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Abstract: Accurate modeling of thermal characteristics is critical to the safe use and reliable 

management of lithium-ion batteries. However, limitations in sensors and testing methods make online 

real-time acquisition of internal temperatures extremely difficult. This paper uses the similarity of 

dynamic system modeling to construct a lumped thermal characteristic model of the battery. By 

analyzing the heat conduction mechanism inside the battery, the optimized heat path model is combined 

with the classical Bernardi equation to realize the state description of the battery thermal characteristic 

system. In addition, the forgetting factor recursive least squares algorithm is used to realize the online 

identification of the parameters of the lumped thermal characteristics model. Meanwhile, the 

identification of the external thermal resistance is coupled with the estimation of the internal temperature, 

and a novel online adaptive co-estimation strategy based on the forgetting factor recursive least squares 

- joint Kalman filter is proposed, which solves the problem that the external thermal resistance cannot

be accurately identified adaptively in a complex environment. The experimental results show that the 

maximum root-mean-square error of the model under different experiments is 0.53°C, which verifies the 

high-accuracy of the lumped thermal characteristics modeling strategy. 
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1. Introduction 

In recent years, benefiting from the explosive development of the global new energy vehicle 

industry, lithium-ion batteries have rapidly become the mainstream power source by virtue of their high 

energy density and long cycle life [1, 2]. Compared with aging, self-discharge and capacity decline and 

other defects of their own, the safety problems caused by the difficulty of real-time prediction of battery 

temperature status have seriously restricted the scale development of new energy vehicles [3]. Therefore, 

the thermal characteristics modeling of the power battery and the high-precision prediction of the internal 

temperature are essential to prevent battery thermal runaway and ensure safe and long-life operation. In 

addition, for battery thermal management systems, different thermal management systems may have 

different temperature control methods, which in turn causes different battery thermal management 

systems to have different external heat transfer coefficients [4]. Using the same external heat transfer 

coefficient under different working conditions will increase the error of the internal temperature 

estimation of the battery [5]. Therefore, the adaptive working condition prediction method of the external 

heat transfer coefficient of the battery is extremely important for the high-accuracy thermal characteristic 

modeling and the construction of an efficient thermal management system. 

The complex internal structure and changeable application environment of lithium-ion batteries 

make it easy to produce uneven internal temperature distribution and higher internal temperature during 

use, which increases the difficulty of estimating the internal temperature of the battery [6, 7]. For the 

thermal characteristics modeling of power lithium-ion batteries, different modeling methods often have 
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differences in reliability and accuracy [8-10]. At present, the commonly used internal temperature 

measurement of batteries includes experimental internal temperature measurement methods, offline 

internal temperature prediction methods, and battery internal temperature estimation methods based on 

online estimation. The internal temperature measurement method based on experiments is usually to 

embed a thermocouple inside the battery [11-15]. This method is only suitable for testing the relevant 

thermal characteristics of the battery under experimental environmental conditions. In the actual 

application of the battery, the feasibility of this method is low and there are huge hidden dangers in the 

long-term use of the battery, and the safety problem of the battery in use cannot be guaranteed. The 

offline-based internal temperature prediction usually uses finite element numerical calculation methods. 

By establishing a battery cell thermal model and performing offline simulation, the internal temperature 

of the battery is estimated [16-20]. This method is mainly used for battery cell packaging design and 

module design, and the finite element numerical calculation method has extremely high computational 

complexity, and is not suitable for the practical application and thermal management of batteries. 

The above related battery internal temperature research is based on the laboratory or offline, and 

the development of an application-level vehicle battery thermal management system needs to meet the 

online estimation of the battery internal temperature. The method of predicting the internal temperature 

of the battery based on online estimation often takes practical application as the starting point to realize 

the thermal management of the battery [21-23]. Based on online estimation of battery internal 

temperature prediction methods can be roughly divided into DC internal resistance method, 

electrochemical impedance spectroscopy (EIS) measurement analysis method and temperature 

difference transfer function method. Li et al [24] and Howey et al [25] conducted related studies on the 

DC internal resistance method, which uses the DC internal resistance as a function of the internal and 

external temperature of the battery to estimate the internal temperature of the battery by looking up tables 
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or functional calculations. However, because different types of batteries, or different batteries of the 

same type, have different functional relationships between the DC internal resistance and the internal 

and external temperature of the battery, the DC internal resistance method does not have universal 

application. In addition, scholars in the field have also studied the EIS measurement and analysis method 

[26-28]. The principle of this method is similar to the DC internal resistance method. Using the 

corresponding function relationship between the general amplitude and phase angle of the battery's AC 

impedance and the internal temperature of the battery, the internal temperature of the battery can be 

estimated by looking up a table or function calculation [29, 30]. However, due to the harsh requirements 

of the working environment and the high price of the EIS measuring instrument, it is not suitable for 

practical applications in automobiles. In view of the obvious drawbacks of the above-mentioned internal 

temperature estimation methods, in order to improve the reliability of battery thermal modeling, related 

researchers applied the temperature difference transfer function method based on thermal circuit network 

modeling [31, 32]. This method uses the transfer function between the internal temperature of the battery 

and the heating power of the system, and calculates the internal temperature of the battery through the 

input current of the system [33-35]. The temperature difference transfer function method is more 

commonly used in current battery internal temperature estimation, but this method is an open-loop 

estimation, and cannot adaptively update the parameters of the transfer function according to changes in 

the external environment, and the accuracy is low. 

In addition to the above-mentioned battery thermal characteristics modeling methods, related 

scholars in the field have done related work on battery thermal management and internal temperature 

estimation research, and have achieved good results to a certain extent. Saw et al. [36] proposed a new 

thermal management system using mist cooling to keep the surface temperature of the battery module 

below 40°C, and verified through experiments and data that the mist cooling method is an effective 
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thermal management for lithium-ion battery packs. plan. Liu et al. [37] used dual-particle filtering to 

complete the temperature compensation modeling of the power lithium-ion battery, and solved the 

disturbance effect of the drift current on the model parameters. Xu et al. [38] constructed a new type of 

computational fluid dynamics model of the cooling system to keep the maximum temperature inside the 

battery below 32.5°C and improve the uniformity of temperature distribution between battery cells. On 

the basis of clarifying the internal heat transfer and heat generation mechanism of the battery, Jiang et 

al. [39] proposed a battery charge-discharge cycle thermal management model based on heat pipes and 

phase change materials to ensure that the battery has a lower temperature environment during long-term 

cycles. Liang [40] and others established a two-dimensional heat circuit network model, and based on 

this model, solved the heat generation and heat transfer mechanism of the battery. Chen [41] et al. 

established a new battery thermoelectric coupling model by considering the internal gelatinous structure 

of the battery and the high current and situation caused by external short circuit, and controlled the 

internal temperature and surface temperature error during short circuit within 1.771% and 3.915%, 

respectively. Despite the increasing research work on thermal management systems in academia, its main 

work focuses on the thermal cooling system and internal temperature estimation of the battery. The 

thermal management approach based on the battery cooling system can only control the battery within 

a certain temperature range to a certain extent, and the construction of the cooling system will increase 

the degree of coupling between the battery management system, which is extremely costly in the long-

term use of the battery. 

Based on the above discussion, the high computational complexity or harsh environmental 

conditions of use have kept most of the research in the laboratory stage and prevented the implementation 

of the system for practical on-board applications. In addition, the problem of uncertainty of external 

thermal resistance in modeling the battery thermal circuit system and the inability of adaptive accurate 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



estimation of internal temperature under variable environments have not received sufficient attention. In 

this paper, aiming at the problem that the internal temperature of the battery is difficult to self-adaptively 

and accurately estimate online, a lumped thermal characteristic model (LECM) based on circuit theory 

is established. Meanwhile, by analyzing the internal heat generation and heat dissipation mechanism of 

the battery, the discrete state-space equation expression of the thermal characteristic model is realized. 

Finally, considering the uncertainty of external thermal resistance, an idea of estimation strategy based 

on the adaptive forgetting factor least squares - joint Kalman filter (AFFRLS-JKF) is proposed to achieve 

the adaptive cooperative estimation of the full-parameter of LTCM and the internal temperature of the 

battery. The experiment verifies the high-accuracy of the LECM and the high-precision of the AFFRLS-

JKF estimation strategy.  

2. Mathematical analysis 

2.1. Lumped thermal characteristic modeling 

From the perspective of modeling the system, physical systems of the same order have similar 

dynamic characteristic equations. Therefore, based on the similarity between the total electric property 

modeling and the thermal property modeling of the battery, the thermal property network of the single 

battery cell is described by an equivalent electric property network to realize the total parameter thermal 

property modeling of the lithium-ion battery. The current source, capacitance and resistance of the 

electrical characteristic network are equivalent to the thermal power, heat capacity and thermal resistance 

of the thermal characteristic network, respectively. It is worth noting that thermal property modeling is 

always coupled with the electrical property parameter identification and internal state estimation 

algorithm of the battery throughout the online long-term application of the BMS. For this reason, while 

ensuring the accuracy of the battery temperature state estimation, its internal temperature estimation 
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should keep the computational complexity of the battery management system (BMS) low. In view of the 

fact that the information provided by the external characteristics of the battery is necessary for the 

subsequent internal temperature estimation online embedded application research, this paper assumes 

that the battery cell is a uniform heat generating body with the highest temperature at the center of the 

battery. Based on the above assumptions and online application requirements, with the goal of modeling 

and solving the thermal characteristics of power batteries, the lumped thermal characteristics model 

(LTCM) of the battery is constructed in a targeted manner. The simplified battery lumped thermal 

characteristic model is shown in Fig. 1. 
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Fig. 1. LTCM structure and simplified mechanism 

The Fig.1 (a) shows the physical modeling framework of a cylindrical lithium-ion battery. The Fig. 

1(b) shows the equivalent structure of the cylindrical lithium-ion battery's thermal characteristics 

modeling. The Fig. 1(c) is a simplified structure for modeling the thermal characteristics of a cylindrical 

lithium-ion battery. In Fig.1(a), Q is the total heating power of the battery. There are two ways to conduct 

it: one part heats the battery, and the other part conducts to the outside via thermal resistance. Ti is the 

highest point in the center of the battery. Ts is the temperature of the battery surface area. Tamb is the 

ambient temperature where the battery is located. T0 is the model reference temperature point. Generally, 
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Tamb is set as the external reference temperature point. Ri,x, Ri,y and Ri,y are the thermal resistances in 

various directions inside the battery, which are related to the thermal conductivity inside the battery. Ro,x, 

Ro,y, and Ro,z are the thermal resistance in various directions outside the battery, and are related to the 

heat transfer coefficient outside the battery. Ci is the equivalent heat capacity inside the battery. Cs is the 

equivalent heat capacity of the battery casing. It is worth noting that the cylindrical battery sample used 

in this test is an aluminum case with excellent thermal conductivity, and the heat capacity of the case is 

extremely small. Therefore, while ensuring the accuracy of the model as much as possible, the entire 

lumped parameter thermal characteristic model can be simplified. The simplified LTCM model structure 

is shown in Fig.1(C). Based on this, this research will realize the modeling and solving of the thermal 

characteristics of the battery. 

2.2. Model-based time domain analysis 

The calculation of battery heat generation is the basis of the entire lumped thermal characteristics 

modeling. Understanding the battery heat generation mechanism is crucial to the accurate solution of 

LTCM. Different charging and discharging current rates of the battery will cause the battery to produce 

a time-varying heat production rate, which in turn causes the temperature difference between the battery 

core and the casing. In addition, the inherent internal resistance of the battery is also one of the essential 

reasons for the heat generation of the battery. Therefore, when modeling the heating power of the battery, 

the influence of current and internal resistance on the heating power should be considered. To accurately 

calculate the heat generation power of the cell requires consideration of the reaction heat, polarization 

heat and Joule heat of the cell. The calculation formula is shown in Equation (1). 

 srjp QQQQQ   (1) 

In Equation (1), Qp is the heat of polarization, Qj is the Joule heat, Qr is the heat of reaction, and Qs 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



is the heat of side reaction. Through the analysis of the heat source mechanism, it can be known that 

both Qp and Qj are positive when the battery is charged and discharged. Qr is negative when the battery 

is charging, and positive when the battery is discharging. In addition, Qs is related to the electrode 

decomposition that occurs during self-discharge of the battery, and the heat is very small during charging 

and discharging, so it can be ignored. With the goal of reducing the computational complexity of the 

model, the heat generation and heat dissipation mechanism of the battery is studied through the method 

of lumped parameter modeling. The Bernardi equation is used to calculate the equivalent heating power 

of the battery, as shown in Equation (2). 

 
   

rjp QQQ

L dTdEITUEIQ 



 
(2) 

In Equation (2), I is the charge and discharge current of the battery. T is the battery temperature. E 

is the internal balance electromotive force of the battery. UL is the terminal voltage of the battery. dE/dT 

represents the entropy thermal coefficient of the battery, that is, the coefficient of the reversible reaction 

of the battery. The classic Bernardi equation contains more inputs, which is not conducive to the 

application of embedded systems. In order to reduce the calculation complexity of the battery heat source, 

the Bernardi heating power equation is further simplified according to Kirchhoff's law, and the simplified 

heating power calculation expression of the lumped parameter thermal model of the battery is obtained, 

as shown in Equation (3). 

   sLs IRUEdTdEITRIQ  2
 (3) 

In Equation (3), Rs represents the internal DC resistance of the battery. By clarifying the shunt mode 

of heating power in LTCM, the similarity of system modeling is used to express the time-domain state-

space equation of the thermal characteristic model. First, based on Bernardi's simplified equation, 

combined with Kirchhoff's circuit law in circuit science, the differential equations of Ti node and Ts node 
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are derived, as shown in Equation (4). 
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In Equation (4), Tis is the difference between the internal temperature of the battery and the 

reference temperature point, and Tss is the difference between the surface temperature of the battery and 

the reference temperature point. In theory, state variables are not required to be physically measurable. 

In this paper, Tis and Tss are selected as the state variables of the system, and the heating power Q is the 

input vector of the system. Based on the heat prevalence law of the lumped parameter thermal model, 

the state equation of the battery thermal circuit system is established to describe the dynamic 

characteristics of the thermal circuit of the model. The expression form of the state equation in the time 

domain state is shown in Equation (5). 
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(5) 

In equation (5), xt is the system state variable in continuous state, which is composed of the highest 

internal temperature Tin and the battery surface area temperature Tss. ut is the input vector of the system 

in continuous state. 𝑥𝑡̇ is the differential form of the system state variable. At is the system matrix in 

the time domain state, and Bt is the control matrix in the continuous state. In the optimal control of 

engineering practice, state variables are often required as feedback variables, and choosing easy-to-

measure physical variables as state variables is beneficial to the iterative identification of the system. In 

the embedded system application of lithium-ion battery, the value of Tss is easier to measure safely than 

Tin. Therefore, this paper selects Tss as the output vector of the battery thermal circuit system to obtain 
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the observation equation under the continuous time state, as shown in Equation (6). 
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(6) 

In Equation (6), yt is the output vector of the system in the time domain state. Ct is the output matrix 

in the time domain state. Dt is the direct transfer moment matrix in the time domain state. In particular, 

in the state-space equation of the heat circuit system, the output vector is directly reflected by the output 

matrix, and the direct transmission of the input vector is not considered, that is, Dt=0. 

2.3. Online identification of thermal circuit model parameters 

The identification of thermal characteristic parameter values is the basis for high-precision 

estimation of the internal temperature of lithium-ion batteries. Aiming at the embedded system 

application of thermal characteristics modeling, this paper uses transfer function instead of differential 

equation to describe the thermal characteristics of LTCM. First, with the goal of deriving the exogenous 

autoregressive model of the system, the complex frequency domain equation of the lumped parameter 

thermal model is obtained by using the Laplace transform rule. As shown in Equation (7). 
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In Equation (7), s is the Laplace operator. By further transforming the complex frequency domain 

equation of the Ti node in Equation (7), the coupling relationship between the surface temperature Tss in 

the frequency domain, the maximum internal temperature Tis and the heating power Q of the system is 

obtained. As shown in Equation (8). 

  )()()()( ssTCsQRsTsT isiiisss   (8) 

The relationship equations between Tss, Tis and Q are brought into the complex frequency domain 
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equation of the Ts node, and then the functional equation containing only the maximum internal 

temperature Tis and the heating power Q of the system is obtained. Then, the functional equation 

containing only Tis and Q is further transformed, and the heating power Q is used as the system input, 

and the internal maximum temperature Tis is used as the system output to obtain the system transfer 

function based on LTCM. As shown in Equation (9). 
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The Equation (9) derives the functional relationship between the heating power Q and the maximum 

internal temperature Tis, and the heating power Q can be approximated by Equation (3). Therefore, 

combining these two equations can complete the approximate estimation of the internal temperature, but 

it cannot realize the adaptive adjustment of the parameters and the temperature state. In addition, the 

model equations in the complex frequency domain are only suitable for laboratory research and cannot 

realize online applications of embedded systems. In view of the above-mentioned problems, the 

Equation (9) is further discretized using Z-transform and Z-inverse transformation theory, and the 

difference equation form of the thermal circuit system in the time domain is obtained. As shown in 

Equation (10). 

 kkkiskiskis QQTTT 211,21,12,     (10) 

In Equation (10)，α1, α2, β1, and β2 are parameters to be identified. The derivation of α1, α2, β1, and 

β2 calculation is shown in Equation (11). 
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It should be noted that there are three linearly independent equations in Equation (11), and there 

are four thermal characteristic parameters that need to be identified in LTCM, namely Ci, Ri, Cs and Ro. 
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This means that Equation (11) is an underdetermined equation, but only a well-determined equation or 

an overdetermined equation can solve the unique parameter value. Taking into account the uncertain 

characteristics of the Ro value of the battery's external equivalent thermal resistance, when identifying 

the parameters in the LTCM, this paper couples Ro with the state variables of the thermal circuit system 

to achieve an adaptive collaborative estimation of the internal temperature and Ro. 
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What needs to be explained is that whether it is a battery cell or a battery pack, the value of the 

corresponding internal maximum temperature point Tis under different current conditions is not easy to 

obtain. The reason why this paper uses the difference equation of heating power Q and internal maximum 

temperature Tis to identify the parameters of the thermal circuit model is as follows. 

i The values of the thermal characteristic parameters Ci, Ri and Cs of the battery LTCM are related 

to the material of the battery and will not change with the change of the input current of the system. 

ii The internal temperature estimation value of the battery needs to be analyzed for error with the 

internal temperature measurement value, and this research has obtained the internal temperature value 

of the battery in advance during the experiment. 

2.4. Discretization analysis of state-space equations 

The discretized expression of the state estimation equation is the basis for the simulation 

verification of the battery thermal characteristic modeling and the later embedded online application. 

Using the similarity of physical systems, combined with Bernardi simplified equations, the state-space 

equation of the model in the time domain state is obtained. However, from the perspective of engineering 

practice, the state equation description of the heat circuit model in the time domain state is not suitable 

for online temperature estimation applications. Therefore, it is necessary to discretize the state-space 
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equation in the above-mentioned time-domain state. First, the matrix differential equations are used to 

replace the matrix differential equations of the Ti node and the Ts node, as shown in Equation (13). 
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In Equation (13), k represents a discrete time variable. t represents a continuous time variable. Tis,k 

and Tis,k+1 respectively represent the temperature value of the highest temperature point inside the battery 

at time k and k+1. Tss,k and Tss,k+1 respectively represent the temperature value of the highest temperature 

point on the battery surface at time k and k+1. △t represents the sampling time of the system. Aiming at 

the online estimation target of the internal temperature state of the power battery, combined with the 

first-order forward difference equation, the discretization of the time-domain state-space equation is 

completed. The overall discretization process is shown in the following Equation (14). 
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In Equation (14), xd,k and xd,k+1 are the state variables of the system at time k and k+1 in the discrete 

state, respectively. yd is the output vector of the system in the discrete state. uk is the input of the system 

at the current moment. Ad is the system matrix in the discrete state. Bd is the control matrix in the discrete 

state. Cd is the observation matrix in the discrete state. Dd is the direct transfer moment matrix in the 

discrete state. Since the discrete state-space equation of the thermal circuit system does not consider the 

direct transmission of the input vector, that is, Dd=0. wk and vk are system noise and observation noise 

respectively. Expand the discrete state-space equations to get the system discrete state equations based 

on LTCM as Equation (15). 
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(15) 

In Equation (15), the heating power Qk is the input value of the system at time k. Taking the surface 

temperature Tss of the lithium-ion battery as the observation variable, based on the lumped thermal 

characteristic modeling theory, the observation equation under the discrete state based on LTCM is 

obtained, as shown in Equation (16). 
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(16) 

2.5. Adaptive temperature and parameter co-estimation strategy 

The parameter identification of LTCM is the basis for realizing the internal temperature estimation 

of the battery. Regarding the thermal management of the battery, because different thermal management 

systems may have different temperature control methods, different battery thermal management systems 

have different external heat transfer coefficients. This leads to the uncertainty of the Ro value of the 

external equivalent thermal resistance of the battery in different use environments. When the use 

environment of the battery changes, if the originally identified parameter values of the thermal circuit 

model are still used, the estimation error of the internal temperature of the battery will inevitably increase. 

In order to solve the above uncertainty problem of Ro, this paper uses FFRLS algorithm to identify the 

thermal parameters of LTCM online. At the same time, the identification of the external equivalent 

thermal resistance Ro is coupled with the estimation of the internal temperature of the battery, and an 

adaptive co-estimation strategy of the external equivalent thermal resistance Ro and the internal 

temperature state Tis based on AFFRLS-JKF is proposed. The AFFRLS-JKF adaptive collaborative 
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estimation strategy makes up for the disadvantage that the FFRLS algorithm cannot adaptively modify 

the Ro value of the external equivalent thermal resistance. The iterative framework of using AFFRLS-

JKF estimation strategy to realize the parameter identification of LTCM and the joint estimation of 

internal temperature is shown in Fig. 2. 
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Fig. 2 Online temperature and parameter co-estimation framework based on AFFRLS-JKF strategy 

It can be seen from Fig. 2 that based on the exogenous autoregressive model [42], the FFRLS 

algorithm is used to identify the values of Ci, Ri, and Cs in the LTCM, and the JKF algorithm is used to 

realize the adaptive collaborative prediction of the internal temperature state Tis and the external thermal 

resistance Ro. First, the difference equation form of the single-input single-output system shown in 

Equation (10) is further modified to obtain an exogenous autoregressive model form suitable for the 

online iterative form, as shown in Equation (17). 
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In Equation (17), Y represents the output matrix of the exogenous autoregressive model. φ is the 

data matrix, and θ is the coefficient matrix. Based on the exogenous autoregressive model, the parameter 

solution of LTCM is realized. The main steps of the LTCM parameters identified by the FFRLS 

algorithm are as follows. 

Step 1: Assign an initial value to k, and initialize the coefficient matrix 0θ̂  and error covariance 

matrix P0.  











])ˆ)(ˆ[(

][ˆ,0

00000

00

TEP

Ek

θθ

θ




 (18) 

Step 2: Read the data matrix φk+1 at time k+1, and calculate the gain matrix Gk+1. 
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Step 3: Update the error covariance matrix Pk+1 at time k+1. 
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Step 4: Calculate the coefficient matrix 1
ˆ

kθ  at time k+1. 
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Step 5: Use Equation (12) to calculate the parameters of LTCM. 

Step 6: Step 2 to step 5 loop iterative calculations until the end of the full time series. 

In Equations (10) to (21), Pk+1 is the error covariance matrix of the coefficient matrix at k+1. Gk+1 

is the gain matrix of the FFRLS algorithm at k+1. 𝜀𝑘+1 is the innovation value at k+1, which represents 

the error value between the measured value and the estimated value of the highest internal temperature 

of the battery. λ is the forgetting factor of the algorithm, and the value of the forgetting factor in this 
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work is λ=0.97. Through Equation (3) we can get the value of the heating power Q of the battery LTCM. 

Similarly, using the data matrix T

kkkiskisk QQTT ],,,[ 1,1, φ  input by the system, the value of the coefficient 

matrix is obtained under the iterative calculation of FFRLS. The parameter values of LTCM are further 

obtained by Equation (12). 

The FFRLS algorithm gives the identification results of Ci, Ri and Cs in LTCM, but it cannot 

adaptively identify the value of the external thermal resistance Ro in LTCM. Therefore, considering the 

uncertainty of the value of the external equivalent thermal resistance Ro, this paper is based on the JKF 

algorithm to realize the adaptive joint estimation of the external equivalent thermal resistance Ro and the 

internal temperature state Tis. The JKF algorithm uses Ro as one of the position state variables of the 

system, and realizes the adaptive identification of Ro through an online state estimation algorithm. 

Considering that the external equivalent thermal resistance Ro will be affected by the system's uncertain 

disturbance noise during identification, the system state-space equation of the external equivalent 

thermal resistance Ro is given, as shown in Equation (22). 

 kkoko rRR  ,1,  (22) 

The Equation (22) describes the dynamic change process of the external equivalent thermal 

resistance Ro. Among them, rk represents the disturbance noise of the system. Combining the system 

state equation describing the external equivalent thermal resistance with the system state-space equation 

describing the temperature state, a JKF algorithm suitable for adaptive collaborative estimation of the 

battery external equivalent thermal resistance and internal temperature is constructed, as shown in 

Equation (23). 
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In Equation (23), xJ,k is a three-dimensional system matrix, and the matrix is denoted as 
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 TossisJ RTTx  . uk is the input vector of the system, and the matrix is expressed as uk=Qk. yk is the output 

vector of the system, and the matrix is expressed as yk=Tss,k. AJ is the system matrix, BJ is the control 

matrix, CJ is the output matrix, and DJ is the direct connection matrix. The matrix representation of AJ, 

BJ, CJ and DJ is shown in Equation (24). 
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In Equation (24), C3 is used to describe the relationship between the surface area temperature Tss 

and the external thermal resistance Ro, and its value is obtained by obtaining the partial derivative of the 

observation equation. The calculation equation of C3 is shown in Equation (25). 
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The above Equations (23) to (25) derive the state-space equations for the adaptive co-estimation of 

the external equivalent thermal resistance and the internal temperature state. On this basis, the loop 

iteration body of the JKF algorithm suitable for online embedded applications is obtained. The main 

steps are as follows.  

Step 1: Assign an initial value to k, and initialize the coefficient matrix and error covariance matrix.  
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Step 2: Time update of state variable estimates, as shown in Equation (37). 
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Step 3: Time update of error covariance matrix, as shown in Equation (31). 
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  (28) 

Step 4: Calculate the Kalman gain matrix, as shown in Equation (32). 
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 )( ,1,ˆ1,ˆ1 kv

T

JkxJ

T

Jkxk CCCK  





  (29) 

Step 5: Measurement update of state variable estimates, as shown in Equation (33). 

 )]ˆ([ˆˆ
11,111,1, 











  kJkJJkkkJkJ uDxCyKxx  (30) 

Step 6: Measurement update of error covariance matrix, as shown in Equation (34). 

 






  1,ˆ11,ˆ )( kxJkkx CKE  (31) 

Step 7: Step 2 to step 6 loop iterative calculations until the end of the full time series 

In Equations (26) to (31), 𝑥̂𝐽,𝑘
−  is the prior state matrix at time k. 𝑥̂𝐽,𝑘

+  is posterior parameter 

estimate at time k, 
 kx,ˆ is the prior error covariance matrix of state variable at time k. 

 kx,ˆ  is the 

posterior error covariance matrix of state variable at time k. Kk is the gain matrix at time k. kw,  and 

kv ,  are the covariance of the system state error and the covariance of the observation error at time k, 

respectively. This paper uses the AFFRLS-JKF estimation strategy to realize the adaptive collaborative 

estimation of Tis and Ro. In addition, quantitative indicators are used to verify the accuracy of the lithium-

ion battery LTCM and the precision of the AFFRLS-JKF estimation strategy. The application of related 

quantitative indicators is shown in Equation (32). 
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，，  (32) 

In Equation (32), yi and
iy


 represent the measured value and estimated value of the internal 

temperature, respectively. N is the total experiment time. The indicator RMSE stands for root-mean-

square error, MAPE stands for mean-absolute-percentage error, and MAXE stands for maximum error. 
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3. Experimental analysis 

3.1. Battery sample and experimental platform 

To verify the accuracy of the LTCM and the accuracy of the AFFRLS-JKF algorithm under different 

working conditions, this research is based on the acquisition of internal temperature as the goal to 

conduct research and build a targeted experimental platform. The structure of the experimental platform 

is shown in Fig. 3. The experiment selects 18650 battery cells with LiFePO4 as the battery sample. The 

detailed information of the battery sample is shown in Fig. 3(c). Before the experiment, the high-

precision temperature sensor is connected to the electrode of the battery, and then the electrode of the 

battery is sealed with an adiabatic and insulating gel. Fix the connected battery with a special fixture to 

prevent the battery from moving during the experiment. In addition, the fixed battery samples are placed 

in a thermostat to ensure the stability of the ambient temperature and heat dissipation conditions. Finally, 

the battery sample is connected to a dedicated charging and discharging device, and the battery is 

subjected to charging and discharging experiments under different working conditions. Record and save 

the relevant experimental data on the host computer to complete the acquisition of data results under 

different experimental conditions. It should be pointed out that the proposed modeling strategy for the 

lumped thermal characteristics of batteries is general. However, due to the limitations of the existing 

laboratory conditions, this paper only selects 18650 battery cells with LiFePO4 as the battery sample for 

verification. The comparative verification study of batteries based on different chemical types will be 

further carried out in future work. 
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Temperature test 
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 I/V/TPower line

Test step settingBattery cell sample

Experimental data PC and images

(b)

Characteristic Parameters

Battery type: HTCNR 18650 LiFePO4

Weight:45 g (Approx.)

Size: 173 mm×48 mm×170 mm

Rated voltage: 3.60 V

Rated Capacity: 50000 mAh (1C)

Capacity Range: 2150~2250 mAh (Under 0.5C A)

Standard charging current: 0.50C A

Alternating Internal Resistance: 20 mΩ (Mean)

Discharge cut-off voltage: 2.50 V

Charging cut-off voltage: 4.20 ±0.05 V

Range of Charging temperature: 0~55 

Range of Discharge temperature: -20~60 

Storage Temperature:-20~ 45°C (< 3 months)

(c)

(a)

 

Fig. 3 Experimental platform and battery sample parameters 

It should be noted that although the method of measuring the internal temperature of the battery 

with the built-in sensor has high measurement accuracy, the method with the built-in sensor will greatly 

increase the risk factor of the battery and is not suitable for the practical application of the battery. This 

paper regards the temperature of the sealed electrode as the internal temperature of the battery, ignoring 

the local heating caused by the connection of the battery poles, greatly improving the safety factor of the 

battery, and laying the foundation for the practical application of battery lumped thermal characteristics 

modeling. 

3.2. Experimental results under different complex conditions 

Based on the experimental platform built in the early stage, three different working conditions of 

hybrid pulse power characteristic cycle (HPPCC) experiment at constant 25℃, Beijing bus dynamic 

stress test cycle (BBDSTC) experiment at room temperature and full-charge and full-discharge test 

(FCFDT) experiment at constant 45℃ are designed and completed to measure the internal and external 
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temperature of the battery. Under the experimental data collected under the above working conditions, 

the accuracy of the LTCM model and the precision of the AFFRLS-JKF algorithm under different 

working conditions are verified. 

3.2.1. CCDCT experiment at constant 25℃ 

In order to explore the adaptability of the model under constant temperature conditions and 

identify the definite parameters in LTCM, the HPPCC experiment at constant 25℃ is designed, and the 

thermal characteristic parameters of the battery under different discharge rates at 25℃ constant 

temperature are obtained. Before the experiment, put the battery in a thermostat with a temperature of 

25°C and let it stand for 1 hour to make the battery's own temperature and the ambient temperature reach 

equilibrium. Then charge the battery with a constant current and voltage of 0.3 C to full charge, and then 

let it stand for 2 hours to balance the internal state of the battery. Next, load the battery with a 0.3 C 

pulse sequence to discharge the battery at a constant current. The duration of the constant current 

discharge pulse is 10 s and then stand for 40 s. Finally, use the same current pulse to charge the battery 

at a constant current for 10 s and then let it stand for 15 minutes. Use the same experimental procedure 

as above to perform hybrid-pulse-power-characteristic test on the battery with pulse sequences of 0.5 C, 

1.0 C, 2.0 C and 2.0 C to achieve HPPC testing in a small cycle. Finally, discharge the battery with a 

current of 0.3 C for 10 minutes to ensure that the state of charge of the battery is reduced by 5%.  

All the above-mentioned experimental steps constitute a large cycle. The HPPCC experiment 

designed in this paper has a large number of cycles M=20, and the entire experiment is carried out in a 

25°C incubator. The CCDCT experimental process and experimental data are shown in Fig. 4. Among 

them, Fig.4(a) is the flow chart of the HPPCC experiment, and M in the figure represents the number of 

large cycles of the experiment. Fig. 4(b), Fig. 4(c) and Fig. 4(d) are the current curve, terminal voltage 
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curve and battery internal temperature curve of the HPPCC experiment, respectively. 
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Fig. 4 CCDCT experimental process and experimental results 

3.2.2. BBDSTC experiment at room temperature 

The Beijing bus dynamic stress test (BBDST) experiment is an authoritative electric vehicle 

operating condition test experiment, which can be used to verify various performances of the BMS 

system. The average current used in the single-cycle BBDST experiment is 1 C, and the standard voltage 

of the battery sample is 3.6 V. According to the power calculation equation, the power value of battery 

power discharge can be calculated. The power time of a single BBDST experiment is about 300 s. In 

order to fully discharge the battery, a single experiment is carried out for 12 small cycles, and then the 

battery is charged at a constant current and voltage with a standard current of 0.5 C until the battery is 

fully charged. In order to fully simulate the complexity of the battery operating conditions, this paper 
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makes improvements on the basis of the BBDST experiment, taking 20 large cycles of the BBDST 

experiment as the battery temperature acquisition experiment, and the whole experiment is carried out 

in a constant temperature box. The BBDSTC experimental process and experimental results are shown 

in Fig. (5). 

In Fig.5, N represents the number of small cycles in a single test. With a complete discharge in a 

single test as the goal, N=12 can be obtained by calculation. M represents the number of large cycles of 

the experiment, because the effective duration of a single data file stored in the experimental device is 3 

days, and the test duration of a single BBDST is 3.5 hours, including pulse charge and discharge 1 hour 

and charge 2.5 hours. Therefore, after calculation, M=24×3/3.5≈20. Fig. 5(a) is the flow chart of the 

BBDSTC experiment. Fig. 5(b), Fig. 5(c) and Fig. 5(d) are the current curve, terminal voltage curve and 

battery internal temperature curve of the BBDSTC experiment, respectively. It should be noted that the 

entire experiment is carried out in an incubator that is not started. Therefore, the external environment 

temperature did not change much, and its Tss value is maintained at about 30°C. Since there is no constant 

temperature control, the external heat dissipation conditions of the battery are better. 
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Fig. 5 BBDSTC experimental process and experimental results 

3.2.3. FCFDT experiment at constant 45℃ 

To explore the adaptability of the model under constant high temperature, FCFDT experiment at 

constant 45℃ is further designed. Before the experiment, put the battery in a thermostat with a 

temperature of 45°C and let it stand for 1 hour to make the battery's own temperature and the ambient 

temperature balance. Then use a current pulse of 0.5 C to charge the battery with constant current and 

constant voltage to full, and then let it stand for 1 hour to balance the internal state of the battery. Then 

use 0.3 C, 1 C and 2 C current pulses to discharge the battery at a constant current to a cut-off voltage 

of 2.5 V. After each complete discharge, a 0.5 C current pulse is used to charge the battery with constant 

current and constant voltage to full. The whole experiment is carried out in a 45℃ thermostat. The 
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FCFDT experiment process and experiment results are shown in Fig. (6). Among them, Fig. 6 (a) is the 

flow chart of the FCFDT experiment. Fig. 6(b) shows the current curve of the FCFDT experiment. Fig. 

6(c) shows the terminal voltage curve of the FCFDT experiment. Fig. 6(d) shows the internal temperature 

curves of the FCFDT experiment. 
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Fig. 6 FCFDT experimental process and experimental results 

3.3. Model parameter identification and accuracy verification 

The calculation of the battery heat source is central to the solution and verification of the entire 

thermal circuit system. The battery reaction heat Qr is generated during the charge and discharge of the 

battery and is characterized in the model by the entropy heat coefficient dE/dT. The calculation of battery 
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heating power is the core of the solution and verification of the entire thermal circuit system. The battery 

reaction heat Qr is generated during the charging and discharging of the battery, and is characterized by 

the entropy thermal coefficient dE/dT in the model. According to experiments, the dE/dT of the battery 

samples selected in this article is about 10-6 at different SOC values. Therefore, this paper ignores the Qr 

term of the Bernardi equation when calculating the heating power of the battery, and uses the average 

value of the DC internal resistance of the battery sample to directly calculate the heating power of the 

battery. According to the core of the FFRLS algorithm shown in Fig. 2, combined with the HPPCC 

experimental data at a constant temperature of 25°C, the identification of Ci, Ri and Cs in the thermal 

circuit model of the selected battery sample is completed. The identification results of Ci, Ri and Cs are 

shown in Table 1. 

Table 1 Identification results of Ci, Ri and Cs 

LTCM Parameters Ci (J/K ) Cs (J/K ) Ri (K/W) 

Identification results 138.62 0.59 1.78 

It should be noted that the thermal characteristic parameters Ci, Ri, and Cs in LTCM are 

deterministic, and their values will not change as the system application environment changes. However, 

the iterative calculation method of the FFRLS algorithm will lead to the existence of acceptable system 

noise in the identification results, which will further cause the thermal characteristic parameter results 

to produce changes within a small error range. Therefore, the identification results of Ci, Ri, and Cs in 

Table 2 are the time average of the iteration results of each parameter. In addition, by using the average 

value of the DC internal resistance of the battery sample to calculate the heating power of the battery, 

the calculation complexity of the model is reduced, and the application possibilities of the LTCM 

embedded system are improved. Using the identification results in Table 1, based on the experimental 

data under HPPCC experiment at constant 25℃, BBDST experiment at normal temperature and FCFDT 
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experiment at constant 45℃ respectively, the internal temperature of the battery is estimated under the 

AFFRLS-JKF estimation strategy. Furthermore, this paper compares the prediction results under the 

AFFRLS-JKF estimation strategy with the prediction results under the forgetting factor recursive least 

squares - extended Kalman filter (FFRLS-EKF) estimation strategy to further verify the accuracy of 

thermal characteristics modeling. The internal temperature prediction results for AFFRLS-JKF and 

FFRLS-EKF estimation strategy under different working conditions are shown in Fig. 7. 

 

(a) Tis estimation results under CCDCT at constant 25°C  
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(b) Tis estimation results under BBDSTC at room temperature  

 
(c) Tis estimation results under FCFDT at constant 45°C  

Fig. 7 Estimation effect of Tis for AFFRLS-JKF and FFRLS-EKF under different working conditions 
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In Fig. 7, Fig. 7(a-1), Fig. 7(b-1) and Fig. 7(c-1) respectively represent the HPPCC experiment, 

BBDSTC experiment and FCFDT experiment under the Tis estimation effect comparison curve. Among 

them, T1 represents the measured value of Tis under different experimental conditions, and T2 represents 

the estimated value of Tis for FFRLS-EKF estimation strategy under different experimental conditions, 

and T3 represents the estimated value of Tis for AFFRLS-JKF estimation strategy under different 

experimental conditions. Fig. 7(a-5), Fig. 7(b-5) and Fig. 7(c-5) respectively show the estimated error 

curves of Tis under different working conditions. Among them, Terr1 represents the estimated error of 

Tis for FFRLS-EKF estimation strategy under different working conditions, and Terr2 represents the 

estimated error of Tis for AFFRLS-JKF estimation strategy under different working conditions. Fig.7(a-

2~4), Fig.7(b-2~4) and Fig.7(c-2~4) are the partial magnified curves under each working condition. 

From Fig. 7 (a-5), (b-5) and (c-5), it can be seen that the estimation accuracy of the AFFRLS-JKF 

estimation strategy is higher than that of the FFRLS-EKF under different working conditions. It proves 

that the lumped thermal characteristics modeling method has high feasibility and accuracy. 

To visually show the prediction precision for the AFFRLS-JKF estimation strategy under different 

working conditions, the RMSE, MAPE, and MAXE indicators are used to quantitatively analyze the 

estimated results after the algorithm is stabilized. In addition, when calculating the RMSE, MAPE, and 

MAXE under AFFRLS-JKF and FFRLS-EKF, the experimental data after stabilization of the algorithm 

are used to avoid systematic errors and measurement errors from interfering with the validation and 

analysis of the model. Based on the calculation method of Equation (32), the calculation results of the 

above quantitative indicators are obtained, as shown in Table 2. 

It can be seen from Table 2 that the RMSE of the AFFRLS-JKF estimation strategy under the 

HPPCC experiment, the BBDSTC experiment and the FCFDT experiment is lower than the FFRLS-

EKF estimation strategy by 0.31℃, 1.86℃ and 0.92℃, respectively. Compared with the FFRLS-EKF 
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estimation strategy, the MAPE of the AFFRLS-JKF estimation strategy under different conditions is 

reduced by 6.42%, 9.60% and 3.97%, respectively. The MAXE of the AFFRLS-JKF estimation strategy 

under different conditions is lower than that of the FFRLS-EKF estimation strategy by 2.34℃, 0.94℃ 

and 0.98℃, respectively. In addition, under HPPCC and BBDSTC conditions, the maximum internal 

temperature error based on the AFFRLS-JKF method is reduced by 1.36 °C and 0.27 °C, respectively, 

compared with the literature [9] (the maximum internal temperature estimated temperature difference 

under the low-temperature electro-thermal coupled model is 1.79 °C). The above quantitative calculation 

results fully verify the high-accuracy of the lumped thermal characteristics modeling method and the 

high-precision of the AFFRLS-JKF estimation strategy. 

Table 2 Calculation results of RMSE, MAPE and MAXE for AFFRLS-JKF and FFRLS-EKF  

Estimation strategy FFRLS-EKF AFFRLS-JKF 

Evaluation index RMSE (℃) MAPE (%) MAXE (℃) RMSE (℃) MAPE (%) MAXE (℃) 

HPPCC at constant 25°C 1.36 6.55 2.77 0.05 0.13 0.43 

BBDSTC at room temperature 2.27 10.76 2.46 0.41 1.16 1.52 

FCFDT at constant 45°C 1.45 5.37 3.17 0.53 1.40 2.19 

3.4. Robustness analysis of external thermal resistance identification 

The complex and variable usage environment of the battery leads to the external thermal resistance 

Ro in LTCM cannot be identified in advance. Therefore, the accuracy verification of the model and the 

precision verification study of the algorithm need to consider the convergence and stability of the 

external thermal resistance Ro. When using the AFFRLS-JKF algorithm for online adaptive 

identification and estimation of the thermal path model of the battery, the initialization of Ro often has 

large deviations. 
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In order to further verify the adaptive capability of LTCM to the external environment, the 

robustness of the model to the initial values under different operating conditions and different external 

environments needs to be analyzed. In this paper, based on the HPPCC experiment at 25°C, the BBDST 

experiment at room temperature and the FCFDT experiment at 45°C, the external thermal resistance Ro 

in LTCM is initialized to 0.01 °C/W, 5 °C/W, 15 °C/W, 25 °C/W and 35 °C/W, respectively, to 

investigate the convergence and stability of the external thermal resistance Ro estimation results. The 

estimation results of the external thermal resistance Ro at different initial values and under different 

operating conditions are shown in Fig. 8. 

 

(a) Change rule of Ro under constant 25°C CCDCT experiment 
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(b) Change rule of Ro under room temperature BBDSTC experiment 

 

(c) Change rule of Ro under constant 45°C FCFDT experiment 

Fig.8 Effect of different initial values on Ro under different complex working conditions 

Fig. 8(a-1), Fig. 8(b-1) and Fig. 8(c-1) show the curves of the estimated external thermal resistance 

Ro under the HPPCC experiment, BBDSTC experiment and FCFDT experiment, respectively. Fig. 8(a-

2~4), Fig. 8(b-2~4) and Fig. 8(c-2~4) show the local magnification curves at special locations. The 
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experimental results under different operating conditions show that the LTCM has a strong adaptive 

adjustment capability to the Ro initialization error. With the increase of the system data input and the 

number of iterations of AFFRLS-JKF algorithm, the value of external thermal resistance Ro stabilizes 

indicating that LTCM has strong stability. The convergence times and stability values for the HPPCC 

experiment at constant 25°C, the BBDST experiment at room temperature, and the FCFDT experiment 

at constant 45°C are given in Table 3. It can be seen from Table 3 that the convergence time of Ro under 

the HPPCC experiment, BBDSTC experiment and FCFDT experiment are 7856 s, 4657 s and 9862 s, 

respectively, and the convergence values are 3.652 ℃/W, 10.147 ℃/W and 4.765 ℃/W, respectively. In 

addition, it can be seen that different external environmental conditions will lead to different 

convergence times and convergence values, but they will eventually converge to the same value. It is 

fully verified that the LTCM model has strong adaptability to the complex operating conditions of the 

battery. 

Table 3 Convergence time and convergence value of Ro under different working conditions 

Evaluation indicators HPPCC at constant 25°C BBDSTC at room temperature FCFDT at constant 45°C 

Convergence time (s) 7853 4657 9862 

Convergence value (℃/W) 3.652 10.147 4.765 

4. Conclusion 

The high-accuracy estimation of the internal temperature of lithium-ion battery is the key to the 

safe and reliable operation of BMS. This paper solves the problem of online high-precision adaptive 

estimation of the battery internal temperature by establishing the LTCM based on circuit theory. By 

analyzing the mechanism of heat generation and heat dissipation inside the battery, the discrete state-

space equation expression of the thermal characteristic model is realized by combining the control theory. 
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Considering the uncertainty of external thermal resistance, the AFFRLS-JKF algorithm is proposed to 

realize the co-estimation of the parameters of the LTCM and the internal temperature of the battery. In 

addition, in order to verify the accuracy of the battery thermal characteristics modeling and the precision 

of the AFFRLS-JKF estimation strategy, the HPPCC experiment at 25℃, the BBDST experiment at room 

temperature and the FCFDT experiment at 45℃ designed and completed respectively. The experimental 

results show that AFFRLS-JKF has significantly lower RMSE, MAPE and MAXE calculation results 

than RRLRS-EKF, which verifies the high accuracy of the AFFRLS-JKF strategy and the high accuracy 

of lumped heat modeling. In addition, the robustness of LTCM to the initial value under different 

working conditions and different external environments is analyzed. The results show that the 

convergence time of Ro under different conditions is 7856 s, 4657 s and 9862 s respectively, which 

further verifies that the LTCM based on the AFFRLS-JKF estimation strategy has strong robustness. The 

lumped thermal characteristic modeling method can provide theoretical and experimental basis for the 

real-time estimation of the internal temperature of the lithium-ion battery and the safe thermal 

management of the battery. 
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