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 

Abstract—Although extreme learning machine (ELM) has 

successfully been applied to a number of pattern 

recognition problems, only with the original ELM it can 

hardly yield high accuracy for the classification of 

hyperspectral images (HSIs) due to two main drawbacks. 

The first is due to the randomly generated initial weights 

and bias, which cannot guarantee the optimal output of 

ELM. The second is the lack of spatial information in the 

classifier as the conventional ELM only utilizes spectral 

information for classification of HSI. To tackle these two 

problems, a new framework for ELM based 

spectral-spatial classification of HSI is proposed, where 

probabilistic modelling with sparse representation and 

weighted composite features (WCF) are respectively 

employed to derive the optimized output weights and 

extract spatial features. First, the ELM is represented as a 

concave logarithmic likelihood function under statistical 

modelling using the maximum a posteriori (MAP) 

estimator. Second, the sparse representation is applied to 

the Laplacian prior to efficiently determine a logarithmic 

posterior with a unique maximum in order to solve the 

ill-posed problem of ELM. The variable splitting and the 

augmented Lagrangian are subsequently used to further 

reduce the computation complexity of the proposed 

algorithm and it has been proven a more efficient method 

for speed improvement. Third, the spatial information is 

extracted using the weighted composite features (WCFs) to 

construct the spectral-spatial classification framework. In 

addition, the lower bound of the proposed method is 

derived by a rigorous mathematical proof. Experimental 
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results on three publicly available HSI data sets 

demonstrate that the proposed methodology outperforms 

ELM and also a number of state-of-the-art approaches. 

Index Terms—hyperspectral image (HSI), spectral-spatial 

classification, extreme learning machine (ELM), maximum a 

posterior (MAP), sparse representation, Laplacian prior. 

I. INTRODUCTION 

ith rich spectral and spatial information contained in a 

three-dimensional hypercube, hyperspectral images 

(HSI) provide a unique way for characterizing objects in 

geographical scenes, especially remote sensing images [1]. 

However, classification of high dimensional data such as HSI is 

still challenging, particularly due to the unfavorable ratio 

between the limited number of training samples and large 

number of spectral bands, i.e., the Hughes phenomenon [2]-[4]. 

To tackle this problem, a number of feature extraction and data 

classification approaches have been proposed [12]. These 

include the singular spectrum analysis (SSA) [5]-[8], 

segmented auto-encoders [11], principal component analysis 

(PCA) and its variations [13], [14], and support vector 

machines (SVM) [9]. In addition, a locality adaptive 

discriminant analysis (LADA) approach has been proposed for 

spectral-spatial classification of hyperspectral images [10]. In 

[15], a multitask joint sparse representation and stepwise MRF 

optimization (MSMRF) method is proposed for HSI 

classification. In [16], the manifold ranking (MR) is applied for 

salient band selection of HSI. Although these approaches have 

produced good results in term of classification accuracy, their 

performance can be further improved by addressing two main 

difficulties: (1) Inaccurate classification with a large number of 

spectral bands yet limited training samples, and (2) relatively 

low efficiency for processing high dimensional HSI data. 

As a single forward layer neural network, the extreme 

learning machine (ELM) is a fast and effective machine 

learning method and has received a wide attention due to its 

good performance [17]-[19]. The ELM does not tune the 

hidden layer parameters once the number of hidden layer nodes 

has been determined. In ELM, the weight and bias vectors 

between the input layer and the hidden layer are initially 

randomly generated, which are independent of the training 

samples and the specific applications [1]. ELM has achieved 

good performance in many applications [20]-[23], even for HSI 

classifications [24]-[28]. In [24] and [25], bilateral filtering and 
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extended morphological profiles were used for feature 

extraction, followed by ELM for classification. In [26]-[28], 

ELM was employed for classification with feature extracted 

using local binary pattern (LBP) and Gabor filters. Although 

these ELM-based methods have achieved good performance to 

some extent, they ignore one very important issue of ELM that 

the randomly generated input weights and bias of ELM may 

cause ill-posed problems. Based on this perspective, we first 

propose an improved ELM, namely the Augmented Sparse 

Multinomial Logistic ELM (ASMLELM) for HSI 

classification. Based on the proposed ASMLELM, we 

additionally present weighted composite features (WCFs) for 

extracting the spatial information. To this end, we finally 

propose ASMLELM-WCFs as a novel framework for 

spectral-spatial classification of HSI.  

The main contributions of this paper can be highlighted as 

follows. First, we propose the augmented spare multinomial 

logistic extreme learning machine (ASMLELM) to alleviate the 

ill-posed problem of ELM, which is caused by the randomly 

generated weights and bias. In ASMLELM, the ELM is 

represented by a maximum a posteriori (MAP) based 

probabilistic model, which is further represented by a concave 

logarithmic likelihood function (LLF). To improve the sparsity 

of the learnt weights and guarantee the logarithmic posterior to 

have a unique maximum, the sparse representation, i.e. the 

Laplacian prior/regularized term, is employed for representing 

the ELM [29]-[32]. As such, optimal weight and bias are 

determined for the ELM, followed by variable splitting and 

augmented Lagrangian [33] to further improve the efficiency.   

Second, by combining the composite kernels (CK) [34] and 

weighted mean filters (WMFs) [35], the weighted composite 

features (WCFs) are used to extract spatial features and further 

improve the classification accuracy. Accordingly, three 

improved spectral-spatial classifiers are derived, which include 

the ELM, the nonlinear ELM (NLELM) and the kernel ELM 

(KELM) based classifiers, i.e., ASMLBELM-WCFs, 

ASMLNLELM-WCFs, and ASMLKELM-WCFs. 

Third, inspired by the sparse multinomial logistic regression 

(SMLR) [29], [36], [37], the generalization bounds of the 

proposed method are derived, which can provide a theoretical 

insight of and further justification for our proposed methods.  

   The rest of this paper is organized as follows. In Section II, 

the background of the ELM is introduced. The proposed 

method is detailed in Section III. Section IV reports the 

experimental results in benchmarking with a few 

state-of-the-art approaches. Finally, some conclusions are 

drawn in Section V.  

II. THE EXTREME LEARNING MACHINE (ELM) 

A. Basic Concepts of ELM 

The ELM is a generalized single layer feedforward neural 

network (SLFNs) [1], [17]. The weight vector and the bias 

between the input layer and hidden layer are randomly 

initialized. Once the initial values for the weight/bias vectors 

are assigned, the hidden layer output matrix remains unchanged 

in the learning process [1].  

Let 𝑋 ≡ (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ 𝑅
𝑑×𝑁  be the training data of a 

HSI, which has N pixels and each pixel has a d-dimensional 

feature. Let 𝑌 = (𝑦1 , 𝑦2, … , 𝑦𝑁) ∈ 𝑅
𝑀×𝑁  be a matrix 

representing the class label of the training samples, where M is 

the number of classes in the datasets. Given a pixel label 𝑦𝑖 , if it 
belongs to the k-th class, we have 

𝑦𝑖,𝑗 = {
1,              𝑗 = 𝑘,
 0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The model of a single hidden layer neural network with L 

hidden neurons and the activation function 𝐻(𝑥)  can be 

expressed as follows: 

∑ 𝛽𝑗𝐻(𝑤𝑗
𝑇𝑥𝑖 + 𝑏𝑗) = 𝑦𝑖

𝐿
𝑗=1 , i=1,2,…,N              (1) 

where 𝛽𝑗 represents the weight vector between the hidden layer 

and the output layer; 𝑤𝑗  and 𝑏𝑗 are the weight vector and bias 

from the inputs to the hidden layer, respectively; 𝐻(𝑤𝑗
𝑇𝑥𝑖 +

𝑏𝑗) represents the output of the j-th hidden neuron with respect 

to the input sample 𝑥𝑖. Obviously, (1) can be further expressed 

in the following matrix form: 

𝐻𝑇𝛽 = 𝑌𝑇                                     (2) 

where  𝛽 = [𝛽1 ⋯ 𝛽𝑀]𝐿×𝑀 , 𝐻 = [𝐻(𝑥1) ⋯ 𝐻(𝑥𝑛)]𝐿×𝑁 , 

and 𝐻(𝑥𝑖) = [𝐻1(𝑥𝑖) ⋯ 𝐻𝐿(𝑥𝑖)]𝐿×1
𝑇 . H is the hidden layer 

output matrix, and 𝛽 is the output weight matrix between the 

hidden layer and the output layer.  

From (2), 𝛽 can be simply obtained below, where † is the 

Moore Penrose generalized inverse of a matrix [17]. 

𝛽 = (𝐻𝑇)†𝑌𝑇                                      (3) 

B. Constrained Optimization of the ELM 

The constrained optimization of the ELM aims to achieve not 

only the smallest training error but also the smallest output 

weights [19]: 

min ∥ 𝐻𝑇𝛽 − 𝑌𝑇 ∥2 and ∥ 𝛽 ∥2.                 (4) 

According to the Bartlett’s neural network generalization 

theory [38], the smaller weights will result in a smaller training 

error of the feedforward neural networks. As a result, (4) can be 

rewritten as: 

min
𝛽,𝜉𝑖

 𝐿𝐸𝐿𝑀 =
1

2
∥ 𝛽 ∥𝐹

2 + 𝐶
1

2
∑ ∥ 𝜉𝑖 ∥2

2𝑁
𝑖=1 , 

  s. t. 𝐻𝑇(𝑥𝑖)𝛽 = 𝑦i
𝑇 − 𝜉𝑖

𝑇
,  i=1,..,N               (5) 

where 𝜉𝑖 is the training error for the training sample 𝑥𝑖, C is the 

regularization parameter. 

Based on the Karush-Kuhn-Tucker (KKT) theorem [39], 

training the ELM is equivalent to solve the following dual 

optimization problem: 

min
(𝛽,𝛼,𝜉𝑖)

𝐿𝐸𝐿𝑀 =
1

2
∥ 𝛽 ∥𝐹

2+ 𝐶
1

2
∑ ∥ 𝜉𝑖 ∥2

2𝑁
𝑖=1 −              

∑ ∑ 𝛼𝑖,𝑗
𝑀
𝑗=1

𝑁
𝑖=1 (𝐻𝑇(𝑥𝑖)𝛽𝑗 − 𝑦𝑖,𝑗 + 𝜉𝑖,𝑗)          (6) 

where 𝛽𝑗 is the column vector of the matrix 𝛽, and 𝛼𝑖,𝑗 is the 

Lagrange multiplier. 

From the KKT theorem, we can further derive  

  
𝜕𝐿𝐸𝐿𝑀

𝜕𝛽𝑗
= 0→ 𝛽 = 𝐻 ∗ 𝛼,                         (7) 

𝜕𝐿𝐸𝐿𝑀

𝜕𝜀𝑖
= 0→ 𝛼𝑖 = 𝐶𝜀𝑖 ,    𝑖 = 1, … , 𝑁,              (8) 

𝜕𝐿𝐸𝐿𝑀

𝜕𝛼𝑖
= 0 → 𝐻𝑇(𝑥𝑖)𝛽 = 𝑦i

𝑇 − 𝜉𝑖
𝑇
  i=1,… , N          (9) 

where 𝛼𝑖 = [𝛼𝑖,1, 𝛼𝑖,2, … , 𝛼𝑖,𝑀]
𝑇and 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑁]

𝑇 . 



IEEE Transactions on Geoscience and Remote Sensing 

 

3 

Then, it can be shown that the output weight 𝛽 is: 

𝛽 = 𝐻 (
𝐼

𝐶
+ 𝐻𝑇𝐻)

−1

𝑌𝑇 .                     (10) 

The activation functions of the neurons in the hidden layer 

are unknown, and any kernel satisfying the Mercer’s conditions 

can be used: 

{
𝛀𝐾𝐸𝐿𝑀 = 𝐻

𝑇 ∗ 𝐻,

Ω𝐾𝐸𝐿𝑀(𝑥𝑖 , 𝑥𝑗): h(𝑥𝑖)
𝑇h(𝑥𝑖) = 𝐾(𝑥𝑖 , 𝑥𝑗).

                  (11) 

In fact, the Gaussian kernel is one of the good choices 

𝐾𝐸𝐿𝑀(𝑥𝑖 , 𝑥𝑗) = exp (−
∥𝑥𝑖−𝑥𝑗∥

2

2∗𝜎𝐸𝐿𝑀
2 )                (12) 

Based on the above analysis, two well-known constrained 

optimization methods of ELM have been proposed [19]. One is 

to define 𝛽 in (10) without a kernel, namely nonlinear ELM 

(NLELM), and the other is to use the kernel function to form 

the kernel ELM (KELM) as given below: 

𝛽𝑁𝐿𝐸𝐿𝑀 = 𝐻(
𝐼

𝐶
+𝐻𝑇𝐻)−1𝑌𝑇,                      (13) 

𝛽𝐾𝐸𝐿𝑀  = (
𝐼

𝐶
+ 𝐾(𝑥𝑖 , 𝑥𝑗))

−1𝑌𝑇 .                      (14) 

III. THE PROPOSED ASMLELM FRAMEWORK 

A. Sparse Multinomial Logistic Extreme Learning Machine 

(SMLELM)  

The goal of a supervised learning algorithm is to design a 

classifier based on a set of N training samples that is capable of 

distinguishing M classes on the basis of an input vector of 

length d [29]. Under the multinomial logistic regression model 

[40], 𝛽 in (3), (13) and (14) can be transformed to a new form 

via a probability model. If the training sample 𝑥𝑖 belongs to the 

k-th class, the probability model can be represented by the 

following equation: 

𝑃(𝑦𝑖,𝑘 = 1|𝐻(𝑥𝑖), 𝛽) =
𝑒𝑥𝑝 (𝛽𝑘

𝑇𝐻(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝛽𝑗

𝑇𝐻(𝑥𝑖))
.            (15) 

In (3), (13), (14) and (15), 𝛽 may not be optimal due to the 

ill-posed problem of ELM. Therefore, it is important to find the 

optimal 𝛽 to obtain high classification accuracy, where 𝛽 can 

be estimated again after presenting the ELM by a probabilistic 

model. To this end, the maximum likelihood (ML) estimation is 

introduced to the ELM. Let 𝛽 = [𝛽1;  𝛽2; ⋯ ; 𝛽𝑀](𝐿∗𝑀)×1 be 

a column vector with 𝐿 × 𝑀 elements, a simple maximization 

of the logarithmic likelihood is given as follows: 

𝑚𝑎𝑥
𝛽
 𝐿(𝛽) = ∑ (∑ 𝑦𝑖,𝑗𝛽𝑗

𝑇𝐻(𝑥𝑖)
𝑀
𝑗=1

𝑁
𝑖=1 −  

𝑙𝑜𝑔 ∑ 𝑒𝑥𝑝 (𝛽𝑗
𝑇𝐻(𝑥𝑖)))

𝑀
𝑗=1 .                   (16) 

In order to maximize L(𝛽), consider the second order Taylor 

series of L(𝛽) evaluated at 𝛽′: 

𝐿(𝛽) − 𝐿(𝛽′) = (𝛽 − 𝛽′)𝑇𝛻𝐿(𝛽′) + 
1

2
(𝛽 − 𝛽′)𝑇𝛻2𝐿(𝛽′ + 𝜌(𝛽 − 𝛽′))(𝛽 − 𝛽′), 

≥ (𝛽 − 𝛽′)𝑇𝛻𝐿(𝛽′) +
1

2
(𝛽 − 𝛽′)𝑇𝐵(𝛽 − 𝛽′)              (17) 

where 𝜌 ∈ (0,1) and 

𝐵 ≡ −
1

2
[𝑰 −

𝟏𝟏𝑻

𝑀
] ⊗ 𝐻𝐻𝑇                     (18) 

where 𝑰 ∈ 𝑅𝑀×𝑀 is an identity matrix, 𝟏 = [1, 1, … ,1]𝑇 and ⊗ 

is the Kronecker matrix product [40], [41]. Then, the ML 

estimation can be expressed as follows: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝛽
{𝛽𝑇( 𝛻𝐿(𝛽′) − 𝐵𝛽′) +

1

2
𝛽𝑇𝐵𝛽}.           (19) 

Note that the dimensions of 𝐻 and 𝐻𝐻𝑇 are 𝐿 × 𝑁 and 𝐿 ×
𝐿, where 𝐿 and 𝑁 refer respectively to the number of hidden 

neuron of ELM and the number of training samples. The 

dimension of 𝐵 is 𝑀𝐿 ×𝑀𝐿, where 𝑀 is the number of classes. 

For 𝛽 and 𝛽′in (19), their dimensions are 𝑀𝐿×1. 

Hence, 𝛽  at the (t+1)-th iteration can be expressed by a 

simple updating equation:                              

�̂�𝑡+1 = 𝐵−1(𝐵�̂�𝑡 − 𝛻𝐿(�̂�𝑡)).                   (20) 

Eq. (20) is very similar to an iteratively reweighted least 

squares (IRLS) algorithm [42]. However, the Hessian matrix in 

the IRLS algorithm is replaced by matrix B. Since 𝐵−1 can be 

precomputed, it is a big advantage of the proposed approach. 

Compared to the IRLS algorithm, whose Hessian matrix must 

be inverted at each iteration [29], [43], our proposed approach 

is much more efficient. 

However, the concave LLF value can be arbitrarily large if 

the training data is separable. From [29], it is known that a prior 

on the logarithmic likelihood is crucial. In order to address the 

ill-posed problem in ELM, the prior/regularized term is adopted 

on 𝛽. Here, the Laplacian prior is used: 

𝐿1(𝛽) = 𝐿(𝛽) − 𝐿(𝛽
′) + 𝑙𝑜𝑔𝑝(𝛽)                  (21) 

𝑝(𝛽) ∝ 𝑒𝑥𝑝 (−𝜆 ∥ 𝛽 ∥1)                    (22) 

and ∥ 𝛽 ∥1=∑ |𝛽𝑙|𝑙  denotes the l1 norm and |𝛽𝑙|=√𝛽𝑙
2. 

Consider the following inequality for h>0 and u>0:  

ℎ + 𝑢 ≥ 2√ℎ√𝑢
𝑦𝑖𝑒𝑙𝑑𝑠
→    √𝑢 ≤

1

2
(
𝑢

√ℎ
+ √ℎ).              (23) 

For any 𝛽′, we have  

−𝜆 ∥ 𝛽 ∥1≥ −
1

2
𝜆(∑

𝛽𝑙
2

|𝛽𝑙
′|
+ ∑ |𝛽𝑙

′|𝑙𝑙 ).                   (24) 

Therefore, the following term can be maximized: 

𝑚𝑎𝑥
𝛽
{ 𝛽𝑇(∇𝐿1(𝛽

′) − 𝐵𝛽′) +
1

2
𝛽𝑇(𝐵 − 𝜆)𝛽},          (25) 

⋀ = 𝑑𝑖𝑎𝑔{ |𝛽11|
−1, … , |𝛽𝐿𝑀|

−1}.              (26) 

Finally, (20) can be expressed by the following equation: 

�̂�𝑡+1 = (𝐵 − 𝜆⋀𝑡)−1(𝐵�̂�𝑡 − ∇𝐿(�̂�𝑡)).          (27) 

From the above, it can be seen that the Laplacian 

prior/regularized term is applied to 𝛽  with 𝜆  acting as a 

regularization parameter. The Laplacian prior imposed on the 

sparse multinomial logistic ELM (SMLELM) controls the 

complexity of the SMLELM classifier and improves the 

generalization capacity of the SMLELM, where 𝑝(𝛽) in (22) 

forces most components of 𝛽 to become zero. 

B. Augmented Sparse Multinomial Logistic Extreme Learning 

Machine (ASMLELM)  

Since the term L(𝛽) in (16) is not quadratic and 𝑝(𝛽) in (22) 

is non-smooth, finding the solution of the optimization problem 

in (25) is very difficult. Recently, the majorization- 

minimization method [43] has been proposed to solve this kind 

of problems [29], [44]-[47], though the computation 

complexity is extremely high. In [48], the logistic regression 

via a variable splitting and an augumented Lagrangian 

(LORSAL) has been used for improving the computational 

efficiency, which has succeeded in several applications 

[33][16][45][49]. As a result, we utilize this approach here to 
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reduce the complexity of the proposed SMLELM, which has 

transformed the proposed SMLELM into a new form namely 

augmented SMLELM (ASMLELM) as detailed below.  

Variable splitting is straightforward approach which consists 

a procedure to create new variables [50], where the problem 

defined in (21) is equivalent to: 

(�̂�, �̂�) = 𝑎𝑟𝑔min
𝛽,𝑣
{−L(𝛽) + 𝜆 ∥ 𝑣 ∥1}  s.t.  𝛽 = 𝑣.    (28) 

The aforementioned optimization problem can be solved via 

applying the direction method of multipliers [51] (see also [52] 

and the references therein). So we call this neural network as 

the augmented SMLELM (ASMLELM). Applying the 

augmented Lagrangian [50] to (28), the solution of (28) at the 

(t+1)-th iteration can be rewritten as follows: 

�̂�𝑡+1 = 𝑎𝑟𝑔min
𝛽
{−L(𝛽) +

𝛾

2
∥ 𝛽 − 𝑣𝑡 − 𝑏𝑡 ∥2},       (29) 

�̂�𝑡+1 = 𝑎𝑟𝑔min
𝑣
{ 𝜆 ∥ 𝑣 ∥1 +

𝛾

2
∥ 𝛽𝑡+1 − 𝑣 − 𝑏𝑡 ∥2},     (30) 

𝑏𝑡+1 = 𝑏𝑡 − 𝛽𝑡+1 + 𝑣𝑡+1                            (31) 

where 𝛾 ≥ 0  is the weight of the augmented SMLELM 

(ASMLELM). For any 𝛾 ≥ 0, the sequence �̂�𝑡 converges to a 

minimizer [45], [48] [50]. For easy implementation and tuning 

the parameters, we set 𝛾 = 10𝜆  in our experiments. The 

solution of the problem defined in (28) is the simple 

soft-threshold rule [51], [45], which can be expressed as: 

𝑣𝑡+1 = max {0, 𝑎𝑏𝑠(𝑒) − 𝜆/𝛾},                     (32) 

𝑒 = 𝛽𝑡+1 − 𝑏𝑡.                                    (33) 

When the same ASMLELM framework is applied 

respectively to the BELM, NLELM and KELM, three new 

spectral algorithms for performing the HSI classification can be 

generated, which are named as ASMLBELM for the basic 

ELM, ASMLNLELM for NLELM and ASMLKELM for 

KELM. The pseudocodes for these three methods are shown in 

Algorithm 1. 

 
  Algorithm 1:The ASMLELM for the basic ELM, the NLELM and the KELM 

Input: The training sample pairs {𝑋𝑡𝑟𝑎𝑖𝑛 = (𝑥1, 𝑥2, … , 𝑥N) and 𝑌𝑡𝑟𝑎𝑖𝑛 = (𝑦1, 𝑦2, … , 𝑦𝑁)}, where N is the 

number if training samples. As well as the parameters 𝜆, b = 0. 

Training phase: 

    L: The number of nodes in a hidden layer.  

    𝐻(): The sigmoid function. 

    𝛽: The output weight in the hidden layer. 

1: Randomly generate input weights {𝑤1, …𝑤𝐿} and bias {𝑏1, … , 𝑏𝐿} to obtain the preliminary value of 𝛽. 

2: For each training sample 𝒙𝐢, calculate the hidden layer matrix 

    H(𝑥𝑖) = [𝐻1(𝑤1 ∗ 𝒙𝒊 + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝒙𝒊 + 𝑏𝐿)]𝐿×1
𝑇 . 

3: Calculate the preliminary output weight for 𝛽 

(1)  𝛽 = (𝐻𝑇)†𝑌𝑇  for the ASMLBELM. 

  (2)  min
𝛽,𝜉𝑖

 𝐿𝐸𝐿𝑀 =
1

2
∥ 𝛽 ∥𝐹

2 + 𝐶
1

2
∑ ∥ 𝜉𝑖 ∥2

2𝑁
𝑖=1 ,   s. t.  𝐻𝑇(𝑥𝑖)𝛽 = 𝑦i

𝑇 − 𝜉𝑖
𝑇
, i=1,..,N. 

 Here, 𝛽 = 𝐻 ∗ (
𝐼

𝐶
+ 𝐻𝑇𝐻)−1𝑌𝑇 for the ASMLNLELM. 

  (3) Let π = (
𝐼

𝐶
+ 𝐻𝑇𝐻)−1𝑌𝑇  and the Gaussian kernel 𝐾𝑇rain(𝑥𝑖 , 𝑥𝑗) = exp (−

∥𝑥𝑖−𝑥𝑗∥
2

2∗𝜎𝐸𝐿𝑀
2 ). 

  Then, π = (
𝐼

𝐶
+ 𝐾𝑇𝑟𝑎𝑖𝑛)

−1𝑌𝑇  for the ASMLKELM. 

4. Represent the ELM by a probability model 

  (1)   𝑃(𝑦𝑖,𝑘 = 1|𝐻(𝑥𝑖), 𝛽) =
𝑒𝑥𝑝 (𝛽𝑘

𝑇𝐻(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝛽𝑗

𝑇𝐻(𝑥𝑖))
 for the ASMLBELM and the ASMLNLELM. 

  (2)   𝑃(𝑦𝑖,𝑘 = 1|𝐾𝑡𝑟𝑎𝑖𝑛(𝑥𝑖), π) =
𝑒𝑥𝑝 (π𝑘

𝑇𝐾𝑇rain)

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 π𝑗

𝑇𝐾𝑇rain)
  for the ASMLKELM. 

5. ASMLELM: The ML estimate based on the sparse representation with the Laplacian prior via variable 

splitting and constrained optimization. 

  5.1  �̂� = 𝑎𝑟𝑔max
𝛽
𝛽𝑇( ∇𝐿(𝛽′) − 𝐵𝛽′) +

1

2
𝛽𝑇(𝐵 − 𝜆⋀𝑡)𝛽.                                                                     

  5.2  Set t=0. 

  5.3  �̂�𝑡+1 = argmin
𝛽
−L(𝛽) +

10𝜆

2
∥ 𝛽 − 𝑣𝑡 − 𝑏𝑡 ∥2. 

  5.4  �̂�𝑡+1 = arg argmin
𝑣
𝜆 ∥ 𝑣 ∥1 +

10𝜆

2
∥ 𝛽𝑡+1 − 𝑣 − 𝑏𝑡 ∥2. 

  5.5  𝑏𝑡+1 = 𝑏𝑡 − 𝛽𝑡+1 + 𝑣𝑡+1.                                      

  5.6 Increase t to t+1; If the ASMLKELM is applied, replace 𝛽 by π. 

  5.7 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 5.3. 

Prediction phase:      Input: 𝑋𝑡𝑒𝑠𝑡 ≡ (𝑥1, 𝑥2, … , 𝑥n)   
1:  (1)   Calculate the output layer matrix 

        H∗(𝒙𝒊) = [𝐻1(𝑤1𝒙𝒊 + 𝑏1), … , 𝐻𝐿(𝑤𝐿𝒙𝒊 + 𝑏𝐿)]𝐿×1
𝑇   i=1,…,N for ASMLBELM and ASMLNLELM. 

(2)   𝐾𝑡𝑒𝑠𝑡 = H
∗𝑇H = exp (−

∥𝑥𝑖−𝑥𝑗∥
2

2𝜎𝐸𝐿𝑀
2 ) for the ASMLKELM. 
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2:  (1)   𝑃(𝑦𝑖,𝑘|𝐻
∗(𝑥𝑖), 𝛽) =

𝑒𝑥𝑝 (𝛽𝑘
𝑇H∗(𝒙𝒊))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝛽𝑗

𝑇H∗(𝒙𝒊))
  for ASMLBELM and AMSLNLELM. 

(2) 𝑃(𝑦𝑖,𝑘|𝐾𝑡𝑒𝑠𝑡 , π) =
𝑒𝑥𝑝 (π𝑘

𝑇𝐾𝑡𝑒𝑠𝑡(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 π𝑗

𝑇𝐾𝑡𝑒𝑠𝑡)
  for the ASMLKELM. 

 

 

 

Algorithm 2: ASMLELM with WCFs (ASMLBELM-WCFs, ASMLNLELM-WCFs, ASMLKELM-WCFs) 

Input: The training spectral feature  𝑥𝑡𝑟𝑎𝑖𝑛
𝑤 = (𝑥1

𝑤 , 𝑥2
𝑤 , … , 𝑥N

𝑤),  the spatial feature 𝑥𝑡𝑟𝑎𝑖𝑛
𝑠 ≡ (𝑥1

𝑠, 𝑥2
𝑠, … , 𝑥N

𝑠 ), and 

the labelled data 𝑌𝑡𝑟𝑎𝑖𝑛 = (𝑦1, 𝑦2, … , 𝑦𝑁), as well as the parameters C, 𝜆, b = 0. 

Training phase: 

    L: The number of nodes in a hidden layer. 

    𝐻(): The sigmoid function. 

    The output weight of the hidden layer 𝛽. 

1: Randomly generate input weight {𝑤1 , …𝑤𝐿} and bias {𝑏1, … , 𝑏𝐿} to obtain the preliminary value of 𝛽. 

2: For any training sample 𝒙𝐢, calculate the hidden layer matrix 

𝐻𝑤(𝑥i
𝑤) = [𝐻1(𝑤1 ∗ 𝑥i

𝑤 + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝑥i
𝑤 + 𝑏𝐿)]𝐿×1

𝑇  and  

𝐻𝑠(𝑥i
𝑠) = [𝐻1(𝑤1 ∗ 𝑥i

𝑠 + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝑥i
𝑠 + 𝑏𝐿)]𝐿×1

𝑇 , where 

    (1) 𝐻 = μ𝐻𝑤 + (1 − μ)𝐻𝑠 for the ASMLBELM-WCFs. 

    (2) 𝐻 = √μ𝐻𝑤 + √(1 − μ)𝐻𝑠 for the ASMLNLELM-WCFs and the ASMLKELM-WCFs. 

3: Calculate the preliminary output weight for 𝛽 

    (1) 𝛽 = (𝐻𝑇)†𝑌𝑇 for the ASMLBELM-WCFs.  

(2) min
𝛽,𝜉𝑖

 𝐿𝐸𝐿𝑀 =
1

2
∥ 𝛽 ∥𝐹

2 + 𝐶
1

2
∑ ∥ 𝜉𝑖 ∥2

2𝑁
𝑖=1 , s. t. 𝐻𝑇(𝑥𝑖)𝛽 = 𝑦i

𝑇 − 𝜉𝑖
𝑇
  i=1,..,N. 

Here, 𝛽 = 𝐻 ∗ (
𝐼

𝐶
+ 𝐻𝑇𝐻)−1𝑌𝑇  for the ASMLNLELM-WCFs. 

    (3)   π = (
𝐼

𝐶
+ 𝐾𝑡𝑟𝑎𝑖𝑛)

−1𝑌𝑇 , 𝐾𝑡𝑟𝑎𝑖𝑛 = μ𝐻𝑤
𝑇𝐻𝑤 + (1 − μ)𝐻𝑠

𝑇𝐻𝑠 = μ𝐾𝐻𝑤 + (1 − μ)𝐾𝐻𝑠 for ASMLKELM-WCFs. 

4.Represent the ELM by a probability model 

    𝑃(𝑦𝑖,𝑘 = 1|𝐻(𝑥𝑖), 𝛽) =
𝑒𝑥𝑝 (𝛽𝑘

𝑇𝐻(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝛽𝑗

𝑇𝐻(𝑥𝑖))
 for the ASMLBELM-WCFs and the ASMLNLELM-WCFs. 

    𝑃(𝑦𝑖,𝑘 = 1|𝐾𝑡𝑟𝑎𝑖𝑛(𝑥𝑖), π) =
𝑒𝑥𝑝 (π𝑘

𝑇𝐶𝐾𝑡𝑟𝑎𝑖𝑛(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 π𝑗

𝑇𝐾𝑡𝑟𝑎𝑖𝑛(𝑥𝑖))
 for the ASMLKELM-WCFs. 

5. ASMLELM : The ML estimate based on the sparse representation with the Laplacian prior via variable splitting 

and constrained optimization. 

    5.1 �̂� = 𝑎𝑟𝑔max
𝛽
{𝛽𝑇( ∇𝐿(𝛽′) − 𝐵𝛽′) +

1

2
𝛽𝑇(𝐵 − 𝜆)𝛽}.                                                                     

    5.2 Set t=0. 

    5.3  �̂�𝑡+1 = argmin
𝛽
{−L(𝛽) +

10𝜆

2
∥ 𝛽 − 𝑣𝑡 − 𝑏𝑡 ∥2}. 

    5.4   �̂�𝑡+1 = arg argmin
𝑣
{ 𝜆 ∥ 𝑣 ∥1 +

10𝜆

2
∥ 𝛽𝑡+1 − 𝑣 − 𝑏𝑡 ∥2}. 

5.5   𝑏𝑡+1 = 𝑏𝑡 − 𝛽𝑡+1 + 𝑣𝑡+1.  
5.6 Increase t to t+1; If the ASMLKELM-WCFs is applied, replace 𝛽 by π. 

    5.7 Quit the algorithm if the stopping criterion is met; otherwise, go back to Step 5.3. 

 Prediction phase: 

Input: The testing spectral feature 𝑥𝑡𝑒𝑠𝑡
𝑤 = (𝑥1

𝑤, 𝑥2
𝑤 , … , 𝑥n

𝑤), and the spatial feature 𝑥𝑡𝑒𝑠𝑡
𝑠 ≡ (𝑥1

𝑠, 𝑥2
𝑠, … , 𝑥n

𝑠).  
1: Calculate the output layer matrix 

    𝐻𝑤
∗ (𝑥i

𝑤) = [𝐻1(𝑤1 ∗ 𝑥i
𝑤 + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝑥i

𝑤 + 𝑏𝐿)]𝐿×1
𝑇 , and  

   𝐻𝑠
∗(𝑥i

𝑠) = [𝐻1(𝑤1 ∗ 𝑥i
𝑠 + 𝑏1), . . . , 𝐻𝐿(𝑤𝐿 ∗ 𝑥i

𝑠 + 𝑏𝐿)]𝐿×1
𝑇 , where 

    (1) 𝐻∗ = μ𝐻𝑤
∗ + (1 − μ)𝐻𝑠

∗ for the ASMLBELM-WCFs. 

    (2) 𝐻∗ = √μ𝐻𝑤
∗ + √(1 − μ)𝐻𝑠

∗ for the ASMLNLELM-WCFs. 

    (3) 𝐻∗ = √μ𝐻𝑤
∗ + √(1 − μ)𝐻𝑠

∗, 𝐾𝑡𝑒𝑠𝑡 = μ𝐻𝑤
∗𝑇𝐻𝑤

∗ + (1 − μ)𝐻𝑠
∗𝑇𝐻𝑠

∗ =  μ𝐾𝐻𝑤 + (1 − μ)𝐾𝐻𝑠  for 

ASMLKELM-WCFs. 

2:   (1)  𝑃(𝑦𝑖,𝑘|𝐻
∗(𝑥𝑖), 𝛽) =

𝑒𝑥𝑝 (𝛽𝑘
𝑇H∗(𝒙𝒊))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝛽𝑗

𝑇H∗(𝒙𝒊))
 for the ASMLBELM-WCFs and the ASMLNLELM-WCFs. 

(2)  𝑃(𝑦𝑖,𝑘|𝐾𝑡𝑒𝑠𝑡(xi), 𝛽) =
𝑒𝑥𝑝 (𝜋𝑘

𝑇𝐾𝑡𝑒𝑠𝑡(𝑥𝑖))

∑ 𝑒𝑥𝑝 (𝑀
𝑗=1 𝜋𝑗

𝑇𝐾𝑡𝑒𝑠𝑡(𝑥𝑖))
 for the ASMLKELM-WCFs. 
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C. Weighted Composite Features Based ASMLELM 

(ASMLELM-WCFs) 

Until now in our discussion, the ASMLELM has only used 

the spectral information of the HSI data for classification. Since 

a pixel and its spatial neighboring pixels very likely belong to 

the same class [1], the spatial information is also essential for 

data classification in HSI. To this end, the WCFs are used to 

perform the spectral spatial classification for the proposed 

ASMLELM framework and form the new approach namely 

ASMLELM-WCFs.  

For a given pixel 𝑥𝑖, let its spatial coordinates be (p, q), the 

local pixel neighborhood centered at 𝑥𝑖  is 𝑁𝑏(𝑥𝑖) = {𝑥 =
(𝑝, 𝑞)|𝑝 ∈ [𝑝 − 𝑎, 𝑝 + 𝑎]; 𝑞 ∈ [𝑞 − 𝑎; 𝑞 + 𝑎]} , a=(wopt-1)/2 

where wopt is the width/height of the neighborhood window. 

Let 𝑥𝑖
𝑤 be the spectral feature of the sample 𝑥𝑖  and 𝑥𝑖

𝑠 be the 

information extracted from a local spatial neighborhood of 𝑥𝑖. 
Let {𝑥𝑖 , 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑠} be the pixels in 𝑁𝑏(𝑥𝑖), where s =

  wopt2 − 1. Then 𝑥𝑖
𝑠 can be represented as 

𝑥𝑖
𝑠 = ∑ 𝑥𝑐𝑣𝑐

𝑥𝑐∈𝑁𝑏(𝑥𝑖)

∑ 𝑣𝑐 =
𝑥𝑖 + ∑ 𝑣𝑐𝑥𝑖𝑐

𝑠
𝑐=1

1 + ∑ 𝑣𝑐
𝑠
𝑐=1

𝑥𝑐∈𝑁𝑏(𝑥𝑖)

⁄  

where the weight 𝑣𝑐 = exp {−𝑧 ∥ 𝑥𝑖 − 𝑥𝑖𝑐 ∥
2}  measuring the 

spectral distance between the central pixel, 𝑥𝑖 , and the 

neighboring pixels, 𝑥𝑖𝑐  (𝑥𝑖𝑐 ∈ 𝑁𝑏(𝑥𝑖)). Following the setting 

in [35], we set 𝑧 = 0.2 in this work. 

The output matrix of the hidden layer defined in (2) and (13) 

can be expressed as: 

𝐻 = μ𝐻𝑤 + (1 − μ)𝐻𝑠,                        (34) 

𝐻𝑤 = [𝐻𝑤(𝑥1
𝑤) ⋯ 𝐻𝑤(𝑥n

𝑤)]𝐿×𝑁,        (35) 

𝐻𝑠 = [𝐻𝑠(𝑥1
𝑠) ⋯ 𝐻𝑠(𝑥n

𝑠)]𝐿×𝑁           (36) 

and μ  is a coefficient balancing the spectral and spatial 

information. 

For the KELM defined in (14), 𝛽 can be defined as follows:  

𝛽 = (
𝐼

𝐶
+ K）

−1
𝑌𝑇 ,                      (37) 

K = μ𝐾𝐻𝑤 + (1 − μ)𝐾𝐻𝑠 ,                   (38) 

𝐾𝐻𝑤(𝑥𝑖
𝑤 , 𝑥𝑗

𝑤) = exp (−
∥𝑥𝑖
𝑤−𝑥𝑗

𝑤∥2

2∗𝜎𝑤
2 ),           (39) 

  𝐾𝐻𝑠(𝑥𝑖
𝑠, 𝑥𝑗

𝑠) = exp (−
∥𝑥𝑖
𝑠−𝑥𝑗

𝑠∥2

2∗𝜎𝑠
2 ).            (40) 

Here, 𝜎𝑤 and 𝜎𝑠 control the widths of the spectral and spatial 

Gaussian kernels.  

By combining the ASMLELM with WCFs, three different 

approaches for performing the spectral-spatial HSI 

classification can be formed, i.e, ASMLBELM-WCFs, 

ASMLNELM-WCFs and ASMLKELM-WCFs as detailed in 

Algorithm 2. The flowchart of the proposed 

ASMLELM-WCFs is also illustrated in Fig. 1 for clarity. 

D. The lower bound of the ASMLELM 

In this section, the lower bound of the proposed ASMLELM 

will be derived. From (19), we have: 

∇2𝐿(𝛽) ≥ B                                  (41) 

From (20), 𝐵 is symmetric and negative definite independent 

from 𝛽, where 𝛽 at the (t+1)-th iteration is defined as: 

�̂�𝑡+1 = �̂�𝑡 − (𝐵 − 𝜆⋀𝑡)−1𝛻𝐿(�̂�𝑡)                 (42) 

which can be further rewritten as: 

 𝑄(𝛽) = (𝛽 − 𝛽′)𝑇𝛻𝐿 (𝛽′) + 

1

2
(𝛽 − 𝛽′)𝑇𝐵(𝛽 − 𝛽′) − 𝜆 ∥ 𝛽 ∥1     (43) 

From [29], (43) can be expressed as follows: 

𝑄1(𝛽) = (𝛽 − 𝛽
′)𝑇𝛻𝐿 (𝛽′) + 

1

2
(𝛽 − 𝛽′)𝑇(𝐵 − 𝜆⋀)(𝛽 − 𝛽′)  (44) 

Then, we have the following two lemmas: 

Lemma 1: 

(a): Q1(𝛽) is maximized at: �̂� = 𝛽′ − (𝐵 − 𝜆⋀𝑡)−1∇𝐿(𝛽′). 

(b): 𝑄1(�̂�) = −
1

2
𝛻𝐿𝑇 (𝛽′) (𝐵 − 𝜆⋀𝑡)−1𝛻𝐿 (𝛽′) ≥ 0 , 

where the inequality is strictly satisfied if ∇𝐿(𝛽′) ≠ 0. 

Proof: 

(a) As ∇𝑄1(𝛽) = ∇𝐿(𝛽
′) + (𝐵 − 𝜆⋀)(𝛽 − 𝛽′) = 0, we have 

�̂� = 𝛽′ − (𝐵 − 𝜆⋀𝑡)−1∇𝐿(𝛽′). 

(b) As 𝑄1(�̂�)= −((𝐵 − 𝜆⋀
𝑡)−1∇𝐿(𝛽′))𝑇∇𝐿(𝛽′) +

1

2
((𝐵 −

𝜆⋀𝑡)−1∇𝐿(𝛽′))𝑇(𝐵 − 𝜆⋀𝑡)((𝐵 − 𝜆⋀𝑡)−1∇𝐿(𝛽′)) 

=−∇𝐿(𝛽′)𝑇 (𝐵 − 𝜆⋀𝑡)−1∇𝐿(𝛽′) +
1

2
∇𝐿(𝛽′)𝑇 (𝐵 −

𝜆⋀𝑡)−1∇𝐿(𝛽′) =−
1

2
∇𝐿(𝛽′)𝑇 (𝐵 − 𝜆⋀𝑡)−1∇𝐿(𝛽′) ≥ 0, 

the inequality is strictly satisfied if  ∇𝐿(𝛽′) ≠ 0. 

Lemma 2:  

   (a) Monotonicity: L(𝛽𝑡+1) ≥ L(𝛽𝑡). 
   (b) Convergence: The sequence ∇𝐿(𝛽𝑡) converges to 0 if L is 

bounded as described in (a). 

Proof:  

(a) For the convenience, let ℎ = (𝐵 − 𝜆⋀𝑡)−1𝛻𝐿(𝛽𝑡). Then, 

we have 

L(𝛽𝑡+1) − L(𝛽𝑡) = ℎ𝑇𝛻𝐿(𝛽𝑡) +
1

2
ℎ𝑇𝛻2𝐿(𝛽𝑡 + 𝜌ℎ)ℎ ≥

ℎ𝑇𝛻𝐿(𝛽𝑡) +
1

2
ℎ𝑇(𝐵 − 𝜆⋀𝑡)h ≥ 0. 

(b) To prove this lemma, suppose that ∥ ∇𝐿(𝛽𝑡) ∥  is 

bounded by a value larger than 0. From (b) of Lemma 1, 

it can be seen that the increments are lower bounded. 

Therefore, it contradicts the boundedness of 𝑄1. As a 

result, it can be concluded that the sequence 

∇𝐿(𝛽𝑡) converges to 0. 
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Fig. 1. The flowchart of proposed ASMLELM-WCFs framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Effect of the parameter a for the Indian Pines data set (left) and the Pavia University data set (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Effect of the number of neurons in the hidden layer L for the Indian Pines data set (left) and the Pavia University data set (right). 
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IV. EXPERIMENTS AND ANALYSIS 

A. HSI Datasets 

In this section, the performances of the proposed framework 

will be evaluated using two well-known publicly available HSI 

datasets, i.e. the Indian Pines dataset [44] and the Pavia 

University dataset [44]. These two datasets have been widely 

used for HSI classification [44], and their specifications are 

detailed as follows.  

(1) The Indian Pines dataset consists of urban images 

collected by the AVIRIS sensors built in June 1992 . The image 

scene has 145× 145 pixels with 200 valid spectral bands, after 

removal of 24 heavily noisy bands which are severely affected 

by the water absorptions. Each band is ranging from 0.2μm to 

2.4μm, where the spatial resolution is 20m per pixel. There are 

in total 16 classes in this dataset. 

(2) The Pavia University dataset consists of data over the 

Pavia city, Italy acquired by the ROSIS instrument in 2001. The 

image scene has 610×340 pixels with 103 spectral bands after 

removing 12 water absorption bands. The spatial resolution of 

the dataset is 1.3m per pixel, and there are totally 9 classes in 

the HSI dataset. 

(3) The Salinas dataset was also collected by the AVIRIS 

sensor, capturing an area over the Salinas Valley, CA, USA. 

The dataset has 512 × 217 pixels with a spatial resolution of 3.7 

m. This image has 204 bands after removing 20 water 

absorption bands, and it contains 16 different classes. 

B. Experimental Setting 

The parameter settings in our experiments are described as 

follows: Basically, the proposed approaches are benchmarked 

with eight state-of-the-art methods including SVM [1], SVM 

with composite kernel (SVM-CK) [1], LORSAL [49], kernel 

based LORSAL (KLORSAL) [49], SMLR-SpATV 

(KLORSAL with the weighted Markov random field) [49], 

BELM [19], NLELM [1], and KELM [1]. The LIBSVM [53] 

software is used for the implementation of the SVM and the 

SVM-CK. For the kernel based methods such as the SVM, the 

SVM-CK, the KELM, the ASMLKELM and the 

ASMLKELM-WCFs, the Gaussian kernel is used. The 

Gaussian kernel parameter 𝜎 and the penalty parameter C are 

automatically tuned by using the three folds cross validations in 

the range of C=2𝑝, 𝜎 = 2𝑞 , 𝑝 ={1, 2,…, 11, 12, 13, 14, 15} 

and 𝑞 ={-6, -5, -4, -3, -2, -1, 0, 1}. Other parameters of the 

SVM and the SVM-CK are set the same as [1]. The parameters 

of the LORSAL, the KLORSAL and the SMLR-SpATV are 

chosen the same as suggested in [43]. All experiments are 

conducted in MATLAB R2015a and run in a computer with 2.9 

GHz CPU, four cores and 32.0G RAM. All experiments are 

repeated 10 times with the average classification results used 

for comparison. 

(1) For the proposed ASMLBELM, the total number of the 

neurons in the hidden layer L and 𝜆  are two important 

parameters. They will be evaluated in the next subsection. 

(2) For the ASMLNLELM, although the parameter C is 

automatically tuned by three folds cross validations, the effects 

of L and 𝜆 will also be evaluated in the next subsection. 

(3) The important parameters of the ASMLKELM are C, 𝜎 

and 𝜆, where the first two will be automatically tuned by three 

folds cross validations, and the effect of 𝜆 will be evaluated in 

the next subsection. 

(4) C, L, 𝜆 and μ are important parameters for the proposed 

ASMLBELM-WCFs. C is automatically tuned by three folds 

cross validations, μ is empirically set to 0.1. For the parameters 

L and 𝜆, their effects will be evaluated in the next subsection. 

(5) For the proposed ASMLNLELM-WCFs, there are four 

key parameters i.e. L, C,  𝜆  and μ . The parameter C is 

automatically tuned by three folds cross validations, μ  is 

empirically set to 0.1, where L and 𝜆 will be evaluated in the 

next subsection.  

(6) For the ASMLKELM-WCFs, C and 𝜎 are automatically 

tuned by three folds cross validations, μ is empirically set to 0.1. 

The effect of 𝜆 will be evaluated in the next subsection. 

C. Parameter Analysis 

In this subsection, several important parameters of the 

proposed methods will be evaluated and its performance will be 

compared with the BELM and the NLELM. It is worth noting 

that the window size is set to 9 for the WCFs-based methods in 

both Experiment #1 and Experiment #2, which means the 

widths of the neighborhood window are set as 9. The effects of 

the window size as well as the parameters 𝜆  and L for the 

proposed WCF-based methods are evaluated as follows. 

Experiment #1: The effect of the parameter 𝜆 (𝜆 = 2𝑎) on 

the proposed method is evaluated, where the number of the 

hidden layers is set to L=550 and L=900 for the Indian Pines 

dataset and the Pavia University dataset, respectively. Fig. 2 

plots the overall accuracy (OA) as a function of 𝑎 with 1043 

and 3921 training samples (10% and 9% of the available 

samples) of the Indian Pines dataset and the Pavia University 

dataset, respectively. As seen in Fig. 2, despite of the change of 

the parameter a, all the tested approaches produce good results. 

In particular, the proposed spectral classifiers can achieve 

higher OA with a slightly larger value of a, where the results 

from the spectral spatial classifiers, which are far better than 

those from spectral features only, seem to be less sensitive to a. 

In the following experiments, we set 𝑎 = −20 for all the three 

spectral-spatial classifiers i.e. ASMLBELM-WCFs, 

ASMLNLELM-WCFs and ASMLKELM-WCFs if there is no 

special mention. For ASMLBELM and ASMLNLELM, we set 

𝑎 = −10, yet for ASMLKELM we set 𝑎 = −17 for the Indian 

Pines dataset and 𝑎 = −13  for the Pavia University dataset. 

Experiment #2: In Fig. 3, the OA results are plotted as a 

function of the number of hidden layer neurons L to show its 

effects on the proposed methods as well as BELM and NLELM. 

As seen, ASMLBELM and ASMLNLELM always achieve 

higher accuracy than BELM and NLELM. With spatial 

information introduced from WCFs, the proposed spectral 

spatial classifiers, ASMLBELM-WCFs and ASMLNLELM- 

WCFs, can significantly outperform ASMLBELM and 
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ASMLNLELM in which only spectral information was used, 

regardless the even poorer performance from BELM and 

NLELM. Without special mention, in the following 

experiments, we set L=450 for BELM and ASMLBELM-based 

approaches (including ASMLBELM and ASMLBELM-WCFs), 

L=1000 for NLELM and ASMLNLELM-based approaches 

(including ASMLNLELM and ASMLNLELM-WCFs) for the 

Indian Pines dataset. For Pavia University dataset, we set 

L=1100 for all approaches including BELM, NLELM, 

ASMLBELM, ASMLNLELM, ASMLBELM-WCFs and 

ASMLNLELM-WCFs.  

Experiment #3: In this experiment, we assess the effects of 

the window size for the proposed spectral-spatial classifiers, 

ASMLBELM-WCFs, ASMLNLELM-WCFs and 

ASMLKELM-WCFs, and the results are given in Fig. 4. As 

seen, the results of the proposed methods are not very good 

when the window size is too small, i.e. less than 5. However, 

the results are much improved when the window size is larger 

than 10. This shows the generalization for achieving the good 

performance of the proposed spectral-spatial classifiers. For the 

convenience, the window size is set as 13 for both the Indian 

Pines data set and the Pavia University data set in the following 

experiments if there is no special mention. 

D. Experiment Results and Discussions 

In this subsection, the classification results on the two data 

sets are evaluated and shown in Table 1 and Table 2, where our 

proposed six approaches are benchmarked with eight others. In 

these two tables, we also show the index of the classes and the 

numbers of training samples and testing samples for each class. 

For the Indian Pines data set and the Pavia University data set, 

we set 10% and 9% for training, respectively, and the 

remaining samples are used for testing.  

As can be seen in Table 1 and Table 2, the proposed 

ASMLBELM, ASMLNLELM and ASMLKELM approaches 

yield higher accuracy than BELM, NLELM and KELM, 

respectively. The performance of the three proposed spectral 

classifiers are improved dramatically when the spatial 

information (WCFs) are added. Compared with other spectral 

spatial classifiers such as the SVM-CK and the SMLR-SpATV, 

our proposed ASMLBELM-WCFs, ASMLNLELM-WCFs and 

ASMLKELM-WCFs have produced higher classification 

accuracy, especially ASMLNLELM-WCFs for the Indiana 

Pines data set and ASMLKELM-WCFs for the Pavia 

University data set. Visual comparison of the classification 

results is also shown in Fig. 5 and Fig. 6 for the results from the 

two data sets as well as the ground reference map, which again 

validates the efficacy of the proposed approaches. 

E. Experiments with Different Numbers of Training Samples 

The performances of the proposed six methods are further 

evaluated under different numbers of training samples, where 

the total number of training samples is respectively chosen as 5, 

10, 15, 20, 25, 30, 35 and 40 from each class. If the selected 

number exceeds half of the total pixels in one particular class, 

we only choose 50% of the samples for training in that class. 

For the two data sets, relevant results are given in Table 3 and 

Table 4 for comparison.  

As seen from Table 3 and Table 4, with the change of the 

number of training samples, the classification accuracy of the 

three spectral classifiers is always better than those from BELM, 

NLELM and KELM. These three spectral-spatial classification 

algorithms can also always achieve best performances among 

all the methods despite of the number of training samples used. 

Apparently, the performances of the proposed six methods are 

improved with increased number of training samples. However, 

when the number of training samples is over 20, the 

classification accuracy becomes almost saturated and does not 

change significantly. What is more interesting, when we use 

only 5 samples for training, the best classification accuracy the 

proposed methods can achieve exceeds 75% for both the two 

data sets, which outperform all other benchmarking methods at 

least 8%. On the other hand, it is worth noting that the 

classification accuracy of BELM surprisingly decreases when 

the number of training samples increases in most cases. This is 

because the ill-posed problem is particularly sensitive in BELM, 

and there may be different optimal numbers of hidden neurons 

for cases with various numbers of training samples. This can be 

also seen in Fig. 3, however, the proposed ASMLBELM and 

ASMLBELM-WCFs well alleviate this problem. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Effect of the window size for the Indian Pines data set (left) and the Pavia University data set (right). 
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TABLE 1. CLASSIFICATION ACCURACY USING 10% OF THE LABELED SAMPLES PER CLASS FOR THE INDIAN PINES DATA SET (THE BEST RESULTS ARE BOLDED). 
 

NO Train Test SVM SVM-CK LORSA
L 

KLORSA
L 

SMLR- 

SpATV 

BELM NLELM KELM ASML 

BELM 

ASML 

NLELM 

ASML 

KELM 

ASMLBELM
-WCFs 

ASMLNLELM 

-WCFs 

ASMLKELM 

-WCFs 

1 6 48 68.12 83.75 1.04 76.88 89.58 48.96 33.33 74.17 47.29 41.88 72.08 96.25 93.33 90.83 

2 144 1290 83.17 95.48 73.36 82.25 95.95 76.55 81.09 83.27 81.03 80.81 83.29 98.40 98.62 97.86 

3 84 750 75.52 95.77 49.44 68.76 98.01 56.80 59.44 70.31 63.07 63.44 74.44 98.52 98.19 97.89 

4 24 210 72.19 93.1 22.00 60.19 98.95 44.76 43.10 66.9 48.29 45.67 63.71 98.09 99.05 96.57 

5 50 447 92.73 95.41 84.88 89.66 95.95 86.80 87.99 92.15 88.01 88.17 92.48 97.70 98.32 97.58 

6 75 672 96.06 99.29 94.43 95.33 99.08 94.87 96.89 96.49 96.13 96.19 95.95 99.63 99.58 99.16 

7 3 23 75.22 77.39 0 35.22 52.61 4.78 1.30 71.74 7.39 9.57 70.00 90.00 88.69 93.04 

8 49 440 98.73 97.5 98.77 98.59 100.0 99.07 99.52 98.84 99.57 99.45 98.93 99.75 99.93 99.72 

9 2 18 67.78 77.78 0 46.67 5.00 3.89 3.89 58.33 0.56 1.67 49.44 91.67 96.11 87.22 

10 97 871 77.89 93.64 55.76 71.55 94.08 64.88 67.83 80.11 65.48 66.79 79.39 97.63 97.50 95.91 

11 247 2221 85.96 96.82 72.78 80.53 99.18 76.79 79.99 86.36 82.49 80.07 87.67 99.20 99.31 98.81 

12 62 552 84.04 92.7 63.75 76.96 97.30 69.31 74.11 81.41 76.30 75.65 83.66 97.83 98.32 97.37 

13 22 190 98.95 99.26 97.79 99.47 99.47 98.42 99.42 99.05 99.47 99.32 99.21 99.42 99.42 99.74 

14 130 1164 95.82 98.51 94.60 95.84 99.23 94.28 96.20 96.34 95.52 95.49 96.31 99.80 99.91 99.73 

15 38 342 61.02 93.36 64.01 68.10 98.16 61.26 65.35 60.94 65.58 66.46 65.47 99.27 99.15 98.92 

16 10 85 93.29 96.82 55.06 74.94 86.47 45.30 71.06 79.88 74.94 76.35 76.24 91.53 94.35 89.18 

OA 85.71 96.05 73.14 82.26 97.50 77.01 79.92 85.28 80.81 80.29 86.01 98.72 98.85 98.18 

AA 82.91 92.91 57.98 76.31 88.11 64.17 66.28 81.02 68.19 67.94 80.52 97.17 97.49 96.22 

k 83.69 95.50 69.15 79.74 97.15 73.62 76.97 83.18 77.98 77.42 84.00 98.55 98.69 97.92 

 

 

 

 

 

 

 

 

 

 

 

                 (a)                                      (b)                                       (c)                                       (d)                                    (e) 

 

 

 

 

 

 

 

 

 

 

              (f)                                    (g)                                       (h)                                        (i)                                     (j) 

 

 

 

 

 

 

 

 

 

 

(k)                                      (l)                                         (m)                                   (n)                                     (o) 

Fig. 5. Images of the Indian Pines data set. (a) The SVM (OA=85.71). (b) The SVM-CK (OA=96.05). (c) The LORSAL (OA=73.14). (d) The KLORSAL 
(OA=82.26). (e) The SMLR-SpATV (OA=97.50). (f) The BELM (OA=77.16). (g) The NLELM (OA=79.18). (h) The KELM (OA=85.28). (i) The ASMLBELM 

(OA=80.62). (j) The ASMLNLELM (OA=80.47). (k) The ASMLKELM (OA=85.93). (l) The ASMLBELM-WCFs (OA=98.33). (m) The ASMLNLELM-WCFs 

(OA=98.21). (n) The ASMLKELM-WCFs (OA=98.57) with 10% training samples. (o) The ground reference map. 
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TABLE 2. CLASSIFICATION ACCURACY USING 9% OF THE LABELED SAMPLES PER CLASS FOR THE PAVIA UNIVERSITY DATA SET (THE BEST RESULTS ARE BOLDED). 

 

No. Train Test SVM SVM-
CK 

LORSA
L 

KLORSA
L 

SMLR- 

SpATV 

BELM NLELM KELM ASML 

BELM 

ASML 

NLELM 

ASML 

KELM 

ASMLBELM- 

WCFs 

ASMLNLELM- 

WCFs 

ASMLKELM- 

WCFs 

1 548 6083 87.48 98.74 71.35 85.47 99.65 85.09 83.75 87.07 87.24 87.10 89.62 99.13 97.41 99.33 

2 540 18109 88.95 99.11 76.44 88.64 98.72 92.53 92.08 94.01 93.29 92.86 94.25 99.84 99.59 99.88 

3 392 1707 76.45 97.73 71.04 76.39 97.72 76.33 75.68 84.87 79.65 79.67 84.38 98.90 95.89 99.41 

4 542 2540 97.09 99.24 95.72 96.93 97.69 96.46 97.22 97.87 97.58 97.47 97.66 99.32 99.19 99.62 

5 265 1080 99.50 100.0 99.89 99.61 100.0 97.52 99.48 99.41 99.70 99.70 99.48 99.89 99.77 99.82 

6 532 4497 88.75 99.55 77.21 87.15 99.99 92.70 93.74 95.17 93.94 93.90 94.53 99.99 99.75 100.00 

7 375 955 90.65 99.77 78.34 90.04 99.78 92.50 92.97 93.99 90.19 90.12 92.63 99.92 99.71 99.98 

8 514 3168 88.14 97.26 75.35 82.16 99.25 89.48 90.78 89.77 86.49 87.49 88.59 98.90 96.64 99.18 

9 231 716 99.58 98.58 90.66 88.74 92.11 99.68 99.76 99.83 99.82 99.73 99.92 99.76 99.89 99.82 

OA 89.14 98.93 77.63 87.79 98.88 90.95 90.84 92.82 91.78 91.61 93.10 99.60 98.85 99.71 

AA 90.73 98.89 81.78 88.35 98.32 91.36 91.72 93.55 91.99 92.01 93.45 99.52 98.65 99.67 

KAPPA 85.44 98.54 70.73 83.77 98.48 87.80 87.68 90.29 88.88 88.68 90.66 99.45 98.43 99.60 

 

 
 

 

 

 

 

 

 

 

  

(a)                                     (b)                                        (c)                                     (d)                                     (e)                           

      

 

 

 

 

 

 

 

 

   

                  (f)                                    (g)                                       (h)                                        (i)                                      (j)                  

 

 

 

 

 

 

 

                     

 

 

 

                (k)                                    (l)                                        (m)                                        (n)                                     (o) 

Fig. 6. Images of the Pavia University data set. (a) The SVM (OA=89.14). (b) The SVM-CK (OA=98.93). (c) The LORSAL (OA=77.63). (d) The KLORSAL 

(OA=87.79). (e) The SMLR-SpATV (OA=98.88). (f) The BELM (OA=90.87). (g) The NLELM (OA=90.80). (h) The KELM (OA=92.82). (i) The ASMLBELM 
(OA=92.06). (j) The ASMLNLELM (OA=91.71). (k) The ASMLKELM (OA=93.07). (l) The ASMLBELM-WCFs (OA=99.46). (m) The ASMLNLELM-WCFs 

(OA=99.44). (n) The ASMLKELM-WCFs (OA=99.69) with 9% training samples. (o) The ground reference map. 

 

In Table 3 and Table 4, we also illustrate the execution time 

(including the training time and testing time) of the six 

proposed algorithms and other methods when using 100 

samples per class for training. TR here means the training time, 

and TS means the testing time. It is worth noting that the 

computation time of different methods varies in these two data 
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sets. Though most of the methods take more time for training 

than testing, there are exceptional cases such as SMLR-SpATV. 

Also some methods take more time in Indian Pines dataset, 

while others take more in the Pavia University dataset. That is 

affected by both the volume and the content of the dataset when 

the corresponding classifiers were trained and tested. All in all, 

the proposed approaches are among the medium group for 

training and the fastest groups for testing. 

From Table 3 and Table 4, for the Indian Pines data sets and 

Pavia University data sets, the three proposed spectral 

algorithms, i.e. ASMLBELM, ASMLBELM and ASMLKELM 

need more time consumption than BELM, NLELM and KELM, 

respectively, yet they consume less time than SVM. In Indian 

Pines data set, the proposed ASMLBELM-WCFs and 

ASMLNLELM-WCFs algorithms consume less time than 

SVM-CK and SMLR-SpATV. Although the proposed 

ASMLEKELM-WCFs consume more time than 

SMLR-SpATV, it needs less time than SVM-CK. In Pavia 

University data sets, the three proposed spectral-spatial 

algorithms have less consuming time than SVM-CK and 

SMLR-SpATV. In summary, the proposed six classification 

methods achieve very good performances, especially the three 

spectral-spatial classification algorithms, where the 

computational efficiency is not bad in comparison to its peers 

although it can be further improved. 

 

TABLE 3. CLASSIFICATION ACCURACY (%) UNDER DIFFERENT NUMBERS OF TRAINING SAMPLES FOR THE INDIAN PINES DATA SET (THE BEST RESULTS ARE BOLDED). 

 

TABLE 4. CLASSIFICATION ACCURACY (%) UNDER DIFFERENT NUMBERS OF TRAINING SAMPLES FOR THE PAVIA UNIVERSITY DATA SET (THE BEST RESULTS ARE 

BOLDED). 

Numbe
r 

Index SVM SVM-
CK 

LORSAL KLORSAL   SMLR- 

SpATV 

BELM NLELM KELM ASML 

BELM 

ASML 

NLELM 

ASML 

KELM 

ASMLBELM 

-WCFs 

ASMLNLEL
M 

-WCFs 

ASMLKELM 

-WCFs 

5 OA 56.75 63.85 47.58 56.5 65.87 57.75 61.71 62.86 61.22 65.88 63.61 75.68 71.48 70.52 

AA 69.79 72.74 47.3 67.48 74.82 67.36 72.26 72.87 71.63 73.39 72.80 80.95 76.81 78.19 

k 47.58 55.26 35.93 55.53 57.58 48.56 52.88 53.94 52.58 57.57 54.48 69.39 64.19 62.98 

10 OA 66.31 73.82 50.19 62.49 76.23 57.75 69.41 69.21 72.67 70.92 71.01 83.51 76.43 81.30 

AA 75.47 80.64 50.09 71.65 79.95 64.96 76.51 78.98 78.05 78.08 79.17 86.60 81.53 86.69 

k 57.79 67.06 38.68 53.81 69.70 48.08 61.63 61.68 65.33 63.40 63.64 78.79 70.08 76.04 

Number Index SVM SVM-
CK 

LORSAL KLORSAL SMLR- 
SpATV 

BELM NLELM KELM ASML 

BELM 

ASML 

NLELM 

ASML 

KELM 

ASMLBELM
-WCFs 

ASMLNLEL
M-WCFs 

ASMLKELM 

-WCFs 

5 OA 53.84 57.30 43.53 57.34 69.67 42.22 50.94 54.68 53.60 54.86 54.95 77.96 79.82 72.94 

AA 67.36 70.78 53.28 68.89 81.98 54.75 65.52 66.6 67.73 68.23 67.61 87.09 87.66 81.85 

k 48.54 52.52 37.84 52.59 66.16 36.19 45.62 49.4 48.33 49.57 49.69 75.28 77.30 69.55 

10 OA 62.85 69.94 49.05 65.48 78.60 43.04 58.80 63.45 60.24 61.39 63.60 86.78 86.22 81.73 

AA 74.01 80.45 62.77 75.99 88.22 55.12 72.85 75.63 74.04 74.20 75.38 92.76 92.52 89.13 

k 58.37 66.30 43.7 61.38 76.03 36.92 54.21 59.11 55.57 56.72 59.32 85.08 84.46 79.40 

15 OA 69.77 78.15 55.3 68.04 83.59 42.39 61.64 67.87 62.76 64.67 68.86 89.81 90.06 87.04 

AA 80.10 86.66 67.06 78.49 91.02 52.42 75.13 79.66 76.01 77.83 79.71 94.62 94.71 93.10 

k 66.07 75.38 50.18 64.23 81.48 35.72 57.27 63.99 58.27 60.42 65.09 88.46 88.74 85.34 

20 OA 72.54 80.86 58.83 72.27 86.73 38.71 65.24 71.34 64.05 67.25 71.62 92.00 92.30 88.93 

AA 81.77 88.35 69.62 81.62 93.10 45.46 77.86 81.67 77.09 79.55 81.57 95.77 96.03 94.30 

k 69.06 78.41 53.96 68.85 85.00 31.54 61.06 67.79 59.71 63.22 68.06 90.90 91.25 87.47 

25 OA 74.89 83.52 60.16 72.92 87.82 30.80 66.57 72.04 62.07 68.93 74.21 92.77 93.28 91.82 

AA 83.64 90.12 70.98 82.99 93.81 34.88 79.60 82.86 74.54 81.04 83.78 96.24 96.65 95.35 

k 71.74 81.36 55.4 69.58 86.20 22.64 62.59 68.59 57.35 65.09 70.97 91.78 92.36 90.70 

30 OA 75.10 85.31 61.89 73.93 89.31 16.60 67.15 75.24 44.70 69.87 76.52 94.52 94.12 92.47 

AA 84.16 91.88 71.16 82.95 94.48 14.68 80.20 84.5 52.11 81.52 85.52 97.14 96.96 96.15 

k 71.97 83.35 57.35 70.65 87.85 7.37 63.29 72.05 37.77 66.10 73.51 93.76 93.31 91.43 

35 OA 76.74 87.22 63.7 75.09 89.67 40.01 68.75 75.73 66.67 71.41 76.99 95.41 95.53 93.30 

AA 85.15 92.89 72.89 84.05 95.06 46.22 80.65 85.55 78.74 82.88 85.59 97.46 97.64 96.37 

k 73.74 85.49 59.28 71.92 88.28 32.63 65.05 72.64 62.49 67.82 74.00 94.75 94.89 92.36 

40 OA 78.47 88.9 64.25 75.93 90.74 53.93 70.19 76.58 71.33 72.30 77.67 95.70 96.09 94.57 

AA 86.01 93.75 73.76 83.57 95.20 64.58 81.31 86.09 82.30 82.62 85.96 97.56 97.84 96.97 

k 75.64 87.38 59.91 72.77 89.45 48.34 66.61 73.55 67.67 68.77 74.74 95.08 95.53 93.79 

100 TR(s) 135.9 189.9. 0.29 2.21 2.7 0.13 1.75 6.15 0.82 3.54 12.28 10.9 13.55 73.32 

TS(s) 0.9 1.0 0.01 0.67 29.0 0.1 0.20 6.38 0.02 0.03 0.15 0.2 0.1 0.16 
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15 OA 70.58 80.18 55.61 66.11 80.96 59.98 73.74 72.77 73.59 74.26 72.71 86.77 83.15 85.84 

AA 78.42 84.65 53.82 74.39 87.57 63.74 79.77 82.13 79.29 79.77 80.63 89.67 85.83 90.23 

k 62.98 74.69 44.53 53.93 75.82 50.12 66.72 66.05 66.52 67.30 65.53 82.98 78.25 81.89 

20 OA 72.45 84.2 59.27 70.6 85.20 61.94 75.04 76.75 73.91 76.76 76.95 91.00 85.14 90.40 

AA 79.38 87.53 56.6 76.41 89.22 64.67 80.79 83.38 80.15 81.51 83.59 91.86 87.75 92.67 

k 65.07 79.63 48.3 59.52 81.00 52.36 68.35 70.48 67.04 70.34 70.79 88.24 .80.80 87.52 

25 OA 73.90 89.05 58.33 71.44 88.48 59.67 77.56 78.95 77.56 78.09 79.02 92.33 88.17 92.53 

AA 81.35 90.31 57.49 78 91.34 61.82 82.39 84.92 81.51 82.09 84.56 93.42 89.76 93.68 

k 67.04 85.71 47.56 61.02 85.14 50.07 71.33 73.15 71.24 71.92 73.21 89.98 84.60 90.19 

30 OA 77.70 89.21 60.69 73.64 91.02 61.35 78.87 78.53 78.36 79.90 80.37 93.31 90.23 93.03 

AA 82.45 90.33 60.16 78.87 92.55 61.53 83.58 84.91 82.44 83.60 85.99 93.95 91.28 94.27 

k 71.38 85.87 50.47 68.29 88.26 51.76 72.95 72.72 72.26 74.15 74.94 91.24 87.24 90.86 

35 OA 75.19 90.42 61.71 75.16 91.55 59.01 79.66 81.09 78.44 79.55 81.32 94.67 91.13 94.19 

AA 82.99 91.8 61.86 79.33 93.36 59.09 84.58 86.33 82.79 83.46 86.71 94.95 92.33 95.15 

k 68.69 87.48 51.68 67.11 88.97 49.28 73.97 75.78 72.49 73.73 76.11 92.98 88.41 92.36 

40 OA 77.09 91.9 63.15 76.92 91.68 56.78 80.21 82.53 79.77 80.91 82.65 95.64 92.41 95.54 

AA 83.02 92.47 63.3 80.81 92.40 55.91 84.12 87.32 83.27 84.97 87.59 95.41 92.91 96.02 

k 70.73 89.36 53.3 70.85 89.13 46.73 74.48 77.53 74.01 75.50 77.75 94.23 90.01 94.11 

100 TR(s) 39.30 76.89 0.12 0.88 1.09 0.40 0.84 4.03 2.77 3.27 6.22 32.1 37.28 53.80 

 TS(s) 1.98 2.60 0.04 1.42 92.06 0.95 0.98 1.0 0.31 0.32 0.53 0.31 0.67 0.51 

F. Extension of Experiments 

In this subsection, we further evaluate the performance of the 

proposed three classifiers, in comparison to other spectral- 

spatial methods, including BELM/NLELM/KELM with 

weighted composite features (WCFs) i.e. BELM-WCFs, 

NLELM-WCFs and KELM-WCFs respectively, KELM with 

Gabor (KELM-Gabor) filter [28] and KELM with local binary 

pattern (KELM-LBP) [26]. In addition to the Indian Pines and 

Pavia University datasets, we also take the Salinas dataset for 

extended testing using 1% samples per class for training. 

The parameter settings of these benchmarking approaches 

are given below. For BELM-WCFs, NLELM-WCFs and 

KELM-WCFs, the width/height of the neighborhood window, 

wopt, is all set to 13. For BELM-WCFs, the number of hidden 

neuron, L, is set to 450 for Indian Pines dataset, 1100 for Pavia 

University and Salinas datasets. For NLELM-WCFs, the 

number of hidden neuron is set to 1000 for Indian Pines dataset, 

1100 for Pavia University and Salinas datasets. For 

KELM-WCFs, the parameters C and σ  are automatically 

tuned using three-folds cross validations. For KELM-LBP and 

KELM-Gabor, they are applied on the first 30 principal 

components of the dataset as features. According to [26], the 

parameters r (a circle of radius centered at the center pixel) and 

nr (the numbers of neighboring pixels) of LBP are set to 2 and 

8, respectively, and the parameter bw  (the frequency 

bandwidth) of KELM-Gabor is set to 5. 

For parameter λ = 2𝑎 in the proposed three approaches, we 

set a = −16  for both ASMLBELM-WCFs and 

ASMLNLELM-WCFs, while for ASMLKELM-WCFs we set 

𝑎 = −28  in all the three datasets. The number of hidden 

neurons is set to 1100 for ASMLBELM-WCFs and 

ASMLNLELM-WCFs for the Salinas dataset. Relevant results 

are given in Table 5 for comparison. 

Using 1% samples per class for training, the experimental 

results from our proposed methods and the aforementioned 

benchmarking approaches are compared in Table 5. From 

Table 5, we can see that the proposed three spectral-spatial 

methods produce improved classification accuracy than the 

original ones respectively even combined with WCFs. On the 

other hand, all the proposed three spectral-spatial methods yield 

higher classification accuracy than KELM-Gabor. Furthermore, 

compared with KELM-LBP, the proposed three spectral-spatial 

methods have comparable or slightly better classification 

results in the Salinas dataset, and better classification results in 

Indian Pines and Pavia University datasets. 

In Table 6, we further compare our proposed methods with 

the well-known locality adaptive discriminant analysis (LADA) 

[10] and multitask joint sparse representation and stepwise 

MRF optimization (MSMRF) [16] approaches. The 

classification results of LADA and MSMRF on the Indian 

Pines and Pavia University datasets are directly taken from [10] 

and [16], respectively. The experiment settings are the same as 

[10] and [16]. It should be noting that as stated in [10], when 

comparing with LADA, we randomly sample 5% points as 

training set, and 30% of the remaining data as test set. From 

Table 6, again it clearly shown that the proposed methods 

outperform both the MSMRF and LADA.  

 

TABLE 5. RESULTS OF CLASSIFICATION ACCURACY USING 1% OF THE SAMPLES PER CLASS FOR TRAINING (THE BEST RESULTS ARE BOLDED) 

Datasets Index KELM-Gabor KELM-LBP BELM- 
WCFs 

NLELM- 
WCFs 

KELM- 
WCFs 

ASMLBELM- 
WCFs 

ASMLNLELM- 
WCFs 

ASMLKELM- 
WCFs 

  Indian  

Pines 

OA 71.30 84.45 86.14 87.32 86.18 89.78 90.10 86.64 

AA 71.18 85.67 86.61 87.18 85.10 89.65 90.18 86.04 
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kappa 66.97 82.30 84.19 85.55 84.24 88.36 88.74 84.78 

Pavia 

University 

OA 87.73 92.22 88.62 94.27 96.52 96.42 95.28 96.78 

AA 81.08 85.45 74.61 89.93 93.74 92.24 91.80 94.57 

kappa 83.31 89.61 84.78 92.33 95.37 95.24 93.72 95.72 

Salinas OA 95.65 98.82 98.15 96.69 98.25 98.92 98.16 98.31 

AA 96.48 98.87 98.57 98.32 98.84 99.25 98.93 98.79 

kappa 95.15 99.03 97.94 96.31 98.05 98.79 97.95 98.12 

 

TABLE 6. COMPARISON WITH OTHER METHODS (THE BEST RESULTS ARE BOLDED). 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

In this paper the augmented spare multinomial logistic 

extreme learning machine (ASMLELM) is proposed to 

alleviate the ill-posed problem of ELM, which has resulted in 

three spectral algorithms and three spectral-spatial 

methodologies for the classification of HSI. By combining the 

proposed ASMLELM with the weighted composite features 

(WCFs), the three spectral-spatial methods can effectively 

extract the spatial information for improved classification than 

the conventional ELM. In addition to derive the lower bound of 

the proposed method by a rigorous mathematical proof, 

comprehensive experimental results on three well-known HSI 

dataset have also validated the superior performance of the 

proposed algorithms in terms of improved classification 

accuracy and inherited efficiency from ELM. 

For future work, we will focus on improving the 

classification accuracy of the proposed ASMLELM by 

resorting to the extended multi-attribute profiles [56-57] 

(EMAPs) method. 
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