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a b s t r a c t

As the share of global offshore wind energy in the electricity generation portfolio is rapidly increasing,
the grid integration of large-scale offshore wind farms is becoming of interest. Due to the intermittency
of wind, the stability of power systems is challenging. Therefore, accurate and fast offshore short-term
wind speed forecasting tools play important role in maintaining reliability and safe operation of the
power system. This paper proposes a novel hybrid offshore wind forecasting model based on swarm
decomposition (SWD) and meta-extreme learning machine (Meta-ELM). This approach combines the
advantages of SWD which has proven efficiency for non-stationary signals, with Meta-ELM which pro-
vides faster calculation with a lower computational burden. In order to enhance accuracy and stability,
the signal is decomposed by implementing a swarm-prey hunting algorithm in SWD. To validate the
model, a comparison against four conventional and state-of-the-art hybrid models is performed. The
implemented models are tested on two real wind datasets. The results demonstrate that the proposed
model outperforms the counterparts for all performance metrics considered. The proposed hybrid
approach can also improve the performance of the Meta-ELM model as a well-known and robust
method.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Wind energy has been the leading renewable energy form to
decarbonize energy production that helps reach the net zero tar-
gets across the world. As of 2021, the global wind power capacity
constitutes almost 50% of the global renewable power capacity
excluding hydropower. The wind market set a yearly installed ca-
pacity record in 2020 with 93 GW, bringing global installed wind
capacity to 743 GW [1]. Thanks to the cost reductions of larger
turbines, innovations in installations and O&M, and reduced
investor risk, the wind industry is set to continue growing [2]. With
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higher capacity factors and improvements in the full life cycle of
processes, offshorewind is seen as a vital technology for the needed
carbon mitigation and becoming competitive [3]. As such, the
levelised cost of electricity (LCOE) from offshorewind is expected to
decline by 55% in 2030 [4].

EU has been home to most of the global offshore capacity that
raised its offshorewind power capacity target to 60 GWby 2030 [5].
As large-scale renewable electricity penetration for wind is seen in
the leading countries such as Denmark, Ireland, the flexibility of
power system is becoming challenging [6,7]. To enable adequate
system security and flexibility, fast and accurate wind forecasting
tools are vital. So far, several state-of-the-art forecasting models
have been originally implemented in onshore wind installations
[8]. However, conventional methods need to be improved for
offshore applications for several reasons. Wind speed in offshore
environment is more persistent while calm conditions are less
frequent and persistent [9]. Offshore wind speed observations are
not available as much as onshore. Moreover the coastal effects
should be also considered [10]. To enable large-scale offshore wind
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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penetration with power system reliability, the offshore wind speed
characteristics and its properties should be well determined. In this
respect, offshore wind characteristics have been obtained for more
than 10 years for North Europe [9]. Liu et al. [11] investigates
offshore wind speed forecasting studies from 2015 to 2020. It is
concluded that there are a limited number of offshore forecasting
studies, recently started since 2017.

Wind speed forecasting can be categorized as very short term (a
few seconds up to 30 min), short term(30 min up to 6 h), medium
term (6 h - 1 days) and long-term (more than 1 days) according to
time scale [12]. Very short and short-term forecasting is becoming
prominent in turbine control, economic load dispatch, regulation
action, and electricity market clearing. In terms of model used, the
wind speed forecasting studies in the literature can be categorized
as physical models, traditional statistical models, artificial intelli-
gence (AI) based approaches and hybrid models. Based on meteo-
rological data, physical models are often developed using data
analysis with multi inputs. While the models outperform in long-
term wind speed forecasting, they display remarkably low perfor-
mance in dealing with very short-term forecasting. They also
require much computational time due to the higher number of
inputs [13,14]. Physical models are not easy to improve for offshore
applications as they require accurate wind speed characteristics.
The statistical models such as Generalized autoregressive condi-
tional heteroskedasticity (GARCH) [15], autoregressive moving
average (ARMA) [16], autoregressive integrated moving average
(ARIMA) [17], seasonal autoregressive integrated moving average
(SARIMA) [11] use traditional time series analysis in the forecasting
process. As these approaches allow for linear fluctuations in the
wind speed characteristic, they have been applied for short-term
and very short-term forecasting horizons. However, the perfor-
mance of such models is highly dependent on the linearity and
stationary features of historical wind speed data.

Recently, AI-based and hybrid models have been developed to
overcome the disadvantages of physical and statistical methods
[12,18]. Since AI-based models do not require very precise wind
information that might occur in an offshore environment, they
outperform physical models in forecasting. So far, the results with
these models have been promising for offshore applications. While
traditional learning methods were initially used in artificial neural
network (ANN) models [19e21], the deep learning methods
[22e24] have become widespread nowadays. Neshat et al. [23]
proposed a hybrid deep learning-based evolutionary approach for
an offshore wind farm application in the Baltic Sea. Following the
decomposition of offshore wind speed data with an evolutionary
decomposition-based approach, a bidirectional long short term
memory (Bi-LSTM) model is developed. Based on the generalized
normal distribution optimization, the optimal parameter selection
is used in the deep learning model. In terms of accuracy, the pro-
posed hybrid model was shown to be superior even more with
seasonal data set as compared with ten different models. Liu et al.
[11] presented a SARIMA model for offshore wind speed fore-
casting. The SARIMA model was shown higher accuracy than the
Gated Recurrent Unit and the Long Short Term Memory (LSTM)
models. Based on the ensemble empirical mode decomposition
(EEMD) method, Saxena et al. [25] developed a hybrid model by
combining six different deep learning techniques for offshore wind
speed estimation. The model was tested for different heights and
was found be superior. Thanks to fast response, Extreme Learning
Machine (ELM)-based models have become increasingly popular in
wind energy forecasting in recent years [26e29]. Liu et al. [30]
proposed a hybrid forecasting model based on Robust ELM (RELM)
2

to predict the cumulative capacity of offshore wind power installed
in China in the future. The stand-alone RELM algorithm was not as
good as that of the Least-Squares Support Vector Machine (LSSVM),
but it can be greatly improved with hybrid algorithms such as
decomposition techniques. Adapted ELM models such as Meta-
Extreme Learning Machine (Meta-ELM) have been used as predic-
tion and classification tools in several research disciplines [31,32].

One of the main challenges of short-term forecasting is that the
original time series data is nonlinear and non-stationary. Decom-
position of the original series, therefore, plays a critical role in
improving forecast performance. To copewith these characteristics,
the hybrid approaches use decompositionmethods for filtering and
include a preprocessing step that improve the model performance.
In the preprocessing step, Wavelet-based decompositions [33,34],
empirical mode decomposition (EMD) [35], ensemble empirical
mode decomposition (EEMD) [36], fast ensemble empirical mode
decomposition (FEEMD) [37], complete ensemble empirical mode
decomposition (CEEMD) [38], complete ensemble empirical mode
decomposition adaptive noise (CEEMDAN) [39] have been widely
used in the literature. Each decomposition approach has its own
strengths and limitations. Empirical wavelet transform fails to
detect components when the signal contains multiple chirps in
both the time and frequency domains. The singular spectral anal-
ysismay produce a few useless components or the informationmay
be lost due to the difficulty in selecting individual parameters. The
variational mode decomposition takes prior experience or multiple
trials to deduce the number of modes [40]. Huang et al. [41] pro-
posed EMD overcomes these problems to handle nonlinear and
non-stationary time series. However, the mode mixing can happen
when the EMD decomposition has oscillations of different ampli-
tudes in one mode or similar oscillations in different modes. To
overcome this problem, Wu and Huang [42] improved the EEMD
method by adding white noise to provide a uniform reference
frame in the timeefrequency space. As such, the different scale
signals can be separated naturally without any a priori subjective
criterion selection as in the EMD method. Based on swarm-prey
hunting, the Swarm Decomposition (SWD) approach is an intelli-
gent method for non-stationary signals [43]. It has proven effi-
ciency in different research areas such as biomedical signals by
Apostolidis and Hadjileontiadis in Ref. [44]. The main advantage of
the SWD method is that allows the efficient decomposition of a
signal into components that preserve the physical meaning [44].

This study presents a new hybrid model based on SWD and
Meta-ELM for short-term offshore wind speed forecasting. While
SWD and Meta-ELM based models have been separately investi-
gated for different applications, such as biomedical signals [44] and
financial time series [45], this study is the first attempt to imple-
ment a combined model to the offshore wind forecasting problem.
To test and validate the model accuracy, it is compared with well-
known two multi-scale decomposition-based hybrid approaches,
EMD-Meta-ELM, EEMD-Meta-ELM, including Meta-ELM and
standalone Multi Layer Perceptron (MLP) architecture. The original
wind time series data for two regions, namely, the North Sea and
the Aegean Sea are used to evaluate the proposed model. Results
are demonstrated that the SWD-Meta-ELM hybrid model provides
a considerable improvement compared to the models proposed in
other recent studies.

The paper is organized as follows. Section 2 describes the
principles of EMD, SWD, and Meta-ELM methods and structure of
the proposed forecasting model. Section 3 presents the character-
istics of the collected wind data sets and a comparative perfor-
mance analysis for the models based on different multi-scale
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decompositions. Finally, Section 4 provides concluding remarks
and address future research perspectives.
2. Material and methods

The proposed methodology follows two consecutive steps as
decomposition and forecasting. It combines the advantages of the
SWD which has proven efficiency for non-stationary signals, with
the Meta-ELM approach, which provides faster response with
lower computational intensity. In the decomposition step, the SWD
method is the first attempt applied to wind forecasting in this
study. In the forecasting step, it has been proved that a group
combination of ELMs achieves better generalization performance
than the original ELM [46]. However, the computational cost is
found to be higher for large-scale applications in most studies due
to the repetitive training of the entire data set. Liao and Feng in
Ref. [47] proposed a Meta-ELM architecture that combines multiple
ELM structures to solve this problem. In order to take advantage of
the faster response feature, this study utilizes the Meta-ELM
approach in the forecasting step. The training methodology of the
Meta-ELM method is detailed in this section.
2.1. The existing decomposition methods based on empirical mode
decomposition

The EMDmethod extracts Intrinsic Mode Functions (IMF)s and a
residual signal Rn from the original signal by elimination. Here,
IMFs refer to the decomposed signals from the highest frequency
component to the lowest frequency component of the original se-
ries while Rn denotes the trend of wind speed. An IMF is a function
that satisfies two conditions: (1) The difference between the
number of maxima and the number of zero crossings must be less
than one, (2) at any point, the mean value of the envelopes defined
by the local maximums and local minimums must be zero.

Where x(t) is a specific original wind speed time series, the
calculation steps of the EMD are defined as follows [41]:

Step 1: All local extrema of the signal are defined for x(t). Then,
all local maximums and local minimums are interpolated like a
cubic spline to form an upper and lower envelopes xu(t) and a
lower xl(t), respectively.
Step 2: The mean envelope valuem(t) and the detail component
d(t) are calculated as in (1) and (2), respectively:

mðtÞ ¼ xuðtÞ þ xlðtÞ
2

; (1)

dðtÞ ¼ xðtÞ �mðtÞ: (2)
Step 3: Until d(t) becomes an IMF, the process continues ac-
cording to the following criteria:

Xl

t¼1

¼
�
dj�1ðtÞ þ djðtÞ

�2
�
dj�1ðtÞ

�2 � dðj ¼ 1;2;/ ; t ¼ 1;2;…; lÞ (3)

where, l is the length of signal and j is the number of iterative
calculations. A typical value for d is usually set between 0.2 and 0.3.

Step 4: Repeat Steps 1e3 until all IMFs and detailed signal are
obtained. Finally, the original time series x(t) can be decom-
posed as follows:
3

xðtÞ ¼ ciðtÞ þ RnðtÞ; (4)

where, ci(t) (i ¼ 1,2, …,n) and Rn(t) represent IMF signals and re-
sidual signal, respectively. An IMF of EMD consists of signals with
significantly different scales or a signal of the same scale that ap-
pears in different components. To overcome this problem, white
noise is added to the original signal in the EEMD. The above-
mentioned steps apply to the EEMD by adding a white noise in
Step 1.
2.2. Swarm decomposition method

The SWD is proposed by Apostolidis and Hadjileontiadis [44] for
the analysis of non-stationary signals. The basic structure of this
method consists of Swarm filtering (SWF), which has the swarm-
prey hunting approach and generated oscillating components
(OCs) from an element input data. Each of the OCs is considered as a
real component of the original signal. There are two interaction
forces for successful swarm-prey hunting: the driving and the
cohesion. The driving force Fdr(n,i) is defined by

Fdrðn; iÞ ¼ PpreyðnÞ � Piðn�1Þ; (5)

where, i and n are the number of members and the number of steps,
respectively. Here, the location information of the prey is repre-
sented by Pprey. An induced cohesion force Fcoh(n, i) for all members
of the swarm is defined by (6).

FnCoh;i ¼
1

M � 1
:
XM

j¼1;jsi
f ðPi½n�1� � Pjðn�1ÞÞ (6)

f ðdÞ ¼ �sgnðdÞ:ln
� jdj
dcr

�
(7)

Here, the sign function and logarithmic function are shown as sgn(.)
and ln(.), respectively. The distance between members and the
critical distance are indicated by d and dc, respectively. M repre-
sents the number of swarm. In order to track its prey, the swarm
updates the location and velocity information at each time step as
follows:

Vi½n� ¼ Vi½n� 1� þ d:
�
FnDr;i þ FnCoh;i

�
; (8)

Pi½n� ¼ Pi½n� 1� þ d:ðVi½n� Þ: (9)

One of the most important parameter in the SWD is the d, which
controls the flexibility of the swarm. The output of the SWF is given
by.

y½n� ¼ b:
XM

i¼1
Pi½n� (10)

Here, b is the scale parameter that affects the swarm member. A
value of b ¼ 0.005 which causes the smallest reasonable, M is
preferred [48]. In order to determine appropriate values of these
parameters according to different signal types, the following
criteria is followed:

argd;Mmin
X
k

�		Yd;M½k� � jS½k�j 		 
2; (11)

where, |Yd,M[k]| and |S[k]| represent the amplitude of discrete
Fourier transform for the original series of Yd,M[n] and S[n]. The SWF
output with d and M parameters is represented by Yd,M[n]. S[n]
contains the non-stationary one component signal. The main
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purpose of this process is to find the d and M parameters at an
optimal level. The SWF identifies similarity in OCs by comparing
these parameters to the non-stationary signal. The relationship
between the swarm parameters and each frequency component is
given by [44].

MðûÞ ¼ ½33:46û�0:735 �29:1�; (12)

dðûÞ ¼ �1:5û2 þ 3:454û� 0:01; (13)

Here, û indicates the normalized frequency.M is determined by the
rounding operation. The SWF is iteratively continued and the al-
gorithm is terminated when the oscillations in the input signal
cease. It is advantageous to apply the SavitzkyeGolay filter in the
decomposition step for the SWD process. Detailed information
about the process in this step can be found in Ref. [44]. As a result,
the components and the residual signal of the original signal are
obtained by using the SWD method.
2.3. Meta-extreme learning machine method

Over the past decade, various ELM studies have been performed
to improve generalization performance [47,49,50]. The ELM archi-
tecture has a very similar topological structure to other popular
neural networks such as Back Propagation Neural Network and
radial basis neural network. It is an advanced method for training
single hidden layer feed-forward network (SLFN) as shown in Fig. 1.
Here, the input weights and bias value are randomly selected and
the output is calculated analytically. Fig. 1 illustrates the input
connection weights ui,j, biases bk and connection weights qk. The
number of hidden layers Nh, bias and input link weights are
randomly determined. qk is calculated analytically by following the
steps given below. The output of SLFN is calculated depending on
the input and connection as follow:

yi ¼
XNh

j¼1
qj4ðxiuj þ bjÞ: (14)

Input data xi2Rn and output data ti2Rp created by the sliding
windowing technique discussed in detail in the next section. n and
p are the numbers of inputs and outputs, respectively. In this study,
one-step ahead forecasting is investigated with three previous
hours and instant data set by using Meta-ELM.

Since (14) contains N training samples, N number equations can
be created. These equations can be represented by a matrix vector
notation as H follow:
Fig. 1. Structure of the SLFN model.

4

H ¼
2
4 4ðx1u1 þ b1Þ / 4ðx1uNh

þ bNh
Þ

« « «
4ðxNu1 þ b1Þ / 4ðxNuNh

þ bNh
Þ

3
5
NxNh

(15)

The output weights and the target of each output are given by

T ¼ Hg; g ¼
2
4 q1

«
qNh

3
5; T ¼

2
4 t1

«
tN :

3
5 (16)

The estimation of the output connectionweights is calculated by
taking the inverse of the Moore-Penrose H matrix.

ĝ ¼ HþT : (17)

Each ELM in the Meta-ELM network is trained by a part of the
data set. Fig. 2 depicts the architecture of the Meta-ELM network
with each ELM. The output connection weights of the combined
ELMs are determined by the ELM learning rule using the whole
dataset.

When theMeta-ELM architecture is trained, all input and output
samples are decomposed intoM subgroups as shown in Fig. 2. Each
SLFN is trained by the subgroups of data using ELM. Thus, the
output connection weights of each SLFN are calculated. Finally,
Meta-ELM output connection weights are determined using the
trained SLFNs and the data set.
2.4. The proposed approach SWD-meta-ELM

The proposed hybrid model for short-term offshore wind speed
forecasting is presented in Fig. 3. It is composed of threemodules as
decomposition, forecasting module, and combination modules. In
the decomposition module, the wind datasets are decomposed into
multiple sub-series by using the SWD. Then, the decomposed sig-
nals are fed into the forecasting module in which the prediction of
each sub-series is performed by the Meta-ELM algorithm. At the
last stage, the hybrid model results are found by taking the sum of
all test and training results.

In order to test the proposed model, two original offshore wind
datasets have been obtained from the Marine Renewables Infra-
structure Network for Emerging Energy Technologies (MARINET2)
project [51] and the Coastal Dataset for the Evaluation of Climate
Impact (CoDEC). For validation, the model results are compared
with those of well-known EMD and EEMD-based models. The
developed models have univariate analysis based on only historical
wind data. The offshore wind speed data is used for the input
Fig. 2. The Meta-ELM architecture.



Fig. 3. The structure of the SWD and Meta-ELM hybrid forecasting model.

Fig. 4. Learning procedures of the models.

Fig. 5. Original wind speed datasets (a) The North Sea (b) The Aegean Sea.
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parameter. All hybrid models use input and output matrices that
are performed by the sliding window technique. Fig. 4 illustrates
this learning procedure. Here, the window width affects the per-
formance of the models. In this study, thewindowwidth andMeta-
ELM optimal parameters were taken from Authors’ previous study
[26].
5

3. Experiments and analysis

3.1. Data collection

The experimental wind data for the North Sea were collected as
part of the Marinet2 project, and the Aegean Sea data came from
the CoDEC database (Fig. 5). The first data corresponds to the hourly
wind speed at a height of 10 m from the ground for the meteo-
rology station, located at 38�460N 26�560E on the Aegean Sea. The
second data is for Frøya island in the western coastal region of
Trondelag, Norway, collected in 10 min resolutions at a height of
100 m from the sea surface using 2D ultrasonic anemometers. The
wind speed data is sent from the measurement instruments to the
data logger at a sampling rate of 1 Hz, and from the data logger to a
computer running Campell Scientific's LoggerNet 3.4.1 software.
Finally, the data is averaged at 10-min intervals. The anemometer
has an accuracy of ±2% at 12 m/s and an offset of ±1 m/s. Any over-
or under-estimation of wind speed is thus assumed to be negligible
and will not be corrected.

Two groups of wind data set containing 8760 data are selected,
and four consecutive wind speed data are taken as the input of the
prediction model, and the output of prediction is the remaining
data, as shown in the one-step prediction in Fig. 4. In addition to
this, 8760 data sets are constructed, in which the first 6132 sets of
data are used as a training set, and the remaining part is used as a
test set. The statistical indices of the offshore wind speed data used
including mean, maximum (Max) and minimum (Min) values,
standard deviation (Std), skewness (Skew), and kurtosis (Kurt) are
reported in Table 1.
3.2. Decomposition results

Following the normalization procedure in the SWDmethod, the
decomposed offshore wind speed data are obtained as shown in



Table 1
The statistical information of datasets.

Locations Dataset Size Min Max Mean Std. Kur. Skew.
North Sea All Sample 8760 0.2720 28.4650 7.7775 4.6890 4.4711 1.1757

Training Sample 6132 0.2720 24.6810 7.8947 4.2346 3.3208 0.7386
Test Sample 2628 0.4530 28.4650 7.5042 5.5993 5.0338 1.6196

Aegean Sea All Sample 8760 0.0992 18.5611 6.6441 3.2045 2.7477 0.4235
Training Sample 6132 0.0992 18.5611 6.7971 3.1940 2.7989 0.3764
Test Sample 2628 0.2044 18.3439 6.2870 3.2011 2.6972 0.5464

Fig. 6. Decomposed data using SWD approach (a) The Aegean Sea (b) The North Sea.
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Fig. 6. As can be seen, the Aegean Sea data is decomposed into five
sub-components, while the North Sea has four sub-components. It
can be concluded that the number of components varies with the
data characteristics. The original offshore wind speed and the sum
of the SWD reconstructed series in time and frequency domains are
presented in Fig. 7 (a) and (b), respectively. It can be seen that there
is no data loss in both domains at the end of the decomposition.

For comparison, the decomposition results of IMFs obtained
from the EMDmodel for the Aegean and the North Sea are shown in
Fig. 8 (a) and (b), respectively. It is shown that each signal has
different characteristics, indicating different natural oscillation
modes embedded in the series. Here, the first IMF signal has the
highest frequency component, while the last decomposed signal
shows the variable trend of the wind speed series. Similar pro-
cedure is applied for the EEMD model and the decomposition re-
sults are obtained. As such,10 separate IMF components including a
residual signal component are compared.

3.3. Forecasting results and performance evaluation

In this section, the forecasting results of all models including the
proposed model, the MLP, Meta-ELM, EMD-Meta-ELM, EEMD-
Meta-ELM are discussed in detail. Herein, the Meta-ELM model is
used for the forecasting of each decomposed component generated
using the SWD, EMD, and EEMD. Moreover, the traditional MLP
model is also presented for comparison purposes. Fig. 9 and Fig. 10
demonstrate the comparison of the forecasting results from the
above-mentioned models implemented for the North Sea and the
Aegean Sea, respectively.

All models were run separately fifty times and the results were
presented statistically to eliminate the errors that may arise from
the randomness of the model parameters. The performance of all
models are evaluated by considering the deviation of the predicted
value from the target value in the test step. For this purpose, the
root mean square error (RMSE), mean square error (MSE), mean
absolute error (MAE), sum square error (SSE) and R2 metrics were
used. The performance metrics are mathematically represented in
(18) through (22) as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyi � ~yiÞ2
N

s
(18)

MSE ¼
PN

i¼1ðyi � ~yiÞ2
N

(19)

MAE ¼ 1
N

XN

i¼1

		yi � ~yi
		 (20)

SSE ¼
XN

i¼1
ðyi � ~yiÞ2 (21)



Fig. 8. EMD processing results of IMFs and residual of wind speed data, (a) The Aegean Sea (b) The North Sea.
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R2 ¼ 1�
PN

i¼1ðyi � ~yiÞ2PN
i¼1ðyi � yi

̄ Þ2
(22)

Table 2 reports a complete comparative analysis of the fore-
casting models employed. Herein, unlike the literature, the SSE
metric is presented to compare the performance of the forecasting
models at the peak points. It can be observed that the proposed
model outperforms the forecasting models implemented for all
metrics. Particularly, it achieves the lowest SSE of 720.17 and 653.98
for the Aegean Sea and the North Sea, respectively. It means that
the estimation of peak points is achieved the best by the proposed
7

model.
The proposed model reduced the RMSE forecasting error by

10e24% with respect to that of the Meta-ELM for the Aegean and
North Seas, respectively. Further reductions have been obtained as
compared to the EMD-Meta-ELM method. In terms of MSE and
MAE, similar reduced forecasting error figures have been obtained
as well. Furthermore, the proposed model achieves the closest R2

values to 1. The data correlation power between the actual and
predicted values of offshore wind speed is the highest. In this
respect, the proposed SWD-Meta-ELM forecasting model is found
to be effective and reliable. As a result, the findings confirm that the
proposed hybrid approach improves the performance of the well-
known and robust Meta-ELM model. While it is aimed to validate
and test the performance of the proposed model in this study, the



Table 2
Performance of the forecasting algorithms implemented.

Site Performance Metric MLP Meta-ELM EMD-Meta-ELM EEMD-Meta-ELM Proposed model
Aegean Sea RMSE 0.6300 0.5870 0.5989 0.7609 0.5236

MSE 0.3969 0.3445 0.3586 0.5789 0.2741
MAE 0.3709 0.3579 0.4946 0.5615 0.3508
SSE 1042.57 905.07 942.14 1520.82 720.17
R2 0.9613 0.9664 0.9650 0.9435 0.9732

North Sea RMSE 0.6363 0.6558 1.0403 2.4481 0.4989
MSE 0.4049 0.4300 1.0821 5.9933 0.2489
MAE 0.4385 0.4465 0.7541 2.0168 0.3475
SSE 1063.71 1129.73 2842.70 1574.40 653.98
R2 0.9871 0.9863 0.9655 0.8088 0.9921
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finding shows that the expected higher accuracy rates with the
EMD-based models were not achieved. Therefore, the EMD-Meta-
ELM performs better than the single MLP model for the Aegean
Sea but provides approximate results with the Meta-ELM model.
This verifies that the optimal model could not be selected for each
decomposed signal component. Instead of taking the Meta-ELM
parameters differently in each model, they were taken at the
same value for each model. In this case, this selection can create a
disadvantage for the EMD. It is also worth noticing that the per-
formance of the EEMD-Meta-ELM model is found to be poor. In the
EEMD-based model, the impact of white noise is said to be inef-
fective. The highest error rates were also observed in the EEMD-
Meta-ELM model when the performance at the peak points was
considered. As a result, while all hybrid models (e.g., EMD-Meta-
ELM, EEMD-Meta-ELM, SWD-Meta-ELM) are implemented, the
proposedmodel provides the best correlation of experimental data.

It was observed that the forecasting performance is highly
affected by particularly high-frequency components, which makes
it have lower accuracy. In this respect, a secondary decomposition
or filtering process can be used to improve the prediction perfor-
mance of high-frequency components. However, it increases the
computational burden. The forecasting module did not include the
highest frequency component. For example, the model was simu-
lated considering the highest frequency component. It was
observed that the R2 performance had fallen from 0.9732 to 0.9639.
Similar results for the EMD and EEMD models occurred.

Considering the single forecasting models (e.g., MLP and Meta-
ELM), they display lower performance as compared to their hybrid
counterparts. While their results are approximate, the performance
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8

of Meta-ELM has been found to be slightly higher for most of the
metrics considered.

Although Figs. 9 and 10 and Table 2 show the observed and
predicted values and evaluation criteria for all models, the com-
parison results among forecasting models cannot be discussed
easily using these figures and table. The Taylor diagram, shown in
Fig. 11, describes the relationship between the standard deviation,
root mean square deviation (RMSD), and correlation coefficient.
The closer the correlation coefficient value to 1, the more linear the
relationship between the original and predicted data is. Moreover,
the lower the standard deviation and RMSD values on the diagram,
the higher the performance of the model is. As shown, the pro-
posed model, represented by the sum sign in red in Fig. 11, provides
the best RMSD, standard deviation, and correlation values.

In conclusion, in the proposed model, the redundant informa-
tion from wind speed datasets can be determined with the SWD
approach while the Meta-ELM provides compatibility among other
components. It is important that a short-term forecasting model
with a lower computational time is preferred. In this respect, the
Meta-ELM appears to be an effective method for reaching a fast
solution. The optimal parameters of the Meta-ELM were deter-
mined and the run-time was presented comparatively in detail in
the author's earlier study in Ref. [26].
4. Conclusions

This paper investigates short-term wind speed forecasting.
Based on the SWD and Meta-ELM approaches, a new hybrid fore-
casting model has been developed. In the decomposition module, a
swarm-prey hunting algorithm has been implemented. The model
was validated using two original wind datasets with varying
characteristics. A comparison with four EMD and EEMD-based
models was performed to validate the proposed model. The per-
formance has been evaluated using well-known metrics. It has
been shown that, in terms of all performance metrics considered,
the proposed hybrid model improved the forecasting results for
both wind characteristics considered. Specifically, it reduced fore-
casting errors (e.g., RMSE) by 10e24% and 12.5e52% as compared to
stand-alone META-ELM and hybrid EMD-Meta-ELM methods,
respectively. Furthermore, R2 increased from 0.9863 to 0.9655 to
0.9921 when compared to stand-alone META-ELM and hybrid
EMD-Meta-ELM methods. The reliability of short-term offshore
wind forecasting has been improved by the model. As a result, the
proposed hybrid SWD-Meta-ELM approach outperformed both
stand-alone META-ELM and hybrid model approaches.

The proposed model can also be applied to other applications
related to forecasting, such as solar power, electric vehicle charging
loads. Application specific aspects must be taken into account. In
this respect, in terms of the decomposition, different methods can
be applied depending on the data characteristics (e.g., whether it
has high-frequency components or not). Future studies of offshore
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wind forecasting studies might consider the adaptive neuro-fuzzy
inference system with Meta-ELM in the forecasting step in order
to further increase the performance. Nevertheless, the impact on
the computation time should also be considered. A meta-heuristic
approach could also be considered when selecting Meta-ELM pa-
rameters in the future.
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