetic parameters and strategy selected (Scrucca, 2013), and if

the parameter space is appropriate constrained there may be further wriggle room for improvement in

this area.

Listing 6.43 Kalman filtering demonstration for the simple case of the simulated data under true parameters in
listing 6.38

1
2
3
4
5
6
7
8

c(p*, kg, kh, Tau_g, Tau_h, g_0, h_0, xi, sd_g0, sd_h0, sigma_g, sigma_h, rho_gh)
box_constraints <- data.frame("lower" = c(50, 0.1, 0.1, 1, 1, 1, 0.5, 0.5, 0.01, 0.01,
 1, 1, -0.999), "upper" = c(150, 5, 5, 50, 50, 20,
 20, 10, 5, 5, 5, 5, 0.999))

fitted_kalman_model <- fit_filtered_model(dat = simulated_ss_model, box = box_constraints)
fitted_kalman_predictions <- kalman_filter(fitted_kalman_model$fitted_model, simulated_ss_model)

 241

Figure 6.25: Fitted Kalman model

Fitted Kalman-filtered model Truth model

Figure 6.26: R output: A comparison between the truth model underpinning the simulated data, and

the fitted Kalman-filtered model with parameters recovered by the optimisation procedure.

In figure 6.26, the 𝜏 parameters can be recovered from the 𝐀 matrix by 𝜏$ = −1/ log(𝐀[1,1]) and

𝜏% = −1/ log(𝐀[2, 2]), the 𝑘$ and 𝑘% parameters recovered via the 𝐂 matrix, 𝜎$, 𝜎% , 𝜌$,% from the Q

matrix, as follows:

kg <- C[1,1]
kh <- -1 * C[1,2]
Tg <- -1 / log(A[1,1])
Th <- -1 / log(A[2,2])
sigma_g <- sqrt(Q[1,1])
sigma_h <- sqrt(Q[2,2])
rho_gh <- sqrt(Q[1,2] / (sigma_g * sigma_h))

0 20 40 60 80 100

90
10

0
11

0
12

0

Day

Pe
rfo

rm
an

ce
 [a

.u
]

Measured data
Kalman model (fitted)

 242

6.5 Summary

The purpose of this chapter has been to provide extensive resources and demonstrate how to develop

further resources for researchers interested in fitness-fatigue modelling and the implementation of

FFMs. The chapter has drawn together theory and practical insight gathered over the course of this

project in areas such as parameter estimation, cross-validation, and parallel computing. Models

examined included the standard, fitness-delay, VDR, the nonlinear variant of the original ODE system,

as well as the state-space Kalman-model reformulation. Fitting FFMs has also been illustrated under

both nonlinear least-squares and maximum-likelihood, with accompanying theory provided. The

structure of the chapter has required the reader to engage with the underlying concepts in the code

tools, in contrast to provision of polished software or packaged code. In this way, the reader gains

more flexibility and understanding in how the tools can be applied in future research, serving both an

educational and practical purpose. Although this thesis has highlighted that FFMs like many models

are imperfect and can suffer from a range of limitations, as a collective, they still reflect one of the

most advanced class of models available in sport science for performance modelling. Therefore, at

present, this chapter reflects the most definitive self-contained practical resource in this area.

 243

Chapter 7: Summary and conclusions

The thesis has comprised a range of individual works including extensive literature reviews, the

presentation of mathematical formulae with derivations, findings from multiple large scale in silico

experiments, and a detailed treatise on how to implement FFMs in the programming language R. Given

the range of the work, this chapter provides a succinct summary to the work, highlighting the main

experimental findings, impact of the research on current understanding, limitations of the work, and

directions for future study.

7.1 Experimental findings

Chapter 4: Suitability of a quasi-Newton algorithm for estimating FFMs: Sensitivity, troublesome

local optima, and implications for future research

This study provided novel insight into the effects of two key factors of experimental data FFM

accuracy, including measurement error and testing frequency. The study generated lower-bound

estimates that demonstrated that practitioners should focus on collecting data comprising performance

tests that generate measurements with high reliability. It was also recommended that researchers

consider the use of multiple trials (Swinton et al., 2018), and filtering techniques to reduce noise due

to biological variability and/or instrumentation error. In addition, the study demonstrated deleterious

effects of measurement error at low testing frequencies indicating that researchers should attempt to

maximise testing frequency via maximal-effort tests that do not encompass large fatigue effects.

Chapter 5: The effects of measurement error and testing frequency on the standard fitness-fatigue

model applied to synthetic resistance training data

This study highlighted the existence of many unique local optima in the search space (both minima

and saddle points) reflected in sensitivity to initial values when fitting an FFM to data via a first-order

algorithm (with second-order approximation) and identified that this problem can be exacerbated with

increased degrees of freedom in the model. The local optima found in this study also typically

demonstrated good or sometimes indistinguishable model fit to the true solutions but simultaneously

differed substantively in at least one parameter to the true values, indicating that local minima are not

necessarily clustered around or at the global minima as is often the case with models such as neural

networks. Collectively, the findings of this study add weight to the hypothesis that there exists

substantial doubt in reported estimates across prior literature where local optimisers have been used

under ‘one-shot’ runs, or where studies have lacked the relevant detail to indicate that these issues

have been considered or measures taken to address them.

 244

7.2 Impact of the work on current understanding in research and practice

Fitness-fatigue modelling is a relatively small and niche area of research in sport science that has been

surrounded by several historical issues that are reflected in the typical approaches of prior

experimentation and limitations in the accessibility of the literature body. Important initial steps have

been taken in recent research to address some of the model limitations and processes used to fit FFMs

including incorporating variants of cross-validation (Chalencon, 2015; Ludwig, Schaefer and Asteroth,

2016; Kolossa et al., 2017; Turner et al., 2017; Williams et al., 2018; Stephens Hemingway et al.,

2019; Imbach et al., 2020) and trialling alternative parameter estimation approaches beyond

derivative-based methods (Turner et al., 2017; Méline et al., 2018; Philippe et al., 2018; Connor and

O’Neill, 2020). The present thesis expands greatly on this work with impact including original

contributions to knowledge through novel in silico experiments (chapters 4, 5). Additionally, the thesis

creates extensive impact through the synthesis of existing information on FFMs (chapter 2) and the

development of code resources (chapter 6) providing the most extensive resource to date on the topic.

The set of researchers in sport science with the requisite skills and knowledge to investigate

performance modelling has been fundamentally limited by the underlying literature body, and it is

likely this is one of the main reasons why progress in this area has lagged behind other areas relative

to its historical timeframe. Therefore, it is expected that the main impact of this thesis will be the

increased accessibility of the area through the comprehensive overview and analysis provided,

elucidating key concepts and practical resources to improve understanding and increase the available

infrastructure for future research.

7.3 Limitations of the work

The primary limitation of the studies carried out in both chapters 4 and 5 (the in-silico studies) was

that these were case-based (low n studies externally), despite being high n internally (i.e., studying

several conditions via many iterations). That is, they examined a small number of modelling inputs

(training loads and simulated performance profiles), and subsequently this limits how results may be

generalised to all inputs and performance profiles. Importantly, these cases were developed to be

representative and based on literature, and if repeated for a wider set of cases it is likely these studies

would resolve to similar findings. However, there would still be a small amount of variability expected

and a small proportion of cases that resolve to surprising outcomes (e.g., that are not affected by low

measurement frequency or less affected by high errors, or where the search space incurs fewer local

minima and the FFM is easier to fit). Collectively, these studies have highlighted that there do exist

cases where measurement practices and choice of parameter estimation are important. Therefore,

researchers should still operate on the notion that reducing measurement error, increasing

measurement frequency, and appropriate parameter estimation approaches are likely to both improve

 245

outcomes, robustness, and therefore credibility of future work. A further limitation of chapter 4 was

that it only provides lower-bound estimates, whereby there are a range of other complex additional

factors that would be expected to influence an FFMs prediction of an athlete’s response to training,

including model misspecification.

A secondary limitation of the thesis is that no suitable real-world data were collected or obtained to

test key FFMs once promising models, key experimental factors, and alternative parameter estimation

approaches had been identified from chapters 2,4, and 5. This was due in part to the tail end of this

project crossing into the covid-19 pandemic and also the challenges in obtaining sufficient data. Whilst

monitoring of athletes has become commonplace, collection of high-quality data including complete

and detailed training logs over extended periods of time with frequent performance measurements

remains a challenge. In addition, to avoid the limitations of previous FFM research, data are required

from large numbers of athletes across multiple sports comprising different combinations of training

inputs and outcomes to obtain generalisable assessments of FFMs across a range of contexts. Even if

this data were made available, resources were not widely available prior to this thesis to implement

models. Therefore, for maximising impact the code tools developed in chapter 6 still arguably

represent the most appropriate step beyond chapters 4 and 5 in the research project. These permit

researchers to investigate FFMs via both prospective and retrospective studies, beyond what could be

achieved from a further experimental chapter in this thesis. In addition, these resources combined with

the reviews may improve the accessibility of the research area to practitioners, and in ideal case spur

new interest from industry for research collaboration on a wider scale.

Finally, the main limitation of chapter 6 is that the use of the resources presented require the researcher

to possess a reasonable baseline knowledge of the R programming language. This is contrast to an R

package which is straightforward to run, or dashboard-type software that provide the user with a high

level of abstraction away from the code. However, the tools for fitting and evaluating FFMs are

contained in user-defined functions that do not require much more beyond using an R package. Perhaps

more importantly, the code offers the field a set of transparent resources developed from first

principles, which arguably reflect the most appropriate initial step in developing robust infrastructure

for performance modelling in sport science. In other words, before masking the functionality to the

user, the functionality should first be presented to the field and refined or improved as required. Going

beyond this chapter, the next step in this software development process should be packaging the R

functions with further input-checking, or as mentioned dashboard-type software, to further improve

the efficiency of future work.

 246

7.4 Directions of future study

As the world begins to re-emerge from the restrictions of the covid-19 pandemic in many countries

and as athletes return to formalised training and researchers to university campuses, it is hoped that

the required data collection environments for FFM research may soon become feasible again (both

laboratory and field). In the interim, researchers may look toward other means of obtaining suitable

data for testing FFMs. For example: 1) the collaborative use of particular datasets from experimental

studies already in the literature, repurposed to more advanced models and methods; 2) from

practitioners working in industry with access to suitable training and performance data from elite level

groups, as demonstrated in Rozendaal (2017); 3) from remote recruitment and participation via online

platforms used by endurance athletes to log training and regularly record physical performance efforts

(e.g., TrainingPeaks ®, Strava ®). Ultimately, contemporary FFMs require further evaluation under

real-world data and using robust methods of model testing to ascertain validity and utility for informing

training program design and tapering periods, and it is argued that study of FFMs should remain an

active area of research in sport science. In the area of performance modelling there is also considerable

scope for ingenuity and interdisciplinary collaboration. Researchers must, however, ensure that they

adopt appropriate measurement protocols for their studies and take care in the estimation of model

parameters. Toward this end, adequately solving the model fitting problem given the concerns outlined

in chapter 5 with using only derivative-based methods remains one of the key areas in the evaluation

of FFM utility that requires further input from researchers. Until addressed, possibly with the help of

experts in areas of numerical methods and optimisation, and until researchers are confident that

methods identified from study reflect a convincing approach for fitting FFMs, the results of future

work may be limited by uncertainty in the adequacy of solutions obtained. In this area, promising

approaches include the study of evolutionary algorithms and in particular hybrid approaches which

combine the global optimisation properties of evolutionary algorithms with the optimality conditions

of derivative-based methods (Méline et al., 2018; Philippe et al., 2018; Connor and O’Neill, 2020;

Stephens Hemingway et al., 2021). Future work may also wish to consider the use of informative

priors under a Bayesian optimisation approach, and develop appropriate approaches to elicit priors

based on prospective methods in available literature (Garthwaite, Kadane and O’Hagan, 2005; Johnson

et al., 2010). In addition, research may consider matching athletes and fitting multi-level models,

sharing information to obtain parameter values representative of athletes with similar adaptive

responses.

In the area of infrastructure development for research, there is room to extend the tools developed in

chapter 6 to incorporate input checking and additional FFMs and methods. The resources developed

could also be contained within an R package or used as the backend for a web-based dashboard that

improves the efficiency of the research process, but that has the downside of less transparency due to

 247

lower direct interaction with and control of the underlying code. However, with respect to the code

tools developed and associated repository (fitnessfatigue.com), care should be taken to ensure that any

new functionality is still well documented, and this information is made clearly available.

Lastly, future research will benefit most from increased transparency and reproducibility around data,

assumptions, and methods of implementation (particularly code used to fit and evaluate models). It is

therefore recommended where possible that future studies utilise the basic tenants of reproducible

research including availability of documented code and inclusion of raw data and/or analysis (Peng,

2011). Furthermore, of upmost importance is consideration of the key audience when presenting and

communicating the work. Researchers should aim to publish in sport science journals wherever

possible, address the work and narrative to the general sport scientist, and prioritise communication of

the impact of the study and practical implications of any results on understanding model validity and

in reference to training program design (see the research model developed in chapter 3). Where

necessary, researchers should also endeavour to create educational resources around their work and

include these in supplementary files to elucidate complicated or novel procedural aspects, and greater

care must be taken with regard to the pedagogical style used across the field.

 248

Bibliography
1. Agostinho, M. F. et al. (2015) ‘Perceived training intensity and performance changes

quantification in judo’, Journal of Strength and Conditioning Research, 29(6), pp. 1570–1577.

doi: 10.1519/JSC.0000000000000777.

2. Al-Otaibi, N. M. (2017) Statistical modelling of training and performance using power output and

heart rate data collected in the field. University of Salford.

3. Appleby, B., Newton, R. U. and Cormie, P. (2012) ‘Changes in strength over a 2-year period in

professional Rugby Union players’, Journal of Strength and Conditioning Research. doi:

10.1519/JSC.0b013e31823f8b86.

4. Arandjelovic, O. (2013) ‘Computer simulation based parameter selection for resistance exercise’,

arXiv preprint arXiv:1306.4724.

5. Arandjelović, O. (2017) ‘Computer-aided parameter selection for resistance exercise using

machine vision-based capability profile estimation’, Augmented Human Research, 2(1), pp. 1–19.

6. Baca, A. and Perl, J. (2018) Modelling and simulation in sport and exercise. Routledge.

7. Bäck, T. and Schwefel, H.-P. (1993) ‘An overview of evolutionary algorithms for parameter

optimization’, Evolutionary computation, 1(1), pp. 1–23.

8. Baker, D. (1998) ‘Applying the in-season periodization of strength and power training to football’,

Strength and Conditioning Journal. doi: 10.1519/1073-6840(1998)020<0018:atispo>2.3.co;2.

9. Baker, D. (2007) ‘Cycle-length variants in periodized strength/power training’, Strength and

Conditioning Journal. doi: 10.1519/00126548-200708000-00001.

10. Banister, E. W. et al. (1975) ‘A Systems Model of Training for Athletic Performance’, Australian

Journal of Sports Medicine, 7(3), pp. 57–61.

11. Banister, E. W. et al. (1986) ‘Modelling the training response in athletes’, in The 1974 Olympic

Scientific Congress Proceedings. Sport and Elite Performers, pp. 7–23.

12. Banister, E. W. and Calvert, T. W. (1980) ‘Planning for future performance: implications for long

term training’, Canadian Journal of Applied Sport Science, 5, pp. 170–176.

13. Banister, E. W., Carter, J. B. and Zarkadas, P. C. (1999) ‘Training theory and taper: validation in

triathlon athletes’, European Journal of Applied Physiology and Occupational Physiology, 79(2),

pp. 182–191. doi: 10.1007/s004210050493.

14. Banister, E. W. and Hamilton, C. L. (1985) ‘Variations in iron status with fatigue modelled from

training in female distance runners’, European Journal of Applied Physiology and Occupational

Physiology, 54(1), pp. 16–23. doi: 10.1007/BF00426292.

15. Banister, E. W., Morton, R. H. and Fitz-Clarke, J. R. (1992) ‘Dose/Response Effects of Exercise

Modeled from Training: Physical and Biochemical Measures’, The Annals of physiological

anthropology, 11(3), pp. 345–356.

16. Bartling, S. and Friesike, S. (2014) Opening science: The evolving guide on how the internet is

 249

changing research, collaboration and scholarly publishing. Springer Nature.

17. Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications. New

York: Wiley. doi: 10.2307/1268866.

18. Bendtsen, C. and Bendtsen, M. C. (2011) ‘Package “pso”’. Version.

19. Beneke, R. and Boning, D. (2008) ‘The limits of human performance’, Essays in biochemistry,

44(1), p. 11.

20. Binswanger, M. (2014) ‘Excellence by nonsense: The competition for publications in modern

science’, in Opening Science. Springer, Cham, pp. 49–72.

21. Bishop, D. (2008) ‘An applied research model for the sport sciences’, Sports Medicine, 38(3), pp.

253–263.

22. Bompa, T. O. and Buzzichelli, C. (2018) Periodization-: theory and methodology of training.

Human kinetics.

23. Borresen, J. and Lambert, M. I. (2009) ‘The Quantification of Training Load, the Training

Response and the Effect on Performance’, Sports Medicine, 39(9), pp. 779–95. doi:

10.2165/11317780-000000000-00000.

24. Bourdon, P. C. et al. (2017) ‘Monitoring athlete training loads: Consensus statement’,

International Journal of Sports Physiology and Performance, 12(S2), pp. 161–170. doi:

10.1123/IJSPP.2017-0208.

25. Breiman, L. (1996) ‘Bagging predictors’, Machine Learning. doi: 10.1007/bf00058655.

26. le Bris, S. et al. (2004) ‘Applying a systems model of training to a patient with coronary artery

disease’, Medicine and Science in Sports and Exercise, 36(6), pp. 942–948. doi:

10.1249/01.MSS.0000128247.82321.32.

27. le Bris, S. et al. (2006a) ‘A systems model of training for patients in phase 2 cardiac rehabilitation’,

International Journal of Cardiology, 109(2), pp. 257–263. doi: 10.1016/j.ijcard.2005.06.029.

28. le Bris, S. et al. (2006b) ‘High versus low training frequency in cardiac rehabilitation using a

systems model of training’, European Journal of Applied Physiology, 96(3), pp. 217–224. doi:

10.1007/s00421-005-0043-2.

29. Burns, P. (2011) The R inferno. Lulu. com.

30. Busso, T. et al. (1990) ‘A systems model of training responses and its relationship to hormonal

responses in elite weight-lifters’, European Journal of Applied Physiology and Occupational

Physiology, 61(1), pp. 48–54. doi: 10.1001/jama.1937.02780230056030.

31. Busso, T. et al. (1992) ‘Hormonal adaptations and modelled responses in elite weightlifters during

6 weeks of training’, European Journal of Applied Physiology and Occupational Physiology,

64(4), pp. 381–386. doi: 10.1007/BF00636228.

32. Busso, T. et al. (1997) ‘Modeling of adaptations to physical training by using a recursive least

squares algorithm’, Journal of Applied Physiology: Modeling in Physiology, 82(7), pp. 1685–

1693.

 250

33. Busso, T. et al. (2002) ‘Effects of training frequency on the dynamics of performance response to

a single training bout’, Journal of Applied Physiology, 92(2), pp. 572–580. doi:

10.1152/japplphysiol.00429.2001.

34. Busso, T. (2003) ‘Variable dose-response relationship between exercise training and

performance’, Medicine and Science in Sports and Exercise, 35(7), pp. 1188–1195. doi:

10.1249/01.MSS.0000074465.13621.37.

35. Busso, T. (2017) ‘From an indirect response pharmacodynamic model towards a secondary signal

model of dose-response relationship between exercise training and physical performance’,

Scientific Reports, 7(November 2016), pp. 1–11. doi: 10.1038/srep40422.

36. Busso, T., Candau, R. and Lacour, J. R. (1994) ‘Fatigue and fitness modelled from the effects of

training on performance’, European Journal of Applied Physiology and Occupational Physiology,

69(1), pp. 50–54. doi: 10.1007/BF00867927.

37. Busso, T., Carasso, C. and Lacour, J. R. (1991) ‘Adequacy of a systems structure in the modeling

of training effects on performance’, Journal of Applied Physiology, 71(5), pp. 2044–2049.

38. Busso, T. and Thomas, L. (2006) ‘Using Mathematical Modeling in Training Planning’,

International journal of sports physiology and performance: Invited Commentary, 1(4), pp. 400–

405. doi: 10.1123/ijspp.1.4.400.

39. Byrd, R. H. et al. (1995a) ‘A Limited Memory Algorithm for Bound Constrained Optimization’,

SIAM Journal on Scientific Computing, 16(5), pp. 1190–1208. doi: 10.1137/0916069.

40. Byrd, R. H. et al. (1995b) ‘A Limited Memory Algorithm for Bound Constrained Optimization’,

SIAM Journal on Scientific Computing. doi: 10.1137/0916069.

41. Calvert, T. W. et al. (1976) ‘A Systems Model of the Effects of Training on Physical

Perfoffnance’, IEEE Transactions on Systems, Man, and Cybernetics, 6(2), pp. 94–102. Available

at: https://www.math.fsu.edu/~dgalvis/journalclub/papers/11_28_2016.pdf.

42. Candau, R., Busso, T. and Lacour, J. R. (1992) ‘Effects of training on iron status in cross-country

skiers’, European Journal of Applied Physiology and Occupational Physiology, 64(1), pp. 497–

502.

43. Carlock, J. M. et al. (2004) ‘The relationship between vertical jump power estimates and

weightlifting ability: A field-test approach’, Journal of Strength and Conditioning Research. doi:

10.1519/R-13213.1.

44. Chalencon, S. et al. (2012) ‘A Model for the Training Effects in Swimming Demonstrates a Strong

Relationship between Parasympathetic Activity, Performance and Index of Fatigue’, PLoS ONE,

7(12), pp. 1–10. doi: 10.1371/journal.pone.0052636.

45. Chalencon, S. et al. (2015) ‘Modeling of performance and ANS activity for predicting future

responses to training’, European Journal of Applied Physiology, 115(3), pp. 589–596. doi:

10.1007/s00421-014-3035-2.

46. Chalencon, S. (2015) Prediction of performance in swimming by Autonomic Nervous System

 251

activity assessment : mathematical modeling. University of Lyon.

47. Chiu, L. Z. F. and Barnes, J. L. (2003) ‘The Fitness-Fatigue Model Revisited: Implications for

Planning Short- and Long-Term Training’, Strength and Conditioning Journal, 25(6), pp. 42–51.

doi: 10.1519/1533-4295(2003)025<0042.

48. Cissik, J., Hedrick, A. and Barnes, M. (2008) ‘Challenges applying the research on periodization’,

Strength & Conditioning Journal, 30(1), pp. 45–51.

49. Clarke, D. C. and Skiba, P. F. (2013) ‘Rationale and resources for teaching the mathematical

modeling of athletic training and performance’, American Journal of Physiology - Advances in

Physiology Education, 37(2), pp. 134–152. doi: 10.1152/advan.00078.2011.

50. Cole, S. R. et al. (2010) ‘Illustrating bias due to conditioning on a collider’, International journal

of epidemiology. 2009/11/19, 39(2), pp. 417–420. doi: 10.1093/ije/dyp334.

51. Connor, M., Fagan, D. and O’Neill, M. (2019) ‘Optimising Team Sport Training Plans With

Grammatical Evolution’, pp. 2474–2481. doi: 10.1109/cec.2019.8790369.

52. Connor, M. and O’Neill, M. (2020) ‘Optimizing the Parameters of A Physical Exercise Dose-

Response Model: An Algorithmic Comparison’, arXiv preprint arXiv:2012.09287.

53. Corlett, J. T. (1977) A System Model of Physical Training and Athletic Performance, MSc. Thesis.

Simon Fraser University.

54. Corlett, J. T., Calvert, T. W. and Banister, E. W. (1978) ‘Cybernetics of Human Physical

Performance’, Current Topics in Cybernetics and Systems, pp. 180–182.

55. Cormack, S. J. et al. (2008) ‘Reliability of measures obtained during single and repeated

countermovement jumps’, International Journal of Sports Physiology and Performance. doi:

10.1123/ijspp.3.2.131.

56. Coutts, A. J., Crowcroft, S. and Kempton, T. (2017) ‘Developing athlete monitoring systems’,

Sport, recovery, and performance: Interdisciplinary insights.

57. Cronin, J. B., Hing, R. D. and McNair, P. J. (2004) ‘Reliability and validity of a linear position

transducer for measuring jump performance’, Journal of Strength and Conditioning Research. doi:

10.1519/1533-4287(2004)18<590:RAVOAL>2.0.CO;2.

58. Cunanan, A. J. et al. (2018) ‘The general adaptation syndrome: a foundation for the concept of

periodization’, Sports Medicine, 48(4), pp. 787–797.

59. Davidian, M. and Giltinan, D. M. (2003) ‘Nonlinear models for repeated measurement data: An

overview and update’, Journal of Agricultural, Biological, and Environmental Statistics. doi:

10.1198/1085711032697.

60. Dennis Jr, J. E. and Schnabel, R. B. (1996) Numerical methods for unconstrained optimization

and nonlinear equations. SIAM.

61. Domotor, Z. (2011) ‘Philosophy of Science, Mathematical Models in’, in Meyers, R. A. (ed.)

Mathematics of Complexity and Dynamical Systems. New York, NY: Springer New York, pp.

1407–1422. doi: 10.1007/978-1-4614-1806-1_89.

 252

62. Ekins, S., Mestres, J. and Testa, B. (2007) ‘In silico pharmacology for drug discovery: methods

for virtual ligand screening and profiling’, British journal of pharmacology, 152(1), pp. 9–20.

63. Everitt, B. and Skrondal, A. (2002) The Cambridge dictionary of statistics. Cambridge University

Press Cambridge.

64. Fecher, B. and Friesike, S. (2014) ‘Open science: one term, five schools of thought’, Opening

science, pp. 17–47.

65. Fitz-Clarke, J. R., Morton, R. H. and Banister, E. W. (1991) ‘Optimizing athletic performance by

influence curves’, Journal of Applied Physiology, 71(3), pp. 1151–1158.

66. Fleming, P. J. and Purshouse, R. C. (2002) ‘Evolutionary algorithms in control systems

engineering: a survey’, Control engineering practice, 10(11), pp. 1223–1241.

67. Fulton, C. (2017) Estimating time series models by state space methods in Python: Statsmodels.

Available at: http://www.chadfulton.com/files/fulton_statsmodels_2017_v1.pdf.

68. Gabbett, T., Jenkins, D. and Abernethy, B. (2009) ‘Game-based training for improving skill and

physical fitness in team sport athletes’, International Journal of Sports Science & Coaching, 4(2),

pp. 273–283.

69. Garthwaite, P. H., Kadane, J. B. and O’Hagan, A. (2005) ‘Statistical methods for eliciting

probability distributions’, Journal of the American Statistical Association, 100(470), pp. 680–701.

70. Goodfellow, I. et al. (2016) Deep learning. MIT press Cambridge.

71. Gouba, E. et al. (2013) ‘Applying a Mathematical Model to the Performance of a Female Monofin

Swimmer’, Applied Mathematics, 04(12), pp. 1673–1681. doi: 10.4236/am.2013.412228.

72. Greig, L. et al. (2020) ‘Autoregulation in Resistance Training: Addressing the Inconsistencies’,

Sports Medicine. doi: 10.1007/s40279-020-01330-8.

73. Haff, G. G. (2010) ‘Sport science’, Strength & Conditioning Journal, 32(2), pp. 33–45.

74. Hamra, G., MacLehose, R. and Richardson, D. (2013) ‘Markov chain Monte Carlo: an

introduction for epidemiologists’, International journal of epidemiology, 42(2), pp. 627–634. doi:

10.1093/ije/dyt043.

75. Hansen, N. (2016) ‘The CMA evolution strategy: A tutorial’, arXiv preprint arXiv:1604.00772.

76. Harris, G. R. et al. (2000) ‘Short-Term Performance Effects of High Power, High Force, or

Combined Weight-Training Methods’, Journal of Strength and Conditioning Research. doi:

10.1519/00124278-200002000-00003.

77. Hayes, P. R. and Quinn, M. D. (2009) ‘A mathematical model for quantifying training’, European

Journal of Applied Physiology, 106(6), pp. 839–847. doi: 10.1007/s00421-009-1084-8.

78. Hellard, P. et al. (2005) ‘Modeling the Residual Effects and Threshold Saturation of Training: A

Case Study of Olympic Swimmers’, Journal of Strength and Conditioning Research, 19(1), pp.

67–75.

79. Hellard, P. et al. (2006) ‘Assessing the limitations of the Banister model in monitoring training’,

Journal of Sports Sciences, 24(5), pp. 509–520. doi: 10.1080/02640410500244697.

 253

80. Henao, W. (2014) ‘An L-BFGS-B-NS optimizer for non-smooth functions’, Master’s thesis.

81. Herold, J. L. and Sommer, A. (2020) ‘A mathematical model-based approach to optimize loading

schemes of isometric resistance training sessions’, bioRxiv, p. 2020.04.16.044578. doi:

10.1101/2020.04.16.044578.

82. Hilbert, M. and Lopez, P. (2012) ‘How to Measure the World’s Technological Capacity to

Communicate, Store, and Compute Information Part I: Results and Scope.’, International Journal

of Communication (19328036), 6.

83. Imbach, F. et al. (2020) ‘Training Load Responses Modelling in Elite Sports: How to Deal with

Generalisation? (Preprint)’, Research Square.

84. Impellizzeri, F. M. et al. (2020) ‘Acute: chronic workload ratio: conceptual issues and fundamental

pitfalls’, International journal of sports physiology and performance, 15(6), pp. 907–913.

85. Impellizzeri, F. M., Marcora, S. M. and Coutts, A. J. (2019) ‘Internal and external training load:

15 years on’, International journal of sports physiology and performance, 14(2), pp. 270–273.

86. Ishii, H. et al. (2008) ‘Prediction of swim performance in junior female swimmers by dynamic

system model’, Human Performance Measurement, 5(1), pp. 1–8. Available at:

http://www.shobix.co.jp/hpm/tempfiles/journal/2008/07J042.pdf.

87. James, D. A. and Petrone, N. (2016) Sensors and Wearable Technologies in Sport: Technologies,

Trends and Approaches for Implementation. Springer.

88. Jeffreys, I. (2015) ‘Evidence based practice in strength and conditioning—reality or fantasy’, Prof

Strength Cond, 39, pp. 7–14.

89. Jeffries, A. et al. (2020) ‘Development of a revised conceptual framework of physical training for

measurement validation and other applications’, Preprint. doi: 10.31236/osf.io/wpvek.

90. Jobson, S. A. et al. (2009) ‘The analysis and utilization of cycling training data’, Sports Medicine,

39(10), pp. 833–844. doi: 10.2165/11317840-000000000-00000.

91. Johnson, S. R. et al. (2010) ‘Methods to elicit beliefs for Bayesian priors: a systematic review’,

Journal of clinical epidemiology, 63(4), pp. 355–369.

92. Kellmann, M. et al. (2018) ‘Recovery and performance in sport: Consensus statement’,

International Journal of Sports Physiology and Performance, 13(2), pp. 240–245. doi:

10.1123/ijspp.2017-0759.

93. Kolossa, D. et al. (2017) ‘Performance estimation using the fitness-fatigue model with Kalman

filter feedback’, International Journal of Computer Science in Sport, 16(2), pp. 117–129. doi:

10.1515/ijcss-2017-0010.

94. Krzyzanski, W., Perez-Ruixo, J. J. and Vermeulen, A. (1999) ‘Basic pharmacodynamic models

for agents that alter the lifespan distribution of natural cells’, Journal of Pharmacokinetics and

Biopharmaceutics, 27(5), pp. 467–489. doi: 10.1007/s10928-008-9092-6.

95. Kuhn, M. et al. (2020) ‘Package “caret”’, The R Journal, p. 223.

96. Kumyaito, N., Yupapin, P. and Tamee, K. (2018) ‘Planning a sports training program using

 254

Adaptive Particle Swarm Optimization with emphasis on physiological constraints’, BMC

Research Notes, 11(1), pp. 1–6. doi: 10.1186/s13104-017-3120-9.

97. Kuper, G. H. and Sterken, E. (2007) ‘Modelling the development of world records in running’,

Statistical thinking in sports, pp. 7–31.

98. Lambert, J. D. (1991) Numerical methods for ordinary differential systems. Wiley New York.

99. Liebermann, D. G. et al. (2002) ‘Advances in the application of information technology to sport

performance’, Journal of Sports Sciences. doi: 10.1080/026404102320675611.

100. Lucía, A. et al. (2003) ‘Tour de France versus Vuelta a España: Which is harder?’, Medicine

and Science in Sports and Exercise, 35(5), pp. 872–878. doi:

10.1249/01.MSS.0000064999.82036.B4.

101. Ludwig, M. and Asteroth, A. (2016) ‘Predicting performance from outdoor cycling training

with the fitness-fatigue model’, Workshop Modelling in Endurance Sports, pp. 3–6.

102. Ludwig, M., Schaefer, D. and Asteroth, A. (2016) ‘Training simulation with nothing but

training data simulating performance based on training data without the help of performance

diagnostics in a laboratory’, icSPORTS 2016 - Proceedings of the 4th International Congress on

Sport Sciences Research and Technology Support, (November), pp. 75–82. doi:

10.5220/0006042900750082.

103. Ma, J., Bair, E. and Motsinger-Reif, A. (2020) ‘Nonlinear Dose–Response Modeling of High-

Throughput Screening Data Using an Evolutionary Algorithm’, Dose-Response, 18(2), p.

1559325820926734.

104. Mangine, G. T. et al. (2008) ‘The effects of combined ballistic and heavy resistance training

on maximal lower- and upper-body strength in recreationally trained men’, Journal of Strength

and Conditioning Research. doi: 10.1519/JSC.0b013e31815f5729.

105. Mann, T. N., Lamberts, R. P. and Lambert, M. I. (2014) ‘High responders and low responders:

factors associated with individual variation in response to standardized training’, Sports Medicine,

44(8), pp. 1113–1124.

106. Mannakee, B. K. et al. (2016) ‘Sloppiness and the geometry of parameter space’, in

Uncertainty in Biology. Springer, pp. 271–299.

107. Matabuena, M. and Rodríguez-López, R. (2016) ‘A new approach to predict changes in

physical condition: A new extension of the classical Banister model’, arXiv preprint. Available at:

http://arxiv.org/abs/1612.08591.

108. Matabuena, M. and Rodríguez-López, R. (2019) ‘An Improved Version of the Classical

Banister Model to Predict Changes in Physical Condition’, Bulletin of Mathematical Biology,

81(6), pp. 1867–1884. doi: 10.1007/s11538-019-00588-y.

109. McBride, J. M. et al. (2002) ‘The effect of heavy- vs. light-load jump squats on the

development of strength, power, and speed’, Journal of Strength and Conditioning Research. doi:

10.1519/1533-4287(2002)016<0075:TEOHVL>2.0.CO;2.

 255

110. McGarry, T. (2009) ‘Applied and theoretical perspectives of performance analysis in sport:

Scientific issues and challenges’, International Journal of Performance Analysis in Sport, 9(1),

pp. 128–140.

111. Méline, T. et al. (2018) ‘Systems model and individual simulations of training strategies in

elite short-track speed skaters’, Journal of Sports Sciences, 37(3), pp. 347–355. doi:

10.1080/02640414.2018.1504375.

112. Mello, R., Leite, L. R. and Martins, R. A. (2014) ‘Is big data the next big thing in performance

measurement systems?’, Industrial and Systems Engineering Research Conference, (May), pp.

1837–1846.

113. Millet, G. P. et al. (2002) ‘Modelling the transfers of training effects on performance in elite

triathletes’, International Journal of Sports Medicine, 23(1), pp. 55–63. doi: 10.1055/s-2002-

19276.

114. Millet, G. P. et al. (2005) ‘Modelling the relationships between training, anxiety, and fatigue

in elite athletes’, International Journal of Sports Medicine, 26(6), pp. 492–498. doi: 10.1055/s-

2004-821137.

115. Mitchell, L. J. G. et al. (2020) ‘The impact of different training load quantification and

modelling methodologies on performance predictions in elite swimmers’, European Journal of

Sport Science. doi: 10.1080/17461391.2020.1719211.

116. Mohammad, H. and Waziri, M. Y. (2019) ‘Structured two-point stepsize gradient methods for

nonlinear least squares’, Journal of Optimization Theory and Applications, 181(1), pp. 298–317.

117. Morgulev, E., Azar, O. H. and Lidor, R. (2018) ‘Sports analytics and the big-data era’,

International Journal of Data Science and Analytics, 5(4), pp. 213–222. doi: 10.1007/s41060-017-

0093-7.

118. Morton, R. H. (1991) ‘The Quantitative Periodization of Athletic Training: A Model Study’,

Sports Medicine, Training and Rehab, 3(1), pp. 19–28.

119. Morton, R. H., Fitz-clarke, J. R. and Banister, E. W. (1990) ‘Modeling Human Performance

in Running’, The American Physiological Society: Modeling methodology forum, 69(3), pp. 1171–

1177.

120. Morton, R. H. and Fukuba, Y. (2011) ‘Professor Eric W. Banister, 1933–2010: Obituary’,

Research in Sports Medicine, 19(2), pp. 144–144. doi: 10.1080/15438627.2011.556533.

121. Moxnes, J. F. and Hausken, K. (2008) ‘The dynamics of athletic performance, fitness and

fatigue’, Mathematical and Computer Modelling of Dynamical Systems, 14(6), pp. 515–533. doi:

10.1080/13873950802246473.

122. Mujika, I. et al. (1996) ‘Modeled responses to training and taper in competitive swimmers’,

Medicine and Science in Sports and Exercise, 28(2), pp. 251–258. doi: 10.1097/00005768-

199602000-00015.

123. Mullen, K. et al. (2011) ‘DEoptim: An R package for global optimization by differential

 256

evolution’, Journal of Statistical Software, 40(6), pp. 1–26.

124. Nash, J. C. (2014) Nonlinear parameter optimization using R tools. John Wiley & Sons.

125. Nash, J. C. et al. (2020) ‘Package “optimx”’.

126. Nevill, A. M. and Whyte, G. (2005) ‘Are there limits to running world records?’, Medicine

and Science in Sports and Exercise, 37(10), p. 1785.

127. O’Donoghue, P. (2014) An introduction to performance analysis of sport. Routledge.

128. Pappalardo, L. and Cintia, P. (2017) ‘Quantifying the relation between performance and

success in soccer’, Advances in Complex Systems, 21, pp. 1–38.

129. Passfield, L. and Hopker, J. G. (2017) ‘A Mine of Information: Can Sports Analytics Provide

Wisdom From Your Data?’, International Journal of Sports Physiology and Performance, 12(7),

pp. 851–855. doi: 10.1123/ijspp.2016-0644.

130. Pearl, J. (2010) ‘An introduction to causal inference’, The international journal of

biostatistics, 6(2), p. 7. doi: 10.2202/1557-4679.1203.

131. Peng, R. D. (2011) ‘Reproducible research in computational science’, Science. doi:

10.1126/science.1213847.

132. Perl, J. (2001) ‘PerPot: A metamodel for simulation of load performance interaction’,

European Journal of Sport Science, 1(2), pp. 1–13. doi: 10.1080/17461390100071202.

133. Perl, J. and Pfeiffer, M. (2011) ‘PerPot DoMo: Antagonistic Meta-Model Processing two

Concurrent Load Flows’, International Journal of Computer Science in Sport, 10/2011(2).

134. Pfeiffer, M. (2008) ‘Modeling the Relationship between Training and Performance - A

Comparison of Two Antagonistic Concepts’, International Journal of Computer Science in Sport,

7(2), pp. 13–32.

135. Philippe, A. G. et al. (2015) ‘Modeling the responses to resistance training in an animal

experiment study’, BioMed Research International, pp. 1–7. doi: 10.1155/2015/914860.

136. Philippe, A. G. et al. (2018) ‘Modelling performance and skeletal muscle adaptations with

exponential growth functions during resistance training’, Journal of Sports Sciences, 37(3), pp.

254–261. doi: 10.1080/02640414.2018.1494909.

137. Piatrikova, E. et al. (2021) ‘Monitoring the Heart Rate Variability Responses to Training

Loads in Competitive Swimmers Using a Smartphone Application and the Banister Impulse-

Response Model’, International Journal of Sports Physiology and Performance, 1(aop), pp. 1–9.

138. Plisk, S. S. and Stone, M. H. (2003) ‘Periodization Strategies’, Strength and Conditioning

Journal. doi: 10.1519/00126548-200312000-00005.

139. de Prado, M. L. (2018) Advances in Financial Machine Learning. 1st edn. New Jersey: Wiley.

140. Prado, M. L. De (2018) Advances in Financial Machine Learning. New Jersey: John Wiley &

Sons Inc.

141. Proshin, A. P. and Solodyannikov, Y. V (2018) ‘Physiological Avatar Technology with

Optimal Planning of the Training Process in Cyclic Sports’, Automation and Remote Control,

 257

79(5), pp. 870–883. doi: 10.1134/S0005117918050089.

142. R Core Team (2020) ‘R: A Language and Environment for Statistical Computing’. Vienna,

Austria: R Foundation for Statistical Computing. Available at: R-project.org.

143. Rasche, C. and Pfeiffer, M. (2019) ‘Training’, in Baca, A. and Perl, J. (eds) Modelling and

Simulation in Sport and Exercise. New York, NY: Routledge, pp. 187–207.

144. Revie, M. et al. (2017) ‘On modeling player fitness in training for team sports with application

to professional rugby’, International Journal of Sports Science and Coaching, 12(2), pp. 183–193.

doi: 10.1177/1747954117694736.

145. Ripley, B. et al. (2013) ‘Package “mass”’, Cran r, 538, pp. 113–120.

146. Rozendaal, R. (2017) Modeling performance of elite cyclists: The Effect of Training on

Performance. Delft University of Technology. Available at: http://repository.tudelft.nl/.

147. Sanchez, A. M. J. et al. (2013) ‘Modelling training response in elite female gymnasts and

optimal strategies of overload training and taper’, Journal of Sports Sciences, 31(14), pp. 1510–

1519. doi: 10.1080/02640414.2013.786183.

148. Scarf, P. et al. (2019) ‘Modelling the effect of training on performance in road cycling:

estimation of the Banister model parameters using field data’, arXiv preprint, pp. 1–14.

149. Schaefer, D., Asteroth, A. and Ludwig, M. (2015) ‘Training plan evolution based on training

models’, IEEE Symposium. doi: 10.1109/INISTA.2015.7276739.

150. Scrucca, L. (2013) ‘GA: a package for genetic algorithms in R’, Journal of Statistical

Software, 53(4), pp. 1–37.

151. Seabold, S. and Perktold, J. (2010) ‘Statsmodels: Econometric and statistical modeling with

python’, in Proceedings of the 9th Python in Science Conference, p. 61.

152. Selye, H. (1946) ‘The general adaptation syndrome and the diseases of adaptation’, The

journal of clinical endocrinology, 6(2), pp. 117–230.

153. Selye, H. (1950) ‘Stress and the general adaptation syndrome’, British medical journal,

1(4667), p. 1383.

154. Selye, H. (1951) ‘The general-adaptation-syndrome’, Annual review of medicine, 2(1), pp.

327–342.

155. Sen, A. and Srivastava, M. (1990) Regression Analysis: Theory, Methods and Applications.

New York: Springer. doi: 10.2307/3620306.

156. Shrahili, M. (2014) Modelling and optimising the sport and exercise training process.

University of Salford.

157. Siedlok, F. and Hibbert, P. (2014) ‘The organization of interdisciplinary research: modes,

drivers and barriers’, International Journal of Management Reviews, 16(2), pp. 194–210.

158. Skiba, P. F. (2008) Analysis of power output and training stress in cyclists: The development

of the BikeScoreTM algorithm. Tech. rep. PhysFarm Training Systems LLC.

159. Smit, S. K. and Eiben, A. E. (2010) ‘Parameter tuning of evolutionary algorithms: Generalist

 258

vs. specialist’, in European conference on the applications of evolutionary computation. Springer,

pp. 542–551.

160. Soetaert, K. E. R., Petzoldt, T. and Setzer, R. W. (2010) ‘Solving differential equations in R:

package deSolve’, Journal of statistical software, 33.

161. Soetaert, K. and Petzoldt, T. (2010) ‘Inverse modelling, sensitivity and monte carlo analysis

in R using package FME’, Journal of Statistical Software. doi: 10.18637/jss.v033.i03.

162. Stein, M. et al. (2017) ‘How to Make Sense of Team Sport Data: From Acquisition to Data

Modeling and Research Aspects’, Data, 2(1), p. 2. doi: 10.3390/data2010002.

163. Stephens Hemingway, B. et al. (2019) ‘The effects of measurement error and testing frequency

in applying the Fitness Fatigue Model to resistance training : A simulation study’, International

Journal of Sports Science and Coaching, 0(0), pp. 1–12. doi: 10.13140/RG.2.2.19730.56005.

164. Stephens Hemingway, B. et al. (2021) ‘Traditional and contemporary approaches to

mathematical fitness-fatigue models in exercise science: A practical guide with resources. Part I.’,

SportRxiv (Preprint). doi: 10.31236/osf.io/ap75j.

165. Stephens Hemingway, B., Swinton, P. A. and Ogorek, B. (2021) ‘The suitability of a quasi-

Newton algorithm for estimating fitness-fatigue models: Sensitivity, troublesome local optima,

and implications for future research (An in silico experimental design)’, SportRxiv (Preprint)2.

doi: 10.31236/osf.io/dx7gm.

166. Stevens, J. (1986) Applied Multivariate Statistics for the Social Sciences. Hillsdale, NJ:

Lawrence Erlbaum Associates. doi: 10.2307/2685203.

167. Stone, M. H., Sands, W. A. and Stone, M. E. (2004) ‘The downfall of sports science in the

United States’, Strength & Conditioning Journal, 26(2), pp. 72–75.

168. Stone, M. H., Stone, M. and Sands, W. A. (2007) Principles and practice of resistance

training. Human Kinetics.

169. Sun, W. and Yuan, Y.-X. (2006) Optimization theory and methods: nonlinear programming.

Springer Science & Business Media.

170. Suzuki, S. et al. (2006) ‘Program design based on a mathematical model using rating of

perceived exertion for an elite Japanese sprinter: A case study’, Journal of Strength and

Conditioning Research, 20(1), pp. 36–42. doi: 10.1519/R-16914.1.

171. Swinton, P. et al. (2021) ‘Traditional and contemporary approaches to mathematical fitness-

fatigue models in exercise science: A practical guide with resources. Part II.’, SportRxiv (Preprint).

doi: 10.31236/osf.io/5qgc2.

172. Swinton, P. A. et al. (2018) ‘A Statistical Framework to Interpret Individual Response to

Intervention: Paving the Way for Personalized Nutrition and Exercise Prescription’, Frontiers in

Nutrition. doi: 10.3389/fnut.2018.00041.

173. Taha, T. and Thomas, S. G. (2003) ‘Systems Modelling of the Relationship between Training

and Performance’, Sports Medicine, 33(14), pp. 1061–1073. doi: 10.2165/00007256-200333140-

 259

00003.

174. Thomas, L., Mujika, I. and Busso, T. (2008) ‘A model study of optimal training reduction

during pre-event taper in elite swimmers’, Journal of Sports Sciences, 26(6), pp. 643–652. doi:

10.1080/02640410701716782.

175. Thomas, L., Mujika, I. and Busso, T. (2009) ‘Computer simulations assessing the potential

performance benefit of a final increase in training during pre-event taper’, Journal of Strength and

Conditioning Research, 23(6), pp. 1729–1736. doi: 10.1519/JSC.0b013e3181b3dfa1.

176. Transtrum, M. K. et al. (2015) ‘Perspective: Sloppiness and emergent theories in physics,

biology, and beyond’, Journal of Chemical Physics. doi: 10.1063/1.4923066.

177. Trautmann, H. et al. (2015) ‘Package “cmaes”’.

178. Turner, J. D. et al. (2017) ‘A nonlinear model for the characterization and optimization of

athletic training and performance’, Biomedical Human Kinetics, 9(1), pp. 82–93. doi:

10.1515/bhk-2017-0013.

179. Verkhoshansky, Y. and Siff, M. C. (2009) Supertraining. Verkhoshansky SSTM.

180. Wallace, L. K., Slattery, K. M. and Coutts, A. J. (2014) ‘A comparison of methods for

quantifying training load: Relationships between modelled and actual training responses’,

European Journal of Applied Physiology, 114(1), pp. 11–20. doi: 10.1007/s00421-013-2745-1.

181. Wang, C.-H. et al. (2013) ‘Open vs. closed skill sports and the modulation of inhibitory

control’, PloS one, 8(2), p. e55773.

182. Wang, C. et al. (2020) ‘Analyzing activity and injury: lessons learned from the acute: chronic

workload ratio’, Sports Medicine, 50(7), pp. 1243–1254.

183. Watkins, C. M. et al. (2017) ‘Determination of vertical jump as a measure of neuromuscular

readiness and fatigue’, Journal of Strength and Conditioning Research. doi:

10.1519/JSC.0000000000002231.

184. Weston, S. and Computing, Re. (2015) ‘doSNOW: Foreach Parallel Adaptor for the “snow”

Package’, in Revolution Analytics.

185. Wickham, H. (2019) Advanced r. CRC press.

186. Williams, S. et al. (2018) ‘Modelling the HRV response to training loads in elite rugby sevens

players’, Journal of Sports Science and Medicine, 17(3), pp. 402–408.

187. Windt, J. and Gabbett, T. J. (2019) ‘Is it all for naught? What does mathematical coupling

mean for acute: chronic workload ratios?’ BMJ Publishing Group Ltd and British Association of

Sport and Exercise Medicine.

188. Wood, R. E. et al. (2005) ‘Applying a mathematical model to training adaptation in a distance

runner’, European Journal of Applied Physiology, 94(3), pp. 310–316. doi: 10.1007/s00421-005-

1319-2.

189. Wright, S. and Nocedal, J. (1999) ‘Numerical optimization’, Springer Science, 35(67–68), p.

7.

 260

190. Yang, Z., Cai, X. and Fan, Z. (2014) ‘Epsilon constrained method for constrained

multiobjective optimization problems: some preliminary results’, in Proceedings of the

Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pp. 1181–1186.

191. Zarkadas, P. C., Carter, J. B. and Banister, E. W. (1995) ‘Modelling the effect of taper on

performance, maximal oxygen uptake, and the anaerobic threshold in endurance triathletes’,

Advances in Experimental Medicine and Biology, 393(1), pp. 179–186.

192. Zieffler, A. (2019) EPsy 8252: Methods in Data Analysis for Educational Research II.

Available at: https://zief0002.github.io/book-8252/.

 261

Appendix A: Mathematical derivations

The mathematical derivations of the standard and fitness-delay model are provided next 9. The systems

of differential equations that define fitness-fatigue models can be solved using the method of Laplace

transform. The Laplace transform (denoted ℒ) is an integral transform that can be used to convert a

differential equation into an algebraic equation. The algebraic equation can then be solved and then

the inverse Laplace transform used to find the solution to the original differential equation that

subsequently provides a simple method of computation. The Laplace transform converts a function of

a real variable 𝑡, to a function of a complex variable 𝑠, where:

ℒ{𝑓(𝑡)} = 𝐹(𝑠) = = 𝑓(𝑡)𝑒&W!
}

-
𝑑𝑡

To use the Laplace transform to solve differential equations, the Laplace transform of a derivative is

required, where

ℒ{𝑓"(𝑡)} = 𝑠𝐹(𝑠) − 𝑓(0); 	ℒ{𝑓""(𝑡)} = 𝑠<𝐹(𝑠) − 𝑠𝑓(0) − 𝑓"(0)

Frequently the final step of solving the differential equation will involve the inverse Laplace transform

of a product 𝐹(𝑠) = 𝑀(𝑠)𝑁(𝑠) such that:

𝑓(𝑡) = (𝑚 ∗ 𝑛)(𝑡) = = 𝑚(𝑢)𝑛(𝑡 − 𝑢)𝑑𝑢
!

-

Where 𝑚(𝑡) ∗ 𝑛(𝑡) is the convolution of the functions 𝑚 and 𝑛.

Also, the inverse Laplace transform of 1/(𝑠 − 𝑎) where 𝑎 is a constant is 𝑒F!.

The standard model (Banister et al., 1975)

With the above we can solve the independent system of differential equations that define the standard

FFM

𝑔"(𝑡) = 𝜔(𝑡) −
1
𝜏$
𝑔(𝑡)	

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)	

We simply solve each differential equation in isolation. Showing how this would be achieved for

fitness 𝑔(𝑡).

9 These derivations were published in the appendices of:

Stephens Hemingway, B., Greig, L., Jovanovic, M., Ogorek, B., & Swinton, P. (2021). Traditional and
contemporary approaches to mathematical fitness-fatigue models in exercise science: A practical guide with
resources. Part I. SportRxiv (Preprint). doi.org/10.31236/osf.io/ap75j

 262

Taking the Laplace transform of each term gives:

𝑠𝐺(𝑠) − 𝑔(0) = Ω(𝑠) −
1
𝜏$
𝐺(𝑠)

Where 𝐺(𝑠) is the Laplace transform of 𝑔(𝑡) and Ω(𝑠)	is the Laplace transform of 𝜔(𝑡). Under the

assumption 𝑔(0) = 0, we can rearrange the equation above to give the following:

𝑠𝐺(𝑠) +
1
𝜏$
𝐺(𝑠) = Ω(𝑠)

𝐺(𝑠) W𝑠 +
1
𝜏$
X = Ω(𝑠)

𝐺(𝑠) = Ω(𝑠)ê
1

U𝑠 + 1
𝜏$
V
ë

On the right hand side, we have a product and therefore taking the inverse Laplace transform gives

𝑔(𝑡) = 𝜔(𝑡) ∗ 𝑒
& !
'! = = 𝑒

&(!&*)
'! 𝜔(𝑢)𝑑𝑢

!

-

This is the solution that was presented in eq. 2.5 Given FFMs are generally conceptualised as impulses

performed on single days, the integrals expressed in the solution of the system are discretised and

approximated with the area of rectangles. Note there is a change from continuous time (𝑡) to discrete

time. In the exercise science literature, any training impulse on day 𝑡 is omitted such that the index of

the series terminates at 𝑡 − 1 to give the following approximation:

𝑔(𝑡) = Δ𝑡A𝜔. ⋅ 𝑒
&(!&.)
'!

a&/

.0-

Setting Δ𝑡 = 1 and 𝑤(0) = 0, we obtain

𝑔(𝑡) =A𝜔. ⋅ 𝑒
&(!&.)
'!

!&/

.0/

Repeating the same process for fatigue ℎ(𝑡) and then combining with the scaling constants and

baseline performance gives the familiar form presented for the standard FFM

𝑝!(𝑡) = 𝑝∗ + 𝑘𝑔$𝜔𝑖
𝑡−1

𝑖=1

⋅ 𝑒
−(𝑡−𝑖)
τ𝑔

%&&&&'&&&&(
fitness component

− 𝑘ℎ$𝜔𝑖
𝑡−1

𝑖=1

⋅ 𝑒
−(𝑡−𝑖)
τℎ

%&&&&'&&&&(
fatigue component

 263

Fitness-delay model (Calvert et al., 1976)

We will now show that the system of differential equations that defines the FFM with a delay term

introduced by Calvert et al. (Calvert et al., 1976) is the following:

W
1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/

𝑔""(𝑡) = 𝜔(𝑡) − W
1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/

W
1

𝜏𝑔1
+

1

𝜏𝑔2
X𝑔"(𝑡) − W

1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/ 1
𝜏$%𝜏$&

𝑔(𝑡)

ℎ"(𝑡) = 𝜔(𝑡) −
1
𝜏%
ℎ(𝑡)

As identified at the beginning of this appendix, the same routine can be performed on fatigue ℎ(𝑛) to

obtain

ℎ(𝑡) =A𝜔. ⋅ 𝑒
&(!&.)
'"

!&/

.0/

More work is required for 𝑔(𝑡).	Taking the Laplace transform of each term gives

*
1
𝜏,#

−
1
𝜏,$
-
/0

.𝑠1𝐺(𝑠) − 𝑠𝑔(0) − 𝑔2(0)4 = Ω(𝑠) − *
1
𝜏,#

−
1
𝜏,$
-
/0

*
1
𝜏,$

+
1
𝜏,#
- .𝑠𝐺(𝑠) − 𝑔(0)4 − *

1
𝜏,#

−
1
𝜏,$
-
/0 1
𝜏,$𝜏,#

𝐺(𝑠)	

Setting 𝑔(0) = 𝑔"(0) = 0 and rearranging gives

W
1

𝜏𝑔2
−

1

𝜏𝑔1
X
&/

�𝑠<𝐺(𝑠) + W
1

𝜏𝑔1
+

1

𝜏𝑔2
X𝑠𝐺(𝑠) +

1
𝜏$%'!&

𝐺(𝑠)� = Ω(𝑠)

𝐺(𝑠) W𝑠< + W
1

𝜏𝑔1
+

1

𝜏𝑔2
X 𝑠 +

1
𝜏$%'!&

X = W
1

𝜏𝑔2
−

1

𝜏𝑔1
XΩ(𝑠)

𝐺(𝑠) �W𝑠 +
1
𝜏𝑔1
XW𝑠 +

1
𝜏𝑔2
X� = W

1

𝜏𝑔2
−

1

𝜏𝑔1
XΩ(𝑠)

𝐺(𝑠) =
W 1
𝜏𝑔2

−
1
𝜏𝑔1
X

W𝑠 + 1
𝜏𝑔1
XW𝑠 + 1

𝜏𝑔2
X
Ω(𝑠)

 264

Partial fraction decomposition gives:

𝐺(𝑠) = Ω(𝑠)

⎝

⎜
⎛ 1

W𝑠 + 1
𝜏𝑔1
X
⎠

⎟
⎞
− Ω(𝑠)

⎝

⎜
⎛ 1

W𝑠 + 1
𝜏𝑔2
X
⎠

⎟
⎞

Application of the inverse Laplace transform gives

𝑔(𝑡) = 𝜔(𝑡) ∗ 𝑒
& !
𝜏𝑔1 −𝜔(𝑡) ∗ 𝑒

& !
𝜏𝑔2 = = 𝑒

&(!&*)
𝜏𝑔1 𝜔(𝑢)𝑑𝑢 −= 𝑒

&(!&*)
𝜏𝑔2 𝜔(𝑢)𝑑𝑢

!

-

!

-

Approximation and combining the fitness and fatigue components with the associated scaling

coefficients and baseline performance gives Calvert’s model presented in eq. 2.13 (Chapter 2).

�̂�(𝑡) = 𝑝∗ + 𝑘$ ⋅A𝜔.

!&/

.0/

⋅ M𝑒
&(!&.)
'!%NOP

effect
− 𝑒

&(!&.)
'!&NOP

delay
Q − 𝑘% ⋅A𝜔.

!&/

.0/

⋅ 𝑒
&(!&.)
'" 	

 265

Appendix B: Literature tables

The first table in this appendix (B-1) provides a comprehensive overview and quick-reference list for

the fitness-fatigue model literature body including theoretical, descriptive, and experimental research,

as well as work demonstrating prospective applications of FFMs toward solving the upstream training

program design problem. A set of secondary tables (B-2 to B-3) are provided to summarise research

design information from primary research including methods used and population studied.

Table B-1: Overview of the literature

Table B-1: Summary of model literature

Index Article Study Type Model(s) Outline

1 (Banister et al., 1975)
Model

development &
Experimental

Standard model

The seminal paper in the FFM literature. Proposal of
first systems model of athletic performance in terms of
the antagonistic response to training. Experimental
aspect involved fitting to data of a top-class swimmer.

2 (Calvert et al., 1976)
Model

development &
Experimental

Fitness-delay
model

Same authors as Banister et al. (1975), led by T.
Calvert, proposed the addition of a delay term within
the fitness-component, and subsequently fitted the
adjusted model to the data of (presumably) the same
top-class swimmer as Banister et al. (1975).

3 (Corlett, 1977) Experimental Standard model Data fitting study (training intervention or observation)
and assessment of physiological correlates.

4 (Corlett, Calvert and
Banister, 1978) Experimental Standard model Data fitting study (training intervention or observation)

and assessment of physiological correlates.

5 (Banister and Calvert,
1980)

No additional
details found

No additional
details found

No copy located. Canadian Journal of Applied Sport
Science discontinued. Full reference provided in
bibliography.

6 (Banister and
Hamilton, 1985) Experimental Standard model Data fitting study (training intervention or observation)

and assessment of physiological correlates.

7 (Banister et al., 1986) No additional
details found

No additional
details found

No copy located. Conference proceedings. Full
reference provided in bibliography.

8 (Morton, Fitz-clarke
and Banister, 1990) Experimental Standard model Data fitting study (training intervention or observation).

9 (Busso et al., 1990) Experimental Standard model Data fitting study (training intervention or observation)
and assessment of physiological correlates.

10 (Busso, Carasso and
Lacour, 1991)

Model
development &
Experimental

General model
(1-4 components)

Proposal of the general FFM. Data fitting study
(training intervention or observation), testing the
statistical significance of increasing model
complexity.

11 (Morton, 1991) Computer-
experiment

Fitness-delay
model

Simulation study assessing model behaviour to
different training load series under selected parameters.

12 (Fitz-Clarke, Morton
and Banister, 1991)

Model
development Standard model

Presentation of the concept of influence curves to study
model behaviour and to optimise training decisions in
aspects such as peaking and tapering.

13 (Banister, Morton and
Fitz-Clarke, 1992) Experimental Standard model Data fitting study (training intervention or observation)

and assessment of physiological correlates.

 266

Index Article Study Type Model(s) Outline

14 (Busso et al., 1992)
Model

development &
Experimental

General model +
initial components

Proposal of the inclusion of initial components to the
general model to capture previous effects. Data fitting
study (training intervention or observation) and
assessment of physiological correlates.

15 (Candau, Busso and
Lacour, 1992) Experimental General model

(1 component)
Data fitting study (training intervention or observation)
and assessment of physiological correlates.

16 (Busso, Candau and
Lacour, 1994)

Model
development &
Experimental

Standard model
with modified
fitness/fatigue
components

Presentation of two possible approaches (one novel) to
specifying the fitness and fatigue components within
the standard model structure. Comparison of methods
under a data fitting study (training intervention or
observation).

17 (Zarkadas, Carter and
Banister, 1995) Experimental Standard model Study adjacent to the FFM literature, investigating

responses to taper periods under different training loads

18 (Mujika et al., 1996) Experimental Standard model Data fitting study (training intervention or observation).

19 (Busso et al., 1997)
Model

development &
Experimental

Time-varying
model & standard

model

Presentation of a novel time-varying model via a
recursive least-squares algorithm. Data fitting study
(training intervention or observation). Comparison of
models carried out.

20 (Banister, Carter and
Zarkadas, 1999) Experimental Standard model

Comparison of simulated taper profiles under the FFM
with taper profiles implemented experimentally to
assess correspondence with improvement in
performance.

21 (Busso et al., 2002) Experimental Time-varying
model Data fitting study (training intervention or observation).

22 (Millet et al., 2002) Experimental General model Data fitting study (training intervention or observation).

23 (Busso, 2003)
Model

development &
Experimental

VDR model /
General model

Presentation of the novel variable dose-response FFM.
Data fitting study (training intervention or observation).
Comparison of models carried out.

24 (Taha and Thomas,
2003) Review Various

Review article broadly examining systems modelling
of the relationship between training and performance.
Covers topics such as existing models, quantification of
training and performance, and evaluation of models as
the state of the literature existed in 2003.

25 (Chiu and Barnes,
2003) Descriptive Standard

A conceptual discussion of the original FFM as it
pertains to physical training and its association with the
general adaption syndrome (GAS) model and theory of
supercompensation.

26 (le Bris et al., 2004) Experimental General model
(1-4 components)

Data fitting study (training intervention or observation).
Comparison of models carried out.

27 (Hellard et al., 2005)
Model

development &
Experimental

Standard model +
threshold
saturation

Proposal of an external threshold saturation function to
capture the concept of diminishing returns in response
to linearly increasing training loads. Data fitting study
(training intervention or observation).

28 (Millet et al., 2005) Experimental General model Data fitting study (training intervention or observation).

29 (Wood et al., 2005) Experimental Standard model Data fitting study (training intervention or observation)
and assessment of physiological correlates.

30 (le Bris et al., 2006a) Experimental General model Data fitting study (training intervention or observation).

31 (le Bris et al., 2006b) Experimental General model Data fitting study (training intervention or observation).

32 (Hellard et al., 2006) Descriptive &
Experimental Standard model

An examination of the limitations of the standard model
including misspecification and ill-conditioning. Data
fitting study (training intervention or observation).

33 (Suzuki et al., 2006) Experimental Standard model Data fitting study (training intervention or observation).

 267

Index Article Study Type Model(s) Outline

34 (Busso and Thomas,
2006) Descriptive N/A

A theoretical discussion and overview of how
performance models and model simulations may be
used to inform training planning.

35 (Thomas, Mujika and
Busso, 2008) Experimental VDR model Data fitting study (training intervention or observation).

36 (Ishii et al., 2008) Experimental Standard model Data fitting study (training intervention or observation).

37 (Pfeiffer, 2008) Descriptive &
Experimental

Standard model,
PerPot Meta

Model

Descriptive article examining FFM limitations. Data
fitting study (training intervention or observation).
Comparison of models carried out.

38 (Thomas, Mujika and
Busso, 2009) Experimental VDR Model Simulation and discussion of taper profiles under an

FFM

39 (Chalencon et al.,
2012) Experimental Standard model Data fitting study (training intervention or observation).

40 (Gouba et al., 2013)
Model

development &
Experimental

Variable baseline
performance

model & standard
model

Proposal of a variable baseline performance model to
capture changes in the additive term. Data fitting study
(training intervention or observation). Comparison of
models carried out.

41 (Sanchez et al., 2013) Experimental VDR model Data fitting study (training intervention or observation)

42 (Clarke and Skiba,
2013) Review

Standard +
threshold
saturation

Educational review article, introduction to FFMs,
threshold saturation, influence curves, and model
fitting.

43 (Wallace, Slattery and
Coutts, 2014) Experimental VDR model Data fitting study (training intervention or observation).

44 (Shrahili, 2014) Experimental Standard model Data fitting study (training intervention or observation).

45 (Chalencon et al.,
2015) Experimental Standard model &

VDR model
Data fitting study (training intervention or observation).
Comparison of models carried out.

46 (Agostinho et al.,
2015) Experimental General model

(1-2 components)
Data fitting study (training intervention or observation).
Comparison of models carried out.

47 (Philippe et al., 2015) Experimental
General model (1-
2 components) &

VDR model

Data fitting study (training intervention or observation).
Comparison of models carried out.

48 (Schaefer, Asteroth
and Ludwig, 2015)

Training program
design Standard model

Implementation of the FFM as a response framework
for optimising training programs under constraints via
solver(s).

49
(Matabuena and

Rodríguez-López,
2016, 2019)

Model
development &
experimental

Recursive delay-
differential model

Proposal of a recursive delay-differential model.
Assessment of model under fitted data.

50 (Ludwig, Schaefer and
Asteroth, 2016) Experimental Standard model Data fitting study (training intervention or observation).

51 (Ludwig and Asteroth,
2016)

Model
development &
experimental

Standard model +
preload terms

Proposal of preload terms to improve model prediction
(similar to initial components). Data fitting study
(training intervention or observation).

52 (Turner et al., 2017)

Model
development &
experimental &

training program
design

Nonlinear model
system

Proposal of a nonlinear systems model to capture
saturation of training load, diminishing returns, and
overtraining effects within model behaviour.
Assessment of the model under fitted data and
demonstration of a training program design approach.

53 (Rozendaal, 2017) Experimental Fitness-delay
model Data fitting study (training intervention or observation).

54 (Kolossa et al., 2017)
Model

development &
experimental

VDR model
represented as a

state-space model

Presented how the FFM can be specified as a state-
space model, and demonstration of Kalman filtering to
improve model prediction. Data fitting study (training
intervention or observation).

 268

Index Article Study Type Model(s) Outline

55 (Busso, 2017)
Model

development &
experimental

Secondary-signal
model

Proposal of a secondary-signal model of training
response. Data fitting study (training intervention or
observation).

56 (Philippe et al., 2018)
Model

development &
experimental

Exponential
growth models

Proposal of several exponential-growth models. Data
fitting study (training intervention or observation).

57 (Méline et al., 2018) Experimental VDR model Data fitting study (training intervention or observation).

58 (Kumyaito, Yupapin
and Tamee, 2018)

Training program
design Standard

Implementation of the FFM as a response framework
for optimising training programs under constraints via
some solver(s).

59 (Williams et al., 2018) Experimental Standard Data fitting study (training intervention or observation).

60 (Proshin and
Solodyannikov, 2018)

Training program
design Standard Overview of the training program design problem

under a response framework described by an FFM.

61 (Connor, Fagan and
O’Neill, 2019)

Training program
design Standard

Implementation of the FFM as a response framework
for optimising training programs under constraints via
some solver(s).

62 (Scarf et al., 2019) Experimental Standard Data fitting study (training intervention or observation).

63 (Stephens Hemingway
et al., 2019)

Computer
experiment Standard

Assessment of the effects of measurement error and
testing frequency on prediction accuracy of the FFM
under an in-silico approach.

64 (Rasche and Pfeiffer,
2019)

Descriptive article
(book chapter)

Standard to VDR
model

A descriptive article covering several principles of
performance modelling and FFM research.

65 (Connor and O’Neill,
2020)

Computer
experiment Standard model Comparison of the differential evolution algorithm and

the L-BFGS-B algorithm in fitting the standard FFM.

66 (Mitchell et al., 2020) Experimental

Standard model,
VDR model, and
rolling averages

model (inc.
exponentially

weighted)

Data fitting study (training intervention or observation).
Comparison of models.

67 (Imbach et al., 2020) Experimental /
descriptive

Exponential
growth models

Data fitting study (training intervention or observation).
Some discussion of model evaluation and CV
approaches.

68 (Stephens Hemingway
et al., 2021) Review article Standard, fitness-

delay, VDR,
threshold
saturation,
nonlinear,

Part 1 of a review series investigating traditional and
contemporary methods and models in the FFM field.

69 (Swinton et al., 2021) Review article Part 2 of a review series investigating traditional and
contemporary methods and models in the FFM field.

70 (Piatrikova et al.,
2021) Experimental Standard model Data fitting study (training intervention or observation).

71
(Stephens

Hemingway, Swinton
and Ogorek, 2021)

Computer
experiment

Standard and
fitness-delay

models

Assessment of starting point sensitivity for the L-
BFGS-B algorithm when fitting FFMs to data, and
demonstration of existence of many local minima.

 269

Tables B-2 & B-3: Experimental research (population, methods, estimation)

Table B-2: Criterion performance selection and measurement frequency, participant details, and

training load quantification approaches over the FFM (human) experimental literature.

Index Study Performance Duration 𝒏 Domain Level Measurement
frequency

TL
quantification

1 (Banister et
al., 1975) 100m TT swim 105 days 1 (M) Swimming Elite Weekly Volume ×

Intensity

2 (Calvert et
al., 1976) 100m TT swim 4 seasons 1 (M) Swimming Elite Weekly Volume ×

Intensity

4

(Corlett,
Calvert and

Banister,
1978)

Not specified 4 months 1 (M)
General
(cycle

ergometry)
Not specified Weekly Not specified

6

(Banister
and

Hamilton,
1985)

TT run (distance
subject specific) 300 days 5 (F) Running Amateur -

Elite
No set

frequency
Banister’s

TRIMP

8

(Morton,
Fitz-clarke

and Banister,
1990)

TT run and cycle
ergometry

testing
28 days 2 (M) Running Amateur -

Intermediate ≥ 2 ×	weekly	 Banister’s
TRIMP

9 (Busso et al.,
1990)

Maximal clean
and jerk (1RM) 1 year 5 (M) Weightlifting Elite Weekly Volume ×

Intensity

10

(Busso,
Carasso and

Lacour,
1991)

Sustained power
(W) for 1 hour

cycle
14 weeks 8 (M) Cycling Sedentary 1-2 × weekly Volume ×

Intensity

13

(Banister,
Morton and
Fitz-Clarke,

1992)

TT run (distance
subject specific) 60 days 2 (M) Running Amateur ≥ 2 ×	weekly Banister’s

TRIMP

14 (Busso et al.,
1992)

Maximal clean
and jerk (1RM) 1 year 6 (M) Weightlifting Elite Weekly Volume ×

Intensity

16

(Busso,
Candau and

Lacour,
1994)

Hammer throw
(distance) 37 weeks 1 (M) Hammer Intermediate Varied (19×

total)
Volume ×
Intensity

17

(Zarkadas,
Carter and
Banister,

1995)

5k TT run 98 days 11
(M) Triathlon Intermediate 1-2 × weekly Banister’s

TRIMP

18 (Mujika et
al., 1996) TT swim 44 weeks

10
(M)
8 (F)

Swimming Elite 1 × every 2-3
weeks

Volume ×
Intensity

19 (Busso et al.,
1997)

Incremental
cycle test to
exhaustion

14 weeks 2 (U) Cycling Recreational 1 × other
week

Volume ×
Intensity

20

(Banister,
Carter and
Zarkadas,

1999)

5k TT run 94 days 11
(M) Triathlon Not specified ≥ 1 × weekly Banister’s

TRIMP

 270

Index Study Performance Duration 𝒏 Domain Level Measurement
frequency

TL
quantification

21 (Busso et al.,
2002)

Maximal power
sustained (W)
for 5 minutes

15 weeks 6 (M)
General
(cycle

ergometry)
Recreational 3× weekly Volume ×

Intensity

22 (Millet et al.,
2002)

Running (mean
speed at lactate
threshold for 30

mins),
swimming (max
effort repeats),
triathlon events
(competitive)

40 weeks 1 (M)
3 (F) Triathlon Elite 1-2 × weekly Banister’s

TRIMP

23 (Busso,
2003)

Maximal power
sustained (W)
for 5 minutes

15 weeks 6 (M)
General
(cycle

ergometry)
Recreational 3× weekly Volume ×

Intensity

26 (le Bris et
al., 2004)

Time to
exhaustion

(cycle
ergometer)

14 weeks 1 (M)
General
(cycle

ergometry)

Cardiac
Rehabilitation 2× weekly Banister’s

TRIMP

27 (Hellard et
al., 2005)

Competition
swim times over

a season

100-200
weeks

(subject
dependent)

3 (M)
4 (F) Swimming Elite

Total: mean =
48.7 ± 9 over
a period of 4
± 2 years

Volume ×
Intensity

28 (Millet et al.,
2005)

Anxiety and
wellness scores 40 weeks 1 (M)

3 (F) Triathlon Elite 2× weekly Banister’s
TRIMP

29 (Wood et al.,
2005) 3km TT run 12 weeks 1 (M) Running Intermediate Weekly Volume ×

Intensity

30 (le Bris et
al., 2006a)

6-minute walk
test (metres) 14 weeks 4 (M)

General
(treadmill
and cycle

ergometry)

Coronary
artery disease

patients
1-2 × weekly Banister’s

TRIMP

31 (le Bris et
al., 2006b)

6-minute walk
test (metres) 14 weeks 4 (M)

General
(treadmill
and cycle

ergometry)

Coronary
artery disease

patients
1-2 × weekly Banister’s

TRIMP

32 (Hellard et
al., 2006)

Competitive
swim times over

a season
60 weeks 4 (M)

5 (F) Swimming Elite

Total: mean =
13.2 ± 2.4

over a period
of 60 weeks

Volume ×
Intensity

33 (Suzuki et
al., 2006) 400m TT run 1 year 1 (U) Sprinting Elite 1× every 3-4

weeks
Volume ×
Intensity

35
(Thomas,

Mujika and
Busso, 2008)

Competitive
swim times over

a season
2 seasons 4 (M)

4 (F) Swimming Elite 1× every 1-2
weeks

Volume ×
Intensity

36 (Ishii et al.,
2008) 200m TT swim 134 days 2 (F) Swimming Junior 1× every 2

weeks
Volume ×
Intensity

37 (Pfeiffer,
2008)

Power in all out
8s cycle sprint

and 15s Wingate
test

17 weeks 3 (M)
3 (F)

General
(cycle

ergometry)
Recreational 2 × weekly Total watts (W)

38
(Thomas,

Mujika and
Busso, 2009)

Mean power (W)
for 5-minute all-

out test
64-84 days 10(M)

3 (F) Swimming
Elite (7),

unspecified
(6)

1-3 × weekly

Volume ×
Intensity or
Banister’s

TRIMP

39 (Chalencon
et al., 2012) 400m TT swim 30 weeks 6 (M)

4 (F) Swimming Intermediate -
Elite Weekly Volume ×

Intensity

 271

Index Study Performance Duration 𝒏 Domain Level Measurement
frequency

TL
quantification

40 (Gouba et
al., 2013) 700m TT swim 23 weeks 1 (F) Monofin

Swimming Elite 1× every 3-4
weeks

Banister’s
TRIMP &
Volume ×
Intensity

41 (Sanchez et
al., 2013)

Maximum chin-
ups in 15
seconds

3 months 5 (F) Gymnastics Elite 3 × weekly Volume ×
Intensity

43

(Wallace,
Slattery and

Coutts,
2014)

1500m TT run 15 weeks 7 (U) Running Amateur Weekly

Banister’s
TRIMP &

sRPE & rTSS
score

44 (Shrahili,
2014)

Extrapolated
from training
data based on
relationship

between power
and HR

300 days 10
(U) Cycling Intermediate -

Elite
Approximately
2-3 × weekly

Banister’s
TRIMP

45 (Chalencon
et al., 2015)

Mean velocity
during 400m TT

swim
30 weeks 6 (M)

4 (F) Swimming Intermediate -
Elite Weekly Volume ×

Intensity

46 (Agostinho
et al., 2015)

Competitive
performance

(points) & series
of physical tests

2 years 10
(M) Judo Junior

Intermediate

15
measurements

total (per
athlete)

sRPE and RPE

47 (Philippe et
al., 2015)

Ladder climbing
with weight for

time
4 weeks 11

(U) Animal (rat) - 5 × weekly Work done (W)

49

(Matabuena
and

Rodríguez-
López, 2016,

2019)

5-min power test
(W) – Study

used data
provided in

Clarke & Skiba
(2013)

165 days 1
General
(cycle

ergometry)
Recreational 9 × Total BikeScore

(Skiba, 2008)

50

(Ludwig,
Schaefer and

Asteroth,
2016)

60 minutes peak
power output
(W) at crank

Up to 2
years
(~600
days)

20
(M) Cycling Amateur Not specified TSS

51
(Ludwig and

Asteroth,
2016)

60 minutes peak
power output
(W) at crank

140 days 20
(M) Cycling Amateur Not specified TSS

52 (Turner et
al., 2017)

Cyclists average
power output
over the most

intense 10-
minute interval

during each
exercise bout

500 days 1 (U) Cycling Not specified

18
measurements
total over 500

days

BikeScore
(Skiba, 2008)

53 (Rozendaal,
2017)

Critical power
(W) at the crank 2-5 years 6 (U) Cycling Elite 22-24 total per

athlete

Linear
combination of

attributes
(volume,

intensity, TSS,
subjective load,
objective load)

54 (Kolossa et
al., 2017)

Semi-tethered
swim trial (3x
repetitions of

20m with
increasing

resistance) –
performance
expressed as

mean velocity
for 60m

160 days 5 (U) Swimming Not specified ~ 1 × weekly Volume ×
Intensity

 272

Index Study Performance Duration 𝒏 Domain Level Measurement
frequency

TL
quantification

55 (Busso,
2017)

Maximal power
sustained (W)
for 5 minutes

15 weeks 6 (M)
General
(cycle

ergometry)
Recreational 3× weekly Volume ×

Intensity

56 (Philippe et
al., 2018)

Ladder climbing
with weight for

time
4 weeks 11

(U) Animal (rat) - 5 × weekly Work done (W)

57 (Méline et
al., 2018)

1-lap maximal
effort race 3 months 5 (F)

10(M)
Speed
skating Elite 5 × weekly Volume ×

Intensity

59 (Williams et
al., 2018) HRV 8 weeks 8 (M) Rugby

Sevens Elite Daily sRPE

62 (Scarf et al.,
2019)

Four metrics
(power / HR

related)

6-14
months

10
(M) Cycling Intermediate -

Elite
Approximately
2-3 × weekly

Banister’s
TRIMP

66 (Mitchell et
al., 2020)

Time trials and
race results
(50m/100m)

66-85
weeks

2 (M)
1 (F) Swimming Elite

Approximately
35 total per

subject

Volume ×
Intensity

67 (Imbach et
al., 2020)

Standing start
time-trials (1.5
lap maximum

effort)

3 months 3 (M)
4(F)

Speed
Skating Elite 1 × weekly

Combination of
multiple
measures

70 (Piatrikova
et al., 2021) Not accessible

 (M) male, (F) female, (U) unspecified. Volume × Intensity indicates a training load quantification

strategy that involved some type of sum of total load or distance multiplied by intensity (possibly based

on zones or coefficients weighting each exercise). TL = Training load.

 273

Table B-3: Model fitting and evaluation approaches across the experimental FFM literature

Index Study

Model fitting Model evaluation

Objective Function Algorithm / Solver In-sample
(Y/N)

Out-of-sample
(Y/N)

1 (Banister et al., 1975) RSS Not specified Y N

2 (Calvert et al., 1976) Not specified Not specified Visual plots N

3 (Corlett, 1977) MSE Not specified Y N

6 (Banister and
Hamilton, 1985) RSS Not specified N N

8 (Morton, Fitz-clarke
and Banister, 1990) RSS Not specified Y N

9 (Busso et al., 1990) RSS Relaxation method with
constraints Y N

10 (Busso, Carasso and
Lacour, 1991) RSS Multiple linear regression Y N

13 (Banister, Morton and
Fitz-Clarke, 1992) RSS Not specified Y N

14 (Busso et al., 1992) RSS Not specified Y N

16 (Busso, Candau and
Lacour, 1994) MSE Multiple linear regression Y N

18 (Mujika et al., 1996) RSS Not specified Y N

19 (Busso et al., 1997) Recursive RSS Not specified Y N

20 (Banister, Carter and
Zarkadas, 1999) RSS Not specified N N

21 (Busso et al., 2002) Recursive RSS Not specified Y N

22 (Millet et al., 2002) RSS Not specified Y N

23 (Busso, 2003) RSS Not specified Y N

26 (le Bris et al., 2004) RSS Not specified Y N

27 (Hellard et al., 2005) RSS Gauss-Newton Y N

28 (Millet et al., 2005) RSS Not specified Y N

29 (Wood et al., 2005) RSS Not specified Y N

30 (le Bris et al., 2006a) RSS Not specified Y N

31 (le Bris et al., 2006b) RSS Not specified Y N

32 (Hellard et al., 2006) RSS Gauss-Newton Y N

33 (Suzuki et al., 2006) RSS Multiple linear regression Y N

35 (Thomas, Mujika and
Busso, 2008) RSS Not specified Y N

36 (Ishii et al., 2008) RSS Not specified Y N

37 (Pfeiffer, 2008) RSS Not specified Y N

 274

Index Study

Model fitting Model evaluation

Objective Function Algorithm / Solver In-sample
(Y/N)

Out-of-sample
(Y/N)

39 (Chalencon et al.,
2012) RSS Not specified Y N

40 (Gouba et al., 2013) RSS Alienor method and OPO Y N

41 (Sanchez et al., 2013) RSS Not specified Y N

43 (Wallace, Slattery and
Coutts, 2014) RSS Not specified Y N

44 (Shrahili, 2014) Log-likelihood Not specified – considered
starting point sensitivity Y N

45 (Chalencon et al.,
2015) RSS Not specified N Y

46 (Agostinho et al.,
2015) RSS Not specified Y N

47 (Philippe et al., 2015) RSS Generalised reduced gradient
(GRG) Y N

49
(Matabuena and
Rodríguez-López,
2016, 2019)

RSS Not specified N N

50 (Ludwig, Schaefer
and Asteroth, 2016) RSS Quasi-Newton Y Y

51 (Ludwig and
Asteroth, 2016) Not specified Not specified Y Y

52 (Turner et al., 2017) Not specified Genetic algorithm Y Y

54 (Kolossa et al., 2017) RSS Multi-start interior point
search algorithm Y Y

55 (Busso, 2017) Log Likelihood Newton-type (package NLM
in R) Y N

56 (Philippe et al., 2018) RSS Genetic algorithm Y N

57 (Méline et al., 2018) RSS Genetic algorithm Y N

59 (Williams et al.,
2018) RSS Not specified (Excel solver) Y Y

62 (Scarf et al., 2019) Log Likelihood Not specified Y N

66 (Mitchell et al., 2020) RSS Two stage, BFGS-B &
Nelder-Mead Y Y

67 (Imbach et al., 2020) RSS Newton-type Y Y

70 (Piatrikova et al.,
2021) Not accessible Not accessible Not accessible

MSE: Mean-squared errors; RSS: Residual sum of squares (equivalent to sum of squared errors);

OPO: Optimisation preserving operators’ technique

 275

Appendix C: Algorithms

C-1 NLS sensitivity experiment (from chapter 5)

Requirements:

• Let 𝑓(𝜃, 𝜔) denote the fitness-fatigue model function

• Let 𝜃 be the parameter space 𝜃 = (𝜃/, 𝜃<, 𝜃i, … , 𝜃E) ∈ ℝb of 𝑓

• Let 𝜔 denote the training load series	𝜔 = {𝜔/, 𝜔<, … , 𝜔a} of length 𝑛 and time-step 1 day.

BEGIN MAINPROGRAM
 SET lower bound on θ: l = (l>, lC, lV, … , lW), lX ∈ ℝT
 SET upper bound on θ: u = (u>, uC, uV, … , uW), uX ∈ ℝT, uX > lX
 SET η where ηW is the total size of the grid (η,m ∈ ℕ)
 SET γ where nW mod γ ≠ 0, γ ∈ ℕ
 COMPUTE Sample η equally spaced points from each open interval (lX, uX), i ∈ [1,m]
 COMPUTE Make gridY of size ηW by taking all combinations

 COMPUTE Partition gridY	into γ equal segments gridY ≡ fgridY
(>), gridY

(C), … . , gridY
(Z)h

 SET θ[\]^ ∈ (l, u)
 INPUT ω
 COMPUTE vector p ∈ ℝ of length n by computing f(θ[\]^, ω)
 FOR ν = 1 to 3
 INITALISE empty array RESULT_ of dim NnW × (m+ 3)Q
 COMPUTE the sequence s, where s goes from 1 to n by ν

COMPUTE p` by sampling p at each point s
FOR j = 1 to γ

 INPUT gridY
(a) into working memory

 DO IN PARALLEL FOR k = 1 to nW/γ

 COMPUTE pyb from f(θb, ω), θb ∈ gridY
(a)

 COMPUTE pyb` by sampling pyb at each point s

 COMPUTE RSSINIT = ∑Npyb` − p`Q
C

 OUTPUT Store RSSINIT to array RESULT_
INITIALISE The quasi-Newton method at starting point θb
SOLVE min∑(f(θcd[, ω) − p`)C s.t. θcd[∈ [u, l]
OUTPUT Row-bind θcd[and RSSFIT to array RESULT_
COMPUTE pyYcd[from the model for {θcd[, ω}

COMPUTE Fit statistic ϵ = ~∑NpyY,-. − p`Q
C
 (example RMSE)

OUTPUT Store ϵ to array RESULT_
 END PARALLEL FOR

 INPUT Pull grid segments fgridY
(>), … , gridY

(Z)h into working memory

 Recombine gridY and remove segments
 Columnar-bind gridY with RESULT_: yields array of dim NnW × (2m+ 3)Q
 END FOR
 END FOR
END MAINPROGRAM

 276

Algorithm Notes

• The algorithm was written in pseudocode to make it language agnostic and therefore most
understandable.

• R stores and manipulates all objects in the physical memory and therefore to conserve working memory
during the implementation we opted to split and save the grid into smaller segments that would be
loaded in sequential order. In our experiment we only had 8GB of RAM available on the machine. The
constant 𝛾 is the number of smaller grids used to conserve memory.

• DO IN PARALLEL indicates that the operations were distributed to available nodes (via multi-core)
and executed in parallel. In our experiment we used 8 available nodes within a single machine.

• Dimensions of arrays are given in rows × column format.

 277

C-2 Expanding window cross-validation (from chapter 6)

Requirements:

• [𝑙, 𝑢] are the box constraints (bounds) established on the parameter space 𝜃
• 𝐷𝑎𝑡𝑎L$ is a time-series data set of training loads and measured performance values {𝜔L$, 𝑝L$}, where

loads (𝜔L$) are quantified from some relatively homogenous training program (𝐵1)
• 𝐷𝑎𝑡𝑎L8 is a time-series data set of training loads and measured performance values {𝜔L8, 𝑝L8}, where

loads (𝜔L8) are quantified from some relatively homogenous training program (𝐵2) where 𝐵1 ≢ 𝐵2.
• 𝐷𝑎𝑡𝑎L$ proceeds 𝐷𝑎𝑡𝑎L8 in time-order (consecutive series).
• 𝑁=(+"(= is the number of starting points in the parameter space to initiate the optimisation algorithm

from (fitting iterations):
o This pseudocode assumes a derivative-based method is used that requires repeated fitting from

multiple starting points to find the best or ‘good’ solution. For stochastic derivative-free
methods, the equivalent process is repetition of fitting (with different seeds).

BEGIN MAINPROGRAM

 COMPUTE Partition 𝐷𝑎𝑡𝑎e> into 𝑆 expanding splits f�𝑠𝑝𝑙𝑖𝑡NfP@A
(>) , 𝑠𝑝𝑙𝑖𝑡NghN

(>) � ,… , �𝑠𝑝𝑙𝑖𝑡NfP@A
(i) , 𝑠𝑝𝑙𝑖𝑡NghN

(i) �h,

 Where �𝑠𝑝𝑙𝑖𝑡NfP@A
(@) � = f𝜔NfP@A

(@) , 𝑝NfP@A
(@) h and �𝑠𝑝𝑙𝑖𝑡NghN

(@) � = f𝜔NghN
(@) , 𝑝NghN

(@) h for (𝑖 = 1,… , 𝑆)

 COMPUTE Sample the space [𝑙, 𝑢] 𝑁hNPfNh times, building a set of starting points 𝜃hNPfNh
 DO IN PARALLEL FOR i = 1 to 𝑆 (Train splits in Parallel)
 FOR j = 1 to 𝑁hNPfNh

 INITIALISE optimisation algorithm at 𝜃hNPfNh
(j)

 SOLVE train model via MLE on 𝑠𝑝𝑙𝑖𝑡NfP@A
(@) , returns fitted parameters 𝜃(@,j)

 COMPUTE model 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(@,j) under fitted parameters 𝜃(@,j) and 𝜔 = {𝜔NfP@A
(@) , 𝜔NghN

(@) }

 COMPUTE 𝜖(@,j) ← Evaluate metric of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(@,j) on 𝑠𝑝𝑙𝑖𝑡NghN
(@) (e.g., MAPE or RMSE)

 END FOR

 COMPUTE Average model performance for the split (across iterations) ← >
k/0120/

∑ N𝜖(@,j)Qk/0120/
jl>

 END PARALLEL FOR

 COMPUTE average model performance across all train-test splits ← >
(k/0120/×i)

∑ �∑ N𝜖(@,j)Qk/0120/
jl> �i

@l>

 FOR j = 1 to 𝑁hNPfNh

 INITIALISE optimisation algorithm at 𝜃hNPfNh
(j)

 SOLVE train model via MLE on 𝐷𝑎𝑡𝑎e>, returns fitted parameters 𝜃OP@A
(j)

 COMPUTE model 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠OP@A
(j) under fitted parameters 𝜃OP@A

(j) and 𝜔 = {𝜔e>, 𝜔eC}

 COMPUTE 𝜖OP@A
(j) 	← Evaluate metric of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠OP@A

(j) on 𝑝eC
 END FOR

 COMPUTE average model performance for main train-test iterations ← >
k/0120/

∑ �𝜖OP@A
(j) �k/0120/

jl>

 COMPUTE 𝜃LMN@OPQ 	← set 𝜃OP	@Ao where 𝑘 = min
o
𝜖OP@A
(o) 	from		(𝑘 = 1,… ,𝑁hNPfNh)

END MAINPROGRAM

Algorithm Notes

• The algorithm was written in pseudocode to make it language agnostic and therefore most
understandable.

• Large values of 𝑁 (> 1000) may require consideration of memory allocation limits if implemented in R
• DO IN PARALLEL indicates that the operations are to be parallelised by some means (forking, multicore

etc.)
• MLE refers to maximum likelihood estimation. Least-squares could equally be used

 278

Appendix D: Chapter 5 supplementary materials

D-1 Parameter estimate distributions (standard model)

Table D-1: Parameter estimate and RSS distributions of solutions obtained for the standard model

Scenario Convergence Summary
statistics 𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 RSSsolutions RSSinitial

Standard
model

100% data

True
parameters
(N = 69204)

Min 100.00 0.72 28.47 1.20 8.58 0.00 288
Max 100.00 0.72 28.54 1.20 8.61 0.00 12893022

Median 100.00 0.72 28.50 1.20 8.60 0.00 529882
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 710954

Other
solutions

(N = 30763)

Min 90.55 0.01 1.19 0.01 1.93 11.17 457
Max 116.97 5.00 50.00 5.00 50.00 3019.36 12771646

Median 100.16 4.60 18.82 5.00 15.37 11.17 616682
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 845510

Abnormal
termination

(N = 33)

Min 100.16 4.60 18.82 5.00 15.37 11.17 13268
Max 100.16 4.60 18.82 5.00 15.37 11.17 7401559

Median 100.16 4.60 18.82 5.00 15.37 11.17 655974
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 860297

Standard
model

(50% data)

True
parameters
(N = 69145)

Min 100.00 0.72 28.47 1.20 8.57 0.00 135
Max 100.00 0.72 28.56 1.20 8.62 0.00 6470310

Median 100.00 0.72 28.50 1.20 8.60 0.00 267974
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 359878

Other
solutions

(N = 30823)

Min 90.55 0.01 1.19 0.01 1.93 0.00 457
Max 116.97 5.00 50.00 5.00 50.00 3019.36 12858865

Median 100.16 3.81 18.82 5.00 15.37 11.17 609208
M.A.D. 0.24 1.18 14.35 0.00 10.04 16.56 830985

Abnormal
termination

(N = 32)

Min 100.09 4.61 18.91 5.00 15.47 5.66 7159
Max 100.09 4.61 18.91 5.00 15.47 5.66 4484160

Median 100.09 4.61 18.91 5.00 15.47 5.66 480631
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 555066

Standard
model (33%

data)

True
parameters
(N = 70284)

Min 100.00 0.72 28.43 1.20 8.57 0.00 101
Max 100.00 0.72 28.57 1.20 8.63 0.00 4266927

Median 100.00 0.72 28.50 1.20 8.60 0.00 178693
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 239610

Other
solutions

(N = 29676)

Min 91.75 0.01 1.00 0.01 1.68 2.89 306
Max 116.14 5.00 50.00 5.00 50.00 1370.32 4018048

Median 99.94 4.62 18.98 5.00 15.57 2.89 197519
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 269993

Abnormal
termination

(N = 40)

Min 93.74 0.33 18.98 0.01 15.57 2.89 1920
Max 99.94 5.00 50.00 5.00 49.64 154.04 2239363

Median 99.94 4.62 18.98 5.00 15.57 2.89 415359
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 477229

M.A.D refers to the median absolute deviation. Data % refers to the proportion of data used in the fitting process (i.e.,
100% corresponds to a measurement frequency of every day, 50% to every second day, 33% to every 3rd day). Other
solutions include all non-true critical points (i.e., saddle and local minima). All parameter estimates rounded to 2.d.p, fitted
RSS values to 3.d.p.

 279

D-2 Parameter estimate distributions (fitness-delay model)

Table D-2: Parameter estimate and RSS distributions of solutions obtained for the fitness-delay model

Scenario Convergence Summary
statistics 𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 RSSsolutions RSSinitial

Fitness-
delay
model

100%
data

True
parameters
(N = 20588)

Min 100.00 0.72 32.45 4.29 1.05 8.55 0.000 544
Max 100.00 0.72 32.56 4.32 1.05 8.65 0.001 35463988

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 897537
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 1180419

Other
solutions

(N = 96717)

Min 99.94 0.65 1.04 2.06 0.71 1.00 0.010 143
Max 121.18 5.00 44.70 19.29 1.97 50.00 4380.976 41612914

Median 100.04 1.53 32.16 6.17 1.05 21.87 0.121 1060962
M.A.D. 0.04 0.17 5.94 0.53 0.00 25.09 0.164 1454207

Abnormal
termination

(N = 344)

Min 100.01 0.74 27.86 5.65 1.04 4.84 0.011 2648
Max 100.10 1.69 44.69 10.45 1.05 50.00 0.598 15290067

Median 100.09 1.68 32.23 6.36 1.04 31.11 0.457 1090636
M.A.D. 0.01 0.02 5.72 0.06 0.00 11.20 0.130 1479867

Fitness-
delay
model

(50%
data)

True
parameters
(N = 20651)

Min 100.00 0.72 32.43 4.28 1.05 8.54 0.000 273
Max 100.00 0.72 32.57 4.32 1.05 8.66 0.000 18983885

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 451439
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 592054

Other
solutions

(N = 96184)

Min 99.94 0.65 1.04 2.06 0.71 1.00 0.000 143
Max 121.18 5.00 44.70 19.29 1.97 50.00 4380.976 41612914

Median 100.04 1.53 32.16 5.81 1.05 21.86 0.121 1060179
M.A.D. 0.04 0.25 5.94 0.90 0.00 19.65 0.164 1453494

Abnormal
termination

(N = 157)

Min 99.96 0.73 19.34 5.64 0.80 4.88 0.006 539
Max 100.48 5.00 41.40 14.23 1.06 45.27 37.537 8804668

Median 100.06 1.65 30.65 6.29 1.04 26.70 0.181 540733
M.A.D. 0.02 0.06 2.32 0.14 0.00 5.42 0.144 743087

Fitness-
delay
model

(33%
data)

True
parameters
(N = 21065)

Min 100.00 0.72 32.41 4.28 1.05 8.53 0.000 181
Max 100.00 0.73 32.58 4.32 1.05 8.68 0.001 10781682

Median 100.00 0.72 32.50 4.30 1.05 8.60 0.000 307321
M.A.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.000 403900

Other
solutions

(N = 96486)

Min 94.31 0.65 1.00 1.78 0.01 1.78 0.004 46
Max 119.93 5.00 44.71 30.11 1.94 50.00 1514.567 13746207

Median 100.04 1.51 32.12 6.16 1.05 21.53 0.042 348259
M.A.D. 0.04 0.26 6.02 0.59 0.00 24.62 0.058 476901

Abnormal
termination

(N = 98)

Min 100.01 0.74 27.83 5.63 1.05 4.87 0.004 2255
Max 100.11 1.69 38.48 10.33 1.05 40.99 0.227 7949920

Median 100.09 1.66 30.37 6.24 1.05 27.20 0.154 429570
M.A.D. 0.02 0.05 1.97 0.15 0.00 4.25 0.083 593110

M.A.D refers to the median absolute deviation. Data % refers to the proportion of data used in the fitting process (i.e., 100%

corresponds to a measurement frequency of every day, 50% to every second day, 33% to every 3rd day). Other solutions

include all non-true critical points (i.e., saddle and local minima). All parameter estimates rounded to 2.d.p, fitted RSS values

to 3.d.p.

 280

D-3 Unique solutions (standard model)

Below are tables of the top 10 highest frequency solutions (to 1.d.p for 𝑝∗, 𝜏; 2.d.p for 𝑘) found across

the searches applying the standard model. The complete set of unique solutions for each scenario are

available in spreadsheet form at the following repository link, but to conserve space are not copied in

entirety here.

Proportion of fitting data Total unique solutions (N) Link (to all solutions)
100% 353

github.com/bsh2/thesis/c5/SF-1.xlsx 50% 275
33% 275

100% Fitting Data

Table D-3A: Top 10 highest frequency solutions (standard model, 100% fitting data)
𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS

100.2 4.6 18.8 5 15.4 saddle 25838 21.42
117 3.8 1.2 5 1.9 minimum 1933 2896.74
94 5 50 4.7 49.7 saddle 164 395.04

93.4 0.34 50 0.01 50 saddle 88 406.15
93.4 0.34 50 0.01 48.7 saddle 77 405.69
93.4 0.34 50 0.01 48.6 saddle 76 405.65
93.4 0.34 50 0.01 48.9 saddle 75 405.76
93.4 0.34 50 0.01 49.9 saddle 64 406.12
93.4 0.34 50 0.01 49.8 saddle 59 406.08
93.4 0.34 50 0.01 48.8 saddle 58 405.72

50% Fitting Data

Table D-3B: Top 10 highest frequency solutions (standard model, 50% fitting data)
𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS

100.1 4.61 18.9 5.00 15.5 saddle 26359 8.52
116.5 3.65 1.3 5.00 1.9 minimum 1922 1487.52
94.1 5.00 50.0 4.70 49.6 saddle 177 191.12
93.4 0.34 50.0 0.01 50.0 saddle 94 194.69
93.4 0.34 50.0 0.01 48.7 saddle 73 194.41
93.4 0.34 50.0 0.01 49.8 saddle 71 194.65
93.4 0.34 50.0 0.01 48.8 saddle 69 194.43
93.4 0.34 50.0 0.01 48.9 saddle 65 194.45
93.4 0.34 50.0 0.01 48.5 saddle 56 194.37
93.4 0.34 50.0 0.01 49.9 saddle 55 194.67

33% Fitting Data

Table D-3C: Top 10 highest frequency solutions (standard model, 33% fitting data)

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝒌𝒉 𝝉𝒉 Type Frequency RSS

100.2 4.6 18.8 5 15.4 saddle 14394 6.24
100 0.72 28.5 1.2 8.6 minimum 12798 0.00
117 3.8 1.2 5 1.9 minimum 1834 1018.39
94 5 50 4.7 49.7 saddle 115 150.38

93.4 0.34 50 0.01 50 saddle 48 154.93
117 3.81 1.2 5 1.9 minimum 44 1019.40
93.4 0.34 50 0.01 48.9 saddle 43 154.83
93.4 0.34 50 0.01 48.6 saddle 43 154.81
93.4 0.34 50 0.01 48.7 saddle 41 154.82
93.4 0.34 50 0.01 49.9 saddle 40 154.92

 281

Figure D-3.1: Starting value (initial solution) distributions across iterations that successfully reached
the true parameters in the standard model scenarios

Figure D-3.2: RSS values associated with initial solution distributions across iterations that
successfully reached the true parameters in the standard model scenarios.

60
80

10
0

12
0

14
0

p*

0
1

2
3

4
5

kg

0
10

20
30

40
50

τg

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh

60
80

10
0

12
0

14
0

p*

0
1

2
3

4
5

kg

0
10

20
30

40
50

τg

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh

60
80

10
0

12
0

14
0

p*

0
1

2
3

4
5

kg

0
10

20
30

40
50

τg

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh

100% Fitting Data

50% Fitting Data

33% Fitting Data

 282

D-4 Unique solutions (fitness-delay model)

Below are tables of the top 10 highest frequency solutions (to 1.d.p for 𝑝∗, 𝜏; 2.d.p for 𝑘) found across

the searches applying the fitness-delay model. The complete set of unique solutions for each scenario

are available in spreadsheet form at the following repository link, but to conserve space are not copied

in entirety here.

Proportion of fitting data Total unique solutions (N) Link (repository)

100% 383
github.com/bsh2/thesis/c5/SF-1.xlsx 50% 504

33% 550

100% Fitting Data
Table D-4A: Top 10 highest frequency solutions (fitness-delay model, 100% fitting data)

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS
100 0.74 32.2 10 1.05 4.9 minimum 39401 0.10
100 1.53 28.1 5.8 1.05 21.9 minimum 33266 1.03
100 1.53 28.2 5.8 1.05 21.9 minimum 5811 0.94

100.1 1.64 44 6.2 1.04 49 minimum 4380 2.03
121.2 5 1.2 2.1 1.97 2.1 minimum 1519 4417.29
100 1.52 28.1 5.8 1.05 21.8 minimum 1505 7.01
100 1.52 28.1 5.8 1.05 21.9 minimum 953 15.93

100.1 1.64 44.7 6.1 1.04 50 minimum 940 30.56
100 5 22.4 19.3 1.06 4.1 saddle 621 8.27

100.7 5 19.2 14 0.82 19.2 saddle 613 98.30

50% Fitting Data
Table D-4B: Top 10 highest frequency solutions (fitness-delay model, 50% fitting data)

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS
100 0.74 32.2 10 1.05 4.9 minimum 34291 0.05
100 1.53 28.1 5.8 1.05 21.9 minimum 31140 0.52
100 0.72 32.5 4.3 1.05 8.6 minimum 8089 0.00
100 1.53 28.2 5.8 1.05 21.9 minimum 5434 0.47

100.1 1.64 44 6.2 1.04 49 minimum 4320 1.02
121.2 5 1.2 2.1 1.97 2.1 minimum 1510 2298.04
100 1.52 28.1 5.8 1.05 21.8 minimum 1411 3.53

100.1 1.64 44.7 6.1 1.04 50 minimum 924 15.31
100 1.52 28.1 5.8 1.05 21.9 minimum 894 8.01
100 5 22.4 19.3 1.06 4.1 saddle 604 4.16

33% Fitting Data
Table D-4C: Top 10 highest frequency solutions (fitness-delay model, 33% fitting data)

𝒑∗ 𝒌𝒈 𝝉𝒈𝟏 𝝉𝒈𝟐 𝒌𝒉 𝝉𝒉 Type Frequency RSS

100 0.74 32.1 10 1.05 4.9 minimum 38922 0.12
100 1.51 28.1 5.8 1.05 21.6 minimum 17384 2.95
100 1.51 28.1 5.8 1.05 21.5 minimum 12086 0.98
100 1.52 28.1 5.8 1.05 21.6 minimum 8634 0.11

100.1 1.64 44.7 6.1 1.05 50 minimum 4099 0.25
119.9 5 1 1.8 1.94 1.8 minimum 1636 1515.64
100 1.51 28 5.8 1.05 21.5 minimum 1332 3.75

100.1 5 19.4 14.4 0.76 19.4 saddle 913 19.93
99.9 5 22.3 19.2 1.03 4.2 saddle 587 2.33
100 1.52 28.1 5.8 1.05 21.7 minimum 409 0.59

 283

Figure D-4.1: Starting value (initial solution) distributions across iterations that successfully reached
the true parameters in the fitness-delay model scenarios

Figure D-4.2: RSS values associated with initial solution distributions across iterations that

successfully reached the true parameters in the fitness-delay model scenarios.

60
80

10
0

12
0

14
0

p*

0
1

2
3

4
5

kg

0
10

20
30

40
50

τg1

0
10

20
30

40
50

τg1

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh
60

80
10
0

12
0

14
0

p*

0
1

2
3

4
5

kg
0

10
20

30
40

50
τg1

0
10

20
30

40
50

τg1

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh

60
80

10
0

12
0

14
0

p*

0
1

2
3

4
5

kg

0
10

20
30

40
50

τg1

0
10

20
30

40
50

τg1

0
1

2
3

4
5

kh

0
10

20
30

40
50

τh

100% Fitting Data

50% Fitting Data

33% Fitting Data

	coversheet_template_thesis
	STEPHENS HEMINGWAY 2021 The utility of mathematical

