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picturewise just noticeable difference
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Dietmar Saupea

Abstract—The picturewise just noticeable difference (PJND)
for a given image, compression scheme, and subject is the smallest
distortion level that the subject can perceive when the image
is compressed with this compression scheme. The PJND can
be used to determine the compression level at which a given
proportion of the population does not notice any distortion in
the compressed image. To obtain accurate and diverse results,
the PJND must be determined for a large number of subjects
and images. This is particularly important when experimental
PJND data are used to train deep learning models that can
predict a probability distribution model of the PJND for a new
image. To date, such subjective studies have been carried out in
laboratory environments. However, the number of participants
and images in all existing PJND studies is very small because
of the challenges involved in setting up laboratory experiments.
To address this limitation, we develop a framework to conduct
PJND assessments via crowdsourcing. We use a new technique
based on slider adjustment and a flicker test to determine the
PJND. A pilot study demonstrated that our technique could
decrease the study duration by 50% and double the perceptual
sensitivity compared to the standard binary search approach
that successively compares a test image side by side with its
reference image. Our framework includes a robust and systematic
scheme to ensure the reliability of the crowdsourced results. Using
1,008 source images and distorted versions obtained with JPEG
and BPG compression, we apply our crowdsourcing framework
to build the largest PJND dataset, KonJND-1k (Konstanz just
noticeable difference 1k dataset). A total of 503 workers partic-
ipated in the study, yielding 61,030 PJND samples that resulted
in an average of 42 samples per source image. The KonJND-
1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-
database.html

Index Terms—Just noticeable difference (JND), satisfied user
ratio (SUR), crowdsourcing, flicker test, JPEG, BPG, dataset

I. INTRODUCTION

IMage compression is essential to meet constraints on
transmission bandwidth and storage. With increasing com-

pression levels, an increasing number of users can perceive
distortion in the compressed version of an original image.
The smallest distortion level that a user can perceive when an
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image is compressed is called the picturewise just noticeable
difference (PJND). Since physiological and visual attention
mechanisms vary from one user to another, the PJND varies
according to the user. The satisfied user ratio (SUR) is the
fraction of users who cannot notice any distortion artifact when
comparing an original image with its compressed version for
a given distortion level. In mathematical terms, the PJND is a
random variable, and the SUR is its complementary cumulative
distribution function. Modeling the SUR can help content
providers minimize bandwidth costs while guaranteeing user
satisfaction for any target proportion of their customers.

To determine a statistical model for the PJND, subjective
studies are required. Such studies typically consist of three
steps. First, a number of source images are compressed ac-
cording to a compression scheme at different distortion levels.
Next, a group of subjects are asked to identify the PJND of
these images (see Section II). Finally, a probability distribution
model is fitted to the PJND data.

PJND assessment methods can be categorized according to
the search strategy. Two baseline methods are linear search
and full search. In linear search, the reference image is com-
pared with the sequence of compressed images with increasing
compression levels (decreasing bit rate) until a difference is
noticed. The linear search method is called the “method of
limits” in psychophysics. Unlike the linear search method,
the full search method conducts randomized comparisons with
all compressed images. As these two baseline methods may
include many redundant comparisons, more efficient search
strategies were developed.

• Binary search. The baseline methods can be sped up
with a binary search algorithm that quickly narrows down
the range of the PJND, resulting in fewer subjective
comparisons. The relaxed binary search is a more robust
version with respect to the nondeterministic outcomes
of comparisons. It proceeds by scaling the size of the
bracketing interval by 3/4 instead of 1/2 in each iteration.

• Paired comparisons with scale reconstruction. Subjects
identify the image with higher quality among many sam-
pled two-alternative forced-choice (2AFC) comparisons.
A pair for which one of the images collects 75% of the
votes is considered to have a perceptual distance equal to
1 JND.

PJND assessment methods can be further grouped according
to the way the images are presented for comparison. The
reference and the test image can be displayed sequentially
or simultaneously for a specified duration. In the latter case,
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the two images can be viewed side by side or on top of each
other, alternating at a certain frequency, a method called the
flicker test. For example, the JPEG-XS standard has adopted a
flicker test [1] where the reference image and the compressed
image alternate at a frequency of 8 Hz.

Note that the PJND depends on how images are assessed
and compared. The results depend, for example, on display
size, viewing distance, environmental conditions, and whether
a single- or dual-stimulus method is used. Therefore, the actual
PJND values in a study or application depend on the choice
of technique for their measurement.

Conventional subjective PJND assessment studies, however,
have two major limitations. First, it is very time-consuming to
conduct these studies since they require many comparisons,
even when the more efficient binary search strategy is adopted.
Second, recruiting participants and setting up the experiment
in a laboratory environment is challenging and expensive. In
particular, the cost for personnel and participant remuneration
can become prohibitive for large-scale studies [2]. As a
result, the content of the existing PJND datasets is limited.
This makes them unsuitable for developing computational or
objective PJND methods, in particular deep learning based
approaches [3], [4], [5], which require training on large-scale
data with content diversity to ensure their generalizability.

To address the first limitation, we use a method based on
slider adjustment. This method allows obtaining measurements
that are comparable to those of a binary search while being
significantly faster. To address the second limitation, we rely
on crowdsourcing, as it has been shown that crowd workers
can provide reliable data under an appropriate experimental
setup [6] and proper quality control [7], [8].

The main contributions of this paper are summarized as
follows.

• We use a new PJND assessment method that significantly
differs from traditional visual quality assessment methods
used in previous just noticeable difference (JND) [9],
[10] and PJND [11], [12] subjective tests. Combining
slider-based adjustment with the flicker test, our PJND
assessment method can obtain measurements that are
comparable to those of binary search while being sig-
nificantly faster.

• We propose a novel and robust framework for conducting
subjective PJND assessment studies via crowdsourcing. A
quality control scheme is developed and used to ensure
the reliability of the study. While crowdsourcing has been
used in various subjective visual quality assessment tests
[13], [14], [15], our work is the first study that exploits
it to collect PJND samples. Designing a crowdsourced
experiment for PJND estimation is different from de-
signing it for a traditional visual quality assessment test
because the crowd worker must find a critical level where
distortion in a signal becomes visible rather than rate the
visual quality of one signal independently or with respect
to another signal.

• We create the largest PJND dataset and call it the
Konstanz just noticeable difference 1k dataset (KonJND-
1k). It contains 1,008 source images, together with dis-
torted versions obtained with two compression schemes:

JPEG and BPG. For each image, an average of 42
samples by 503 crowd workers is collected via Amazon
Mechanical Turk (AMT). Compared to existing PJND
datasets (Table I), KonJND-1k is five times larger than
the largest dataset [16] in terms of the number of source
stimuli and ten times larger in terms of the number of
PJND samples. The KonJND-1k dataset is available at
http://database.mmsp-kn.de/konjnd-1k-database.html.

II. RELATED WORK

In this section, we provide an overview of the state-of-the-
art PJND-based image and video datasets (Table I). We also
review other works related to the subjective PJND assessment
method proposed in this paper.

A. PJND-based image datasets

Jin et al. [11] conducted subjective quality assessment tests
to collect PJND samples for JPEG compressed images and
built a dataset called MCL-JCI. The tests involved 150 partic-
ipants and 50 source images with a resolution of 1920×1080.
From each source image, 100 compressed versions were gen-
erated by varying the JPEG quality factor (QF) from 1 (lowest)
to 100 (highest). The image compressed with QF = 100
was used as a reference image. The reference image and a
compressed image were displayed side by side on a 65-inch
TV with a resolution of 3840 × 2160 to determine whether
they are noticeably different. The viewing distance was 2 m
from the center of the monitor. For a given image, PJND
samples were collected from 30 subjects. The standard binary
search was used to speed up the process. The study found that
observers could distinguish only a few distortion levels (five
to seven).

Shen et al. [16] [12] created a PJND-based image quality
dataset using 202 pristine images and their 7,878 encoded
versions using versatile video coding (VVC). All reference
images were cropped to a uniform aspect ratio of 16:9 and then
downsampled to a resolution of 1920× 1080. Each reference
image was compressed by VTM 5.0 intracoding with QP
ranging from 13 to 51. The subjective tests were performed in
a controlled laboratory environment, and a Samsung Q7F 55-
inch smart UHD TV was used as the display device. Subjective
experiments on subjective perception were conducted using
pairwise comparisons between a reference image and its en-
coded versions to assess each JND sample. For each reference
image, 20 PJND samples were assessed by 20 subjects. A
standard binary search was used to seek the PJND.

Fan et al. [21] studied the PJND of symmetrically and
asymmetrically compressed stereoscopic images for JPEG
2000 and H.265 intracoding. The study considered 12 stereo
images and was conducted by 36 subjects for creating the
SIAT-JSSI dataset. Stereo image pairs (one source pair and
one distorted pair) were shown side by side on a 65-inch
3D monitor with a native resolution of 3840 × 2160. The
subjects wore polarized glasses and were seated 1.6 m from
the monitor. The relaxed binary search was used to collect the
PJND sample from a subject. Outlier subjects were detected,
and their PJND samples were removed.
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TABLE I: Comparison of the state-of-the-art JND-based datasets with KonJND-1k.

Datasets MCL-JCI MCL-JCV Huang et al. VideoSet JND-Pano SIAT-JSSI Shen et al. KonJND-1k
Reference [11] [17] [18] [19] [20] [21] [12][16] –
Publication year 2016 2016 2017 2018 2019 2020 2021 2021

Stimuli type image video video video panoramic
image

stereoscopic
image image image

Number of references 50 30 40 220 40 12 202 1,008
Resolution of references 1920×1080 1920×1080 1920× 1080 1920×1080 5000×2500 1920× 1080 1920×1080 640× 480

Distortion type JPEG H.264/AVC H.265/HEVC H.264/AVC JPEG JPEG 2000 or
H.265/HEVC

H.266/VVC
VTM 5.0 JPEG or BPG

Distortion levels per each
stimulus 100 51 51 51 100 300 or 51 39 100 or 51

Total number of stimuli 5,050 1,560 2,080 45,760 4,040 3,510 8,080 77,112
Test environment lab lab lab lab lab lab lab crowdsourcing
Subjective assessment
method Customizeda Customizedb Customizeda Customizedb Customizedc Customizeda Customizeda Customizedd

Total number of JND
samplese 1,500 1,500 1,200 6,600 970 442 4,040 41,866

Average JND samples per
reference 30 50 30 30 24 36 20 42

a Observers were asked to compare two stimuli displayed side by side and determine whether the differences between them are noticeable.
b Observers were asked to determine whether the differences between the two video clips displayed one after another are noticeable.
c Subjects wore a head-mounted display (HMD) device and were free to control the field of view to compare two panoramic images and determine whether they could see a noticeable difference
or not.
d A flickering image was displayed, and observers were asked to determine if they could see a flicker effect.
e For comparison purposes, here we only consider the samples of the first JND level.

Liu et al. [20] created a PJND dataset called JND-Pano for
panoramic images viewed using a head-mounted display. The
study included 40 source images with a resolution of 5000×
2500. JPEG was used to compress each source image with
100 quality factors. The reference image and a compressed
image were displayed simultaneously in random order. For
each source image, the test included at least 25 observers. A
standard binary search was used to identify the PJND. Outliers
were removed based on the range and standard deviation.

B. PJND-based video datasets
Wang et al. [17] considered 30 source video sequences with

a resolution of 1920 × 1080, a duration of 5 s, and different
frame rates. They compressed the video sequences by varying
the quantization parameter (QP) of the H.264/AVC video coder
from 1 (smallest distortion) to 51 (largest distortion). More
than 150 people participated in the study. The viewing distance
and display monitor were as in [11]. The video sequence
corresponding to QP equal to 1 was used as a reference. The
reference and a distorted version were displayed one after
another. JND samples were collected from 50 subjects. The
standard binary search was used to speed up the process. The
resulting PJND dataset was called MCL-JCV.

The study of Lin et al. in [22] involved five source images
and five video sequences with a resolution of 1920×1080. The
images were encoded with JPEG, while the video sequences
were encoded with H.264 and H.265. The viewing distance
and display monitor were as in [11]. The standard binary
search was used to speed up the process.

Wang et al. [19] built a large-scale JND video dataset called
VideoSet for 220 source videos with durations of five seconds
and in four resolutions (1080p, 720p, 540p, 360p). Each source
video was compressed with H.264 using QP values from 1
to 51. The viewing distance was set according to the ITU-R
BT.2022 recommendation. The source video and a distorted
version were displayed one after another. A relaxed binary
search was used to collect the PJND sample from each subject.

At least 30 observers were involved in the PJND estimation of
each video sequence. Unreliable subjects and outlying samples
were removed.

Huang et al. [18] generated a PJND-based dataset of
encoded videos with H.265. The dataset contains 40 high-
definition (HD) reference video clips with a frame rate of
30 fps and a duration of five seconds. All reference videos
were encoded using the HM 16.0 reference software, with
QP values ranging from 0 to 51. To assess the first PJND
threshold for each reference video and its 51 encoded versions,
a subjective test was conducted with 30 subjects using the
pairwise comparison method. The reference video and an
encoded version were played side by side time-synchronously
on Samsung UN65 F9000 65-inch 4K UHD TV display in
a laboratory environment. The standard binary search was
used to select the displayed stimuli. Outlying samples were
excluded with the three-sigma rule.

C. Other relevant work
Wang et al. [23] conducted a subjective experiment to evalu-

ate the just perceptible differences of four important attributes
that affect laser projection television: white level, black level,
color saturation, and contour rendering. Nine source images
with a resolution of 434 × 434 were used as reference. A
subjective test was conducted to evaluate the first four JNDs
of the above attributes by a two-alternative forced-choice
method with a one-on-two staircase method. A 100-inch laser
projection digital light processing (DLP) television using blue
and red laser diodes with 4K resolution (3840×2160) was used
for the experiment. The maximum and minimum luminance
values were 275.93 cd/m2 and 0.17 cd/m2, respectively. The
experiment was conducted in a dark room, and the TV was
set to standard mode. The viewing distance was set to 1.97 m.

Hoffman and Stolitzka [24] proposed tests to determine
whether a compressed image differs from a reference image by
at most one JND. The testing environment was implemented
according to ISO 3664. The monitor used had a 24.3-inch
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diagonal and a resolution of 1920 × 1200. A reference (un-
compressed) image and an image consisting of the alternating
reference image and a distorted version were presented side by
side. The observer had to identify which of the two images was
nonflickering. A dataset of approximately 250,000 responses
collected from 35 observers for 18 images was created. The
flicker method proposed in this paper was found to signifi-
cantly increase the visibility of image artifacts and adopted
as a standard [1], suitable for testing images compressed and
reconstructed in a visually lossless manner.

Zhang et al. [25] collected a large-scale dataset of perceptual
judgments, which included asking subjects whether one refer-
ence patch and one distorted patch are identical. They used 20
types of distortions (e.g., photometric distortions, noise, blur-
ring, and compression artifacts) and sequentially composed
pairs of distortions. The two patches had a resolution of 64×64
and were shown for 1 s each, with a 250 ms gap in between.

Redi et al. [26] compared the performance of absolute
category rating obtained by the single stimulus (SS) method
with that of the quality ruler (QR) method. The QR consists
of a series of reference images varying in a single attribute
(sharpness), with known and fixed quality differences between
the samples, given by a certain number of JND units [27]. For
the QR method, the quality of an input image is compared to
the image qualities on the ruler. The study showed that QR
scores have narrower confidence intervals than SS scores.

Visual analog scales, similar to sliders, for assessing per-
ceived quantities, such as length and area, or sensory stimuli,
such as loudness or taste, have been studied in psychology
and have been shown to be reliable measurement tools [28].

III. PILOT STUDY FOR PJND ASSESSMENT METHODS

In our pilot study [29], we introduced and evaluated two
new adjustment methods for subjective PJND assessment,
where a subject interactively selects the distortion level at the
PJND location by a slider or keystrokes. For both methods, a
reference image and its distorted version are compared using
the flicker test in which the displayed images alternate at
a frequency of 8 Hz, as in the JPEG-XS standard [1]. The
images were selected from the MCL-JCI dataset [11]. More
than 14 participants took part in the study. Experimental results
showed that the PJND samples obtained with our adaptation
methods are comparable to those obtained with the relaxed
binary search method while being 1.5 to 2 times faster.
Moreover, the flicker test provided approximately twice the
sensitivity of a side-by-side comparison.

Based on the results of the pilot study, we used the slider-
based adjustment method with the flicker test for conducting
the first JND-based crowdsourced subjective study.

IV. IMAGE DATASET CREATION

We collected source images from Pixabay.com, a website for
sharing royalty-free images, videos, and music. All the images
on the website are released under the Pixabay license, which
grants the right to edit and redistribute them. Furthermore, the
perceptual quality of the uploaded images is generally very
good since up to 20 independent Pixabay users cast their votes

for accepting or declining an uploaded image based on its
perceptual quality. The precise mechanism for deciding which
images are considered high quality is not made public. Images
on Pixabay are labeled by their authors in categories such as
“photo” and “illustration”. Thus, we started from the collection
of 1,244,635 “photos” and ignored all images that were labeled
differently.

Despite the perceptual quality screening provided by Pix-
abay, not all images are of high quality. For this reason,
we selected a subset Ssampling of 10,000 images that have
characteristics indicative of high quality and are larger than
1024 pixels in both width and height, having an aspect ratio
(width by height) between 1.31 and 1.78. In a second step,
this subset was reduced to the 1,120 images of our dataset.

Images on Pixabay are annotated by the community, with
each assigned a number of favorites, likes, and downloads.
While these measures are to some extent correlated with the
quality of an image, they are also strongly correlated with how
often an image has been viewed. For instance, if an image is
viewed more frequently, it is likely to receive more favorites
and likes and to be downloaded more often.

Schwarz et al. [30] proposed normalizing the favorites F (I)
received by an image I , relating them to the number of views
V (I) by considering log(F (I))/ log(V (I)). While the ratio
accounts for the increase in favorites relative to the number
of views, the logarithm accounts for the typical exponential-
like initial increase in the number of views. We modified the
formula slightly to

Fnorm(I) =
ln(F (I) + e)

ln(V (I) + e)
∈ (0, 1],

where e is Euler’s constant. The unit interval range of Fnorm
is easier to work with. Similarly, we computed normalized
downloads Dnorm and likes Lnorm.

A low value for the normalized indicators means that the
image has received a low fraction of likes, favorites, and
downloads. We considered only images that have at least
100 views so that the normalized indicators are statistically
meaningful. Low normalized values of the indicators suggest
that the image is not appreciated from the corresponding three
points of view. Thus, we defined a joint score S to rank the
images. First, we ranked the images by each of the normalized
indicators and mapped the rank-order indices to [0, 1]. We
denote the normalized ranking function of an image I for
the popularity measures D,L,F by RD(I),RL(I),RF (I),
respectively. The combined ranking score, defined as

S(I) = (1−RD(I)) · (1−RL(I)) · (1−RF (I)),

assigns a high score to images that do not have any low
normalized indicator for any of the three attributes. We took
the top 10,000 images ranked by decreasing values of S(I)
from the larger sampling subset Ssampling.

These images had aspect ratios (width by height) between
1.31 and 1.78 but were then scaled and cropped to a size of
640 × 480 pixels as follows. If the aspect ratio is smaller than
640 × 480, we scaled the image to a width of 640; otherwise,
we scaled the image to a height of 480. Finally, we center-
cropped the scaled image to a size of 640 × 480. This choice
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Fig. 1: Samples of source images in the KonJND-1k dataset.

of image resolution was motivated by the layout of the user
interface in our experiments and the minimum required screen
resolution; see Subsection VI-C.

In the second step, to ensure that the selected images had
enough content diversity, we extracted their 2048-dimensional
deep features from a ResNet50 model [31] pretrained on Im-
ageNet [32]. We next applied k-means clustering on the deep
features to partition the 10,000 images into 1,120 clusters.
One image was randomly selected from each cluster as a
representative. We randomly split these 1,120 selected images
into a study set and a test set. The study set contained 1,008
images for subjective PJND assessment. The test set contained
112 images for quality control (see Section VI-D). We applied
two image compression methods, namely, JPEG and BPG1,
for both sets, where half of the images in each set were
compressed with JPEG, while the second half was compressed
with BPG.

As shown in Fig. 1, the content of the sampled images
is diverse, including categories of people, animals, plants,
objects, buildings, and transportation.

V. PJND ASSESSMENT METHOD

For each reference image I , we obtained a sequence Id, d =
0, 1, . . . , 100 where I0 = I and Id is the compressed version
at distortion level d. We used two compression types, namely
JPEG and BPG. For JPEG compression, we have distortion
levels d = 101 − QF, d = 1, . . . , 100, where QF denotes
the JPEG quality factor. For BPG compression, the relation
between distortion level d and quantization parameter QP
is QP = ⌈d/2⌉, d = 1, . . . , 100. Thus, in both cases, as

1https://bellard.org/bpg/

the distortion level d increases from 0 to 100, the bit rate
decreases. For each reference image I , our objective is to
search for its PJND among the images Id.

We used a flicker test, with the reference and the compressed
test image being displayed successively at a frequency of
8 Hz. Using this display scheme, we implemented a subjective
assessment method for the PJND.

The PJND assessment method is a slider-based adjustment
method, as shown in the left part of Fig. 2. The handle of a
slider controls the distortion level of a study image. Subjects
could either drag the slider or press the left/right arrow keys to
move the slider to the position corresponding to the smallest
distortion level with noticeable flicker.

VI. CROWDSOURCED SUBJECTIVE PJND ASSESSMENT

The size of the subjective PJND assessment study for 1,008
images suggests an implementation in a crowdsourcing setting
rather than in the laboratory. For this purpose, we chose
Amazon Mechanical Turk (AMT). On the AMT platform,
requesters, who are companies, organizations, or persons,
create and submit human intelligence tasks (HITs) for workers.
Workers can work on an HIT, submit the results of their work
for it, and collect a reward for completion. Requesters can
specify the number of assignments for an HIT, i.e., how many
workers can submit completed work for the HIT. Each worker
can submit only one assignment for each HIT.

Approval of all ethical and experimental procedures and
protocols was granted by the Institutional Review Board of
the University of Konstanz.

In the following, we explain how we conducted the subjec-
tive PJND assessment study in detail.
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Fig. 2: Screenshot of the user interface for the PJND subjective study. Workers drag the slider or press left/right arrow keys to
move the slider to the position of distortion level, where they start perceiving the flicker. When they finish a PJND assessment,
they click ‘Next Image’ for the next assessment. Additional information, such as the progress bar and instructions for the
experiment, is provided as well.

A. Overview
Fig. 3 shows the workflow of the crowdsourced subjective

PJND assessment study. The study contains two types of HITs,
a qualification HIT and multiple study HITs. The qualification
HIT is used to find and train qualified workers; only qualified
workers are allowed to participate in the study HITs.

B. Instructions
For both types of HITs, a page with instructions was

presented to the workers. The page contains four sections. In
the first section, a flicker test image is shown and the critical
point, i.e., the earliest (left-most) slider position where an
observer starts perceiving the flicker, is introduced. Finally,
the purpose of the study, namely finding the critical point
by moving the slider, is explained. The detailed steps of
the study and the keyboard shortcuts are explained in the
second and third sections, respectively. In the final section,
a video of an example of how to conduct the study is
displayed. Furthermore, a few examples of ‘no flickering’,
‘just noticeable’, and ‘severe flickering’ are presented.

C. Qualification HIT
Workers who wanted to join our study had to pass the

qualification HIT beforehand. In the following, we describe
each step in detail.

Step 1 Eligibility check: To select experienced workers,
we required that participants had at least 200 HITs approved
by previous requesters and that their approval rate of com-
pleted HITs was greater than or equal to 99%. These two
requirements were checked by AMT. Workers were able to
browse and accept our submitted HITs only if they met the
requirements.

In addition, participants were not allowed to continue with
the experiment unless the configuration of their device satisfied
the following requirements:

• Desktops and laptops are allowed, while mobile phones
and tablets are not.

• Use of a Chromium-based browser such as Google
Chrome.

• The display screen must have a minimum logical resolu-
tion of 1366× 768.

If any of the requirements was not met, a warning message
was displayed, and the experiment was stopped.

Step 2 Calibration: One of the most challenging problems
in conducting a PJND study on AMT is that the screens used
by workers have different sizes and resolutions. As a result, an
image with a specific resolution may have a different physical
size when displayed on these screens. Therefore, to align
the viewing conditions, we displayed all images at the same
physical size and fixed the viewing distance for all workers.

To display the entire graphical user interface (GUI) of
our subjective experiment, workers were required to have a
minimum display size of 13.3 inches.

After imposing the minimum resolution constraint in Step 1,
we checked the display size of workers’ screens by calibration.

Workers were asked to prepare a credit card with a size of
85.60mm × 53.98mm or a card of the same size and adjust
the size of a frame on the screen until the frame fits the card
size (Fig. 4). From the size in pixels of the frame matching
the credit card, we calculated the logical pixel density (LPD)
of the display in pixels per inch (PPI). From the known screen
resolution in pixels, we then estimated the physical size of the
display. Workers with a screen size less than 13.3 inches were
not allowed to continue.

Displaying an image with a resolution of 640 × 480 on
a screen with a logical resolution of 1366 × 768 and a
physical size of 13.3 inches requires a physical dimension of
13.797 cm × 10.347 cm. We displayed our test images on all
workers’ screens in this physical size.
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Fig. 3: Workflow of the crowdsourced subjective PJND assessment study. To be eligible for a study HIT, a worker must pass
a qualification HIT. Once a study HIT is finished, AMT shows the next one automatically. A qualified worker may participate
in up to 30 study HITs.

Fig. 4: Screenshot of the user interface for calibration. Workers
adjust the frame to match the size of a credit card by using
up and down arrow keys on their keyboard or clicking the
‘Increasing’ and ‘Decreasing’ buttons, followed by clicking
the ‘fitted’ button to submit calibration results.

The calibration record was stored on the local storage of the
browsers of the workers. Workers were not required to repeat
the calibration for the following study HITs, provided they
used the same computer and display device. Their browsers
were blocked whenever they changed the browser zoom level
after calibration. In this case, workers had to switch back to
the original zoom level or redo the calibration.

After the calibration was finished, we asked workers to
adjust their viewing distance to 30 cm. The suggested viewing
distance was derived according to trigonometric calculation

[33], [34] and ISO standard [35].
Step 3 Training session: In our study, we defined a ques-

tion as asking a worker to identify the PJND of a given image
w.r.t. one of the two compression schemes, JPEG or BPG. We
provided workers with 10 training questions to guide them
on how to use the interface. These 10 training images were
selected manually from the downloaded subset Ssampling.

For the training, five images were compressed with JPEG,
and the other five were compressed with BPG. The order of
the questions was randomized at the beginning of each training
session. Workers were allowed to work on a question only
after all required compressed images had been loaded. While
loading images, the slider and button were disabled, and a
spinner icon was displayed. While workers were answering
a question, the required images of the next questions were
already loaded in the background.

The acceptable ranges of the answers for the training
questions were determined by an internal study, where 10
subjects were invited to conduct the same study. The range
was set to the interval centered at the rounded mean of 10
samples and with the width of two standard deviations.

The user interface to conduct the PJND subjective study is
shown in Fig. 2. On the right part of the interface, workers
are informed of their current session, and a study time is
recommended to them (30 s). Workers are allowed to read the
instructions whenever they want. A progress bar is presented
to visualize the progression of the session. After conducting
a PJND assessment in the left part of the interface, workers
could click the ‘Next Image’ button. If the assessment result
is correct, they are allowed to work on the next question.
Otherwise, they are informed that their answer is not correct
and a range for the slider position is suggested. Workers are
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Fig. 5: Example of ground truth generation of quiz questions.
The images in the training session are distorted authentically,
i.e., the slider position is equal to the distortion level. In
contrast, images in the quiz session are distorted nonlinearly
such that the distortion level increases from 0 to 100 in a
small interval of slider positions. This allows us to place a
small ground truth range at arbitrary slider positions. In the
example of the figure, the ground truth range was set to [26, 32]
(red triangles), where the image shown at slider position 29
corresponds to distortion level 50.

allowed to go to the next question only if they have moved
the slider into the correct range.

Step 4 Quiz session: Workers were allowed to take part in a
study HIT only if they had passed a quiz. There were 10 quiz
questions, where images in five questions were compressed
with JPEG, and the images for the other five questions were
compressed with BPG. Although the content of the quiz
images was different from that of the training images and test
images, the steps for answering a quiz question were the same
as those for answering a training question, except that no range
of valid distortion levels was revealed to the workers.

To make the quiz questions objective and fair, unlike train-
ing images where the slider position corresponds to the com-
pression levels, images in the quiz session were compressed
nonlinearly such that the distortion level increases from 0 to
100 over an arbitrary range of only approximately 20 consec-
utive slider positions. This was achieved by letting a sigmoid
function of the slider position determine the corresponding
distortion levels. The ground truth range was set to those slider
positions with a distance of at most 3 to the location whose
distortion level was equal to 50. Fig. 5 shows an example of
how to generate the ground truth range of a quiz question.

Once a worker finished the quiz, a script on our server
downloaded the result and calculated the quiz accuracy im-
mediately. Workers with an accuracy greater than or equal to
a given threshold (70% in our experiment) were assigned an
AMT qualification label and sent an email with a link to the
study HITs. Workers with a lower accuracy received an email
to notify them about their failure and were not allowed to take
the qualification HIT a second time.

D. Study HITs

Workers who passed the quiz in the qualification HIT were
allowed to perform the study HITs. The details are as follows.

Step 1 Eligibility check: Each worker was required to
meet the eligibility requirements as explained in Step 1 of
Subsection VI-C. In addition, a qualification label issued for
the id of the worker was necessary. A new worker who did not
have a qualification label but accessed a study HIT would be
notified by AMT to first participate in the qualification HIT.

Step 2 Calibration: The local browser storage was checked
to determine whether the workers had already performed the
calibration. If there was such a record, no action was required;
otherwise, they had to perform the calibration again, as in the
qualification HIT.

Step 3 Main study: Each study HIT had 10 images to
be assessed. Nine of them were from the study set, and
one was from the test set. For this purpose, we randomly
partitioned the 1,008 images of the study set into nine subsets
of 112 images each. Together with the set of 112 test images,
we thus had 10 equally sized sets. Each HIT was randomly
assembled by sampling one image from each of the subsets
without replacement. In this way, we obtained 112 randomly
assembled study HITs. Whenever a worker processed an
assignment for a study HIT, the order of its 10 images was
randomized to avoid any bias due to a fixed sequence in all
assignments for an HIT. Each qualified worker was allowed
to complete at most 30 study HITs.

The cumulative accuracy of a worker on test questions was
calculated by running a script on a server. Workers with an
accuracy below 70% after 10 HITs were disqualified and
therefore were not allowed to perform more HITs. All data
generated by disqualified workers was discarded without re-
placement. Thus, the ground truth generation of test questions
was the same as that for quiz questions.

VII. RESULTS

A. Setup

We recruited workers by posting 600 assignments of the
qualification HIT. For each study HIT, we collected 50 as-
signments, i.e., 50 PJND samples per image. In total, 61,030
samples were collected, where the number of samples on the
quiz, test, and study images was 5,030, 5,600, and 50,400,
respectively.

For each question, i.e., for each PJND assessment, we
recorded the following information for further analysis:

• Slider duration: the time difference between the first and
the last slider interaction.

• Number of slider direction changes, i.e., the number of
times a slider changed its moving direction.

B. Worker analysis

Of the 503 workers who participated in the qualification
HIT, 371 (≈ 74%) passed the quiz. Fig. 6 compares the
cumulative distribution function (CDF) of the slider duration
and the number of slider direction changes between failed and
passed assignments in the qualification HIT. It can be observed
that workers who failed the qualification HIT spent less time
on it and moved the slider less frequently.

Of the 371 workers who passed the quiz, 317 continued
to submit at least one assignment of a study HIT. Fig. 7
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Fig. 7: Histogram of submitted study HITs by workers. In
total, 142 workers out of 317 submitted 25 or more HITs.

shows the histogram of submitted study HITs. Although the
maximum number of assignments was set to 30 per participant,
15 workers were able to complete a few more due to the
communication delay between our lab server and AMT.

Info Category Number

Resolution

1366×768 116
1440×900 22
1536×864 50
1600×900 17
1920×1080 84
Other×Other 19

OS
Linux 15
Mac 29
Windows 274

OS language

English 249
Portuguese 48
Spanish 6
Italian 6
All others 9

TABLE II: Worker statistics for the study HITs.

Table II presents statistics of the workers who participated
in the study HITs. Most of them used screens with resolutions
of 1366×768 and 1920×1080. Windows was the most often
used OS, and the main language was English.

C. Outlier removal

The qualification HIT cannot ensure that all unreliable
workers were disallowed for the study HITs. For example, ran-
dom clickers might have passed the quiz by chance. Moreover,
some of the reliable workers who passed the quiz might have

occasionally paid insufficient attention in the following study
HITs during their work. Therefore, we detected and removed
outliers on three levels as follows.

Worker level: We assumed that workers who completed at
least 10 HITs and whose accuracy on the test questions was
less than 70% did not pay full attention to the study HITs.
There were 10 such workers. Hence, we removed all the 137
assignments that they had submitted. This reduced the number
of samples from 50,400 to 49,167.

HIT level: Despite the test questions to control the quality
of the experiment, the data might still be noisy due to various
reasons. For instance, workers might submit unreliable results
after working a very long time without a break. In this case, we
should remove these results. Therefore, we propose a robust
HIT-level outlier removal method based on worker consensus.

Algorithm 1: HIT-level outlier removal
Input:
H: set of all study HITs;
A(H): set of assignments for study HIT H ∈ H
(exclude test questions);
0 < p < 1: target fraction of retained assignments;
nmax: maximum number of iterations;
r, s: parameters to be chosen;

1 A ←−
⋃

H∈HA(H);
2 A′ ←− A;
3 n←− 0;
4 converged ←− false;
5 while not converged and n < nmax do
6 foreach HIT H ∈ H do
7 foreach question in H do
8 Calculate the means and standard

deviations of question samples in
A(H) ∩ A′;

9 Compute z-scores of question samples for
all assignments A(H) using the
estimated mean and standard deviation;

10 foreach assignment A ∈ A(H) do
11 P ← 1/9 of the sum of all z-scored

samples that are positive;
12 Q← 1/9 of the absolute sum of all

z-scored samples that are negative;
13 Z(A)← max(0, rP + sQ− rs) ·

max(0, sP + rQ− rs);

14 Sort all assignments A ∈ A according to Z(A) in
ascending order;

15 A′′ ←− leading subset of A of size p · |A|;
16 if A′′ = A′ then
17 converged ←− true;

18 A′ ←− A′′;
19 n←− n+ 1;

20 return A′

In an HIT, an assignment can be regarded as an outlier
if the answers for the corresponding nine study questions
substantially deviate from those of the other assignments of
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the same HIT. The criterion to accept or reject an assignment
is based on the outlier detection given in the ITU-R Recom-
mendation BT.500 [36] for quality assessment methods using
the double stimulus presentation and a continuous quality
scale. Therein, a set of quality ratings of a study participant
are deemed unreliable if two conditions are met: the ratings
have large deviations from the mean of the ratings of all
participants, and the ratings are inconsistently above and below
the corresponding means. The latter condition is intended to
ensure that workers with a consistent bias are not classified
as outliers. For example, participants with “golden eyes” will
detect minute distortions, unlike less critical viewers, and
consistently give lower quality ratings, which, however, should
not be regarded as outliers.

We propose to make outlier detection robust in the sense
that the statistics used to identify outliers do not suffer from
the influence of the outliers themselves.

To this end, we apply an iterative procedure structured
similarly to the method of [37] for k-means clustering with
integrated outlier removal. In previous work, we successfully
used such an approach for outlier detection in full-reference
image quality assessment using triplet comparisons [38].
Given a target fraction of outlier assignments, for example,
10%, the remaining majority of assignments is used to com-
pute the statistics, namely, the mean and standard deviation
for the set of PJND assessments of each study question.
These statistics are then used to update the target fractions
of outlier assignments and their respective complements, the
set of acceptable assignments . This procedure of extracting
statistics from the majority and updating the set of outliers is
repeated until convergence or a maximal number of iterations
is reached.

To compute the statistics in the currently considered set
of acceptable assignments (majority), we first calculate the
z-score of the assessed PJND samples for each of the nine
study images. Then, we apply the same z-score mapping to
the remaining assignments in the current set of outliers. For
the nine PJNDs collected in any given assignment, we consider
their mean absolute error w.r.t. the consensus of the majority,
which by construction is equal to 1/9-th of the sum of the
absolute values of the z-scores. The mean absolute error is split
into a sum P + Q, where P corresponds to the contribution
of the z-scored samples that are positive, and Q corresponds
to those that are negative.

To jointly judge the severity of the overall mean absolute
error and the degree by which the signs of the errors differ
for the nine judgments in an assignment, we use the product

Z(P ,Q) = max(0, rP + sQ− rs) ·max(0, sP + rQ− rs),

where r ≤ s are two parameters. The target percentage of
assignments with the greatest Z-values are marked as outliers,
and the remaining assignments are marked as acceptable. See
Algorithm 1 for details.

The parameters r, s determine the tradeoff between the two
involved criteria. For example, for r = s = 1, only the overall
mean absolute error P+Q determines the outliers, and for r =
−1, s = 1, the largest Z-values are obtained on the diagonal
P = Q independently of the overall mean absolute error.
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Fig. 8: Example for HIT-level outlier detection. The figure
shows the (P ,Q)-pairs of 5,459 assignments of 112 HITs.
The curves are contour lines of the function Z(P ,Q) for the
indicated Z-values. The 546 HIT assignments with Z-values
larger than 0.1216 are regarded as outliers (red crosses).
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Fig. 9: Setting the time threshold at the question level. The
red dot corresponds to the test question used to determine the
threshold.

The contour plot in Fig. 8 shows that the Z-value for an
assignment with mean absolute error P + Q is positive if
and only if the point (P ,Q) lies above the two lines with
intercepts r and s on the P - and Q-axes, respectively. The
contour lines of Z(P ,Q) are hyperbolas, and we decrease the
Z-level of a contour line until the desired target fraction of
assignments has its points (P ,Q) above the contour line. In
this work, the parameters r and s were empirically set to 0.1
and 1.0, respectively. As a result, 10% of the assignments were
removed in all study HITs, which reduced the total number of
PJND samples to 44,253.

Question level: It is infeasible to complete a question
reliably in a very short time. Therefore, we removed samples
for which the slider duration was less than a threshold,
determined as follows. Given the results of 5,600 test questions
in all study HITs, we sorted them according to slider duration
in ascending order. We then calculated the cumulative accuracy
w.r.t. the ground truth (Fig. 9). The figure indicates that when
workers spent more time on the test questions, they were more
likely to provide correct answers. We set the time threshold as
the minimum time T such that the accuracy on the set of all
test questions whose answers required a slider time of at least
T was at least 70%. This corresponds to locating the red dot
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Fig. 10: Scatter plot of the standard deviation vs the median of PJND samples per reference image. The marginal density plots
are shown on the sides. The point colors represent the local estimated density (kernel-based density). Dark colors stand for
low-density regions, and bright indicate high-density regions.
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Fig. 11: Scatter plot of the standard deviation vs. the median
of PJND samples per reference image. Similar to Fig. 10, the
marginal density plots are shown on the sides and point color
represents local density.

at the 70% accuracy level in the cumulative accuracy plot in
the figure. The result was T = 2.45 s. This step reduced the
number of samples to 42,162.

In addition, we removed extreme values, namely, samples
whose chosen distortion levels were less than or equal to 5
and greater than or equal to 95. With this step, the number of
samples decreased to 41,974 (20,810 for JPEG and 21,164 for
BPG).

D. Comparison with the state-of-the-art JND-based image
datasets

We compare KonJND-1k with three existing JND-based
image datasets: MCL-JCI, JND-Pano, and Shen et al. [16]. We
excluded SIAT-JSSI because it has only 12 reference images.

For a first visual overview, we present the basic statistics,
which are given by the distributions of the medians of these
PJND samples and their standard deviations in Figures 10
and 11 alongside the scatter plots of median PJND versus
standard deviation. Each dot in the plots corresponds to a
single reference image being subject to a particular codec
(JPEG, BPG, or VVC) in each study. For a fair comparison, we
must differentiate between codecs that have different numbers

of distortion levels (quality factor or quantization parameter).
Therefore, we compare KonJND-1k (JPEG) to JND-Pano and
MCL-JCI for JPEG, and KonJND-1k (BPG) to Shen et al.
(VVC).

The main purpose of the JND-based image datasets is to
provide training data for machine learning to predict the JND
for any given source image and a particular codec. For this
purpose, two aspects stand out as most relevant for the utility
of such datasets, namely, the size or diversity of the dataset and
the precision of the JND values. The precision of the datasets
can be measured with the interrater reliability (IRR), which
is the degree of agreement among the independent observers
of each stimulus sequence when assessing the JND. Better
controlled lab studies generally give better IRR scores.

1) Size and precision: The number of source images for
JPEG compression used in KonJND-1k, MCI-JCI, and JND-
Pano is 504, 50, and 40, respectively. For KonJND-1k, we
ensured diversity by proper sampling of content-related deep
features from a ResNet50 model, as described in Sec. IV. For
the other codec (BPG), KonJND-1k also provides 504 stimuli,
and Shen et al. provide 202 sources for VVC. Overall, we find
that our dataset KonJND-1k is far superior in terms of size and
diversity compared to the others.

To visualize and compare the precision of the median
PJNDs in the comparison datasets, we plotted the violin graphs
of the 95% confidence interval (CI) of the median of the
PJNDs in Fig. 12. In this figure, the gray area indicates the
distribution of CI values. The white dot in the center of the
graph represents the median, the thick black band above the
median is the third quartile area, and the thick black band
below the median is the first quartile.

As seen in the left plot of Fig. 12, the KonJND-1k (JPEG)
dataset has a lower CI distribution than the other two datasets
with JPEG compression. This could be because we used the
flicker test method to assess the PJND for the KonJND-
1k dataset. The flicker test results in a higher intersubject
agreement and thus yields a lower CI. The right part of the
figure indicates that KonJND-1k (BPG) has a much lower
CI of the median values than the dataset of Shen et al.
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TABLE III: Ranking of the distribution models according to the negative log-likelihood of MLE and the A-D test for the 1,008
source images of the KonJND-1k dataset. The models are from MATLAB (R2019b) and described in [39], [40]: Half-normal
(1), Rayleigh (2), Exponential (3), Generalized Extreme Value (4), Generalized Pareto (5), Stable (6), tLocation Scale (7),
Birnbaum-Saunders (8), Extreme Value (9), Gamma (10), Logistic (11), Loglogistic (12), LogNormal (13), Nakagami (14),
Normal (15), Poisson (16), Rician (17), and Weibull (18). The results for the two other models available in MATLAB, the Beta
distribution and Burr distribution, are not included because fitting the PJND samples with these distributions was not possible.

KonJND-1k Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

JPEG log-likelihood 16 15 17 1 4 3 7 14 5 11 10 12 13 9 8 18 6 2
A-D reject 461 370 494 1 380 1 11 89 8 40 1 4 64 23 13 409 16 9
A-D rank 17 14 18 1 15 1 7 13 5 11 1 4 12 10 8 16 9 6

BPG log-likelihood 17 16 18 1 15 2 3 13 12 9 6 10 11 7 4 14 5 8
A-D reject 504 504 504 2 504 0 1 25 15 18 0 0 23 12 7 227 7 6
A-D rank 15 15 15 5 15 1 4 13 10 11 1 1 12 9 7 14 7 6

Overall log-likelihood 17 15 18 1 14 2 4 13 7 10 9 11 12 8 6 16 5 3
A-D reject 965 874 998 3 884 1 12 114 23 58 1 4 87 35 20 636 23 15
A-D rank 17 15 18 3 16 1 5 13 8 11 1 4 12 10 7 14 8 6
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Fig. 12: Violin plots showing the distribution shapes for the
95% confidence interval (CI) of the median PJNDs for five
JND-based image datasets, with quartiles indicated.

Therefore, the KonJND-1k datasets have higher precision and
lower uncertainty in the median PJNDs than the comparison
datasets.

2) Interrater reliability: Evaluating the JND level is a
difficult subjective task. It depends on factors including the
participant’s interpretation, attention, the hardware used, and
the environment in which the experiment was conducted. To
compare our approach to existing annotated datasets, many
of which were obtained in laboratory conditions, we take a
closer look at the interrater reliability. We accomplish this via
the intraclass correlation coefficient (ICC), which is one of the
most prevalent IRR indicators. Shrout and Fleiss [41] outlined
six ICC estimators, given different assumptions. Here, we use
the ICC(1,1) one-way random effects model [42], which is
applicable to crowdsourcing data that has incomplete observa-
tions. ICC(1,1) measures the absolute agreement among raters.
A high ICC value means that the largest part of the variance
between the JND values is explained by differences between
individual images and not by differences between participant
opinions.

To better interpret the ICC values, putting the values into
context is a good approach. Generally, better controlled studies
result in higher ICC values for rating experiments. However,
a lower ICC can also mean that the task is more difficult, and
thus, participants may agree less. The range of the ICC values
varies greatly for different tasks. For instance, for absolute

Dataset ICC 95% CI N k
KonJND-1k (JPEG) 0.200 0.179-0.223 504 41.29
JND-Pano (JPEG) 0.205 0.134-0.316 40 20.25
MCL-JCI, 1st JND (JPEG) 0.342 0.259-0.453 50 30.00

TABLE IV: Intraclass correlation coefficients (ICCs) for sev-
eral JND-based image datasets for JPEG compression, with
confidence intervals (CI). N is the total number of source
images used in the analysis, k is the number of measurements
per source image calculated using the method of Lessells and
Boag [45]. Only the first JND is considered for MCL-JCI.

category rating (ACR) tasks, such as aesthetics or technical
quality assessment, ICCs between 0.3 and 0.7 have been
reported in crowdsourcing experiments; the range is higher
for lab experiments, between 0.7 and 0.94 [43], [44], [7].

Table IV shows that the ICC values are generally lower for
JND-based image datasets. The largest ICC, 0.342, was ob-
tained by the MCL-JCI lab study. This confirms the expected
difficulty of the task. Nonetheless, for our crowdsourcing
experiments, the ICC value for the JPEG images (0.203) is
approximately the same as that for another JND database,
namely, JND-Pano (0.205), which was based on a lab study.
The tasks that involved assessing the JNDs of BPG and VVC
encoded images yield lower ICC values of 0.102 and 0.175,
respectively. This is due to the very narrow interval in which
the mean of the JND samples per image was distributed
relative to the standard deviation within each source image
set, as shown by comparing Figures 10 and 11.

In summary, we showed that our crowdsourced dataset
has a level of agreement similar to JND-Pano. Compared
to MCL-JCI, the reliability metric values are lower, which
suggests that our crowdsourced PJND assessment task was
more challenging.

VIII. MODELING THE SUR FUNCTION

As in [3], we used maximum likelihood estimation (MLE)
and the Anderson-Darling (A-D) test to find the most suitable
distribution for the KonJND-1k PJND samples. We used MLE
to estimate the parameters of the probabilistic models and
ranked them according to increasing negative log-likelihood
averaged over the source images in the dataset. The A-D test
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was applied to the null hypothesis that a set of PJND samples
were drawn from a given distribution model at a specified
significance level (5% in our work).

As candidate distributions, we used 18 distribution models
from MATLAB (R2019b). The results are shown in Table III.
For JPEG compression, the generalized extreme value (GEV)
distribution ranked first in terms of both the negative log-
likelihood and A-D test. For BPG compression, the GEV
distribution ranked first in terms of the negative log-likelihood
and third in terms of the A-D test.

IX. OBJECTIVE PJND METHOD VALIDATION

Our aim is not only to explore the feasibility of conducting
a crowdsourced JND study but also to provide a benchmark
PJND dataset to the research community. Such a dataset can
support the development and validation of PJND models.

To demonstrate the utility of our dataset, we used it to
predict the SUR with a state-of-the-art method (SUR-FeatNet
[3]). This method extracts deep features from a pretrained deep
model and trains a shallow network to map these features to
the ground truth SUR values. The parameters of the GEV
distribution are estimated by fitting the predicted SUR values.

k-fold cross-validation (k = 10) was used to evaluate the
performance. More specifically, the source images were split
into 10 nonoverlapping subsets according to compression type.
Each subset contained approximately 50 source images and
their corresponding distorted images. In each trial, we used
one subset as a test set and the remaining subsets as training
and validation sets. For each compression type, the overall
result was the average of 10 test results.

We used three metrics [3] to evaluate the performance of
SUR-FeatNet on the KonJND-1k dataset. These are the mean
absolute error (MAE) of the 50% PJNDs, the MAE of the
peak signal-to-noise ratio (PSNR) at the 50% PJNDs, and the
Bhattacharyya distance [46] between the predicted and ground
truth PJND distributions of type GEV.

Table V reports the overall performance of the fine-tuned
SUR-FeatNet and a baseline method. As in [3], the baseline
method predicts the 50% PJNDs for the test set by the
distortion levels corresponding to the average PSNRs at the
corresponding 50% PJNDs in the training set. The results
show that SUR-FeatNet provided accurate SUR predictions
for both JPEG and BPG. Moreover, SUR-FeatNet significantly
outperformed the baseline method.

X. CONCLUSION AND FUTURE WORK

We designed a robust framework for conducting crowd-
sourced subjective PJND assessments. Our framework in-

SUR-FeatNet (Fine-tuning) Baseline
Compression Bhattacharyya ∆PJND ∆PSNR ∆PJND ∆PSNR

(dB) (dB)
JPEG 0.0640 6.95 0.50 30.79 3.13
BPG 0.0588 1.46 0.76 7.89 2.53

TABLE V: Comparison between fine-tuned SUR-FeatNet and
the baseline method for KonJND-1k dataset. ∆PJND is the
MAE of the 50% PJNDs. ∆PSNR is the MAE of the PSNR
at the 50% PJNDs.

cludes a flicker test together with a slider-based adjustment
method to speed up the experiment. It also exploits qual-
ification HITs and test questions to ensure reliability. Our
framework can be easily applied to other quality-based crowd-
sourcing tasks with little modification.

Using our framework, we conducted a large-scale subjec-
tive PJND study, yielding the largest image PJND dataset,
KonJND-1k. The dataset contains 1,008 source images, with
an average of 42 samples per image. It provides large content
diversity and allows the research community to develop more
accurate and more general objective PJND methods than the
current state of the art.

In addition to the development of objective PJND models,
future investigations of subjective PJND assessment should
uncover the flickering locations in an image. Understanding
the locations in an image where the just noticeable distortions
first appear when the bit rate is reduced will provide another
measure, in addition to the PJND, for improving perception-
based image compression techniques.

In our study, the resolution of the images was relatively
small (640×480). Building a large-scale crowdsourced PJND
dataset for high-resolution images is challenging because the
number of crowd workers who have access to a full high-
definition (FHD) screen is small. To address this issue, one
could display only parts (crops) of the high-resolution image
at a time or use an interface that allows panning.
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