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Abstract: 

Accurate estimation of the state of charge (SOC) can prolong the working life and enhance the 

safety of energy storage system. Considering the influence of noise and parameter changes in the 

operating environment, an adaptive fractional-order unscented Kalman filter algorithm is 

introduced to strengthen the accuracy of SOC estimation. To verify the effectiveness and 

robustness of the algorithm, the simulation is carried out under UDDS complex conditions. The 

experimental results indicate that the proposed algorithm has the highest SOC precision among the 

four algorithms, and the RMSE is 1.37%, indicating the superiority of the fractional-order modeling 

and the joint estimation algorithm. The online identification of full parameters can solve the 

shortcoming of the long time to obtain the open-circuit voltage in the experiment, and the adaptive 

filtering algorithm can overcome the problem of filtering divergence and improve the flexibility of 

SOC estimation. 

Keywords: Li-ion battery; State of charge; Adaptive fractional-order unscented Kalman filter; Energy 

storage system; Residual sequence 

1. Introduction

In the rapid development field of energy storage system, li-ion batteries have been widely applied in 
the power supply, efficient energy storage, and standby power supply due to the advantages of high 
energy density, long cycle life, and no pollution [1–3]. The accurate SOC estimation can extend the 
working life of the energy storage system and improve its safety, which is of great significance to the
optimal management of the energy storage system [4, 5]. Since the internal parameters of the 
battery batteries cannot be measured, it is necessary to establish an equivalent model to simulate 
the response characteristics of lithium-ion batteries under different working conditions [6, 7]. Li-ion 
battery equivalent models usually contain three types: black box model, electrochemical mechanism 
model, and equivalent circuit model (ECM). The ECM describes the operating characteristics of li-ion 
battery through basic circuit components, which features simple structure and easy to implement 
[8, 9]. However, Hu et al. [10] proposed that the ideal resistance and capacitance used in traditional 
ECM cannot adapt to the dynamic characteristics of the battery due to the strong fractional-order 
characteristics of the actual capacitance. Therefore, the fractional-order model (FOM) based on 
lithium batteries has attracted more and more attention from scholars [11–13]. Wang et al. [14] 
developed an iterative search algorithm to identify the parameters of the second-order FOM, and 
the results fitted the battery model well. Tian et al. [15] compared and verified the voltage response 
accuracy of the FOM on multiple batteries, and the experimental results showed that the first-order 
FOM can accurately describe the dynamic response of the battery with fewer parameters. Due to 
the accuracy of FOM, more and more fractional-order joint Kalman filtering methods are proposed 
for SOC estimation [16, 17]. 



Most of the previous SOC estimation methods are offline identification methods based on FOM,
which require a long experimental time and low accuracy. The online parameter identification and 
SOC joint estimation algorithm based on IOM has been implemented [18, 19], while  the fractional-
order algorithm is rarely implemented. In ref. [20], Tian et al. used the FOM and proposed a method 
for joint estimation of both online parameter identification and SOC, but they did not consider the 
noise in the actual environment. In refs. [21, 22], Tian et al. used the least square method to realize 
online parameter identification, without considering the change of open-circuit voltage in 
the operating environment. 

To characterize the dynamic performance and electrochemical reaction characteristics of the li-ion 
battery more accurately and improve the adaptability and robustness of the model [23], the 
dispersion effect, charge-transfer effect between solid electrode/electrolyte interface, and double 
electron layer effect of the lithium-ion batteries are fully considered, and the constant phase 
element (CPE) is added to establish the FOM [24, 25]. Considering the influence of noise and 
parameter changes in the operating environment, an adaptive fractional-order unscented Kalman 
filter algorithm (AFOUKF) is introduced to strengthen the accuracy of SOC estimation. 

2. Mathematical analysis

2.1. Equivalent modeling 

Compared with the IOM, the FOM can more accurately characterize the electrochemical effects of 
li-ion  batteries and improve the model accuracy. The ideal voltage source in the FOM is regarded as
a controlled current source related to SOC. Such OCV dynamic parameters will change over time,
and the proposed model  in the whole cycle has higher precision. The improved FOM is shown in Fig.
1.

 R0 is the internal resistance, Rp is the polarization resistance, and CPE is a constant phase element, 
the fractional-order is expressed as α UL is terminal voltage, OCV is a function of SOC, as shown in 
Eq. (1). An ideal OCV model can be obtained by combining the battery empirical models of
Shepherd, Unnewehr and Nernst, where the value K0, K1, K2, K3, and K4 are constants and obtained 
on the basis of experimental data. 

C1 is the impedance coefficient, S is the variable in the Laplace domain. The impedance form of CPE 
is defined as shown in Eq. (2). The parallel circuit composed of resistance and CPE represents the 
resistance and polarization capacitance of the SEI diaphragm, instead of the RC polarization loop in 
the ECM. 

Define the differential expression of the SOC expression according to AH integral method, and CQ 
denotes the maximum capacity of li-ion battery, η represents the charge–discharge current ratio.
According to Kirchhoff’s law, the expression of voltage and current of the circuit can be obtained as 
shown in Eq. (3). 



Using the definition of the Grunwald–Letnikov fractional derivative, the state space equation is 
discretized, which can be found in our previous work [26]. The discretized state space format of 
the FOM can be expressed as shown in Eq. (4). 

2.2. Parameter identification

The particle swarm optimization is used to identify the offline parameters, and the results are 
compared with online parameter identification. Each particle updates the local and global 
optimal values according to the fitness value, and then performs a global optimal search in the 
solution space. The implementation flow chart is expressed as in Fig. 2. 
The fitness function is defined as shown in Eq. (5).UL(k) is the measured voltage, and UL (Ik, Ȏ) is
the model terminal voltage. The optimization algorithm is used to identify the parameters in 
the FOM to minimize the error between UL(k) and UL (Ik, Ȏ). 



3. A joint estimation method of parameter identification and SOC based on FOM

3.1. Fractional-order unscented Kalman filter algorithm

The FO-UKF algorithm considers the memory effect of the past time of the sample points. 
Coupled with the optimal estimate of the previous state, the estimated state vector contains 
some statistical information about the past time. Therefore, FOUKF can estimate the current 
state of the system more accurately than UKF. 

The Kalman filter method can provide a reliable posterior state estimation when the prior 
statistical values of process noise and measurement noise are known. The covariance 
matching technique based on the residual sequence can maintain the positive definiteness 
of the covariance matrix and prevent the filter from diverging. An AFOUKF algorithm based 
on residual sequence for SOC estimation is proposed in Fig. 3.
   The residual sequence Ɛk is the difference between the input measurement value yk and
the posterior measurement value h(xkjk, uk), as shown in Eq. (6).

Hk is the covariance matrix of the residual sequence at time k, which is the average value of
the covariance of the cumulative residual sequence with the size of the sliding window M, as 
shown in Eq. (7).

According to Eq. (8), the process noise Rk and measurement noise Qk are calculated to 
ensure the positive definiteness of the matrix.      is the covariance matrix calculated from 
the sigma sampling points of the posterior estimation, as shown in Eq. (9). 
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FOUKF posterior estimation. The summary of the AFOUKF algorithm is shown in Table 1. 
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3.2. A joint estimation method of full-parameter identification and SOC based on FOM 

The parameters of the li-ion battery model are affected by factors such as SOC, ambient temperature, 
and battery aging, and they are closely related to the working state of the battery. With the battery 
charge and discharge cycles, the SOC value and internal resistance have been changed. Therefore, the 
battery model parameters need to be identified online and updated in real time to ensure the
accuracy of the battery model. A joint estimation method of parameter identification and SOC based 
on FOM is introduced. The algorithm is based on FFRLS to realize full-parameter online identification, 
and the AFOUKF algorithm is used to realize SOC estimation. The flowchart of the joint estimation 
method of full-parameter identification and SOC is expressed as in Fig. 4.

The combined method can both improve the accuracy of the battery model and the accuracy of the 

SOC. The noise adaptive algorithm based on residual sequence is applied to improve the convergence 
speed of the algorithm. 

4. Experimental analysis

4.1. Experimental working conditions

The lithium iron phosphate battery is selected as the experimental object. The entire battery test 
bench is shown in Fig. 5.
   The experimental equipment includes battery test equipment, a temperature chamber and a host 
computer. Figure 6a and b shows the dynamic current and voltage curves during the urban
dynamometer driving schedule (UDDS) test.
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4.2. Parameter identification results 

The PSO is used to identify the parameters, and the number of iterations is set to 3000. The offline 

parameter identification results are shown in Fig. 7. Figure 7a–d, respectively, represents the

identification results of fractional order a, ohmic internal resistance, constant phase element, and 
polarization internal resistance. 

4.3. SOC estimation results 

The UDDS data are selected to verify the performance of  the joint estimate method. The RMSE, MAE, 
and MAPE are selected to evaluate the model and state estimation results. 

Different parameter identification methods are used to verify the accuracy of IOM and FOM in SOC 
estimation. The comparison values are shown in Table 2.

The proposed AFOUKF_ON algorithm is a joint estimation algorithm that combines fractional-order 

theory, residual adaptive filtering and full-parameter online identification. The experimental results 
prove that the algorithm has the highest estimation accuracy, and its RMSE, MAPE, and MAE are 1.37, 
3.53, and 1.11%, respectively.

The SOC estimation results and error comparison are shown in Fig. 8a and b. The voltage 
comparison and error comparison are shown in Fig. 8c and d. Figure 8a and b shows that due to the 
adaptive update of noise covariance, the filter can quickly converge the wrong SOC initial value under 
four different methods, which ensures the accuracy of the SOC estimation result. The SOC estimation 
results based on full-parameter identification are better than offline identification in both FOM and 
IOM. 
   The results show that the online update of full parameters can improve the accuracy of SOC 
estimation, especially in the case of large errors at the beginning and end of the cycle. The errors of 
the three evaluation indexes of FOM are all lower than IOM, indicating that the introduction of 
fractional-order can better describe the dynamic characteristics of the battery, and the accuracy of 
the model has been significantly improved. The online full-parameter identification can significantly 
reduce the influence of noise, achieve higher accuracy and faster convergence speed, and ensure the 
convergence and stability of the algorithm. 



The proposed AFOUKF_ON algorithm is a joint estimation algorithm that combines fractional-order 

theory, residual adaptive filtering and full-parameter online identification. The experimental results 
prove that the algorithm has the highest estimation accuracy, and its RMSE, MAPE, and MAE are 1.37, 
3.53, and 1.11%, respectively.

The SOC estimation results and error comparison are shown in Fig. 8a and b. The voltage 
comparison and error comparison are shown in Fig. 8c and d. Figure 8a and b shows that due to the 
adaptive update of noise covariance, the filter can quickly converge the wrong SOC initial value under 
four different methods, which ensures the accuracy of the SOC estimation result. The SOC estimation 
results based on full-parameter identification are better than offline identification in both FOM and 
IOM. 
   The results show that the online update of full parameters can improve the accuracy of SOC 
estimation, especially in the case of large errors at the beginning and end of the cycle. The errors of 
the three evaluation indexes of FOM are all lower than IOM, indicating that the introduction of 
fractional-order can better describe the dynamic characteristics of the battery, and the accuracy of 
the model has been significantly improved. The online full-parameter identification can significantly 
reduce the influence of noise, achieve higher accuracy and faster convergence speed, and ensure the 
convergence and stability of the algorithm. 



5. Conclusions

A joint algorithm of online full-parameter identification and SOC estimation is introduced. FFRLS is
used to complete online parameter identification, which improves the accuracy of full-cycle
identification and overcomes the disadvantage of a long time to obtain OCV value. The AFOUKF
algorithm is applied to complete the SOC estimation, which overcomes the problem of filtering
divergence and improves the flexibility of SOC estimation.

Compared with the IOM, the FOM can characterize the electrochemical effects of li-ion batteries 
more accurately and improve the accuracy of the model. The experimental results indicate that the 
combined algorithm can update the model parameters in real time, which can both improve the 
accuracy of the battery model and the stability and robustness of the SOC. 

Acknowledgements:  The work is supported by the National Natural Science Foundation of China (No. 61801407), 
Sichuan science and technology program (No. 2019YFG0427), China Scholarship Council (No. 201908515099). 

References 

[1] T Sun, B Xia, Y Liu, Y Lai, W Zheng, H Wang, W Wang and M Wang, Energies, 12 (2019)
[2] Y Tian, D Li, J Tian and B Xia Electrochim. Acta 225 225 (2017) 
[3] B Xia, R Huang, Z Lao, R Zhang, Y Lai, W Zheng, H Wang, W Wang and M Wang, Energies, 11 (2018)
[4] B Xia, Z Sun, R Zhang and Z Lao, Energies, 10 (2017)
[5] C Liu, Y Wang and Z Chen Energy 166 796 (2019)
[6] K Zhang, J Ma, X Zhao, D Zhang and Y He, IEEE Access, 7 (2019) 166657 
[7] X Hu, H Yuan, C Zou, Z Li and L Zhang IEEE Trans. Veh. Technol. 67 10319 (2018)
[8] L Zhang, H Peng, Z Ning, Z Mu and C Sun Appl. Sci. 7 1002 (2017)
[9] Y Sun, Y Li, M Yu, Z Zhou, Q Zhang, B Duan, Y Shang and C Zhang, J. Power Sources, 448 (2020)
[10] M Hu, Y Li, S Li, C Fu, D Qin and Z Li Energy 165 153 (2018)
[11] G Jin, L Li, Y Xu, M Hu, C Fu and D Qin, Energies, 13 (2020)
[12] L Li, H Zhu, A Zhou, M Hu, C Fu and D Qin Int. J. Electrochem. Sci. 15 6863 (2020)
[13] S Liu, X Dong and Y Zhang IEEE. Access. 7 122949 (2019)
[14] Y Wang, G Gao, X Li and Z Chen J. Power Sources.449 227543 (2020) 
[15] J Tian, R Xiong, W Shen and J Wang, Chinese Journal of Mechanical Engineering, 33 (2020)
[16] Q Zhang, Y Shang, Y Li, N Cui, B Duan and C Zhang ISA Trans


	coversheet_template
	CHEN 2022 An adaptive fractional-order
	Binder2.pdf
	coversheet_template
	Binder1.pdf
	Pages from Accepted Indian Journal of Physics.pdf
	Pages from Accepted Indian Journal of Physics.pdf


	Pages from Accepted Indian Journal of Physics.pdf




