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Abstract—Although extreme learning machine (ELM) has
successfully been applied to a number of pattern
recognition problems, only with the original ELM it can
hardly yield high accuracy for the classification of
hyperspectral images (HSIs) due to two main drawbacks.
The first is due to the randomly generated initial weights
and bias, which cannot guarantee the optimal output of
ELM. The second is the lack of spatial information in the
classifier as the conventional ELM only utilizes spectral
information for classification of HSI. To tackle these two
problems, a new framework for ELM based
spectral-spatial classification of HSI is proposed, where
probabilistic modelling with sparse representation and
weighted composite features (WCF) are respectively
employed to derive the optimized output weights and
extract spatial features. First, the ELM is represented as a
concave logarithmic likelihood function under statistical
modelling using the maximum a posteriori (MAP)
estimator. Second, the sparse representation is applied to
the Laplacian prior to efficiently determine a logarithmic
posterior with a unique maximum in order to solve the
ill-posed problem of ELM. The variable splitting and the
augmented Lagrangian are subsequently used to further
reduce the computation complexity of the proposed
algorithm and it has been proven a more efficient method
for speed improvement. Third, the spatial information is
extracted using the weighted composite features (WCFs) to
construct the spectral-spatial classification framework. In
addition, the lower bound of the proposed method is
derived by a rigorous mathematical proof. Experimental
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results on three publicly available HSI data sets
demonstrate that the proposed methodology outperforms
ELM and also a number of state-of-the-art approaches.
Index Terms—hyperspectral image (HSI), spectral-spatial
classification, extreme learning machine (ELM), maximum a
posterior (MAP), sparse representation, Laplacian prior.

|. INTRODUCTION

With rich spectral and spatial information contained in a
three-dimensional hypercube, hyperspectral images
(HSI) provide a unique way for characterizing objects in
geographical scenes, especially remote sensing images [1].
However, classification of high dimensional data such as HSI is
still challenging, particularly due to the unfavorable ratio
between the limited number of training samples and large
number of spectral bands, i.e., the Hughes phenomenon [2]-[4].
To tackle this problem, a number of feature extraction and data
classification approaches have been proposed [12]. These
include the singular spectrum analysis (SSA) [5]-[8],
segmented auto-encoders [11], principal component analysis
(PCA) and its variations [13], [14], and support vector
machines (SVM) [9]. In addition, a locality adaptive
discriminant analysis (LADA) approach has been proposed for
spectral-spatial classification of hyperspectral images [10]. In
[15], a multitask joint sparse representation and stepwise MRF
optimization (MSMRF) method is proposed for HSI
classification. In [16], the manifold ranking (MR) is applied for
salient band selection of HSI. Although these approaches have
produced good results in term of classification accuracy, their
performance can be further improved by addressing two main
difficulties: (1) Inaccurate classification with a large number of
spectral bands yet limited training samples, and (2) relatively
low efficiency for processing high dimensional HSI data.

As a single forward layer neural network, the extreme
learning machine (ELM) is a fast and effective machine
learning method and has received a wide attention due to its
good performance [17]-[19]. The ELM does not tune the
hidden layer parameters once the number of hidden layer nodes
has been determined. In ELM, the weight and bias vectors
between the input layer and the hidden layer are initially
randomly generated, which are independent of the training
samples and the specific applications [1]. ELM has achieved
good performance in many applications [20]-[23], even for HSI
classifications [24]-[28]. In [24] and [25], bilateral filtering and
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extended morphological profiles were used for feature
extraction, followed by ELM for classification. In [26]-[28],
ELM was employed for classification with feature extracted
using local binary pattern (LBP) and Gabor filters. Although
these ELM-based methods have achieved good performance to
some extent, they ignore one very important issue of ELM that
the randomly generated input weights and bias of ELM may
cause ill-posed problems. Based on this perspective, we first
propose an improved ELM, namely the Augmented Sparse
Multinomial ~ Logistic ELM (ASMLELM) for HSI
classification. Based on the proposed ASMLELM, we
additionally present weighted composite features (WCFs) for
extracting the spatial information. To this end, we finally
propose  ASMLELM-WCFs as a novel framework for
spectral-spatial classification of HSI.

The main contributions of this paper can be highlighted as
follows. First, we propose the augmented spare multinomial
logistic extreme learning machine (ASMLELM) to alleviate the
ill-posed problem of ELM, which is caused by the randomly
generated weights and bias. In ASMLELM, the ELM is
represented by a maximum a posteriori (MAP) based
probabilistic model, which is further represented by a concave
logarithmic likelihood function (LLF). To improve the sparsity
of the learnt weights and guarantee the logarithmic posterior to
have a unique maximum, the sparse representation, i.e. the
Laplacian prior/regularized term, is employed for representing
the ELM [29]-[32]. As such, optimal weight and bias are
determined for the ELM, followed by variable splitting and
augmented Lagrangian [33] to further improve the efficiency.

Second, by combining the composite kernels (CK) [34] and
weighted mean filters (WMFs) [35], the weighted composite
features (WCFs) are used to extract spatial features and further
improve the classification accuracy. Accordingly, three
improved spectral-spatial classifiers are derived, which include
the ELM, the nonlinear ELM (NLELM) and the kernel ELM
(KELM) based classifiers, i.e., ASMLBELM-WCFs,
ASMLNLELM-WCFs, and ASMLKELM-WCFs.

Third, inspired by the sparse multinomial logistic regression
(SMLR) [29], [36], [37], the generalization bounds of the
proposed method are derived, which can provide a theoretical
insight of and further justification for our proposed methods.

The rest of this paper is organized as follows. In Section I,
the background of the ELM is introduced. The proposed
method is detailed in Section Ill. Section IV reports the
experimental results in benchmarking with a few
state-of-the-art approaches. Finally, some conclusions are
drawn in Section V.

1. THE EXTREME LEARNING MACHINE (ELM)

A. Basic Concepts of ELM

The ELM is a generalized single layer feedforward neural
network (SLFNs) [1], [17]. The weight vector and the bias
between the input layer and hidden layer are randomly
initialized. Once the initial values for the weight/bias vectors
are assigned, the hidden layer output matrix remains unchanged
in the learning process [1].

Let X = (x1,%,, ..., xy) € RN be the training data of a
HSI, which has N pixels and each pixel has a d-dimensional
feature. Let Y = (y1,¥2, ...,yy) ERMN be a matrix
representing the class label of the training samples, where M is
the number of classes in the datasets. Given a pixel label y;, if it
belongs to the k-th class, we have

_(L j=k,
Yij = {O, otherwise.

The model of a single hidden layer neural network with L
hidden neurons and the activation function H(x) can be
expressed as follows:

Z§:=1 B]H(WJTXL + b]) =Y i:1,2,...,N (1)
where f3; represents the weight vector between the hidden layer
and the output layer; w; and b; are the weight vector and bias
from the inputs to the hidden layer, respectively; H(ijxi +
bj) represents the output of the j-th hidden neuron with respect
to the input sample x;. Obviously, (1) can be further expressed
in the following matrix form:

H'p=Y" )
where g = [B; Bulixm, H=[H(x1) H(xn)]pxn s
and H(x;) = [H,(x;) H; (x)]%;. H is the hidden layer
output matrix, and g is the output weight matrix between the
hidden layer and the output layer.

From (2), B can be simply obtained below, where 1 is the
Moore Penrose generalized inverse of a matrix [17].

p=MHHY" ®)
B. Constrained Optimization of the ELM

The constrained optimization of the ELM aims to achieve not
only the smallest training error but also the smallest output
weights [19]:

min | HTB —YT |I?and || B8 II%. 4

According to the Bartlett’s neural network generalization
theory [38], the smaller weights will result in a smaller training
error of the feedforward neural networks. As a result, (4) can be
rewritten as:

- B2 CiEY I 12
min Ly =3 1 BIE +C5 5 0613,

s.t. HT(xi)B = yiT - EiTl i:].,..,N (5)
where &; is the training error for the training sample x;, C is the
regularization parameter.

Based on the Karush-Kuhn-Tucker (KKT) theorem [39],
training the ELM is equivalent to solve the following dual
optimization problem:

Jmin Lo =5 1B I+ C5R0 1615 =
MaXiya; (H )B — vij + &) (6)
where f; is the column vector of the matrix 8, and «; ; is the
Lagrange multiplier.
From the KKT theorem, we can further derive

OLgLM _ _
o, 0P @
a;iL,M:O_)ai:CEi' i=1,..,N, (8)
a;,‘:‘ =0->H'(x)p=y"-§&" i=1,..,N ©)
where a; = [a;1, @i, ..., Ay]"and @ = [y, @y, ..., ay]" .
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Then, it can be shown that the output weight g is:
-1
g=H (é + HTH) ' (10)
The activation functions of the neurons in the hidden layer

are unknown, and any kernel satisfying the Mercer’s conditions
can be used:

{ ey (11)
‘Q‘KELM (Xi, x]-): h(xi)Th(xi) = K(xl-, x])
In fact, the Gaussian kernel is one of the good choices
;=212
Kgim (xi:xj) = exp(— m) (12)

Based on the above analysis, two well-known constrained
optimization methods of ELM have been proposed [19]. One is
to define B in (10) without a kernel, namely nonlinear ELM
(NLELM), and the other is to use the kernel function to form
the kernel ELM (KELM) as given below:

BureLm = H(é + HTH)_lyTr
I _
BxeLm = (E + K (x;, xj)) yr,

(13)
(14)

I1l. THE PROPOSED ASMLELM FRAMEWORK

A. Sparse Multinomial Logistic Extreme Learning Machine
(SMLELM)

The goal of a supervised learning algorithm is to design a
classifier based on a set of N training samples that is capable of
distinguishing M classes on the basis of an input vector of
length d [29]. Under the multinomial logistic regression model
[40], B in (3), (13) and (14) can be transformed to a new form
via a probability model. If the training sample x; belongs to the
k-th class, the probability model can be represented by the
following equation:

T
Py = 1[HG.B) = propigres (19)

In (3), (13), (14) and (15), 8 may not be optimal due to the
ill-posed problem of ELM. Therefore, it is important to find the
optimal B to obtain high classification accuracy, where g can
be estimated again after presenting the ELM by a probabilistic
model. To this end, the maximum likelihood (ML) estimation is
introduced to the ELM. Let 8 = [B1; Bo; 3 Bl xa be
a column vector with L x M elements, a simple maximization
of the logarithmic likelihood is given as follows:

max L(B) = T (XL yi BT H(x) —

log XL, exp(B] H(x,))). (16)
In order to maximize L(f), consider the second order Taylor
series of L(B) evaluated at 8:

L(B) — L(B") = (B — B)TVL(B") +
~(B—B)VEL(B + p(B — BB — B,

2 (B—B’)TVL([?’H%(B—ﬂ’)TB(ﬁ—ﬂ’) an
where p € (0,1) and
= -y @uHT (18)

where I € RM*M is an identity matrix, 1 = [1,1,...,1]7 and ®
is the Kronecker matrix product [40], [41]. Then, the ML
estimation can be expressed as follows:

B = argmax(B" (VL) — BF) +367BFY.  (19)

Note that the dimensions of H and HHT are L X N and L X
L, where L and N refer respectively to the number of hidden
neuron of ELM and the number of training samples. The
dimension of B is ML x ML, where M is the number of classes.
For g and B’in (19), their dimensions are MLx1.

Hence, B at the (t+1)-th iteration can be expressed by a
simple updating equation:

B+t = B7H(BR* — VL(B). (20)

Eq. (20) is very similar to an iteratively reweighted least
squares (IRLS) algorithm [42]. However, the Hessian matrix in
the IRLS algorithm is replaced by matrix B. Since B~ can be
precomputed, it is a big advantage of the proposed approach.
Compared to the IRLS algorithm, whose Hessian matrix must
be inverted at each iteration [29], [43], our proposed approach
is much more efficient.

However, the concave LLF value can be arbitrarily large if
the training data is separable. From [29], it is known that a prior
on the logarithmic likelihood is crucial. In order to address the
ill-posed problem in ELM, the prior/regularized term is adopted
on 8. Here, the Laplacian prior is used:

L,(B) = L(B) — L(B") + logp(B) (21)
p(B) < exp(=A 1l B Il1) (22)
and || B II,=X; |8, denotes the 1, norm and |B,|=+/B?.
Consider the following inequality for h>0 and u>0:
h+u22\/ﬁx/ﬂyﬂsx/ﬂs§(%+\/ﬁ). (23)
For any ', we have
2
2B 1= =S AT + T, (24)
Therefore, the following term can be maximized:
max{ fT(VLL(6) = BE) +567(B - DB),  (25)
A =diag{ |B|™" ) 1Buml ™13 (26)

Finally, (20) can be expressed by the following equation:
Bt = (B -ANYNBR - VL(BT). (D)
From the above, it can be seen that the Laplacian
prior/regularized term is applied to g with A acting as a
regularization parameter. The Laplacian prior imposed on the
sparse multinomial logistic ELM (SMLELM) controls the
complexity of the SMLELM classifier and improves the
generalization capacity of the SMLELM, where p(f) in (22)
forces most components of S to become zero.

B. Augmented Sparse Multinomial Logistic Extreme Learning
Machine (ASMLELM)

Since the term L(B) in (16) is not quadratic and p(8) in (22)
is non-smooth, finding the solution of the optimization problem
in (25) is very difficult. Recently, the majorization-
minimization method [43] has been proposed to solve this kind
of problems [29], [44]-[47], though the computation
complexity is extremely high. In [48], the logistic regression
via a variable splitting and an augumented Lagrangian
(LORSAL) has been used for improving the computational
efficiency, which has succeeded in several applications
[33][16][45][49]. As a result, we utilize this approach here to
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reduce the complexity of the proposed SMLELM, which has
transformed the proposed SMLELM into a new form namely
augmented SMLELM (ASMLELM) as detailed below.
Variable splitting is straightforward approach which consists
a procedure to create new variables [50], where the problem
defined in (21) is equivalent to:
(8,9) = arg nl}ivn{—L(ﬁ) +AMlvli} st B=v. (28)
The aforementioned optimization problem can be solved via
applying the direction method of multipliers [51] (see also [52]
and the references therein). So we call this neural network as
the augmented SMLELM (ASMLELM). Applying the
augmented Lagrangian [50] to (28), the solution of (28) at the
(t+1)-th iteration can be rewritten as follows:
Bt = arg min{-L() +2NB—vE=bt 1%, (29)

9 = argmin{A v ll, + 51 B4 —v = bt 1%, (30)

bt+1 — bt _ ﬁt+1 + Ut+1 (31)
where y > 0 is the weight of the augmented SMLELM
(ASMLELM). For any y > 0, the sequence 3¢ converges to a
minimizer [45], [48] [50]. For easy implementation and tuning
the parameters, we set y = 104 in our experiments. The
solution of the problem defined in (28) is the simple
soft-threshold rule [51], [45], which can be expressed as:

v+l = max{0, abs(e) — 1/y}, (32)
e = ﬂt+1 — bt. (33)
When the same ASMLELM framework is applied

respectively to the BELM, NLELM and KELM, three new
spectral algorithms for performing the HSI classification can be
generated, which are named as ASMLBELM for the basic
ELM, ASMLNLELM for NLELM and ASMLKELM for
KELM. The pseudocodes for these three methods are shown in
Algorithm 1.

Algorithm 1:The ASMLELM for the basic ELM, the NLELM and the KELM

Input: The training sample pairs {X;rqim = (%1, X3,

Training phase:
L: The number of nodes in a hidden layer.
H(*): The sigmoid function.
B: The output weight in the hidden layer.

3: Calculate the preliminary output weight for 8
(1) B = (HDTYT for the ASMLBELM.

4. Represent the ELM by a probability model

(BicH <)
@) Py =1|Hx).B) = %

= . ) _ exp(“rngTrain)
@ PO = W c0.m) = 2k

splitting and constrained optimization.

5.2 Set t=0.

5.3 Bt = arg rr}?in —L(B) + 104

2
55 bt+1 — bt _ ﬁt+1 + ‘Ut+1.

Prediction phase:  Input: X;og; = (1, X3, -
1: (1) Calculate the output layer matrix

llacg—2 11

(2) Kiest = H*'H = exp(—

2
20g1m

wos XN and Yogin = V1, Y2, -, Yn) } Where N is the
number if training samples. As well as the parameters A, b = 0.

1: Randomly generate input weights {w;, ...w; } and bias {b,, ..., b, } to obtain the preliminary value of 3.
2: For each training sample x;, calculate the hidden layer matrix
H(x;) = [Hy(wy * x; + by), ..., Hy(wy, * x; + b)][xq.

@) 1in Loy = S0AIG+CIEN, 16 B, 5.t BTGB = %7 = &7 i=1,.N.
Here, § = H * (¢ + HTH) ™Y for the ASMLNLELM.

(3) Letw = (é + HTH)~'Y" and the Gaussian kernel Krin (x;,x;) = exp(—
Then, 0 = (% + Krragn) Y7 for the ASMLKELM.

for the ASMLBELM and the ASMLNLELM.

for the ASMLKELM.

5. ASMLELM: The ML estimate based on the sparse representation with the Laplacian prior via variable

5.1 f = argmaxfT(VL(B') — BB") + 67 (B — AN

Il B— vt —=b" I

54 9p'*! = argargminAll v ll; + % I g+t —v —
v

5.6 Increase t to t+1; If the ASMLKELM is applied, replace g by .

5.7 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 5.3.

» Xn)

H*(x)) = [Hy(Wyx; + by), ..., H,(w,x; + b)]Tsy i=1,...,N for ASMLBELM and ASMLNLELM.
) for the ASMLKELM.

llac —x 11

2+0f 11

).

bt 112
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Tir* (s
2: (1) P(yu|H (). B) = Zﬁ”f%m for ASMLBELM and AMSLNLELM.

T .
2) P(yi x| Keeser ) = el CleestGD) gy the ASMLKELM.

M T
Zj:l exp (T[]' Ktest)

Algorithm 2: ASMLELM with WCFs (ASMLBELM-WCFs, ASMLNLELM-WCFs, ASMLKELM-WCFs)

Input: The training spectral feature x},., = (x{’, x¥, ..., xg), the spatial feature x;.,;, = (x5, x5, ... ,x%), and
the labelled data Y;,4in, = (1, V2, -, V), @S Well as the parameters C, A, b = 0.

Training phase:

L: The number of nodes in a hidden layer.

H(*): The sigmoid function.

The output weight of the hidden layer .
1: Randomly generate input weight {w,, ...w; } and bias {b,, ..., b, } to obtain the preliminary value of 3.
2: For any training sample x;, calculate the hidden layer matrix

Hy, () = [Hy(wy *x{" + by), ..., H (W, * x + b,)]]«, and

Hy(x) = [Hy(wy *x{ + by), ..., H.(w, * x{ 4+ by)]]q, where

(1) H = pH,, + (1 — w)H; for the ASMLBELM-WCFs.

(2) H = uH,, + /(1 — p)H for the ASMLNLELM-WCFs and the ASMLKELM-WCFs.
3: Calculate the preliminary output weight for 8

(1) B = (HNHTYT for the ASMLBELM-WCFs.

(2) mpin Lgyy = SNBIE+CSEE N3 st HTGe)B = T — &7 i=1,.N,

Here, B = H = (é + HTH)™'YT for the ASMLNLELM-WCFs.

(@) =+ Kerain) Y™, Kerain = WHLH, + (1= WHTHy = Ky, + (1 — Kj, for ASMLKELM-WCFs,
4.Represent the ELM by a probability model

P(yix = 1{H), B) = o2 BEHED) g0 the ASMLBELM-WCFs and the ASMLNLELM-WCFs.

TiL, exp(B]H(x))

T . X
P(yix = 1Kerain (), ) = 2 TkHerain®D)_ o1 the ASMLKELM-WCFs.

Z?il exﬁ(ﬂ}wKtrain(xi))
5. ASMLELM : The ML estimate based on the sparse representation with the Laplacian prior via variable splitting
and constrained optimization.

5.1 = arg max(B"(VL(B") = BF) + 567 (B — DB},
5.2 Set t=0.
5.3 f*1 = argmin{-L(8) + 3| g — v = b* I}

54 91 =argargmin{A | v I, +%ﬂ | Bt*1 — v — bt |I?}.

55 bt+1 - bt _ ﬂt+1v+ ‘Ut+1.

5.6 Increase t to t+1; If the ASMLKELM-WCFs is applied, replace § by m.

5.7 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 5.3.

Prediction phase:
Input: The testing spectral feature x%s, = (x7", x5, ..., xy), and the spatial feature x7,o; = (x7, x3, ..., x35).
1: Calculate the output layer matrix

Hy, (x") = [Hy(wy * % + by), ..., H (wp, * x{" + b;)][x1, and

H; (%) = [Hy(wy * %7 + by), . .., H (wp * % + by)]] 1, Where

(1) H* = pH;, + (1 — wH; for the ASMLBELM-WCFs.

(2) H* = uH;, + /(1 — wH; for the ASMLNLELM-WCFs.

(3) H* = ViHy, + (1 — WH;, Kiese = WH, Hy, + (1 — WHTH = pKy, + (1 — Ky, for
ASMLKELM-WCFs.

Tyyk(a.

20 (1) P(yi|H (x:).B) = Ze"”(ﬁk—“(")) for the ASMLBELM-WCFs and the ASMLNLELM-WCFs.

Iy exp(B] H*(x))

T .
@) P(ie|Keese (%), B) = spp2Tickiest@) _ 41 the ASMLKELM-WCFs.

2L exp(n] Keest(x)
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C. Weighted Composite Features Based ASMLELM
(ASMLELM-WCFs)

Until now in our discussion, the ASMLELM has only used
the spectral information of the HSI data for classification. Since
a pixel and its spatial neighboring pixels very likely belong to
the same class [1], the spatial information is also essential for
data classification in HSI. To this end, the WCFs are used to
perform the spectral spatial classification for the proposed
ASMLELM framework and form the new approach namely
ASMLELM-WCFs.

For a given pixel x;, let its spatial coordinates be (p, q), the
local pixel neighborhood centered at x; is Nb(x;) = {x =
@wplpeElp—ap+alqelg—aq+al} , a=(Wop-1)/2
where Wy is the width/height of the neighborhood window.
Let x}” be the spectral feature of the sample x; and x; be the
information extracted from a local spatial neighborhood of x;.
Let {x;, X1, Xz, -, Xis} b€ the pixels in Nb(x;), where s =

wopt? — 1. Then x; can be represented as

s
s _ _ x; + Zc:l VcXic
X; = XU, Ve = (T ws

N
XcENb(x;) XcENDb(x;) 1+ 25:1 Ve

where the weight v, = exp{—z Il x; — x;. I*} measuring the
spectral distance between the central pixel, x; , and the
neighboring pixels, x;. (x;c € Nb(x;)). Following the setting
in [35], we set z = 0.2 in this work.

The output matrix of the hidden layer defined in (2) and (13)
can be expressed as:

H =pH, + (1 - WH;, (34)
Hw = [Hw(xi”) Hw(xrvlv)]Lle (35)
Hs = [Hs(xls) Hs(xé)]LxN (36)

and p is a coefficient balancing the spectral and spatial
information.
For the KELM defined in (14), 8 can be defined as follows:

B=C+K) YT, @37)

K = uKy,, + (1 = WKy, (38)
wow Iy —x} 12

KHW(xi » Xj ) = exp(— 202, ), (39)
e —x 5112

K (8,) = exp(-— 1) (40)

Here, a,, and g, control the widths of the spectral and spatial
Gaussian kernels.

By combining the ASMLELM with WCFs, three different
approaches for performing the spectral-spatial HSI
classification can be formed, i.e, ASMLBELM-WCFs,
ASMLNELM-WCFs and ASMLKELM-WCFs as detailed in
Algorithm 2. The  flowchart of the proposed
ASMLELM-WCEFs is also illustrated in Fig. 1 for clarity.

D. The lower bound of the ASMLELM
In this section, the lower bound of the proposed ASMLELM
will be derived. From (19), we have:
V2L(B) = B (41)
From (20), B is symmetric and negative definite independent
from B, where B at the (t+1)-th iteration is defined as:
B‘t+1 — B‘t _ (B _A/\t)—le(ﬁ"t)
which can be further rewritten as:
QB =B - VL(B")+
“B=B)BE-B)-A1B1 (43)
From [29], (43) can be expressed as follows:
QB =@-)rL(p )+
;(ﬁ —B)'B-2NB-B) (44

Then, we have the following two lemmas:

(42)

Lemma 1:

(a): Q. (B) is maximized at: f = B’ — (B — ANH)"LVL(B").

0): G = —3vi" (8" )@ -a7L(p) 20
where the inequality is strictly satisfied if VL(8") # 0.

Proof:

@) AsVQ,(B) =VL(B") + (B —AN)(B —B') = 0, we have
B =B —(B—AN)VL(B).

(b) As Q1 ()= —((B — AA) I VL(B))VL(B") + 5 ((B -
ANYTIVL(BD)T (B = AN ((B — AN MVL(B"))
=—VL(B)" (B = AA)IVL(B") + 5 VL(B)T (B —

ANYTHVL(B") == VL) (B = AN)IVL(E) 2 0,

the inequality is strictly satisfied if VL(B") # 0.

Lemma 2:
(a) Monotonicity: L(B**1) > L(BY).
(b) Convergence: The sequence VL(S") converges to 0 if L is
bounded as described in (a).
Proof:
(a) For the convenience, let h = (B — AN)TIVL(BY). Then,
we have

L(B**Y) = L(B) = hVL(B") + ;hTVL(B* + ph)h =
RTVL(BY) +5hT(B — AADh = 0.

(o) To prove this lemma, suppose that || VL(BY) || is
bounded by a value larger than 0. From (b) of Lemma 1,
it can be seen that the increments are lower bounded.
Therefore, it contradicts the boundedness of Q. As a
result, it can be concluded that the sequence
VL(B*) converges to 0.
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Fig. 2. Effect of the parameter a for the Indian Pines data set (left) and the Pavia University data set (right).

1 1 T T T T T T
W%*—*—*—H—*—*ﬂ—x—%ﬁ DYV SO AR VS S R PV A S S
E KRR K H KRRk

09 4 098T ]
0.96 b
0.8 .
0.94 b

Overall accuracy
o
(2]

Overall accuracy
o
©

05 0.88 [ q
BELM
—+— NLELM 0.86 [ BELM q
04 —¥— ASMLBELM —+— NLELM
— ASMLNLELM 0.84 —%— ASMLBELM 4
03f —+— ASMLBELM-WCFs ASMLNLELM
) —k— ASMLNLELM-WCFs 0.82 —+— ASMLBELM-WCFs J
—k— ASMLNLELM-WCFs
02— . . . . . . . L 08 . . . . . ’ ! I ! ’
100 200 300 400 500 600 700 800 900 1000 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
The value of L The value of L

Fig. 3. Effect of the number of neurons in the hidden layer L for the Indian Pines data set (left) and the Pavia University data set (right).
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1V. EXPERIMENTS AND ANALYSIS

A. HSI Datasets

In this section, the performances of the proposed framework
will be evaluated using two well-known publicly available HSI
datasets, i.e. the Indian Pines dataset [44] and the Pavia
University dataset [44]. These two datasets have been widely
used for HSI classification [44], and their specifications are
detailed as follows.

(1) The Indian Pines dataset consists of urban images
collected by the AVIRIS sensors built in June 1992 . The image
scene has 145x 145 pixels with 200 valid spectral bands, after
removal of 24 heavily noisy bands which are severely affected
by the water absorptions. Each band is ranging from 0.2um to
2.4um, where the spatial resolution is 20m per pixel. There are
in total 16 classes in this dataset.

(2) The Pavia University dataset consists of data over the
Pavia city, Italy acquired by the ROSIS instrument in 2001. The
image scene has 610x340 pixels with 103 spectral bands after
removing 12 water absorption bands. The spatial resolution of
the dataset is 1.3m per pixel, and there are totally 9 classes in
the HSI dataset.

(3) The Salinas dataset was also collected by the AVIRIS
sensor, capturing an area over the Salinas Valley, CA, USA.
The dataset has 512 x 217 pixels with a spatial resolution of 3.7
m. This image has 204 bands after removing 20 water
absorption bands, and it contains 16 different classes.

B. Experimental Setting

The parameter settings in our experiments are described as
follows: Basically, the proposed approaches are benchmarked
with eight state-of-the-art methods including SVM [1], SVM
with composite kernel (SVM-CK) [1], LORSAL [49], kernel
based LORSAL (KLORSAL) [49], SMLR-SpATV
(KLORSAL with the weighted Markov random field) [49],
BELM [19], NLELM [1], and KELM [1]. The LIBSVM [53]
software is used for the implementation of the SVM and the
SVM-CK. For the kernel based methods such as the SVM, the
SVM-CK, the KELM, the ASMLKELM and the
ASMLKELM-WCFs, the Gaussian kernel is used. The
Gaussian kernel parameter ¢ and the penalty parameter C are
automatically tuned by using the three folds cross validations in
the range of C=2P, ¢ = 29,p ={1, 2,..., 11, 12, 13, 14, 15}
and q ={-6, -5, -4, -3, -2, -1, 0, 1}. Other parameters of the
SVM and the SVM-CK are set the same as [1]. The parameters
of the LORSAL, the KLORSAL and the SMLR-SpATV are
chosen the same as suggested in [43]. All experiments are
conducted in MATLAB R2015a and run in a computer with 2.9
GHz CPU, four cores and 32.0G RAM. All experiments are
repeated 10 times with the average classification results used
for comparison.

(1) For the proposed ASMLBELM, the total number of the
neurons in the hidden layer L and A are two important
parameters. They will be evaluated in the next subsection.

(2) For the ASMLNLELM, although the parameter C is
automatically tuned by three folds cross validations, the effects
of L and A will also be evaluated in the next subsection.

(3) The important parameters of the ASMLKELM are C, ¢
and A, where the first two will be automatically tuned by three
folds cross validations, and the effect of A will be evaluated in
the next subsection.

(4) C, L, Aand p are important parameters for the proposed
ASMLBELM-WCFs. C is automatically tuned by three folds
cross validations, u is empirically set to 0.1. For the parameters
L and A, their effects will be evaluated in the next subsection.

(5) For the proposed ASMLNLELM-WCFs, there are four
key parameters i.e. L, C, A and p. The parameter C is
automatically tuned by three folds cross validations, p is
empirically set to 0.1, where L and A will be evaluated in the
next subsection.

(6) For the ASMLKELM-WCFs, C and ¢ are automatically
tuned by three folds cross validations, p is empirically set to 0.1.
The effect of A will be evaluated in the next subsection.

C. Parameter Analysis

In this subsection, several important parameters of the
proposed methods will be evaluated and its performance will be
compared with the BELM and the NLELM. It is worth noting
that the window size is set to 9 for the WCFs-based methods in
both Experiment #1 and Experiment #2, which means the
widths of the neighborhood window are set as 9. The effects of
the window size as well as the parameters A and L for the
proposed WCF-based methods are evaluated as follows.

Experiment #1: The effect of the parameter 1 (1 = 2%) on
the proposed method is evaluated, where the number of the
hidden layers is set to L=550 and L=900 for the Indian Pines
dataset and the Pavia University dataset, respectively. Fig. 2
plots the overall accuracy (OA) as a function of a with 1043
and 3921 training samples (10% and 9% of the available
samples) of the Indian Pines dataset and the Pavia University
dataset, respectively. As seen in Fig. 2, despite of the change of
the parameter a, all the tested approaches produce good results.
In particular, the proposed spectral classifiers can achieve
higher OA with a slightly larger value of a, where the results
from the spectral spatial classifiers, which are far better than
those from spectral features only, seem to be less sensitive to a.
In the following experiments, we set a = —20 for all the three
spectral-spatial classifiers ie. ASMLBELM-WCFs,
ASMLNLELM-WCFs and ASMLKELM-WCFs if there is no
special mention. For ASMLBELM and ASMLNLELM, we set
a = —10, yet for ASMLKELM we set a = —17 for the Indian
Pines dataset and a = —13 for the Pavia University dataset.

Experiment #2: In Fig. 3, the OA results are plotted as a
function of the number of hidden layer neurons L to show its
effects on the proposed methods as well as BELM and NLELM.
As seen, ASMLBELM and ASMLNLELM always achieve
higher accuracy than BELM and NLELM. With spatial
information introduced from WCFs, the proposed spectral
spatial classifiers, ASMLBELM-WCFs and ASMLNLELM-
WCFs, can significantly outperform ASMLBELM and
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ASMLNLELM in which only spectral information was used,
regardless the even poorer performance from BELM and
NLELM. Without special mention, in the following
experiments, we set L=450 for BELM and ASMLBELM-based
approaches (including ASMLBELM and ASMLBELM-WCFs),
L=1000 for NLELM and ASMLNLELM-based approaches
(including ASMLNLELM and ASMLNLELM-WCFs) for the
Indian Pines dataset. For Pavia University dataset, we set
L=1100 for all approaches including BELM, NLELM,
ASMLBELM, ASMLNLELM, ASMLBELM-WCFs and
ASMLNLELM-WCFs.

Experiment #3: In this experiment, we assess the effects of
the window size for the proposed spectral-spatial classifiers,
ASMLBELM-WCFs, ASMLNLELM-WCFs and
ASMLKELM-WCFs, and the results are given in Fig. 4. As
seen, the results of the proposed methods are not very good
when the window size is too small, i.e. less than 5. However,
the results are much improved when the window size is larger
than 10. This shows the generalization for achieving the good
performance of the proposed spectral-spatial classifiers. For the
convenience, the window size is set as 13 for both the Indian
Pines data set and the Pavia University data set in the following
experiments if there is no special mention.

D. Experiment Results and Discussions

In this subsection, the classification results on the two data
sets are evaluated and shown in Table 1 and Table 2, where our
proposed six approaches are benchmarked with eight others. In
these two tables, we also show the index of the classes and the
numbers of training samples and testing samples for each class.
For the Indian Pines data set and the Pavia University data set,
we set 10% and 9% for training, respectively, and the
remaining samples are used for testing.

As can be seen in Table 1 and Table 2, the proposed
ASMLBELM, ASMLNLELM and ASMLKELM approaches
yield higher accuracy than BELM, NLELM and KELM,
respectively. The performance of the three proposed spectral
classifiers are improved dramatically when the spatial
information (WCFs) are added. Compared with other spectral
spatial classifiers such as the SVM-CK and the SMLR-SpATV,

0.92

ASMLBELM-WCFs
0.91 1 ASMLNLELM-WCFs
—%— ASMLKELM-WCFs

0.9 . . \ . \
4 6 8 10 12 14 16 18
The value of window size

our proposed ASMLBELM-WCFs, ASMLNLELM-WCFs and
ASMLKELM-WCFs have produced higher classification
accuracy, especially ASMLNLELM-WCFs for the Indiana
Pines data set and ASMLKELM-WCFs for the Pavia
University data set. Visual comparison of the classification
results is also shown in Fig. 5 and Fig. 6 for the results from the
two data sets as well as the ground reference map, which again
validates the efficacy of the proposed approaches.

E. Experiments with Different Numbers of Training Samples

The performances of the proposed six methods are further
evaluated under different numbers of training samples, where
the total number of training samples is respectively chosen as 5,
10, 15, 20, 25, 30, 35 and 40 from each class. If the selected
number exceeds half of the total pixels in one particular class,
we only choose 50% of the samples for training in that class.
For the two data sets, relevant results are given in Table 3 and
Table 4 for comparison.

As seen from Table 3 and Table 4, with the change of the
number of training samples, the classification accuracy of the
three spectral classifiers is always better than those from BELM,
NLELM and KELM. These three spectral-spatial classification
algorithms can also always achieve best performances among
all the methods despite of the number of training samples used.
Apparently, the performances of the proposed six methods are
improved with increased number of training samples. However,
when the number of training samples is over 20, the
classification accuracy becomes almost saturated and does not
change significantly. What is more interesting, when we use
only 5 samples for training, the best classification accuracy the
proposed methods can achieve exceeds 75% for both the two
data sets, which outperform all other benchmarking methods at
least 8%. On the other hand, it is worth noting that the
classification accuracy of BELM surprisingly decreases when
the number of training samples increases in most cases. This is
because the ill-posed problem is particularly sensitive in BELM,
and there may be different optimal numbers of hidden neurons
for cases with various numbers of training samples. This can be
also seen in Fig. 3, however, the proposed ASMLBELM and
ASMLBELM-WCFs well alleviate this problem.
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Fig. 4. Effect of the window size for the Indian Pines data set (left) and the Pavia University data set (right).
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TABLE 1. CLASSIFICATION ACCURACY USING 10% OF THE LABELED SAMPLES PER CLASS FOR THE INDIAN PINES DATA SET (THE BEST RESULTS ARE BOLDED).

NO Train Test SVM SVM-CK LORSA KLORSA SMLR- BELM NLELM KELM ASML ASML ASML ASMLBELM ASMLNLELM ASMLKELM

L L SPATV BELM NLELM KELM  -WCFs -WCFs -WCFs

1 6 48 6812 8375 1.04 76.88 89.58 4896 3333 74.17 4729 4188 72.08 96.25 93.33 90.83
2 144 1290 83.17 95.48 73.36 82.25 95.95 7655 81.09 8327 81.03 8081 83.29 98.40 98.62 97.86
3 84 750 7552 9577 4944 6876 98.01 5680 59.44 70.31 63.07 63.44 74.44 98.52 98.19 97.89
4 24 210 7219 931 22.00 60.19 98.95 4476 4310 669 4829 4567 63.71 98.09 99.05 96.57
5 50 447 92,73 9541 84.88 89.66 95.95 86.80 87.99 9215 88.01 88.17 92.48 97.70 98.32 97.58
6 75 672 96.06 99.29 9443 9533 99.08 9487 96.89 96.49 96.13 96.19 95.95 99.63 99.58 99.16
7 3 23 7522 77.39 0 35.22 5261 478 130 7174 739 957 70.00 90.00 88.69 93.04
8 49 440 9873 975 9877 9859 1000  99.07 99.52 98.84 9957 99.45 98.93 99.75 99.93 99.72
9 2 18 6778 77.78 0 46.67 5.00 389 389 5833 056 167 4944 91.67 96.11 87.22
10 97 871 7789 93.64 5576 7155 9408 6488 67.83 80.11 6548 66.79 79.39 97.63 97.50 95.91
11 247 2221 8596 96.82 72.78 80.53 99.18 76.79 7999 86.36 8249 80.07 87.67 99.20 99.31 98.81
12 62 552 84.04 92.7 63.75 76.96 97.30 69.31 7411 8141 76.30 7565 83.66 97.83 98.32 97.37
13 22 190 9895 99.26 97.79 99.47 99.47 08.42 99.42 99.05 99.47 99.32 99.21 99.42 99.42 99.74
14 130 1164 9582 98.51 94.60 95.84 99.23 0428 9620 96.34 9552 9549 96.31 99.80 99.91 99.73
15 38 342 61.02 93.36 64.01 68.10 98.16 61.26 6535 6094 6558 66.46 65.47 99.27 99.15 98.92
16 10 85 9329 96.82 55.06 74.94 86.47 4530 71.06 79.88 7494 76.35 76.24 91.53 94.35 89.18
OA 85.71 96.05 73.14 82.26 97.50 77.01 7992 8528 8081 8029 86.01 98.72 98.85 98.18
AA 8291 9291 57.98 76.31 88.11 64.17 66.28 81.02 6819 6794 8052 97.17 97.49 96.22

k 83.69 9550 6915 79.74 9715 7362 76.97 83.18 77.98 77.42 84.00 98.55 98.69 97.92

Fig. 5. Images of the Indian Pines data set. (a) The SVM (OA=85.71). (b) The SVM-CK (OA=96.05). (c) The LORSAL (OA=73.14). (d) The KLORSAL
(OA=82.26). (e) The SMLR-SpATV (OA=97.50). (f) The BELM (OA=77.16). (g) The NLELM (OA=79.18). (h) The KELM (OA=85.28). (i) The ASMLBELM
(OA=80.62). (j) The ASMLNLELM (OA=80.47). (k) The ASMLKELM (OA=85.93). (I) The ASMLBELM-WCFs (OA=98.33). (m) The ASMLNLELM-WCFs
(OA=98.21). (n) The ASMLKELM-WCFs (OA=98.57) with 10% training samples. (0) The ground reference map.
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TABLE 2. CLASSIFICATION ACCURACY USING 9% OF THE LABELED SAMPLES PER CLASS FOR THE PAVIA UNIVERSITY DATA SET (THE BEST RESULTS ARE BOLDED).

No. Train Test SVM SVM- LORSA KLORSA SMLR- BELM NLELM KELM ASML ASML ASML ASMLBELM- ASMLNLELM- ASMLKELM-

CK L L SpATV BELM NLELM KELM  WCFs WCFs WCFs

1 548 6083 87.48 98.74 71.35 8547 9965 85.09 8375 87.07 8724 87.10 89.62 99.13 97.41 99.33
2 540 18109 88.95 99.11 76.44 88.64 98.72 9253 9208 94.01 9329 9286 94.25 99.84 99.59 99.88
3 392 1707 76.45 97.73 7104  76.39 97.72 7633 7568 84.87 7965 79.67 84.38 098.90 95.89 99.41
4 542 2540 97.09 99.24 9572  96.93 9769 96.46 97.22 97.87 9758 97.47 97.66 99.32 99.19 99.62
5 265 1080 99.50 100.0 99.89  99.61 100.0 9752 99.48 9941 99.70 99.70 99.48 99.89 99.77 99.82
6 532 4497 88.75 9955 77.21  87.15 99.99 9270 9374 9517 9394 9390 9453 99.99 99.75 100.00
7 375 955 90.65 99.77 78.34  90.04 99.78 9250 9297 93.99 90.19 90.12 92.63 99.92 99.71 99.98
8 514 3168 g8.14 97.26 7535 82.16 0925 8948 90.78 89.77 8649 8749 8859 98.90 96.64 99.18
9 231 716 9958 98.58 90.66  88.74 9211 9968 99.76 99.83 99.82 99.73 9992 99.76 99.89 99.82
OA 89.14 9893 7763 87.79 98.88 9095 90.84 92.82 91.78 9161 93.10 99.60 98.85 99.71

AA  90.73 98.89 81.78  88.35 98.32 9136 91.72 9355 91.99 9201 93.45 99.52 98.65 99.67
KAPPA 8544 9854 70.73  83.77 98.48 87.80 87.68 90.29 88.88 88.68 90.66 99.45 98.43 99.60

(k) 0] (m) (n) (0)
Fig. 6. Images of the Pavia University data set. (a) The SVM (OA=89.14). (b) The SVM-CK (OA=98.93). (c) The LORSAL (OA=77.63). (d) The KLORSAL
(OA=87.79). (e) The SMLR-SpATV (OA=98.88). (f) The BELM (OA=90.87). (g) The NLELM (OA=90.80). (h) The KELM (OA=92.82). (i) The ASMLBELM
(OA=92.06). (j) The ASMLNLELM (OA=91.71). (k) The ASMLKELM (OA=93.07). (I) The ASMLBELM-WCFs (OA=99.46). (m) The ASMLNLELM-WCFs
(OA=99.44). (n) The ASMLKELM-WCFs (OA=99.69) with 9% training samples. (0) The ground reference map.

In Table 3 and Table 4, we also illustrate the execution time  samples per class for training. TR here means the training time,
(including the training time and testing time) of the six and TS means the testing time. It is worth noting that the
proposed algorithms and other methods when using 100 computation time of different methods varies in these two data
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sets. Though most of the methods take more time for training
than testing, there are exceptional cases such as SMLR-SpATV.
Also some methods take more time in Indian Pines dataset,
while others take more in the Pavia University dataset. That is
affected by both the volume and the content of the dataset when
the corresponding classifiers were trained and tested. All in all,
the proposed approaches are among the medium group for
training and the fastest groups for testing.

From Table 3 and Table 4, for the Indian Pines data sets and
Pavia University data sets, the three proposed spectral
algorithms, i.e. ASMLBELM, ASMLBELM and ASMLKELM
need more time consumption than BELM, NLELM and KELM,
respectively, yet they consume less time than SVM. In Indian

12

Pines data set, the proposed ASMLBELM-WCFs and
ASMLNLELM-WCFs algorithms consume less time than
SVM-CK and SMLR-SpATV. Although the proposed
ASMLEKELM-WCFs  consume  more time  than
SMLR-SpATYV, it needs less time than SVM-CK. In Pavia
University data sets, the three proposed spectral-spatial
algorithms have less consuming time than SVM-CK and
SMLR-SpATV. In summary, the proposed six classification
methods achieve very good performances, especially the three
spectral-spatial  classification  algorithms, where the
computational efficiency is not bad in comparison to its peers
although it can be further improved.

TABLE 3. CLASSIFICATION ACCURACY (%) UNDER DIFFERENT NUMBERS OF TRAINING SAMPLES FOR THE INDIAN PINES DATA SET (THE BEST RESULTS ARE BOLDED).

Number Index SVM SVM- LORSAL KLORSAL SMLR- BELM NLELM KELM ASML

CK

ASML ASMLASMLBELM ASMLNLEL ASMLKELM
-WCFs M-WCFs

SpATV BELM NLELM KELM -WCFs

5 OA 53.84 57.30 4353 57.34  69.67 4222 50.94 5468 5360 54.86 5495  77.96 79.82 72.94
AA 6736 70.78 53.28 68.80 8198 5475 6552 666 67.73 6823 67.61  87.09 87.66 81.85

k 4854 5252 37.84 5259  66.16 36.19 4562 494 4833 4957 4969  75.28 77.30 69.55

10 OA 62.85 69.94 49.05 65.48 7860 43.04 58.80 63.45 6024 61.39 63.60 86.78 86.22 81.73
AA 7401 8045 6277 75.99 8822 5512 72.85 7563 7404 7420 7538 9276 92.52 89.13

k 5837 66.30 437 61.38 7603 3692 5421 59.11 5557 5672 59.32  85.08 84.46 79.40

15 OA 69.77 7815 553 68.04 8359 4239 61.64 67.87 6276 64.67 68.86 89.81 90.06 87.04
AA  80.10 86.66 67.06 7849 9102 5242 7513 79.66 76.01 77.83 79.71 94.62 94.71 93.10

k  66.07 7538 50.18 64.23 8148 3572 5727 63.99 5827 6042 65.09 88.46 88.74 85.34

20 OA 7254 8086 58.83 72227 8673 3871 6524 7134 6405 6725 71.62 92.00 92.30 88.93
AA  BL77 8835 69.62 81.62 9310 4546 77.86 81.67 77.09 7955 8157 95.77 96.03 94.30

k 69.06 7841 53.96 68.85 8500 3154 61.06 67.79 59.71 6322 68.06 90.90 91.25 87.47

25 OA 74.89 8352 60.16 72.92 8782 3080 66.57 72.04 6207 6893 7421 92.77 93.28 91.82
AA 8364 90.12 70.98 8299 9381 3488 7960 8286 7454 81.04 8378 9624 96.65 95.35

k 7174 8136 554 69.58 8620 2264 6259 6859 57.35 6509 7097 9178 92.36 90.70

30 OA 7510 8531 61.89 7393 8931 1660 67.15 7524 4470 69.87 76.52 94.52 94.12 92.47
AA 8416 9188 71.16 8295 9448 1468 8020 845 5211 8152 8552  97.14 96.96 96.15

k 7197 8335 57.35 7065 8785 737 6329 7205 3777 6610 7351  93.76 93.31 91.43

35 OA 76.74 8722 637 75.09  89.67 4001 6875 7573 66.67 7141 76.99 95.41 95.53 93.30
AA 85159289 7289 8405 9506 4622 80.65 8555 7874 8288 8559  97.46 97.64 96.37

k  73.74 8549 59.28 7192 8828 3263 6505 72.64 6249 67.82 7400  94.75 94.89 92.36

40 OA 7847 889  64.25 7593  90.74 5393 7019 7658 7133 7230 7767  95.70 96.09 94.57
AA  86.01 9375 73.76 8357 9520 6458 8131 86.09 8230 8262 8596  97.56 97.84 96.97

k 7564 8738 5991 72.77 8945 4834 66.61 7355 67.67 6877 7474  95.08 95.53 93.79

100 TR(s) 135.9 189.9. 0.29 2.21 27 013 175 6.15 0.82 354 12.28 10.9 13.55 73.32
TS(S) 09 1.0 0.01 0.67 200 0.1 0.20 6.38 0.02 0.03 0.15 0.2 0.1 0.16

TABLE 4. CLASSIFICATION ACCURACY (%) UNDER DIFFERENT NUMBERS OF TRAINING SAMPLES FOR THE PAVIA UNIVERSITY DATA SET (THE BEST RESULTS ARE

BOLDED).
Numbe Index SVM SVM- LORSAL KLORSAL SMLR- BELM NLELM KELM ASML ASML ASML ASMLBELM ASMLNLEL ASMLKELM
r CK SPATV BELM NLELM KELM  -WCFs M -WCFs
-WCFs
5 OA 56.75 63.85 47.58 56.5 65.87 5775 61.71 6286 6122 6588 63.61 75.68 71.48 70.52
AA 6979 7274 473 67.48 7482 6736 7226 7287 7163 7339 72.80 80.95 76.81 78.19
k 4758 5526 35.93 55.53 5758 4856 52.88 5394 5258 5757 5448 69.39 64.19 62.98
10 OA 66.31 73.82 50.19 62.49 76.23 5775 6941 6921 7267 7092 71.01 83.51 76.43 81.30
AA 7547 8064 50.09 71.65 7995 496 7651 7898 7805 7808 79.17 86.60 81.53 86.69
k  57.79 67.06 38.68 53.81 69.70 4808 61.63 61.68 6533 6340 63.64 78.79 70.08 76.04
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15 OA 7058 80.18 55.61 66.11 8096 5998 7374 7277 7359 7426 7271 86.77 83.15 85.84
AA 7842 8465 53.82 74.39 87.57 6374 7977 8213 7929 7977 80.63 89.67 85.83 90.23

k 62.98 7469 4453 53.93 75.82 5012 66.72 66.05 6652 6730 6553 82.98 78.25 81.89

20 OA 7245 842 5927 70.6 85.20 6194 75.04 7675 7391 7676 76.95 91.00 85.14 90.40
AA 7938 8753  56.6 76.41 89.22 6467 80.79 8338 8015 8151 8359 91.86 87.75 92.67

k 65.07 79.63 483 59.52 81.00 5236 6835 7048 67.04 7034 70.79 88.24 .80.80 87.52

25 OA 73.90 89.05 58.33 71.44 88.48 15967 7756 7895 7756 7809 79.02 92.33 88.17 92.53
AA 81359031 57.49 78 91.34 6182 8239 8492 8151 8209 8456 93.42 89.76 93.68

k 67.04 8571 4756 61.02 85.14 5007 7133 7315 7124 7192 7321 89.98 84.60 90.19

30 OA 77.70 8921 60.69 73.64 91.02 6135 7887 7853 7836 7990 80.37 93.31 90.23 93.03
AA 82459033 60.16 7887 9255 6153 8358 8491 8244 8360 8599 93.95 91.28 94.27

k 71.38 85.87 50.47 68.29 88.26 5176 7295 7272 7226 7415 74.94 91.24 87.24 90.86

35 OA 7519 9042 6171 75.16 9155 15901 79.66 8109 7844 7955 81.32 94.67 91.13 94.19
AA 8299 918 61.86 79.33 9336 59.09 8458 8633 8279 8346 86.71 94.95 92.33 95.15

k  68.69 87.48 51.68 67.11 88.97 4928 7397 7578 7249 7373 7611 92.98 88.41 92.36

40 OA 7709 919 63.15 76.92 9168 56.78 80.21 8253 79.77 8091 82.65 95.64 92.41 95.54
AA 8302 9247 63.3 80.81 9240 5591 8412 87.32 8327 8497 8759 95.41 92.91 96.02

k 7073 89.36 53.3 70.85 89.13 46.73 7448 7753 7401 7550 77.75 94.23 90.01 94.11

100 TR(s) 39.30 76.89 0.12 0.88 1.09 040 084 4.03 2,77 3.27 6.22 321 37.28 53.80
TS(s) 1.98 2,60 0.04 1.42 9206 095 0.98 1.0 0.31 0.32 0.53 0.31 0.67 0.51

F. Extension of Experiments

In this subsection, we further evaluate the performance of the
proposed three classifiers, in comparison to other spectral-
spatial methods, including BELM/NLELM/KELM with
weighted composite features (WCFs) i.e. BELM-WCFs,
NLELM-WCFs and KELM-WCFs respectively, KELM with
Gabor (KELM-Gabor) filter [28] and KELM with local binary
pattern (KELM-LBP) [26]. In addition to the Indian Pines and
Pavia University datasets, we also take the Salinas dataset for
extended testing using 1% samples per class for training.

The parameter settings of these benchmarking approaches
are given below. For BELM-WCFs, NLELM-WCFs and
KELM-WCEFs, the width/height of the neighborhood window,
wopt, is all set to 13. For BELM-WCFs, the number of hidden
neuron, L, is set to 450 for Indian Pines dataset, 1100 for Pavia
University and Salinas datasets. For NLELM-WCFs, the
number of hidden neuron is set to 1000 for Indian Pines dataset,
1100 for Pavia University and Salinas datasets. For

KELM-WCFs, the parameters C and o are automatically
tuned using three-folds cross validations. For KELM-LBP and
KELM-Gabor, they are applied on the first 30 principal
components of the dataset as features. According to [26], the
parameters r (a circle of radius centered at the center pixel) and
nr (the numbers of neighboring pixels) of LBP are set to 2 and
8, respectively, and the parameter bw (the frequency
bandwidth) of KELM-Gabor is set to 5.

For parameter A = 2% in the proposed three approaches, we
set a=-16 for both ASMLBELM-WCFs and

ASMLNLELM-WCFs, while for ASMLKELM-WCFs we set
a =—28in all the three datasets. The number of hidden
neurons is set to 1100 for ASMLBELM-WCFs and
ASMLNLELM-WCEFs for the Salinas dataset. Relevant results
are given in Table 5 for comparison.

Using 1% samples per class for training, the experimental
results from our proposed methods and the aforementioned
benchmarking approaches are compared in Table 5. From
Table 5, we can see that the proposed three spectral-spatial
methods produce improved classification accuracy than the
original ones respectively even combined with WCFs. On the
other hand, all the proposed three spectral-spatial methods yield
higher classification accuracy than KELM-Gabor. Furthermore,
compared with KELM-LBP, the proposed three spectral-spatial
methods have comparable or slightly better classification
results in the Salinas dataset, and better classification results in
Indian Pines and Pavia University datasets.

In Table 6, we further compare our proposed methods with
the well-known locality adaptive discriminant analysis (LADA)
[10] and multitask joint sparse representation and stepwise
MRF optimization (MSMRF) [16] approaches. The
classification results of LADA and MSMRF on the Indian
Pines and Pavia University datasets are directly taken from [10]
and [16], respectively. The experiment settings are the same as
[10] and [16]. It should be noting that as stated in [10], when
comparing with LADA, we randomly sample 5% points as
training set, and 30% of the remaining data as test set. From
Table 6, again it clearly shown that the proposed methods
outperform both the MSMRF and LADA.

TABLE 5. RESULTS OF CLASSIFICATION ACCURACY USING 1% OF THE SAMPLES PER CLASS FOR TRAINING (THE BEST RESULTS ARE BOLDED)

Datasets __ Index KELM-Gabor KELM-LBP _ BELM- __ NLELM- _ KELM- _ ASMLBELM- _ ASMLNLELM- _ ASMLKELM-
WCFs WCFs WCFs WCFs WCFs WCFs
Indian 0A 71.30 84.45 86.14 87.32 86.18 89.78 90.10 86.64
Pines AA 7118 85.67 86.61 87.18 85.10 89.65 90.18 86.04
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kappa 66.97 82.30 84.19 85.55 84.24 88.36 88.74 84.78
Pavia OA 87.73 92.22 88.62 94.27 96.52 96.42 95.28 96.78
University —22 81.08 85.45 7461 89.03 93.74 92.24 91.80 9457
kappa 83.31 89.61 84.78 92.33 95.37 95.24 93.72 95.72
Salinas OA 95.65 98.82 98.15 96.69 98.25 98.92 98.16 98.31
AA 96.48 98.87 98,57 98.32 98.84 99.25 98.93 98.79
kappa 95.15 99.03 97.94 96.31 98.05 98.79 97.95 98.12
TABLE 6. COMPARISON WITH OTHER METHODS (THE BEST RESULTS ARE BOLDED).
10% training samples, remaining for testing 5% training samples, 30% of remaining for testing
MSMRFASMLBELM-ASMLNLELM-ASMLKELM- LADA ASMLBELM- ASMLNLELM- ASMLKELM-

[16] WCFs WCFs WCFs [10] WCFs WCFs WCFs

Indian OA 9211 08.86 98.61 98.53 91.75 9746 97.13 96.97

Pines — A 9486 9795 97.75 97.92 85.09 95.62 96.45 96.36

K - 98.70 98.41 98.33 90.56 97.11 96.73 96.55

Pavia OA 9252 99 44 98.66 98.47 89.66 98.97 98.06 97.20

University— A 9541 99,01 97.76 97.38 88.23 97.04 96.65 95.86

Kappa - 99.26 98.22 98.26 86.19 98.63 97.42 96.81

V. CONCLUSION

In this paper the augmented spare multinomial logistic
extreme learning machine (ASMLELM) is proposed to
alleviate the ill-posed problem of ELM, which has resulted in
three spectral algorithms and three spectral-spatial
methodologies for the classification of HSI. By combining the
proposed ASMLELM with the weighted composite features
(WCFs), the three spectral-spatial methods can effectively
extract the spatial information for improved classification than
the conventional ELM. In addition to derive the lower bound of
the proposed method by a rigorous mathematical proof,
comprehensive experimental results on three well-known HSI
dataset have also validated the superior performance of the
proposed algorithms in terms of improved classification
accuracy and inherited efficiency from ELM.

For future work, we will focus on improving the
classification accuracy of the proposed ASMLELM by
resorting to the extended multi-attribute profiles [56-57]
(EMAPS) method.
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