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Abstract

Automatic tumor segmentation in breast ultrasound (BUS) images is still a challenging

task because of many sources of uncertainty, such as speckle noise, very low signal-

to-noise ratio, shadows that make the anatomical boundaries of tumors ambiguous,

as well as the highly variable tumor sizes and shapes. This article proposes an effi-

cient automated method for tumor segmentation in BUS images based on a contextual

information-aware conditional generative adversarial learning framework. Specifically,

we exploit several enhancements on a deep adversarial learning framework to capture

both texture features and contextual dependencies in the BUS images that facilitate

beating the challenges mentioned above. First, we adopt atrous convolution (AC) to

capture spatial and scale context (i.e., position and size of tumors) to handle very dif-

ferent tumor sizes and shapes. Second, we propose the use of channel attention along

with channel weighting (CAW) mechanisms to promote the tumor-relevant features
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(without extra supervision) and mitigate the effects of artifacts. Third, we propose to

integrate the structural similarity index metric (SSIM) and L1-norm in the loss function

of the adversarial learning framework to capture the local context information derived

from the area surrounding the tumors. We used two BUS image datasets to assess the

efficiency of the proposed model. The experimental results show that the proposed

model achieves competitive results compared with state-of-the-art segmentation mod-

els in terms of Dice and IoU metrics. The source code of the proposed model will be

publicly available at https://github.com/vivek231/Breast-US-project.

Keywords: Breast Cancer, CAD System, Deep Adversarial Learning, Ultrasound

Image Segmentation

1. Introduction

Breast cancer is one of the most common causes of women’s death worldwide

(Siegel et al., 2017). Screening with mammography can reveal tumors at early stages.

However, it is difficult to detect breast cancer using mammograms when the breast tis-

sue has a high density. Ultrasound scan is a cheap imaging alternative and a powerful5

adjunctive screening tool: it is recommended by the physicians to analyze and success-

fully detect the occluded breast tumors in the presence of high-density breast tissue

(Lauby-Secretan et al., 2015). Although ultrasound scans can reveal some tumors un-

noticeable in mammograms, some scans are hard to read due to their noisy nature and

the high similarity between healthy and unhealthy tissue. An expert sonographer is10

needed to retrieve tumor information from the noisy ultrasound scans. Considering the

numbers of ultrasound scans a doctor has to view, it is a quite cumbersome and time-

consuming task. In this context, a computer-aided diagnosis (CAD) system can reduce

the workload of sonographers (Doi, 2007), by providing valuable cues for diagnosis,

such as the possible location of tumors, their plausible boundaries and a prediction of15

the tumor type. One of the main tasks of BUS CAD systems is tumor segmentation,

which is the focus of this article.

Various segmentation algorithms based on traditional computer vision have been

introduced in the literature to segment breast tumors in ultrasound images. These ap-
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proaches include active contours (Rodtook and Makhanov, 2013), (Huang and Chen,20

2006), thresholding (Xian et al., 2015), clustering (Lo et al., 2014), (Shan et al., 2012),

graph-based (Huang et al., 2012), and watershed-based automated segmentation method

(Gu et al., 2016). A computationally efficient segmentation algorithm was proposed in

(Horsch et al., 2001), which maximizes a utility function over partition margins defined

through gray-value thresholding of a preprocessed image. Even though this threshold25

technique is computationally competent, parameters such as center, height, and width

of initial lesion margins should be set manually for more reliable segmentation results,

which makes it less robust if constant parameters are set for different variety of images.

An active contours model that incorporates the watershed algorithm in the objective

function was proposed in (Huang and Chen, 2006). This method tries to minimize the30

energy function to segregate the boundaries of the tumor region properly.

With technological advancement and the great success of deep learning paradigm,

several deep learning-based segmentation methods have been proposed recently in the

context of image segmentation (Lai, 2015). Many researchers have used semantic seg-

mentation methods for different medical imaging modalities, such as brain lesion seg-35

mentation in magnetic resonance imaging (MRI) (Litjens et al., 2017), skin lesion seg-

mentation in dermoscopy images (Singh et al., 2019), breast tumor segmentation in

mammograms (Singh et al., 2020, 2018b) and optic disc segmentation in retinal fundus

images (Singh et al., 2018a).

Over the last two decades, several BUS image segmentation methods have been40

proposed, which can be categorized into semi-automated and fully automated accord-

ing to the degree of human intervention. In (Abdel-Nasser et al., 2017), a region grow-

ing algorithm used to automatically extract the region of interest (ROI) of the tumor.

Image super-resolution and texture analysis methods were both incorporated in their

approach to discriminate benign tumors from the malignant ones. Recently, some deep45

learning-based models proposed to enhance the performance of breast tumor segmenta-

tion. In (Xu et al., 2019), two convolutional neural networks (CNN) architectures have

been employed to segment BUS images into the skin, mass, fibro-glandular, and fatty

tissues achieving an accuracy of 90%. In (Hu et al., 2019) joined a dilated fully con-

volutional network with a phase-based active contour model to segment breast tumors,50
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Figure 1: Examples of BUS images with presence of ambiguous anatomical boundaries due to speckle noise,

low contrast and low signal-to-noise ratio.

achieving a dice score of 88.97%.

Moreover, a residual-dilated-attention-gate-UNet (RDAU-NET) model was sug-

gested in (Zhuang et al., 2019) to segment the tumors in BUS images. This model

was based on the baseline U-Net segmentation model. However, the conventional neu-

ral units were replaced with residual units to increase the boundary information and55

mitigate the deep network performance degradation issue. In that network, the dilated

convolutions process the feature maps obtained from the encoder layers to maximize

the receptive field and extract more characteristic features. The conventional cropping

and copying between the encoder-decoder pipelines were substituted with the atten-

tion gate modules, which enhanced the learning capabilities through suppression of60

background information.

Although the proposed methods in the literature provide useful solutions, there are

still difficulties in accurately segmenting tumors due to speckle noise and shadows that

exist in BUS images, as well as the high variability of tumors in shape, size, appear-

ance, texture, and location. As shown in Fig. 1, the four BUS images have speckle65

noise, shadows, and different appearance and texture. Fig. 1(a) and Fig. 1(b) contain

big masses in the middle of the images. These masses have ill-defined and irregular

boundaries. In turn, the masses in Fig. 1(c) and Fig. 1(d) are at different locations and

have clear boundaries. In this article, we propose an automatic method for breast tumor

segmentation in BUS images based on the adversarial learning framework. Specifi-70

cally, the main contributions of this article are as follows:

1. We propose an efficient model for breast tumor segmentation in BUS images

using a contextual-information-aware deep adversarial learning framework, in

4



which we adopt a deep learning paradigm to capture both the texture features

and the contextual dependencies in the BUS images.75

2. We adopt atrous convolution (AC) block (Chen et al., 2017) to capture both spa-

tial context and scale context, i.e., position and size of breast tumors. The pro-

posed AC block solves this issue by increasing the receptive field with different

atrous rates while maintaining the spatial dimension of feature maps at a very

low computational burden.80

3. Furthermore, we propose the use of a channel attention (Fu et al., 2018) along

with channel weighting (Hu et al., 2018) mechanisms (hereinafter, we refer to

it as CAW block), to promote the tumor-relevant features (without extra super-

vision), thus making the segmentation framework more robust against the men-

tioned artifacts common in BUS images.85

4. Finally, we propose a combination of structural similarity index metric (SSIM)

and L1-norm in the loss function of the adversarial learning framework. Such

combination can address the challenges induced by the mentioned artifacts (e.g.,

speckle noise, irregular and ambiguous boundaries of tumors) and facilitate cap-

ture of the local context information derived from the area that surrounds breast90

tumors.

The rest of this article is structured as follows. Section 2 presents the proposed model.

The results are shown in section 3. The article is concluded, and some possible future

works are discussed in section 4.

2. Proposed Methodology95

In this article, we aim at segmenting tumors from a given 2D raw input BUS image

I of size W ×H, where W and H are width and height of the image, respectively. We

introduce a deep learning model, which outputs a label map of size W×H whose pixels

p(x,y) hold a label 1 for lesion and 0 otherwise. As depicted in Fig. 5, the proposed

segmentation model is based on a conditional generative adversarial network (cGAN),100

which comprises of two interdependent networks: a generator (G) and a discriminator

(D) (Goodfellow et al., 2014). The generator produces a generated label map (i.e.,
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predicted mask) from an input BUS image, while the discriminator is trained to discern

between ground-truth (real) and generated label maps (predicted).

In the cGAN model, the training of both the generator and the discriminator is under105

the observation of the input BUS images as a condition. Below, we explain the model

in detail and how we use AC and CAW techniques to capture texture features and

contextual dependencies in BUS images for detecting and segmenting breast tumors

accurately.

2.1. Atrous convolution (AC) block110

Conv	3x3
rate	=	1

Conv	3x3
rate	=	2

Conv	3x3
rate	=	3

C

OutputInput

Atrous	Convolutional	block

Upsample

Upsample

Upsample

Conv	1x1
rate	=	1

Upsample
GAP

GAP: Global Average Pooling C ConcatenationC

Figure 2: The architecture of the AC block with different rates of AC (r = 1, 2 and 3).

AC helps to manage the resolution of the feature responses computed from CNN.

They can incorporate local as well as global contextual interactions (pixel, region, tu-

mor, and tumor-background interactions), without increasing the number of trainable

parameters, by enlarging the field-of-view of filters. Fig. 2 presents the architecture of

the utilized AC block. The first three convolutional layers have a kernel size of 3× 3115

and rates of 1, 6, and 9, respectively. The fourth convolutional layer has a kernel size

of 1×1 followed by a global average pooling (GAP). This layer is employed to assure

that high-level feature maps of small size have features from the region of breast tu-

mors. An up-sampling layer is employed after each branch and then all features are

concatenated. As shown in Fig. 3, AC can increase the receptive field, and thus it ac-120
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commodates to variable size and shapes of breast tumors. The employed AC block can

mitigate the problem of loss of small tumor-relevant features due to the consecutive

downsampling layers.

Atrous convolution
with the rate = 1

Kernel size = 3x3

Atrous convolution
with the rate = 2

Kernel size = 3x3

Atrous convolution
with the rate = 3

Kernel size = 3x3

Figure 3: Use of AC to increase the receptive field in order to accommodate variable size and shapes of

breast tumors.

2.2. CAW block

Fig. 4 describes the architecture of the proposed CAW block. It has two branches:125

the channel attention process (top branch) and the channel weighting process (bottom

branch). Since we have placed the CAW block after the last encoder layer, the pro-

cessed activation map has spatial dimensions (H x W) of 1×1: indeed, it is a vector of

C= 512 scalars. Hence, the method works only on the channel feature space.

The attention mechanism (Fu et al., 2018) computes a feature correlation matrix of130

C×C elements, as the multiplication of the input features vector by its transpose. Then,

the input vector is multiplied by the transpose of this matrix to get the tumor relevant

features. Afterward, this vector is then multiplied by a learnable scalar parameter and

summed to the original vector.

Assume that X ∈ RC×C is the channel attention map and γ ∈ RC×H×W are the orig-135

inal features. Individually, we reshape γ to RC×N , we then perform a matrix multipli-

cation among γ and the transpose of γ . Finally, we apply a softmax layer to make the

channel attention map X ∈ RC×C:

x j i =
exp(γi.γ j)

∑
C
i=1 exp(γi.γ j)

(1)
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Figure 4: The architecture of the CAW block.

where x j i estimate the it h channel’s impact on the jt h channel. Moreover, we implement

a matrix multiplication among the transpose of X and γ and reshape their result to140

RC×H×W . Later we multiply the result by a scale parameter β and do an element-wise

sum operation with γ to get the final output E ∈ RC×H×W :

E = β

C

∑
i=1

(x j iγi)+ γ j (2)

where β is the weight factor. This mechanism can enhance the segmentation accuracy

because relevant patterns similar to breast tumor regions will produce high activation

values in several feature channels (i.e., it will enhance their importance in the output145

feature maps).

In channel weighting (Hu et al., 2018), the weighting mechanism begins with a

global average pooling to transform each channel map into a single value (squeeze),

but we can omit this step since we already have one value per channel. The next step

involves two fully connected layers, with C/n where n is dimensional reduction ratio150

(n=4) and C neurons, respectively, that outputs C weights at each channel, which mul-

tiply the original vector values to dynamically promote breast tumors relevant features

in each sample (excitation).

Finally, the output vectors of the two branches are summed. In the training phase,
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the back-propagated gradient can flow through both branches that promote the tumor-155

relevant features for the final segmentation. In the network, the attention method pro-

motes the high-level features that repeat their values for given input image patterns,

which indicate that these shared features are very critical for the target classes (tumor

and non-tumor pixels). In turn, the excitation method looks for the optimal non-linear

re-calibration of the high-level features that tend to provide better inferences of the final160

output. In this manner, we can enrich the representational power of the highest-level

features of the generator network, which turns out in a clear improvement compared to

the baseline (BL) model.

2.3. Model architecture

Fig. 5 presents the network architecture of the proposed model. It consists of165

a generator network that extracts breast tumor relevant features, and a discriminator

network that predicts if a label mask is a real or fake segmentation of the input BUS

image. More details about these networks are given below.

Generator network: The generator network incorporates an encoder composed of

seven convolutional layers and a decoder composed of seven deconvolutional layers170

(note that transposed Conv is named as Dconv). We have modified the plain encoder-

decoder structure by inserting an AC block (Yu and Koltun, 2015) between Conv3 and

Conv4, in addition to a CAW block inserted between Conv7 and Dconv1. It worth not-

ing that the locations of AC and CAW blocks have been experimentally tuned. Indeed,

the AC block helps the generator network to recognize breast tumors relevant features175

at different scales and to expand the actual receptive field of the filters. Consequently,

the network is more aware of contextual information without increasing the number of

parameters nor the amount of computation. In this study, we use 1, 6, and 9 dilation

rates with kernel size 3×3 and a stride of 2. In turn, The CAW block is an aggregation

of a channel attention (Fu et al., 2018) with a channel weighting module (Hu et al.,180

2018). In turn, the CAW block increases the representational power of the highest-

level features of the generator network, which turns out in a clear improvement of the

accuracy of the breast tumor segmentation in ultrasound images.

Each layer in the encoder section is followed by batch normalization (BN) (ex-
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Figure 5: The architecture of the proposed model that consists of Generator (G) and Discriminator (D)

networks.

cept for Conv1) and LeakyReLU with slope 0.2. The decoder section is a sequence185

of transposed-convolutional layers followed by batch normalization, and dropout with

rate 0.5 (only in DConv1, DConv 2 and DConv3) with ReLU. The filters of the convolu-

tional and deconvolutional layers are defined by a kernel of 4×4, and they are shifted

with a stride of 2. Skip connections are employed between the corresponding layers in

the encoder and decoder sections, which improve the features in the output image by190

merging deep, coarse, semantic information and simple, fine, appearance information.

After the last decoding layer (Dconv7), the tanh activation function is utilized as a non-

linear output of the generator, which is trained to create a binary mask of the breast

tumor.

Discriminator network: It comprises a set of five convolutional layers with ker-195

nels of size 4×4 with a stride of 2, except for Conv4 and Conv5 where the stride is 1.
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The batch normalization is used after Conv2 to Conv4. LeakyReLU with slope 0.2 is the

non-linear activation function used after Conv2 to Conv5, while the sigmoid function

is used after Conv5. The input of the discriminator is the concatenation of the BUS

image and a binary mask identifying the tumor area. Note that this mask can either200

be the ground truth or the one predicted by the generator network. The output of the

discriminator is a 10×10 matrix having values varying from 0.0 (completely fake) to

1.0 (real).

Loss Functions: Assume x is a BUS image comprising a breast tumor, y is the

ground truth mask of that tumor within the image, G(x,z) and D(x,G(x,z)) are the

outputs of the generator and the discriminator, respectively. The loss function of the

generator G involves three terms: adversarial loss (binary cross-entropy loss), L1-norm

to promote similarity between the generated mask and ground-truth mask, and SSIM

loss (Wang et al., 2004) to enhance the shape of the boundaries of segmented masks:

`Gen(G,D) = Ex,y,z(− log(D(x,G(x,z)))) (3)

+λEx,y,z(`L1(y,G(x,z)))+αEx,y,z(`SSIM(y,G(x,z)))

Here z is a random variable, and λ and α are empirical weighting factors. The variable

z is introduced as a dropout in the decoding layers Dconv1 to Dconv3 at both training205

and testing phases, which helps generalize the learning process and avoid overfitting.

Structural Similarity Index Metric (SSIM) Loss: It can be defined as (Wang

et al., 2004):

SSIM(a,b) =
2(µaµb + c1)(2σab + c2)

(µ2
a +µ2

b + c1)(σ2
a +σ2

b + c2)
(4)

where a and b are two 2D images to be compared (in our case, two binary masks), and

µa, µb, σa and σb are the corresponding mean and standard deviations, while σab is the210

covariance between a and b. The value of c1 and c2 were experimentally set to 0.012

and 0.032, respectively.

Notably, the values of D(x,G(x,z)) should approach 1.0 if the generator network

is well optimized, indicating that discriminator cannot differentiate between produced

tumor masks from ground truth masks. In turn, L1 and SSIM losses should approach

0.0, meaning that every generated mask matches the corresponding ground truth both
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in overall pixel-to-pixel distances (L1-norm) and in basic statistic descriptors (SSIM).

The loss function of the discriminator D can be expressed as follows:

`Dis(G,D) = Ex,y,z(− log(D(x,y))) (5)

+Ex,y,z(− log(1−D(x,G(x,z))))

During the training phase, the optimizer tries to fit D in order to maximize the loss

values for ground truth masks (by minimizing − log(D(x,y))) and minimize the loss

values for created masks (by minimizing − log(1−D(x,G(x,z))). The two terms cal-215

culate BCE loss using both masks, assuming that the expected class for ground truth

and generated masks are 1 and 0, respectively. Notably, the G and D networks are con-

currently optimized: an optimization step for both networks at each iteration, where G

tries to generate a correct tumor segmentation, and D learns how to distinguish between

generated and real masks.220

Model training: In the pre-processing step, we resized each BUS image to 96×96

pixels, and normalized pixel values between [0, 1]. The hyperparameters of the model

were experimentally tuned. We explored different optimizers, such as SGD, AdaGrad,

Adadelta, RMSProp, and Adam, with different learning rates, obtaining the best results

with Adam optimizer (β1= 0.5, β2= 0.999) and learning rate = 0.0002 with a batch size225

of 8. The SSIM loss and L1-norm loss weighting factors λ and α were set to 10 and 5,

respectively. We have trained the model from scratch for 200 epochs, getting the best

results for both generator and discriminator on 40 epochs. In a post-processing step,

morphological operations (3×3 closing and 2×2 erosion) are applied to the generated

masks in order to remove mislabeled pixels.230

3. Experiments and Discussion

In this study, we use two different BUS image datasets to assess the performance

of the proposed method. Both datasets are obtained with different BUS imaging device

specifications at different acquisition times. In this article, we refer to the two datasets

used as dataset A and dataset B.235

Dataset A: It includes BUS images from Mendeley dataset (Rodrigues, 2017),

which contains 150 malignant and 100 benign tumors cases. This dataset has no ground
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truth for tumor segmentation. Therefore, a cooperative expert radiologist has manually

segmented the tumors in the BUS images, which are used as ground truth to train our

proposed segmentation model.240

Dataset B: It is provided by the UDIAT Diagnostic Centre of Sabadell (Spain) (Yap

et al., 2017), (Abdel-Nasser et al., 2015). The images were collected from 267 patients

using a Siemens ACUSON Sequoia C512 system 17L5 HD linear array transducer

(8.5 MHz), where BUS images of 163 patients include masses and the others are of

healthy patients. The ground truths of the tumor regions in the BUS images are already245

available in this dataset.

With both BUS image datasets, we have randomly split the datasets into training

(70%), validation (10%), and testing (20%) sets. It is important noting that the pro-

posed model is trained, validated, and tested using the train, validation, and test data of

both datasets, individually.250

Data augmentation: We implemented data augmentation techniques to improve

the network performance, invariance and robustness. To augment each dataset, we per-

formed the following operations: 1) we scaled the images by varying scaling variable

from 0.5 to 2 with a step size of 0.25, 2) we applied gamma correction on the images

by varying gamma scaling constant from 0.5 to 2.5 with a step size of 0.5, and 3) we255

horizontally and vertically flipped the images and rotated them with different angles.

This data augmentation procedure increases the number of training images of dataset

A and B from 175 and 118 to 8,225 and 5,546, respectively.

Evaluation Metrics: Five metrics are used to assess the performance of the seg-

mentation models, namely the accuracy, Dice Coefficient, Jaccard index (IoU), sensi-260

tivity, and specificity. To compute these metrics we firstly define true positive (TP),

false positive (FP) and false-negative (FN) rates. Let A and B are the ground-truth

mask and the corresponding mask obtained by a segmentation model, respectively. TP

rate, which is the area of the segmented part common in A and B, can be defined as

T P = A∩B. FP rate, which is the segmented region not belonging to A, can be ex-265

pressed as A∩B. FN rate, which is the true area missed by the segmentation model,

can be expressed as A∩B. The five metrics can be formulated as follows: (Lalande
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Table 1: Analyzing different configurations of the proposed method with Dataset A and Dataset B.

Methods
Dataset A Dataset B

Accuracy Dice IoU Sensitivity Specificity Accuracy Dice IoU Sensitivity Specificity

cGAN 0.9811 0.8604 0.7756 0.8385 0.9827 0.9756 0.8241 0.7562 0.8572 0.9807

cGAN+AC 0.9762 0.8714 0.8077 0.8550 0.9839 0.9803 0.8354 0.7712 0.8846 0.9869

cGAN+CAW 0.9818 0.9065 0.8340 0.8772 0.9911 0.9817 0.8479 0.7802 0.8892 0.9884

Proposed 0.9926 0.9376 0.8882 0.9011 0.9973 0.9822 0.8682 0.8037 0.9155 0.9949

et al., 2015).

Accuracy = (T P+T N)/(T P+T N +FP+FN) (6)

Dice = 2T P/(2T P+FP+FN) (7)

270

IoU = T P/(T P+FP+FN) (8)

Sensitivity = T P/(T P+FN) (9)

Speci f icity = T N/(T N +FP) (10)

Implementation platform: The proposed BUS image segmentation method is im-

plemented using Python 3.6, CUDA 8.0, cuDNN 7.0, PyTorch 0.4.1 running on a 64-

bit Ubuntu operating system using a 3.4 GHz Intel Core-i7 with 16 GB of RAM and275

NVIDIA GTX 1070 GPU with a memory of 8 GB.

3.1. Ablation study

We performed an ablation study to show the effects of different blocks in the base-

line cGAN model. Firstly, we trained a baseline cGAN model without any AC and

CAW (channel attention and weighting) blocks. Then we added an AC block after the280

third encoder layer of the baseline cGAN model and called this model cGAN+AC. In

the next step, we added the CAW block to the encoder layers of the generator net-

work in the baseline cGAN model and called this model cGAN+CAW. In the last step,
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we formulated the proposed model (cGAN+AC+CAW) by adding both AC and CAW

blocks to the baseline cGAN model.285

Table 1 presents a quantitative comparison between the cGAN, cGAN+AC, cGAN+CAW,

and proposed (cGAN+AC+CAW) model, in terms of accuracy, Dice, Intersection over

Union (IoU), sensitivity, and specificity, using both datasets. The results show that

the baseline cGAN model yields Dice and IoU scores of 86.41% and 77.56%, respec-

tively, for dataset A, whereas, 82.41% and 75.62% for dataset B, respectively. The290

baseline cGAN utilizes the basic network capability to segment the breast lesion from

the noisy ultrasound images. Therefore, it cannot extract the low-resolution image fea-

tures from the BUS images to properly segment the tumor. We added an AC block in

the encoder part of the generator network of the baseline cGAN, which manages the

resolution of the feature responses from the previous encoder layers. The AC block295

helps the encoding layers to extract the relevant features by ignoring the echogenic or

shadows surroundings the lesion pixels. It provides a slight improvement in the Dice,

IoU, sensitivity, and specificity on both datasets.

Furthermore, we evaluated the effects of the CAW block on baseline cGAN, which

was added in the encoder part of the generator network. After checking various config-300

urations, we combined both AC and CAW blocks in the baseline cGAN to formulate the

proposed model. The proposed model provided an improvement of 8% to 11% com-

pared to the baseline cGAN with Dataset A and around 2% with Dataset B in terms

of Dice and IoU, respectively. Additionally, the added blocks provided more powerful

pixel discriminability between the tumor and non-tumor areas. Fig. 6 presents exam-305

ples of channel attention maps (CAMs) of BUS images with tumors. The CAMs shown

in the figure is taken from the third encoding layer that shows the maps correlation with

tumor and healthy tissue regions. The red color indicates a higher probability of the

presence of a breast tumor while the blue color indicates a lower probability of the

existence of a breast tumor. As shown, the CAW block help to focus on the regions of310

breast tumors while giving less importance to other regions.

Fig. 7 presents the performance of the proposed model with different combina-

tions of loss functions: BCE, BCE+L1-norm, BCE+SSIM, BCE+Lovasz-Hinge and

BCE+L1-norm+SSIM loss. As shown all loss functions gives a dice score higher

15



(a) (b) (c)

(d) (e) (f)

Figure 6: Six examples of Channel attention maps generated from the proposed segmentation model. The

red color indicates a higher probability of the presence of a breast tumor while the blue color indicates a

lower probability.

than 80%, however, BCE, BCE+L1-norm and BCE+Lovasz-Hinge losses achieves an315

IoU score lower than 80%. The best dice and IoU scores are archived with BCE+L1-

norm+SSIM loss, and therefore it has been utilized with the proposed model.

3.2. Breast tumor segmentation results

In Table 2, we compared the proposed model with six state-of-the-art image seg-

mentation methods: FCN (Long et al., 2015), UNet (Ronneberger et al., 2015) Seg-320

Net (Badrinarayanan et al., 2017), ERFNet (Romera et al., 2018), and DCGAN (Kim

et al., 2017). All methods are evaluated both quantitatively and qualitatively. For the

quantitative analysis, we have calculated accuracy, Dice, IoU, sensitivity, and speci-

ficity metrics. In Table 2, using dataset A, the proposed method yielded Dice and IoU

scores of 93.76% and 88.82%, respectively. The proposed method outperformed the325

second-best segmentation method in Table 2, i.e., cGAN in terms of Dice and IoU

by 8% and 11%, respectively, which is quite significant considering their proximity

to the maximum value. The SegNet and ERFNet models yielded the worst segmen-
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IoU

Figure 7: The performance of the proposed model with different combinations of loss functions.

Table 2: Comparison between the proposed model and six state-of-the-art methods in terms of accuracy,

Dice, IoU, sensitivity and specificity, using datasets A and B.

Methods
Dataset A Dataset B

Accuracy Dice IoU Sensitivity Specificity Accuracy Dice IoU Sensitivity Specificity

FCN 0.9702 0.7973 0.6629 0.7649 0.9811 0.9791 0.7166 0.6227 0.7723 0.9879

SegNet 0.8369 0.5035 0.4165 0.7086 0.8698 0.8594 0.5144 0.4112 0.7235 0.8744

UNet 0.9710 0.8528 0.7706 0.7977 0.9794 0.9819 0.7521 0.6617 0.7925 0.9891

ERFNet 0.8849 0.6702 0.5332 0.7283 0.9116 0.9371 0.6010 0.4953 0.6954 0.9482

DCGAN 0.9758 0.8555 0.7728 0.8128 0.9803 0.9742 0.8007 0.7344 0.8323 0.9791

cGAN 0.9811 0.8604 0.7756 0.8385 0.9827 0.9756 0.8241 0.7562 0.8572 0.9807

Proposed 0.9926 0.9376 0.8882 0.9011 0.9973 0.9822 0.8682 0.8037 0.9155 0.9949

tation results. In turn, UNet and DCGAN yielded comparable segmentation results to

cGAN, the second-best segmentation model, in terms of Dice and IoU. The proposed330

model also yielded the accuracy, sensitivity, and specificity of 99.26%, 90.11%, and

99.73%, respectively, that achieves an improvement of 1%, 6%, and 1.5% compared to

the second-best segmentation model, i.e., cGAN.

Similarly, using dataset B, the proposed method yielded Dice and IoU scores of

86.82% and 80.37%, respectively, which is 4% and 5% more than Dice and IoU score335

of the second-best segmentation method, i.e., cGAN. For dataset B, only cGAN and

DCGAN yielded acceptable segmentation results compared to the proposed method,

with Dice and IoU scores over 80% and 70%, respectively. All remaining models:

FCN, SegNet, UNet, and ERFNet, yielded Dice and IoU lower than 80% and 70%,
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Figure 8: Boxplots of Dice and IoU scores for all test samples in Dataset A (plots in top) and Dataset B

(plots in bottom). Different color boxes indicate the score range of several methods, the red line inside each

box represents the median value, box limits include interquartile ranges Q2 and Q3 (from 25% to 75% of

samples), upper and lower whiskers are computed as 1.5 times the distance of upper and lower limits of the

box, and all values outside the whiskers are considered as outliers, which are marked with the (+) symbol.

respectively. The proposed model yielded the accuracy, sensitivity, and specificity340

of 98.22%, 91.55%, and 99.49%, respectively, outperforming the second-best cGAN

model by 6% in terms of sensitivity. In turn, our model outperformed the second-best

UNet model in terms of accuracy and specificity by very small values of 0.03% and

0.6%, respectively. Notably, the sensitivity and specificity of the proposed method,

which is essential to tumor detection tasks, are higher than 90.0%. These results reveal345

that the proposed model not only achieves accurate segmentation results but also high

tumor detection accuracy.

Fig. 8 has shown a comparison between the FCN, SegNet, ERFNet, UNet, DC-

GAN, cGAN and the proposed model by using the boxplots of Dice and IoU values
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Input FCN SegNet UNet ERFNet Proposed

Figure 9: Segmentation results of five models using Dataset A. (Col 1) original input images, (Col 2) FCN,

(Col 3) SegNet, (Col 4) UNet, (Col 5) ERFNet, and (Col 6) the proposed model. For each experiment,

the original BUS image and the segmentation results of compared segmentation methods are shown. The

segmentation results are color-coded in yellow (TP), red (FN), and green (FP), and background (TN).
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Input FCN SegNet UNet ERFNet Proposed

Figure 10: Segmentation results of five models with the Dataset B. (Col. 1) original input images, (Col.

2) FCN, (Col. 3) SegNet, (Col. 4) UNet, (Col. 5) ERFNet, and (Col. 6) the proposed model. For each

experiment, the original BUS image and the segmentation results of compared segmentation methods are

shown. The segmentation results are color-coded in yellow (TP), red (FN), green (FP), and background

(TN).
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obtained by using 50 and 32 testing samples of Dataset A and Dataset B, respectively.350

The two models based on GAN provided small ranges of Dice and IoU values, while

other deep segmentation methods, FCN, SegNet, ERFNet, and UNet showed a more

extensive range of values. There are many outliers in the segmentation results of com-

pared state-of-the-art methods. In turn, the proposed method yielded no outliers for

dataset A and only five outliers with Dataset B. Figure 8 have shown an apparent devi-355

ation between the proposed and the compared methods.

Fig. 9 and 10 presented a qualitative comparison between the segmentation re-

sults of the proposed and state-of-the-art methods using datasets A and B. It is evident

from both figures that the SegNet and ERFNet yielded the worst segmentation results

as the predicted regions of both methods contain high false negatives (in red) and false360

positive (in green) pixels than the other tested methods. FCN also shows rather sig-

nificant inaccurate segmented areas, although it has fairly segmented the example in

the second row. In turn, UNet provided proper segmentation, but it has a less accurate

boundary around the tumor region. In turn, our model yielded the best segmentation

with the highest TP and smallest FP and FN pixels among the five tested methods.365

Further visualizations of segmentation results of the proposed method can be found at

https://youtu.be/jcNk7D8nyzs.

Moreover, we computed the execution time (inference time) of each segmentation

model. FCN, UNet, SegNet, ERFNet, DCGAN, and the proposed model achieve 35.15,

20.33, 17.71, 78.78, 18.27, and 19.62 frames per second (FPS), respectively. Although370

FCN achieves 35.15 FPS, its IoU and Dice values with both BUS image datasets are

much lower than the ones of the proposed model.

Although the proposed method achieves accurate segmentation results, it achieves

limited tumor detection segmentation accuracy with some BUS images, such as the

three examples shown in Fig 11. Indeed, such cases represent a challenge for any375

segmentation method since tissues surrounding the tumors have poor contrast as well as

ambiguous boundaries. Even it is difficult to recognize the tumor in these BUS images

with the naked eye. To further improve the performance of the proposed model, we

will integrate it with compressed representations in the frequency domain that contain

rich patterns generated by a discrete cosine transform (Xu et al., 2020).380
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(a) (b) (c)

Figure 11: Examples of incorrect tumor segmentation and localization results.

It worth noting that the proposed model has no assumption for a specific image

modality, and so it is a promising segmentation model for breast tumor segmentation in

mammograms, vessel segmentation in fundus images as well as skin lesion segmenta-

tion in dermoscopic images. In general, it could be used with any binary segmentation

task with minimal modification (the model should be trained using data of each task).385

Besides, the proposed segmentation model could be integrated in the segmentation step

of existing breast cancer CAD systems, such as breast cancer subtype classification in

mammograms (Singh et al., 2018b), breast cancer detection in thermograms (Abdel-

Nasser et al., 2016), and tumor classification in ultrasound images (Abdel-Nasser et al.,

2017).390

4. Conclusion

In this article, we have proposed an efficient method for tumor segmentation in

BUS images based on a contextual-information-aware GAN architecture. To promote

tumor-relevant features, we have exploited an AC block in the generator network, al-

lowing for the use of spatial and scale contextual information (i.e., position and size395

of tumors). We also have adopted a channel attention and channel weighting (CAW)

mechanism in the generator network to boost the tumor-relevant features without addi-

tional supervision and mitigate the effect of artifacts. Lastly, we have employed a com-

bination of the SSIM index and L1-norm in the loss function of cGAN to model the

local contextual information derived from the area surrounding tumors. Our model out-400

performs the FCN, SegNet, ERFNet, UNet, DCGAN, and cGAN segmentation models

in terms of Dice and IoU metrics, achieving the top scores of 93.76% and 88.82%,

respectively, with Dataset A. With Dataset B, the proposed model obtained promising
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results of 86.82% and 80.37% in terms of Dice and IoU score. The proposed segmen-

tation model can help physicians in detecting and diagnosing breast tumors from BUS405

images. It could be employed with diverse binary segmentation tasks with minimal

modification, such as breast tumor segmentation in mammograms and thermograms,

as well as skin lesion segmentation in dermoscopic images. In the future, learning

in the frequency domain approaches, e.g. (Xu et al., 2020), will be incorporated to

further improve the provenance of the proposed method. Besides, we will integrate410

our proposed model with an automated BUS image CAD system to make benefits for

physicians in clinical practice for making an accurate diagnosis.
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