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Hierarchical approach to classify food scenes in
egocentric photo-streams

Estefanı́a Talavera, Marı́a Leyva-Vallina, Md. Mostafa Kamal Sarker, Domenec Puig, Nicolai Petkov and Petia
Radeva

Abstract—Recent studies prove that the environment where
people eat, can affect their nutritional behaviour [1]. In this work
we provide automatic tools for personalized analysis of a person’s
health habits by the study of daily recorded egocentric photo-
streams. In particular, we propose a new automatic approach
for the classification of food-related environment, that is able to
classify up to 15 such scenes. In this way, people could monitor
the context of their food intake in order to get an objective
insight into their daily eating routine. We propose a model that
classifies food-related scenes organized in a semantic hierarchy.
Also, we present and make available a new egocentric dataset
composed of more than 33000 images recorded by a wearable
camera, over which we test our proposed model. Our approach
obtains an average and weighted average classification accuracy
of 75.46% and 63.20%, respectively, outperforming clearly the
baseline methods.

Index Terms—Egocentric vision, lifestyle, scenes classification,
food scenes

I. INTRODUCTION

NUTRITION is one of the main pillars of healthy habits. It
is directly related to most chronic diseases like: obesity,

diabetes, cardiovascular diseases, and also cancer and mental
diseases [2], [3], [4]. Recent studies show that it is not only
important what people eat, but also how/where people eat [1].
For example, it is well-known that who wants to lose weight
is advised not to go to the supermarket while being hungry
[5]. Social environment also matters; we eat more in certain
situations, such as parties, than at home [6]. If we are exposed
to food we feel the need or temptation to eat, same feeling of
temptation that we experience at the supermarket [7]. Not only
the sight plays its role, but also smell: everyone has walked in
front of a bakery shop and felt tempted or hungry immediately
[8]. The conclusion is that where we are can have direct impact
on what or how we eat and, by extension, on our health [9].
However, there is a clear lack of automatic tools to monitor
objectively the context of our food intake along time.

A. Our aim

Our aim is to propose an automatic tool based on robust
deep learning techniques able to classify food-related scenes
where a person spends time during the day. Our hypothesis is
that if we can help people get insight into their daily eating
routine, they can improve their habits and adopt a healthier
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Fig. 1: Examples of images of each of the proposed food-
related categories present in the introduced EgoFoodPlaces
dataset.

lifestyle. By eating routine, we refer to activities related to the
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acquisition, preparing and intake of food, that are commonly
followed by a person. For instance, ‘after work I go shopping
and later I cook dinner and eat’. Or, ‘I go after work directly
to a restaurant to have dinner’. These two eating routines
would affect us differently, having a direct impact on our
health. The automatic classification of food-related scenes can
represent a valuable tool for nutritionists and psychologists as
well to monitor and understand better the behaviour of their
patients or clients. This tool would allow them to infer how
the detected eating routines affect the life of people and to
develop personalized strategies for behaviour change related
to food intake.

The closest approaches in computer vision to our aim focus
either on scene classification, with a wide range of generic
categories, or on food recognition from food-specific images,
where the food typically occupies significant part of the
image. However, food recognition from these pictures does not
capture the context of food intake and thus does not represent a
full picture of the routine of the person. It mainly exposes what
the person is eating, at a certain moment, but not where, in
which environment. These environmental aspects are important
to analyze in order to keep track of the people behaviour.

B. Personalized Food-Related Environment Recognition
In this work, we propose a new tool for automatic analysis

of food-related environments of a person. In order to be
able to capture these environments along time we propose to
use recorded egocentric photo-streams. These images provide
visual information from a first-person perspective of the daily
life of the camera wearer by taking pictures frequently: visual
data about activities, events attended, environments visited,
and social interactions of the user are stored. Additionally,
we present a new labelled dataset that is composed of more
than 33000 images, which were recorded in 15 different food-
related locations.

The differentiation of food-related scenes that commonly
appear in recorded egocentric photo-streams is a challenging
task due to the need to recognize places that are semantically
related. In particular, images from two different categories can
look very similar, although being semantically different. Thus,
there exists a high intra-class variance in addition to not high
inter-class similarity. In order to face this problem, we consider
a taxonomy taking into account the relation of the studied
classes. The proposed model for food-related scene classifi-
cation is a hierarchical classifier that embeds convolutional
neural networks emulating the defined taxonomy.

Hence, the contributions of the paper are three-fold:
• A deep hierarchical network for classification of food-

related scenes from egocentric images.
• A taxonomy of food-related environments organized in

a fine-grained way that takes into account the main
food-related activities (eating, cooking, buying, etc.). Our
classifier is able to classify the different categories and
subcategories of the taxonomy within the same model.

• An egocentric dataset of 33000 images and 15 food-
related environments. We call it FoodEgoPlaces and,
together with its ground-truth, is publicly available in
http://www.ub.edu/cvub/dataset/.

As an example of application, we illustrate the utility of the
proposed method for the detection of food-related scenes.

The paper is organized as follows: in Section II, we high-
light some relevant works related to our topic, in Section III
we describe the approach proposed for food scene recognition.
In Section IV, we introduce our FoodEgoPlaces dataset and
outline the experiments performed and obtained results. In
Section V, we discuss the results achieved. Finally, in Section
VI, we present our conclusions.

II. PREVIOUS WORKS

Scene recognition has been extensively explored in different
fields, namely: robotics, security, environmental monitoring or
egocentric videos. In this section, we describe previous works
addressing this topic.

The recognition and monitoring of food-intake has been
previously addressed in the literature [10], [11], [12]. For
instance, in [10], the authors proposed the use of a microphone
and a camera worn on the ear to get insight of the subject’s
food intake. On one side, the sound allows the classification
of chewing activities, and on the other side, the selection of
key-frames create overview of the food intake that otherwise
would be difficult to quantify. An food-intake log supported by
visual information allows to infer the food-related environment
where a person spends time. However, no work has focus on
this challenge so far.

A. Scene classification

The problem of scene classification was originally addressed
in the literature by applying traditional techniques ([13], [14],
just to mention a few), over handcrafted features. Nowadays,
deep learning is the state-of-the-art.

As for the former case, one of the latest works on scene
recognition using traditional techniques is [13], which aim
was to recognize 15 different scenes categories of outdoor
and indoor scenes. The proposed model was based on the
analysis of image sub-region geometric correspondences by
computing histograms of local features. In [14], the proposed
approach focused on indoor scenes recognition, extending the
number of recognized scenes to 67, where 10 of them are
food-related. Having the hypothesis that similar scenes contain
specific objects, their approach combines local and global
image features for the definition of prototypes for the studied
scenes. Very soon scene recognition was outperformed using
deep learning.

Convolutional Neural Networks (CNNs) are a type of feed-
forward artificial neural network, which connectivity patterns
were inspired by the animal’s visual cortex neurons connec-
tions [15]. Since Yann LeCun’s LeNet [16] was introduced,
many other deep architectures have been developed and ap-
plied to different computer vision known problems, achieving
better results than the state-of-art techniques: MNIST [16] (im-
ages), Reuters [17](documents) and TIMIT [18] (recordings
in English), ImageNET [19] (Data Sets classification), etc.
Within the wide range of recently proposed architectures, some
of the most popular are: GoogleNet [20], AlexNet [21], ResNet

http://www.ub.edu/cvub/dataset/.
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[22], or VGGNet [23]. The use of CNNs for learning high-
level features has shown a huge progress in scene recognition
outperforming traditional techniques like [14]. This is mostly
due to the availability of large datasets, those presented in
[14], [24] or the ones derived from the MIT Indoor dataset
([25], [26]). However, the performance at scene recognition
level has not reached the same level of success as object
recognition. Probably, this is a result of the difficulty presented
when generalizing the classification problem, due to the huge
range of different environments surrounding us (e.g. 400 in
the Places2 dataset [25]).

In [27], CNN activation features were extracted and con-
catenated following a spatial pyramid structure, and used to
train one-vs-all linear classifiers for each scene category. In
contrast, in [25] the authors evaluate the performance of the
responses from the trained Places-CNN as generic features,
over several scene and object benchmarks. Also, a probabilistic
deep embedding framework, which analyses regional and
global features extracted by a neural network, is proposed
in [28]. In [29], two different networks called Object-Scene
CNNs, are combined by late fusion; the ‘object net’ aggregates
information for event recognition from the perspective of
objects, and the ‘scene net’ performs the recognition with
help from the scene context. The nets are pre-trained on the
ImageNet dataset [19] and Places dataset [25] respectively.
Recently, in [30] the authors combine object-centric and scene-
centric architectures. They propose a parallel model where the
network operates over different scale patches extracted from
the input image. None of these methods have been tested on
egocentric images that themselves represent a challenge for
image analysis.

B. Classification of egocentric scenes

In order to obtain personalized scene classification we need
to analyze egocentric images acquired by a wearable camera.
Egocentric image analysis is a relatively recent field within
computer vision concerning the design and development of
Computer Vision algorithms to analyze and understand photo-
streams captured by a wearable camera. In [31], several classi-
fiers were proposed to recognize 8 different scenes (not all of
them food-related). First, they discriminate between food/no-
food and later, they train One-vs-all classifiers to discriminate
among classes. Later, in [32] a multi-class classifier was
proposed, with a negative-rejection method applied. In [31],
[32] they only consider 8 scene categories, just 2 of them are
food-related (kitchen and coffee machine) and without visual
or semantic relation.

C. Food-related scene recognition in egocentric photo-streams

In our preliminary work presented in [33], we proposed
a MACNet neural architecture for the classification of food-
related scenes. This network input image is scaled into five
different resolutions(the original image, with a scale value of
0.5). The five scaled images are fed to five blocks of atrous
convolutional networks [34] with three different rates (1, 2,
and 3) to extract the key features of the input image in multi-
scale. In addition, four blocks of pre-trained ResNet are used

to extract 256, 512, 1024 and 2048 feature maps, respectively.
Each feature maps extracted by an atrous convolutional block
is concatenated with the corresponding ResNet block to feed
the subsequent block. Finally, the features obtained from the
fourth ResNet layer is the final features are used to classify
the food places images using two fully connected (FC) layers.

However, the challenge still remains due to the high variance
that environments take in real-world places, and the wide range
of possibilities of how a scene can be captured. In this work,
we propose an organization of the different studied classes
into semantic groups following the logic that relates them.
We define a taxonomy, i.e. a semantic hierarchy relating the
food-related classes. We organize environments according to
the actions related to them: cooking, eating, acquiring food
products. We demonstrate that by creating different levels of
classification, and classifying scenes by the person action, it
can serve as a natural prior for more specific environments
and thus can further improve the performance of the model.
The proposed classification model, implemented following
this taxonomy, allows in an end-to-end process to analyze at
different semantic levels of where the camera wearer spends
time.

To the best of our knowledge, no previous work has focused
on the problem of food-related scenes recognition at different
semantic levels, either from conventional or egocentric images.
Our work aims to classify food-related scenes from egocentric
images recorded by a wearable camera. We believe that these
images highly describe our daily routine and can contribute to
the improvement of healthy habits of people.

III. HIERARCHICAL APPROACH FOR FOOD-RELATED
SCENES RECOGNITION IN EGOCENTRIC PHOTO-STREAMS

We propose a new model to address the classification
of food-related scenes in egocentric images. It follows a
hierarchical semantic structure, which adapts to the taxonomy
that describes the relation among classes. The classes are
hierarchically implemented from less to more specific ones.
Therefore, the model is scalable and can be adapted depending
on the classification problem, i.e. if the taxonomy changes.

For the purposes of food-related scene classification, we
define a semantic tree which is depicted in Figure 2. We
redefine the problem inspired by how humans hierarchically
organize concepts into semantic groups. This organization
groups classes that relate to the action eating, preparing, or
acquiring. Later it splits eating into eating outdoor or indoor.
Some of the subcategories group several classes, such as
the subcategory eating indoor that encapsulates seven food-
related scenes classes: bar, beer hall, cafeteria, coffee shop,
dining room, restaurant, and pub indoor. In contrast, preparing
and eating outdoor are represented uniquely by kitchen and
picnic area, respectively. The semantic hierarchy was defined
following the collected food-related classes and their intrinsic
relation.

The differentiation among classes at the different levels
of the hierarchy needs to be performed by a classifier. In
this work, we propose to use CNNs for the different levels
of classification of our food-related scenes hierarchy. The
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aggregation of CNNs layers mimics the food-related scenes
structure presented in Fig. 2. Due to the good quality of
the scene classification results over the Places2 dataset [26],
we use the pre-trained VGG365 network [23] on which we
build our hierarchical model. Note that this approach resem-
bles the DECOC classifier [35] that proves the efficiency of
decomposing a multi-class classification problem in several
binary classification problems organized in a hierarchical way.
The difference with the food-related scene classification is
that in the latter case the classes are organized semantically
in meta-classes corresponding to nutrition-related activities
instead of constructing meta-classes without explicit meaning,
but according to the entropy of training data [35].

Fig. 2: Proposed semantic tree for food-related scenes catego-
rization. For their later reference, we mark with dashed lines
the different depth levels, and with letters the sub-classification
groups.

Given an image, the final classification label is based on the
aggregation of estimated intermediate probabilities obtained
for the different levels of the hierarchical model, since a direct
dependency exists between levels of the classification tree. The
model aggregates the chain of probabilities by following the
statistical inference method. The probability of an event is
based on its prior estimated probabilities.

Let us consider classes Ci and Ci−1 so that superscript
shows the level of the class in the hierarchy and Ci−1 is parent
of Ci in the hierarchical organization of the tree. Thus, we can
write:

P (Ci, x) = P (Ci, x|Ci−1, x) ∗ P (Ci−1|x) (1)

where P () relates to probabilities. P (Ci−1, x|Ci, x) repre-
sents the likelihood of Ci−1, given image x, occurring given
that Ci, given image x, is happening, while P (Ci, x) and
P (Ci−1, x) are marginal probabilities given image x, i.e.
the probabilities of independently observing Ci and Ci−1,
respectively.

Note that we can estimate P (Ci, x|Ci−1, x) from the clas-
sifier of the network trained to classify the classes children
of class Ci, P (Ci−1, x|Ci, x) is 1 since Ci is a subclass of
Ci−1.

P (Ci−1, x) can be recursively estimated by considering the
estimated probability on Ci−1 and its class parent. Hence, we
obtain that for each node Ci in the hierarchy (in particular,
for the leaves), we get:

P (Ci, x) = Πi
j=1P (Cj , x|Cj−1, x) ∗ P (Cj−1, x) (2)

Without loss of generality, we consider that the probability
of the class in the root is the probability to have food-related
image, (P (C0)), obtained by a binary classifier.

Let us illustrate the process with an example. Following the
semantic tree in Fig. 2, our goal is to classify an egocentric
image belonging to the class dining room. We observe that as
dining room is a subclass of indoor and indoor is of eating, etc.
Thus, the probability of dining room occurring giving image
x is computed as:

P (diningroom, x)

= P (diningroom, x|indoor, x) ∗ P (indoor, x|eating, x)

∗ P (eating, x|foodrelated, x) ∗ P (foodrelated, x)

(3)

To summarize, given an image our proposed model com-
putes the final classification as a product of the estimated
intermediate probabilities at the different levels of the defined
hierarchical tree.

IV. EXPERIMENTS AND RESULTS

In this section, we describe a new home-made dataset that
we make it public, the experimental setup, the metrics used to
evaluate the analysis, and the results obtained.

A. Dataset

In this work, we present EgoFoodPlaces, a dataset com-
posed of more than 33000 egocentric images from 11 users
organized in 15 food-related scene classes. The images were
recorded by a Narrative Clip camera1. This device is able
to generate a huge number of images due to its continuous
image collection. It has a frame rate of 2-3 images per minute.
Thus, users regularly record an amount of approximately 1500
images per day. The camera movements and the wide range of
different situations that the user experiences during his/her day,
lead to new challenges such as background scene variation,
changes in lighting conditions, and handled objects appearing
and disappearing throughout the photo sequence.

Food-related scene images tend to have an intrinsic high
inter-class similarity, see Fig. 1. To determine the food-related
categories, we selected a subset of the ones proposed for
the Places365 challenge [36]. We focus on the categories
with a higher number of samples in our collected egocentric
dataset, disregarding very unlikely food-related scenes, such
as beer garden and ice-cream parlor. Also, we found that
discriminating scenes like pizzeria and fast-food restaurant is
artificial if the scene is recorded from a first-person view, and
hence, we merged them to a restaurant class.

1http://getnarrative.com/
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Fig. 3: Total number of images per food-related scene class.
We give the number of collected events per class between
parenthesis.

EgoFoodPlaces was collected during daily activities of the
users. To build the dataset, we select the subset of images
from the EDUB-Seg dataset that described food-related scenes,
introduced in [37], [38], and later extended it with new
collected frames. The dataset was gathered by 11 different
subjects, during a total of 107 days, while spending time in
scenes related to the acquisition, preparing or consumption
of food. The dataset has been manually labelled into a total
of 15 different food-related scenes classes: bakery, bar, beer
hall, cafeteria, coffee shop, dining room, food court, ice cream
parlour, kitchen, market indoor, market outdoor, picnic area,
pub indoor, restaurant, and supermarket. In Fig. 3, we show
the number of images per different classes. This figure shows
the unbalanced nature of the classes in our dataset, reflecting
the different prolongation of time that a person spends on
different food-related scenes.

Since the images were collected by a wearable camera when
performing any of the above mentioned activities, the dataset is
composed by groups of images close in time. This leads to two
possible situations. On one hand, images recorded ‘sitting in
front of a table while having dinner’ will most likely be similar.
On the contrary, in scenes such as ‘walking at the supermarket’
the images vary since they follow walking movement of the
user in a very changeable environment.

In Fig. 4, we present the dataset by classes and events. This
graph shows how the average, maximum and minimum spent
time for the given classes differ. Note that this time can be
studied since it is directly related to the amount of recorded
images in the different food-related scenes. As we previously
assumed, classes with a small amount of images correspond
to not usual environments or environments where people do
not spend a lot of time in (e.g. bakery). In contrast, the most
populated classes refer to everyday environments (e.g. kitchen,
supermarket), or to environments where more time is needed

Fig. 4: Illustration of the variability of the size of the events for
the different food-related scene classes. The data is presented
by making the width of the box proportional to the size of
the group. We give the number of collected events per class
between parenthesis. The range of the data of a class is shown
by the whiskers extend from its data box.

Fig. 5: Visualization of the distribution of the classes using
the t-SNE algorithm.

to complete performing activity (e.g. restaurant).

Fig. 6: Mean Silhouette Score for the samples within the
studied food-related classes. The score is shown with bars and
in blue text on top of them.

1) Class-variability of the EgoFoodPlaces dataset: To
quantify the degree of semantic similarity among the classes
in our proposed dataset, we compute the intra- and inter-class
correlation. We use the classification probabilities output of the
proposed baseline VGG365 network in order to find suitable
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descriptors for our images for this comparison. This network
was trained for the classification of the proposed 15 food-
related scenes. These descriptors encapsulate the semantic
similarities of the studied classes.

To study the intra-class variability, we compute the mean
silhouette coefficient for all samples, that is defined as,

Silhouette score = (b− a)/max(a, b) (4)

where (a) corresponds to the intra-class distance per sample,
and (b) corresponds to the distance between a sample and
the closest class to which the sample is part of. Note that
the silhouette takes values from 1 to -1; the highest value
represents high density and separated clusters. The value 0
represents overlapping of clusters. Negative values indicate
that there are samples with more similar clusters than the one
they have been assigned to. The mean Silhouette score is 0.81
for the samples of our dataset depicted per class in Fig. 6. This
value indicates that the classes are consistent and meaningful.

Furthermore, we visually illustrate the inter-class variability
of the classes by embedding the 15 dimensional descriptor
vector to 2 dimensions using the t-SNE algorithm [39]. The
results are shown in Fig. 5. This visualization allows us to
better explore the variability among the samples in the test-
set. For instance, classes such as restaurant and supermarket
are clearly distinguishable as a cluster. In contrast, we can
recognize the classes with lower recognition rate, as the ones
overlapping with supermarket and restaurant. For instance,
market indoor is merged in its majority with supermarket. At
the same time, the class restaurant clearly overlaps with coffee
shop and picnic area.

B. Experimental setup

In this work, we propose to build the model on top of the
VGG365 network [36] since it outperformed state-of-the-art
CNNs when classifying conventional images into scenes. We
selected this network, because it was already pre-trained with
images describing scenes, and after evaluating and comparing
its performance to the state-of-the-art CNNs. The classifica-
tion accuracy obtained by the VGG16[23], InceptionV3[40],
and ResNet50[41], were 65.09%, 71.62%, and 70.83%, re-
spectively, lower than the 74.12% accuracy achieved by the
VGG365 network.

We build our semantic hierarchical classification model
by aggregating VGG365 nets over different subgroups of
images/classes, emulating the semantic hierarchy proposed for
food-related scenes recognition in Fig. 2. The final probability
of a class is computed by the model, as described in Section
III.

The model has an explicit semantic hierarchy that does not
just aim to classify a given sample of food-related scenes,
but also to get understanding of the semantic tree proposed.
Therefore, we focus on the comparison of performances of
existent methodologies with similar semantic classification
approaches.

We compare the performance of the proposed model with
the following baseline experiments:

1) FV: Fine-tuning of the VGG365 network with EgoFood-
Places.

2) FV-RF: We use this categorical distribution obtained
by the fine-tuned VGG365 in (1) as image descriptors.
Later, we train the Random Forest classifier with 200
trees [42].

3) FV-SVM: Fine-tuned VGG365 to obtain image descrip-
tors and Support Vector Machines [43].

4) FV-KNN: Fine-tuned VGG365 to obtain image descrip-
tors and k-Nearest Neighbors [44] (n=3).

5) SVM-tree: We use the categorical distribution obtained
by the fine-tuned VGG365 as images descriptors of the
subsets of images that represents the nodes of the tree.
Later, we train SVM as nodes of the proposed taxonomy.

6) MACNet [33]: We fine-tuned the MACNet network
introduced in [33] to fit our proposed dataset.

We make use of the Scikit-learn machine learning library
available for Python for the training of the traditional clas-
sifiers (SVM. RF, and KNN). For all the experiments, the
images are re-sized at size 256x256. For the CNNs, we fine-
tuned the baseline CNNs with a training batch size of 8,
and run the validation set each 1000 iterations. The training
of the CNNs was implemented using Caffe [45] and its
Python interface. The code for the implementation of our
proposed model is publicly available in https://github.com/
estefaniatalavera/Foodscenes hierarchicalmodel.

C. Dataset Split

In order to robustly generalize the proposed model and fairly
test it, we assure that there are no images from the same
scenes/events in both training and test sets. To this aim, we
divide the dataset into events for the training and evaluation
phases. Events are captured by sequentially recorded images
that describe the same environment, and we obtain them by
applying the SR-Clustering temporal segmentation method
introduced in [38]. The division of the dataset into training,
validation and test, aims to maintain a 70%, 10% and 20%
distribution, respectively (see Table I). As it can be observed
in Fig. 3, EgoFoodPlaces presents highly unbalanced classes.
In order to face this problem, we could either subsample
classes with high representation, or add new samples to the
ones with low representation. We decide not to discard any
image due to the relatively small number of images within
the dataset. Thus, we balanced the classes for the training
phase by over-sampling the classes with less elements. For all
the experiments performed, the images used for the training
phase are shuffled in order to give robustness to the network.
Together with the EgoFoodPlaces dataset, the given labels, and
the training, validation and test files are publicly available for
further experimentation (http://www.ub.edu/cvub/dataset/).

D. Evaluation

We measure the performance of the proposed method by
computing the normal and weighted accuracy. The use of
weighted accuracy aims to face the unbalanced of the dataset,
and intuitively expresses the strength of our classifier. This
metric normalizes based on the number of samples per class.

https://github.com/estefaniatalavera/Foodscenes_hierarchicalmodel
https://github.com/estefaniatalavera/Foodscenes_hierarchicalmodel
http://www.ub.edu/cvub/dataset/
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TABLE I: Split of the proposed EgoFoodPlaces dataset for the performed experiments.
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Num
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es

Images Class 342 1632 926 1383 666 2920 3639 1057 107 3835 1731 1245 1608 7105 5607 33803
Training 301 1126 568 1198 175 2219 2636 1032 70 2660 1421 661 1348 4001 4195 23611

Validation 14 181 296 45 178 212 295 18 12 415 89 488 87 1105 498 3933
Test 27 325 62 140 313 489 708 7 25 760 221 96 173 1999 914 6259

Thus, one missed label will weigh more if we have less
instances of the evaluated class, and vice-versa:

wi =
1

ni ∗ C
.

For a class i with ni instances, a hit or a miss will weigh wi,
if we have C different classes.

Moreover, we qualitatively compare the given labels by our
method and the best of proposed baseline to sample images
from the test set.

E. Results

We present the obtained classification accuracy at image
level for the performed experiments in Table II. As it can be
observed, our proposed model achieves the highest accuracy
and weighted average accuracy, with 75.46% and 63.20%,
respectively, followed by the SVM and Random Forest for
the accuracy and SVM and KNN for the weighted accuracy.

Our proposed hierarchical model has the capability of
recognizing not only the 15 classes corresponding to the leaves
of the tree in the semantic tree (see Fig.2), but also the
meta-classes at the different semantic levels of depth. Thus,
specialists can analyze the personal data and generate strategy
for improvement of life-style of people by studying their food-
related behaviour either from a broad perspective, such as
when the person eats or shops, or into a more detailed one,
like if the person used to eat in a fast-food restaurant or at
home.

But a logical question is if the model provides robust
classification of meta-classes as well. To this aim, we evaluate
the classification performance at the different levels of the
defined semantic tree. Note that since each class is related to a
meta-class on a higher level, an alternative to our model would
be to obtain the meta-classes accuracy from their sub-classes
classification. We compare the accuracy of meta-classes from
their classification by the proposed model vs inferring the
accuracy from the classification of the subclasses samples
using a FV-SVM model (see Table III - on accuracy of L1,
and L2 meta-classes). As one can observe in Table ??, our
model achieves higher accuracy classifying meta-classes in all
cases. This proves that it is a robust tool for the classification
of food-related scenes classes and meta-classes.

If we observe the confusion matrix in Fig. 7, we can get
insight about the miss-classified classes. We can see how
our algorithm tends to confuse the classes belonging to the
semantic level of self-service (acquiring) and eating indoor
(eating). We believe that this is due to the unbalanced aspect of

TABLE II: Food-related scene percentage of accuracy classifi-
cation performance. We present the accuracy for each category,
the average accuracy and the weighted accuracy for all models.
We rename the fine-tuning of the VGG365 as ‘FV’, and the
later use of its output probabilities for the training of the State-
of-the-Art models.

Categories BSN FV FV+RF FV+KNN FV+SVM MACNet[33]
bakery shop 37.04 29.63 18.51 29.63 29.62 25.93

bar 33.54 25.85 22.77 25.54 26.77 42.77
beer hall 91.94 88.71 85.48 87.10 87.09 96.77

pub indoor 82.86 82.86 82.14 82.86 82.85 78.57
cafeteria 73.80 58.47 54.95 56.87 59.10 59.10

coffee shop 65.64 68.10 65.03 66.05 67.89 69.73
dining room 69.21 70.90 62.28 64.69 70.33 68.93
food court 57.14 42.86 28.57 42.86 57.14 42.85

ice cream parlor 48.00 72.00 44.00 68.00 72.00 20.00
kitchen 94.74 94.21 94.47 94.60 94.34 95.53

market indoor 77.38 78.28 70.14 72.40 76.92 61.09
market outdoor 44.79 30.21 21.88 28.13 30.20 35.42

picnic area 0.00 0.00 0.00 0.00 0.00 0.00
restaurant 79.99 78.74 87.49 81.94 78.84 77.99

supermarket 91.90 92.45 93.44 92.78 92.56 93.22
Avg Acc. 75.46 74.12 74.90 74.71 74.76 74.19

Weigh Avg Acc. 63.20 60.88 59.25 61.25 62.47 58.88

our data and the intrinsic similarity within the sub-categories
of some of the branches of the semantic tree.

Fig. 7: Confusion matrix with the classification performance
of the proposed hierarchical classification model.
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TABLE III: Classification performance at different levels of the proposed semantic tree for food-related scenes categorization.
We compute the achieved accuracy (Acc) per level, and the weighted accuracy (W-Acc) where we consider the number of
samples per class. The different semantic levels (L) are introduced in Fig. 2.

Our Method FV SVMTree FV+RF FV+SVM FV+KNN
Acc WAcc Acc WAcc Acc WAcc Acc WAcc Acc WAcc Acc WAcc

Fold 1
Level 1 (L1) 0.945 0.957 0.916 0.921 0.923 0.930 0.922 0.927 0.916 0.920 0.917 0.922

Level 2a (L2a) 0.920 0.625 0.892 0.606 0.899 0.610 0.896 0.609 0.887 0.602 0.892 0.606
Level 2b (L2b) 0.833 0.891 0.846 0.901 0.846 0.904 0.846 0.911 0.845 0.903 0.845 0.906

Fold 2
Level 1 (L1) 0.928 0.923 0.897 0.881 0.907 0.896 0.896 0.880 0.897 0.881 0.897 0.882

Level 2a (L2a) 0.880 0.637 0.840 0.608 0.855 0.619 0.838 0.606 0.838 0.607 0.842 0.609
Level 2b (L2b) 0.844 0.949 0.847 0.943 0.847 0.947 0.843 0.950 0.844 0.945 0.836 0.939

Fold 3
Level 1 (L1) 0.938 0.950 0.924 0.931 0.931 0.942 0.922 0.928 0.927 0.935 0.923 0.930

Level 2a (L2a) 0.916 0.652 0.896 0.637 0.909 0.646 0.892 0.634 0.900 0.640 0.895 0.636
Level 2b (L2b) 0.920 0.944 0.915 0.938 0.917 0.940 0.916 0.947 0.920 0.943 0.920 0.947

Fold 4
Level 1 (L1) 0.929 0.951 0.910 0.915 0.917 0.927 0.903 0.907 0.910 0.915 0.901 0.904

Level 2a (L2a) 0.920 0.639 0.874 0.608 0.887 0.616 0.864 0.600 0.873 0.607 0.861 0.599
Level 2b (L2b) 0.869 0.925 0.894 0.929 0.894 0.932 0.888 0.944 0.893 0.934 0.891 0.931

Fold 5
Level 1 (L1) 0.943 0.943 0.930 0.922 0.934 0.930 0.930 0.926 0.928 0.933 0.928 0.923

Level 2a (L2a) 0.903 0.633 0.882 0.619 0.890 0.625 0.887 0.622 0.622 0.887 0.886 0.622
Level 2b (L2b) 0.912 0.936 0.908 0.930 0.909 0.933 0.902 0.934 0.932 0.909 0.902 0.929

fold70
Level 1 (L1) 0.941 0.940 0.895 0.890 0.901 0.904 0.894 0.890 0.892 0.887 0.897 0.891

Level 2a (L2a) 0.930 0.800 0.868 0.747 0.758 0.881 0.866 0.745 0.863 0.743 0.872 0.750
Level 2b (L2b) 0.869 0.925 0.867 0.933 0.940 0.873 0.877 0.950 0.871 0.944 0.861 0.933

fold70-1
Level 1 (L1) 0.932 0.937 0.908 0.913 0.923 0.927 0.899 0.909 0.910 0.914 0.902 0.906

Level 2a (L2a) 0.909 0.785 0.878 0.767 0.899 0.760 0.867 0.741 0.880 0.756 0.875 0.756
Level 2b (L2b) 0.907 0.929 0.909 0.928 0.909 0.928 0.909 0.932 0.913 0.932 0.906 0.923

fold80
Level 1 (L1) 0.963 0.974 0.954 0.954 0.959 0.965 0.957 0.961 0.956 0.957 0.955 0.926

Level 2a (L2a) 0.963 0.785 0.937 0.764 0.950 0.775 0.945 0.771 0.940 0.766 0.943 0.712
Level 2b (L2b) 0.924 0.956 0.916 0.948 0.915 0.951 0.910 0.952 0.915 0.952 0.916 0.913

fold80-1
Level 1 (L1) 0.948 0.943 0.922 0.905 0.931 0.921 0.939 0.931 0.927 0.914 0.933 0.926

Level 2a (L2a) 0.924 0.721 0.890 0.699 0.907 0.708 0.916 0.714 0.898 0.701 0.913 0.712
Level 2b (L2b) 0.814 0.935 0.785 0.916 0.782 0.914 0.781 0.917 0.787 0.920 0.779 0.913

The classes with higher classification accuracy are kitchen
and supermarket. We deduce that this is due to the very
characteristic appearance of the environment that they involve
and the amount of different images of such classes in the
dataset. On the contrary, picnic area is not recognized by any
of the methods. The confusion matrix indicates that the class
is embedded by the model into the class restaurant. This can
be inferred by visually checking the images, since in both
classes a table and another person usually appear in front of the
camera wearer. Moreover, from the obtained results, we can
observe a relation between the previously computed Silhouette
Score per class and the classification accuracy achieved by the
classifiers. Classes with high consistency are better classified,
while classes such as bar, bakery shop, picnic area, or market
outdoor have lower classification performance.

The achieved results are rather similar. Therefore, we cal-
culate the t-test to evaluate the statistical significance of the
differences. Our proposed model outperforms FV, FV+RF,
FK+KNN, FV+SVM, and MacNet with statistical significance
( p=0.X, p=0.X, p=0.X, p=0.X, p=0.X, for paired t-test). The
smaller the p value, the higher the statistical significance.

Qualitatively, in Fig. 8 we illustrate some correct and wrong
classifications by our proposed model and the trained SVM
(FV-SVM). We highlight the groundtruth class of the images in
boldface. Even though the performance of the different tested
models does not differ much, the proposed model has the
ability to better generalize, as its weighted average accuracy
indicates.

V. DISCUSSIONS

The proposed dataset is composed by manually selected
images from recorded day photo-streams. These extracted
images belong to food-related events, described as groups
of sequential images representing the same scene. It is to
be highlighted that for the performed experiments, images
belonging to the same event stayed together for either training
or testing phase. Even though the classification of such scenes
could have been events rather than images, we do not dispose
of a higher number of events for the training phase in the case
of event-based scene classification. The creation of a bigger
egocentric dataset is a recurrent ongoing work. Next lines of
work will address the analysis of events in order to study if
they are connected and time-dependant.

Recorded egocentric images can be highly informative about
the lifestyle, behaviour and habits of a person. In this work, we
focus on the implementation of computer vision algorithms for
data extraction from images. More specifically, on character-
izing food-related scenes related to an individual for future
assistance in controlling obesity and other eating disorders
being of high importance for the society.

Next steps could involve the analysis other information e.g.
the duration and regularity of nutritional activities. Based on
extracted information regarding individuals, their daily habits
can be extracted and characterized. The daily habits of people
can be correlated to their personality, since people’s routine
affect them differently. Moreover, within this context social
relations and their relevance can be studied: the number of
people a person sees per day, the length and frequency of their
meetings and activities, etc and how social context influence



9

Fig. 8: Examples of top 5 classes for the images in the test set. We show the results obtained by the proposed model, and
compare them with the obtained ones by the trained SVM classifier. The class in bold corresponds to the true label of the
given image.

people. All this information extracted from egocentric images
is still to be studied in depth leading to powerful tools
for objective, long-term monitoring and characterization of
behaviour of people for better and longer life.

The introduced model can be easily extrapolated and im-
plemented to other classification problems with semantically
correlated classes. Organizing classes in a semantic hierarchy
and embedding a classifier to each node of the hierarchy allow
to consider the estimated intermediate probabilities for the
final classification.

The proposed model computes the final classification prob-
ability based on the aggregation of the probabilities of the
different classification levels. The random probability of a
given class is 1/|C|, where |C| is the number of children the
parent class of that node has. Hence, having a high number of
sub-classes (children nodes) for a specific node would tend to
lower probability. There is risk that a ‘wrong class node’ gets
higher final classification probability if it has few brother-sin
the tree compared to the ‘correct class node’.

1) Application to recorded days characterization:: Food-
related scenes recognition is very useful to get understanding
about the patterns of behaviour of people. The presence of
people at certain food-related places is of importance when
describing their lifestyle and nutrition. While in this work we
focus on the classification of such places, we use the labels
given to the photo-streams to characterize the camera wearer’s
’lived experiences’ related with food. The characterization
given by the proposed model allow us to address the scene
detection at different semantic levels. Thus, by using high level
information we increase the robustness and the level of the

output information of the model.

Eating

Indoor

Outdoor Picnic Area

Acquiring Self-service

Attended

Preparing Kitchen

Bar 
Beer hall 
Pub Indoor
Cafeteria
Coffee Shop
Dining Room
Restaurant

Bakery 
Food court
Market outdoor
IceCream Parlor 

Input Image

Supermarket 
Market indoor

Level 1 Level 2 Level 3

(a)

(b)

(c)

(d)

(e)

Fig. 9: Illustration of detecting food-related events in egocen-
tric photo-streams of a camera wearer.

VI. CONCLUSIONS

In this paper, we introduced a multi-class hierarchical
classification approach, for the classification of food-related
scenes in egocentric photo-streams. The contributions of our
presented work are three-fold:

• We propose a hierarchical model based on the combina-
tion of different layers of deep neural network, mirroring
the given taxonomy for food-related scenes classification.
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This model be easily adapted to other classification prob-
lems and implemented on top of other different CNNs and
traditional classifiers.

• A taxonomy of food-related environments that considers
the main activities related to food (eating, cooking, buy-
ing, etc.).

• We make publicly available the FoodEgoPlaces dataset
and the model code. FoodEgoPlaces is composed by more
than 3300 egocentric images describing 15 categories of
food-related scenes of 11 camera wearers.

The performance of the proposed architecture is compared
with several built baseline methods. We demonstrated that the
proposed end-to-end semantic model based on a hierarchical
network outperforms such methods. As an incentive, the
proposed model has the ability of end-to-end automatically
classifying different semantic levels of depth. Thus, specialists
can analyze the nutritional habits of a person and generate
recommendations for improvement of the life-style of people
by studying their food-related behaviour either from a broad
perspective, such as when the person eats or shops, or into a
more detailed one, like when the person is eating in a fast-food
restaurant.

As future work, we plan to explore how to enrich our
data using domain adaptation techniques. Domain adaptation
allows the adaptation of the distribution of data to other target
data distribution. Egocentric datasets tend to be relatively small
due to the low frequency rate of the recording cameras. We
believe that by combining techniques of transfer learning,
we will be able to explore how the collected dataset can be
extrapolated to already available data, sets such as Places2. We
expect that the combination of data distributions will improve
the achieved classification performance. Therefore, further
analysis on this line will allow us to get better understanding
of people’s lifestyle, which will give insight into their health
and daily habits.
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20141510 (Marató TV3). The founders had no role in the
study design, data collection, analysis, and preparation of the
manuscript. The authors gratefully acknowledge the support of
NVIDIA Corporation with the donation of several Titan Xp
GPU used for this research. The collected data as part of the
study and given labels is publicly available from the research
group’s website: http://www.ub.edu/cvub/dataset/

REFERENCES

[1] M. N. Laska, M. O. Hearst, K. Lust, L. A. Lytle, and M. Story, “How we
eat what we eat: identifying meal routines and practices most strongly
associated with healthy and unhealthy dietary factors among young
adults,” Public health nutrition, vol. 18, no. 12, pp. 2135–2145, 2015.

[2] P. M. Stalonas and D. S. Kirschenbaum, “Behavioral treatments for
obesity: Eating habits revisited,” Behavior Therapy, vol. 16, no. 1, pp.
1–14, 1985.

[3] J. B. Hopkinson, D. N. Wright, J. W. McDonald, and J. L. Corner,
“The prevalence of concern about weight loss and change in eating
habits in people with advanced cancer,” Journal of pain and symptom
management, vol. 32, no. 4, pp. 322–331, 2006.

[4] L. M. Donini, C. Savina, and C. Cannella, “Eating habits and appetite
control in the elderly: the anorexia of aging,” International psychogeri-
atrics, vol. 15, no. 1, pp. 73–87, 2003.

[5] A. Tal and B. Wansink, “Fattening Fasting: Hungry Grocery Shoppers
Buy More Calories, Not More Food,” JAMA Intern Med., vol. 173,
no. 12, pp. 1146–1148, 2013.

[6] S. Higgs and J. Thomas, “Social influences on eating,” Current Opinion
in Behavioral Sciences, vol. 9, pp. 1–6, 2016.

[7] E. Kemps, M. Tiggemann, and S. Hollitt, “Exposure to television food
advertising primes food-related cognitions and triggers motivation to
eat,” Psychology & Health, vol. 29, no. 10, p. 1192, 2014.

[8] W. B. S. C. Ren A de Wijk, Ilse A Polet and J. H. Bult, “Food aroma
affects bite size,” BioMed Central, pp. 1–3, 2012.

[9] N. Larson, M. Story, and M. J, “A review of environmental influences
on food choices,” Annals of Behavioural Medicine, vol. 38, pp. 56–73,
2009.

[10] J. M. Fontana, M. Farooq, and E. Sazonov, “Automatic ingestion
monitor: a novel wearable device for monitoring of ingestive behavior,”
IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1772–
1779, 2014.

[11] D. Ravı̀, B. Lo, and G.-Z. Yang, “Real-time food intake classification
and energy expenditure estimation on a mobile device,” Wearable and
Implantable Body Sensor Networks (BSN), 2015 IEEE 12th International
Conference on, pp. 1–6, 2015.

[12] J. Liu, E. Johns, L. Atallah, C. Pettitt, B. Lo, G. Frost, and G.-Z. Yang,
“An intelligent food-intake monitoring system using wearable sensors,”
2012 Ninth International Conference on Wearable and Implantable Body
Sensor Networks, pp. 154–160, 2012.

[13] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 2169–2178, 2006.

[14] A. Quattoni and A. Torralba, “Recognizing indoor scenes.” IEEE
Conference on Computer Vision and Pattern Recognition, pp. 413–420,
2009.

[15] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[17] D. D. Lewis, “Reuters-21578,” Test Collections 1, 1987.
[18] J. Garofolo and et al., “TIMIT Acoustic-Phonetic Continuous Speech

Corpus,” Philadelphia: Linguistic Data Consortium, 1993.
[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” Computer Vision and Pattern
Recognition, pp. 248–255, 2009.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9,
2015.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, pp. 1097–1105, 2012.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[23] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” International Conference on Learning
Representations (ICRL), pp. 1–14, 2015.

[24] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

[25] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
Deep Features for Scene Recognition using Places Database,” Advances
in Neural Information Processing Systems 27, pp. 487–495, 2014.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva, “Places:
An Image Database for Deep Scene Understanding,” ArXiv, pp. 1–12,
2016.

[27] M. Koskela and J. Laaksonen, “Convolutional network features for scene
recognition,” Proceedings of the 22nd ACM international conference on
Multimedia, pp. 1169–1172, 2014.

[28] L. Zheng, S. Wang, F. He, and Q. Tian, “Seeing the big picture: Deep
embedding with contextual evidences,” CoRR, vol. abs/1406.0132, 2014.

[29] L. Wang, Z. Wang, and W. Du, “Object-Scene Convolutional Neural
Networks for Event Recognition in Images,” IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 1–6, 2015.

http://www.ub.edu/cvub/dataset/


11

[30] L. Herranz, S. Jiang, and X. Li, “Scene Recognition With CNNs:
Objects, Scales and Dataset Bias,” Conference on Computer Vision and
Pattern Recognition, pp. 571–579, 2016.

[31] A. Furnari, G. M. Farinella, and S. Battiato, “Temporal segmentation of
egocentric videos to highlight personal locations of interest,” European
Conference on Computer Vision, pp. 474–489, 2016.

[32] A. Furnari, G. Farinella, and S. Battiato, “Recognizing Personal Loca-
tions From Egocentric Videos,” IEEE Transactions on Human-Machine
Systems, vol. 47, no. 1, pp. 1–13, 2017.

[33] M. Sarker, M. Kamal, H. A. Rashwan, E. Talavera, S. F. Banu, P. Radeva,
and D. Puig, “Macnet: Multi-scale atrous convolution networks for
food places classification in egocentric photo-streams,” arXiv preprint
arXiv:1808.09829, 2018.

[34] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[35] O. Pujol, P. Radeva, and J. Vitrià, “Discriminant ECOC: A heuristic
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