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Abstract: The influence of short term water absorption on the mechanical properties of halloysite 
nanotubes-multi layer graphene reinforced polyester hybrid nanocomposites has been investigated. 
The addition of nano-fillers significantly increased the flexural strength; tensile strength and impact 
strength in dry and wet conditions. After short term water exposure; the maximum microhardness; 
tensile; flexural and impact toughness values were observed at 0.1 wt% MLG. The microhardness 
increased up to 50.3%; tensile strength increased up to 40% and flexural strength increased up to 
44%. Compared to dry samples; the fracture toughness and surface roughness of all types of 
produced nanocomposites were increased that may be attributed to plasticization effect. Scanning 
electron microscopy revealed that the main failure mechanism is caused by the weakening of nano-
filler-matrix interface induced by water absorption. It was further observed that synergistic effects 
were not effective at concentration of 0.1 wt% to produce considerable improvement in mechanical 
properties of produced hybrid nanocomposites.  

Keywords: nanocomposites; halloysite nanotubes; multi-layer graphene; water absorption; 
mechanical properties  

 

1. Introduction 

In recent years, composite materials have been widely used to replace, with advantage, not only 
steel but even light alloys in the construction of various components and structures such as wind 
turbine blades, aircraft, automobile, sporting goods, civil and marine structures [1]. Unsaturated 
polyester resins are the most commonly used thermosetting system due to their low cost factor and 
versatility to be altered into enormous composite fabrications [2,3].  

Polyester is an excellent matrix for composites because of its many features superior to that of 
the competition, including but not limited to handling characteristics, improvement in composite 
mechanical properties, acceptable cost and processing flexibility [4]. Albeit polyester resins are 
extensively used as a matrix in polymer composites, curing of these resins results in brittleness due 
to their high cross linking level [5]. 

During service, polymeric materials are exposed to a variety of environmental conditions such 
as moisture, solvents, oil, temperature, mechanical loads and radiation [6,7]. In particular, all polymer 
composites absorb moisture and the water molecules can act as a plasticizer by influencing 
simultaneously the fibres, the matrix and the interface, thus creating regions of poor transfer 
efficiency, which results in a reduction of mechanical properties [8–10]. Several factors are known to 
affect the way in which composite materials absorb water [8,11], such as temperature, fibre volume 
fraction, reinforcement architecture, fibre nature (permeable or impermeable), area of exposed 
surfaces, polarity of the molecular structure, degree of cross- linking and degree of crystallinity [10].  
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A wide range of engineering properties can be improved with a low level of halloysite nanotubes 
typically less than 5 wt% [12]. In our previous work, we studied the tensile properties of polyester 
nanocomposites reinforced with halloysite nanotubes. We found that the incorporation of halloysite 
nanotubes increased Young’s modulus up to 70% compared to unfilled polyester exposed to diluted 
methanol [13]. Tensile strength and impact toughness increased 17.4% and 184% respectively [13]. 
Other improved physical and engineering properties include fire retardancy [14,15], barrier 
resistance [16] and ion conductivity [12]. Another advantage of clay nanocomposites is that the 
optical properties of the polymer are not considerably affected. This property is very useful for 
medical applications where optical clarity is vital such as catheter connectors, cardiac surgery 
products and intravenous infusion components [17,18]. Alamri and Low studied the effect of water 
on the mechanical properties of halloysite nanotubes-reinforced epoxy. They observed that the 
incorporation of halloysite nanotubes was able to reduce water absorption and improve mechanical 
properties of the nanocomposites after water immersion [19].  

Graphene-based polymer composites show superior mechanical, thermal, gas barrier, electrical 
and flame retardant properties, compared to the neat polymer [20–22]. One reason that graphene 
research has progressed so fast is that the laboratory procedures enabling us to obtain high-quality 
graphene are relatively simple and economical [23]. Apart from that, graphene based materials has 
been used is different fields such as composites and coatings, electronics devices, energy storage, 
sensors and biomedical applications [20]. Atif et al. in their study reported that MLG improved 
Young’s modulus and microhardness by 25.7% and 18.3%, respectively [24]. The MLG also increased 
Tg and storage modulus compared to unfilled epoxy [25–27]. 

In this work, the effect of short term water absorption on the mechanical properties of polyester 
based nanocomposites reinforced with halloysite nanotubes (HNT), multi-layer graphene (MLG) and 
HNT-MLG (hybrid fillers) has been studied. The influence of HNT, MLG and HNT-MLG has been 
tested in terms of weight gain of nanocomposites due to water absorption. The effect of nano-filler 
addition on improving polyester matrix mechanical properties in dry and wet condition has been 
investigated. 

The knowledge of the effects of moisture absorption and high temperature exposure on flexural, 
tensile and impact properties behaviour is not easily found in literature for hybrid polyester 
composites reinforced with HNT and MLG. This appears to be important with a view to broadening 
the industrial applications of these nano-composites in particular with reference to coating industry. 
The aim of making hybrid nanocomposites was to study whether synergistic effects can reduce the 
water degradation effect caused by water absorption at low weight fraction of 0.1 wt %.  

2. Materials and Methods  

HNT (Figure 1(a)) was used as reinforcement filler and acquired from Sigma Aldrich. The 
diameter of HNT was between 30-70 nm with length 1-4 μm. It had a tube-like morphology with 
density of 2.53 g/cm3 and surface area 64 m2/g. HNT has low electrical and thermal conductivities 
and strong hydrogen interactions. The tubular morphology, high aspect ratio, and low percolation 
make HNT a prospective reinforcement for polyester and other polymers. 

MLG (Figure 1(b)) of 12 nm average thickness and 4.5 μm average lateral size with surface area 
of 80 m2/g was used as second filler purchased from Graphene Supermarket. The polyester resin of 
the NORSODYNE O 12335 AL was acquired from East Coast Fibreglass, UK. The resin had density 
of 1.2 g/cm3. The catalyst (hardener) was methyl ethyl ketone peroxide solution in dimethyl phthalate 
and purchased from East Coast Fibreglass, UK.  

To produce monolithic polyester samples, the resin (Norsodyne O 12335 Al) was mixed with 
catalyst (Butanox M-50) in a polyester: catalyst ratio of 98:2. Following thorough hand mixing for 10 
min, vacuum degassing was again carried out for 10 minutes. The resin was poured into silicone 
moulds (without any release agent) and cured at room temperature for 24 h followed by post-curing 
at 80 oC for 2 hours to ensure completion of the crosslinking [5,28]. In this research, four different 
samples were produced; monolithic polyester, 0.05 wt% HNT-0.05 wt% MLG, 0.1 wt% HNT and 0.1 
wt% MLG. 
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Figure 1. SEM images: (a) HNT, and (b) MLG. 

3. Characterisation 

DMA (Model 8000, Perkin-Elmer) was used to determine dynamic storage modulus (E’), and 
loss modulus (E’’) of the samples. The loss factor tanδ was calculated as the ratio (E’’/E’). Rectangular 
test specimens of dimensions 20 x 5 x 3 mm were used with a single cantilever clamp. All tests were 
carried out by temperature sweep method (temperature ramp from 30 °C to 130 °C at 5 °C/min) at a 
constant frequency of 1 Hz. The maximum force of DMA was 10 N and applied during all DMA tests. 
The glass transition temperature (Tg) was taken as the temperature value at the peak of tanδ curves. 
The densification of samples was calculated according to ASTM D792. The densities of polyester, 
hardener, HNT and water were 1.2, 1.18, 2.53 and 0.9975 g/cm3, respectively. The following equations 
were used to obtain the experimental density and densification. 

ݕݐ݅ݏ݊݁݀	݈ܽݐ݊݁݉݅ݎ݁݌ݔܧ  = ௪௘௜௚௛௧	௜௡	௔௜௥௪௘௜௚௛௧	௜௡	௔௜௥ି௪௘௜௚௛௧	௜௡	௪௔௧௘௥ (%)	݊݋݅ݐ݂ܽܿ݅݅ݏ݊݁ܦ Equation (1)    ݎ݁ݐܽݓ	݂݋	ݕݐ݅ݏ݊݁݀	ݔ	 = ௘௫௣௘௥௜௠௘௡௧௔௟	ௗ௘௡௦௜௧௬௧௛௘௢௥௘௧௜௖௔௟	ௗ௘௡௦௜௧௬  Equation (2)              100	ݔ	

 
To measure water absorption, rectangular specimens with dimensions 80 x 10 x 4 mm were 

immersed into the liquid media at room temperature. Before weighing procedure, any retained water 
was removed from its surface with an absorbent paper. The water absorption in the sample was 
measured as % weight increase in the samples. Equation 3 was used to calculate the water absorption 
in the specimens. 

Wc = (Wt-Wo) x 100/Wo             Equation (3) 
Where Wt is the weight of specimen at time t (i.e. after immersion in the liquid) and Wo is the 

initial weight of the sample, i.e. before placing in water. Light transmittance in the UV-visible 
spectroscopy (Shimadzu UV-2600) was used to quantify the dispersion of fillers in polyester system. 
Tests were carried out on both dry and wet samples. Light transmittance of nano-filler dispersions in 
polyester was recorded at wavelength between 400-1400 nm. Five specimens of dimensions 80 x 10 x 
3 mm were tested for each set of conditions. The optical transmittance graphs for dry and wet samples 
are also presented.  

The effect of water absorption on the mechanical properties of HNT-polyester nanocomposites 
was investigated after placing the specimens in water for 24 h at 60 °C and compared with the same 
nanocomposites in dry condition (without immersion in water). Vickers microhardness test was 
performed using the Buehler Micromet II for the monolithic polyester and its nanocomposites. The 
load applied was 200 g for 10 seconds. After water immersion, the samples were taken out and the 
liquid completely wiped out from the specimen surface. 

Tensile test and three-point bend (Figure 2 (a) and (b)) tests were performed using Instron 
Universal Testing Machine (Model 3382). Five specimens were tested for each composition. The 
displacement rate for three-point bend and tensile tests were kept 1 mm/min. Tensile test properties 

500 nm 500 nm 

(a) (b) 
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were carried out according to ISO 527 (Figure 2(a)) with specimen thickness of 3 mm. Three-point 
bending test was performed according to ISO 178 with dimensions 80 x 10 x 4 mm (Figure 2(b)). 
Charpy impact toughness test was performed according to ASTM D6110 (Figure 2(c)) using notch 
samples. A notch of (45o) was made in the centre of samples. The impact toughness was obtained 
using equation (4), where m is mass of hammer (kg), g is standard gravity (9.81 m/s2), h is the length 
of hammer (m) and t is sample thickness (mm). ݐܿܽ݌݉ܫ	݃ݑ݋ݐℎ݊݁ݏݏ = ௠௚௛	(ୡ୭ୱఉି௖௢௦	ఈ)௪௧                  Equation (4) 

Instron Universal Testing Machine was also used to perform fracture toughness tests. The 
fracture toughness (K1C) was determined using a single edge notch three-point bending (SEN-TPB) 
specimen (ASTM D5045) as shown in Figure 2(d). The displacement rate used was 1mm/min. The 
dimensions were 3 x 6 x 36 mm with a crack length of 3 mm at the mid of sample. K1C was calculated 
using linear fracture mechanics by following relationship, 		ܭூ஼ = ௉೘ೌೣ(ೌೢ)஻ௐభ/మ             Equation (5) 
Where f (a/W) is the calibration factor for the samples which is given as: ݂(௔௪) = [ቀଶାೌೢቁ{଴.଴଼଺଺ାସ.଺ସቀೌೢቁమାଵସ.଻ଶቀೌೢቁయିହ.଺ቀೌೢቁర}](ଵିೌೢ)య/మ          Equation (6) 

An Alicona optical microscope was used to study the topographical features of produced 
samples. The Alicona Infinite Focus optical microscope (G4, Alicona, Raaba/Graz, Austria) was used 
to generate optical micrographs and measure topographical features. The Alicona optical microscope 
is a non-contact method (focus-follow method) for topography measurement. 

Scanning Electron Microscopy (SEM) analysis using a FEI Quanta 200, was carried out of the 
fractured surfaces of tensile specimens to evaluate the fracture modes in the samples. The fractured 
portions were cut from the specimens and a layer of gold was applied using Emscope sputter coater 
model SC500A.  

 

Figure 2. The illustration of specimens: (a) tensile, (b) flexural, (c) Charpy impact toughness, and (d) 
fracture toughness, K1C. 

4. Results 
In this research, the addition of 0.1 wt% of HNT and MLG increased the Tg as shown in Figure 

3. An increase in Tg with HNT and MLG shows that the fillers were uniformly dispersed [7,26]. As 
for HNT, the change in Tg associated with inorganic fillers was reported and proposed by others [29]. 
The two common factors were rigid phase reinforcement and destroying epoxy based polymer 
network structure [30]. Other authors also proposed that HNT and other clay particles restrict the 
mobility of polymer chains [31,32]. In case of MLG, when it is uniformly dispersed, the wrinkled 
texture and high surface area influence the maximum exothermic heat flow temperature by 
restricting polymer chain mobility thereby causing an increase in Tg [27].  

(a) (b) 

(c) (d)
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In dry condition, monolithic polyester (MP) recorded the lowest value of Tg with 77.9 °C. The Tg 

increased to 78.3 °C for HNT-MLG polyester nanocomposites and increased to 80.4 °C in case of 0.1 
wt% HNT reinforced polyester. The maximum Tg was in case of 0.1 wt% MLG reinforced polyester 
with 82.6 °C (6% increase). After water exposure, the Tg decreased for all nanocomposites (compared 
to dry nanocomposites system). The lowest Tg was observed for MP as Tg dropped from 77.9 °C to 70 
°C. The highest Tg was observed for 0.1 wt% MLG reinforced polyester (77.34 °C). The lowering of Tg 
is an evidence of plasticization effect by water [33]. Moisture wicking along the fiber-matrix interface 
degrades the interfacial bond strength, resulting in loss of micro-structural integrity [33]. The storage 
modulus of nanocomposites for dry samples is shown in Figure 4(a). The increase of storage modulus 
during glass transition temperature can be associated with the decrease in polymeric chain mobility 
[34] and enhancement of stiffness [35]. In case of 0.1 wt% HNT and 0.1 wt% MLG show significant 
improvement of storage modulus particularly at lower temperature. The maximum storage modulus 
at 40 °C was recorded for MLG filler. The storage modulus for all reinforced polyester later decreased 
as they approached the glass transition temperature (Tg). It can be observed that storage modulus 
increased while loss modulus decreased for hybrid (0.05 wt% HNT-0.05 wt% MLG), 0.1 wt% HNT 
and 0.1 wt% MLG reinforced polyester compared with monolithic polyester. The storage modulus 
for nanocomposites exposed to water is shown in Figure 4 (b). It can be seen the storage modulus and 
loss modulus (Figure 5) considerably decreased as a result of matrix softening [36].  

The optical transmittance of the nanocomposites was investigated. In Figure 6 (a) and (b), it can 
be observed that MP is essentially highly transparent over the 400-1400 nm wavelength. The average 
transmittance value of MP is 72.9%. At 0.1 wt% HNT, it recorded 57.6% average value. The 0.05 wt% 
HNT-0.05 wt% MLG reinforced polyester recorded only 4.3% optical transmittance. The 0.1 wt% 
MLG had an optical transmittance of 0.29%. It can be seen, even at 0.05 wt% HNT-0.05 wt% MLG, 
that the optical transmittance dropped significantly. After water exposure, similar trend was 
observed where monolithic polyester had the highest optical transmittance. However, the water 
exposure significantly reduced the optical transmittance for monolithic polyester (decrease of 46.3% 
compared to dry condition). The 0.1 wt% HNT reinforced polyester lost 37% of optical transmittance 
due to water absorption. The optical transmittance for 0.05 wt% HNT-0.05 wt% MLG reinforced 
polyester and 0.1 wt% MLG reinforced polyester were also found to be decreased but the values were 
not significant.  

The densification of samples versus type of reinforcement is shown in Figure 7(a). The large 
standard deviations for monolithic polyester indicate porosity within the samples. That shows air 
entrapment during processing [37]. Another reason for this could be the quick curing of polyester 
resin  as the volatiles could not escape during curing [38,39]. The casting technique used on the other 
hand is not usually considered 100% reproducible like latex technology [40]. The water absorption 
test is shown in Figure 7(b). It can be seen the monolithic polyester absorbed more water than other 
nanocomposites system. For 0.05 wt% HNT-0.05 wt% MLG reinforced polyester recorded water 
absorption of 1.42%. The 0.1 wt% HNT reinforced polyester recorded 1.35% and 0.1 wt% MLG 
reinforced polyester with 1.2% of water absorption.  

The microhardness result is shown in Figure 7(c). Compared to monolithic polyester, the 0.05 
wt% HNT-0.05 wt% MLG reinforced polyester improved the microhardness from 177 HV to 221 HV 
(25% increase). The microhardness increased steadily in case of 0.1 wt% HNT (49% increase) and 0.1 
wt% MLG (50.3% increase). After water exposure, the monolithic polyester recorded only 111 HV. 
The microhardness for nanocomposites exposed to water improved in case of 0.05 wt% HNT-MLG, 
0.1 wt% HNT and 0.1 wt% MLG, however, the values were lower than those in dry conditions. The 
reduction of microhardness was caused by the surface softening of polyester matrix by water [41,42]. 
Flexural modulus of the nanocomposites is shown in Figure 7(d). For dry samples, the maximum 
flexural modulus was observed in case of 0.1 wt% MLG (60.6% increase) followed by 0.1 wt% HNT 
(increase 50.6%). For samples exposed in water, the similar trend was observed. The maximum 
flexural modulus was recorded in case of 0.1 wt% MLG. The flexural modulus increased from 0.62 
GPa to 1.15 GPa (increase 85.5%).  
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Flexural strength of nanocomposites in dry and wet condition is presented in Figure 7(e). 
Minimum flexural strength was recorded in case of MP. The maximum flexural strength was 
observed in case of 0.1 wt% MLG reinforced polyester. The flexural strength increased from 55.7 MPa 
to 71.9 MPa (29% increase). After water exposure, the flexural strength showed degradation 
compared to unexposed samples. The lowest flexural strength was observed for MP with only 45 
MPa. The flexural strength then steadily increased in case of 0.05 wt% HNT-0.05 wt% MLG (47 MPa), 
0.1 wt% HNT (63 MPa) and 0.1 wt% MLG (65 MPa).  

The variation in flexural strain of nanocomposites for dry and wet conditions is shown in Figure 
7(f). In comparison with MP, the flexural strain decreased with the incorporation of nano-fillers. The 
increase in strength and stiffness reduced the flexural strain. After water exposure, the flexural strain 
increased for all samples. This could be due to the fact that water fill the gaps between the fillers and 
polymer matrix eventually lead to a decrease in flexural strength [43]. The water absorption leads to 
increase of plastic zone ahead of crack hence increase the flexural strain of all nanocomposites [44].  

The variation of Young’s modulus is shown in Figure 7(g). Monolithic polyester obtained 0.75 
GPa of Young’s modulus. The Young’s modulus increased 7% in case of 0.1 wt% HNT. The highest 
Young’s modulus was obtained for 0.1 wt% MLG reinforcement with an improvement of 60%. After 
water exposure, 0.1 wt% of MLG reinforcement also recorded the highest Young’s modulus with an 
increase of 98% compared to MP. The variation in tensile strength is shown in Figure (h). At 0.1 wt% 
MLG reinforcement, the highest tensile strength was observed. The tensile strength increased from 
32.4 MPa up to 47.3 MPa (46% increase) for dry samples. As for wet samples, the tensile strength 
increase from 28.3 MPa to 39.5 MPa. The tensile strain graph is shown in Figure 7(i). In dry condition, 
the tensile strain tend to have lower value than samples exposed in water environment. Dry samples 
were more stiff and have higher strength than samples tested after water exposure.  

The variation of impact toughness is shown in Figure 7(j). For dry samples, MP recorded a value 
of 0.78 kJ/m2. In case of 0.05 wt% HNT-0.05 wt% MLG, the impact toughness increased to 1 kJ/m2. 
Further increase of impact toughness also can be seen for samples reinforced with 0.1 wt% HNT (1.4 
kJ/m2). The maximum increase of impact toughness was seen for samples reinforced with 0.1 wt% 
MLG (1.6 kJ/m2). The fracture toughness (K1C) is shown in Figure (k). The maximum fracture 
toughness was observed in case 0.1 wt% MLG reinforcement. The fracture toughness of this polyester 
system has been enhanced with the addition of 0.05 wt% HNT-0.05 wt% MLG, 0.1 wt% HNT and 0.1 
wt% MLG. The fracture toughness increased from 0.3 MPa.m1/2 to 0.6 MPa.m1/2 (100% increase). In 
general, the water exposure increased the fracture toughness of the nanocomposites. Polyester 
reinforced with 0.1 wt% MLG recorded the highest fracture toughness. The fracture toughness 
increased from 0.48 MPa.m1/2 to 0.8 MPa.m1/2 (67% increase). 

 

Figure 3. Tg of nanocomposites in dry condition and after water exposure 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2017                   doi:10.20944/preprints201701.0024.v1

Peer-reviewed version available at Polymers 2017, 9, 27; doi:10.3390/polym9010027

http://dx.doi.org/10.20944/preprints201701.0024.v1
http://dx.doi.org/10.3390/polym9010027


 7 of 18 

 

 
(a) 

 
(b) 

Figure 4. Storage modulus of nanocomposites in dry and after water exposure 

 
(a) 

 
(b) 

Figure 5. Loss modulus of nanocomposites in dry condition and after water exposure 
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(a) 

 
(b) 

Figure 6. Optical transmittance of nanocomposites for dry (a) and after water exposure (b) 
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Figure 7. Mechanical properties of nanocomposites in dry condition and after water exposure 
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agglomerates, and non-uniform dispersion of nano-fillers. In general, Rq (Figure 8 (b)) and Rz (Figure 
8(c)) were lower in dry condition and higher after water exposure. After water exposure, coarser 
topography was observed.  

The flexural strain samples (from three point-bend test) used for the surface roughness 
measurement kept increasing with the coarser topography. This can be attributed to lower stiffness 
and strength values. A schematic illustration on topography difference between polyester 
nanocomposites tested in air and after water exposure is illustrated in Figure 9. The topography 
profile after water exposure became coarser because of plasticization effect. The increase of high 
peaks can be linked to the water absorption. The topography surface profile of nanocomposites for 
samples tested in air and wet condition is presented in Figure 10. It can be observed that after water 
exposure, the surface profiles were coarser than dry samples. 

 
Figure 8. topographic features of nanocomposites in dry condition and after water exposure 
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Figure 9. Topography profile of samples in dry condition and after water exposure 

 

 
Figure 10. Surface profile of nanocomposites before and after water exposure 
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6. Fractography 

The SEM images of fractured surfaces are shown in Figure below 11. As the cracks propagates, 
material is lost most likely in the form of round particles as it can be observed in Figure 11 (a). The 
image also revealed that the monolithic sample was showing river markings which can be associated 
with fast brittle fracture mode [46]. That is an evident that there are no crack bridging mechanisms 
available in monolithic polyester. When the cracks propagated, they move with less diversions. After 
water exposure, the monolithic polyester shows more smooth surface with weaker crack lines can be 
observed. The de-bonding for MP is in the form of long and straight lines. 

Synergistic effects are not effective at concentration of 0.1 wt% to produce considerable 
improvement in mechanical properties of produced hybrid nanocomposites [47]. De-bonded clusters 
of fillers from polyester matrix can be seen for hybrid sample (Figure 11(c)). The size of the clusters 
is relatively small with considerably small spacing. The material in the vicinity of the clusters and the 
distance between them may not have significant effect in mechanical properties [48].  

The effect of MLG was also noticeable on the surface of the 0.05 wt% HNT-0.05 wt% MLG 
nanocomposites. The crumpled structure of MLG is shown in Figure 11 (d). The effect of water on 
hybrid nanocomposites suggest that surface roughness was reduced compared to samples tested in 
dry conditions [49]. De-bonding and pull-out of fillers were observed in hybrid samples, which are 
responsible for the moderate toughening in Figure 11 (d) [50]. 

For the HNT samples, the interlocking effect can alter the crack formation mechanism. In Figure 
11 (e), the crack started from a defect point and emanated radially. Similar phenomenon has been 
reported elsewhere [46]. Crack lines are more straight after the HNT reinforced polyester samples 
were exposed to water. The nanocomposites containing HNT particles showed plasticization effect 
where the crack propagation became easier and faster.  

Graphene based materials are often compliant, and when dispersed in a polymer matrix, they 
are typically not observed as rigid discs but rather as a bent or crumpled platelets [51]. The wrinkle 
structure of MLG has better interfacial interactions than the tubular structure of HNT [52]. The 
wrinkled structure significantly improves the interfacial interactions with the polyester chains. The 
Figure 11(g) shows no particular crack orientation. This is because MLG has the ability to prevent the 
propagation of cracks and cracks detour around the MLG to proceed [53]. After water exposure, 
micro-cracks and pronounced river markings can be observed for the MLG reinforced sample. It is 
evident that presence of HNT and MLG fillers increased the fracture surface roughness. That is an 
indicator of crack deflection mechanism, which increases the absorbed energy of fracture by 
increasing the crack length during deformation [54]. 

The fracture nature between monolithic polyester, hybrid, HNT and MLG reinforced polyester 
are different from each other. Lower resistance to crack propagation shows more straight paths and 
smooth surface. This can be observed in case of monolithic polyester and hybrid nanocomposites. 
Hybrid nanocomposites showed moderate toughening mechanism but slightly better than unfilled 
polyester. It can be observed that 0.1 wt% HNT reinforced polyester shows high resistance to crack 
propagation compared to monolithic polyester and hybrid nanocomposites with round ended cracks. 
High aspect ratio of MLG, however, showed superior toughening than other nanocomposites system. 
The force required for crack propagation of 0.1 wt% MLG reinforced polyester was higher based on 
the SEM images evident.  

Results obtained suggested that there was no significant improvement in water barrier 
properties and mechanical performance in hybrid nanocomposites. This is because 0.05 wt% of HNT 
and MLG is either not enough to produce significant synergistic effect or there are no synergistic 
effects between HNT and MLG. Based on SEM images, there was no evidence that HNT and MLG 
were poorly dispersed. The weight fraction used was only 0.1% and therefore the inferior dispersion 
state can be ruled out as a cause for the degradation of mechanical properties. It is noted from 
literature; the diffusion of moisture can be distributed throughout the polymer matrix or be drawn 
to form water clusters [55]. In this research, the formation of water clusters was not observed in SEM 
images but plasticization effect was clearly noticed. Therefore, plasticization of matrix is mainly  
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Figure 11. SEM images of nanocomposites before and after water exposure 

responsible for the degradation of mechanical properties for all nanocomposites system (MP, HNT-
MLG, HNT and MLG reinforced polyesters). 
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8. Conclusions 

The effect of short water absorption with 60 °C temperature on the mechanical properties of 
HNT (halloysite nanotube) and multi-layer graphene (MLG) reinforced polyester has been studied. 
It is shown that polyester matrix is vulnerable to water exposure. Addition of small amount of HNT 
and MLG decreased the weight gain of the nanocomposites compared to monolithic polyester. MLG 
reinforced polyester showed superior strength compared to hybrid and HNT in dry condition and 
after water exposure. The SEM images revealed less number of cracks for all samples exposed in 
water. Nano-filler and matrix interface weakening was the main failure mechanism induced by water 
exposure. The degradation of mechanical properties related to water absorption caused softening of 
polymer matrix which lowered the strength of nanocomposites. Fracture toughness of 
nanocomposites after water exposure increased because of plasticization effect. The surface 
roughness of all nanocomposites system increased after water exposure. This can be attributed to the 
high peaks and plasticized crack zone which then produced coarser topography. This study provided 
evidence that synergistic effect of HNT-MLG hybrid nanocomposites at low content (0.05 wt% HNT-
0.05 wt% MLG) was insufficient to produce remarkable mechanical properties in dry condition and 
after water exposure. More research can be conducted to improve the mechanical properties of hybrid 
composites exposed to different liquid environment at different temperature. 
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