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Abstract: Jointly using spatial and spectral information has been widely applied to hyperspectral
image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention
in recent years due to their detailed representation of features. However, most of CNN-based HSI
classification methods mainly use patches as input classifier. This limits the range of use for spatial
neighbor information and reduces processing efficiency in training and testing. To overcome this
problem, we propose an image-based classification framework that is efficient and straightforward.
Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to
integrate both multiple receptive fields fused features and multiscale spatial features at different
levels. The fused features are exploited using a lightweight block called the multiple receptive field
feature block (MRFF), which contains various types of dilation convolution. By fusing multiple
receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature
representation for classification. Experimental results from three real hyperspectral images prove the
efficiency of the proposed framework. The proposed method also achieves superior performance for
HSI classification.

Keywords: hyperspectral image classification; convolutional neural network; multiscale spatial-spectral
features; spatial neighbor feature extraction; dilation convolution; feature pyramid

1. Introduction

Hyperspectral image (HSI) has attracted a lot of attention in recent years since it has hundreds
of continuous observation bands throughout the electromagnetic spectrum, ranging from visible to
near-infrared wavelengths. HSI has also been used in many applications due to its high-dimensionality
and distinct spectral features [1–3]. Supervised classification is one of the most critical applications
and is widely used in remote sensing. However, spectral-based classification methods typically
only measure the spectral characteristics of objects and ignore spatial neighborhood information [4].
Hyperspectral image classification (HSIC) can be improved by considering both spatial and spectral
information [5]. Moreover, the multiscale spatial-spectral classification method is well adapted for HSI
since different scale regions contain complementary but interconnected information for classification.

Remote Sens. 2019, 11, 2220; doi:10.3390/rs11192220 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3888-8124
https://orcid.org/0000-0003-0319-7753
https://orcid.org/0000-0001-6116-3194
http://www.mdpi.com/2072-4292/11/19/2220?type=check_update&version=1
http://dx.doi.org/10.3390/rs11192220
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 2220 2 of 21

Multiscale spatial-spectral classification methods can be categorized into two groups: multiscale
superpixel segmentation [6–9] and multiscale image cubes [10–15]. Numerous methods have been
developed to determine the optimal scale in multiscale superpixel segmentation. Yu et al. [6] proposed
a multiscale superpixel-level support vector machine (SVM) classification method to exploit the
spatial information within different superpixel scales. Zhang et al. [7] applied a multiscale
superpixel-based sparse representation algorithm to obtain spatial structure information for different
segmentation scales and generated a classification map using a sparse representation classifier. Similarly,
Dundar et al. [8] added a guided filter to process the first three principal components and implemented
multiscale superpixel segmentation. Chen et al. [9] used multiscale segmentation to obtain the spatial
information from different levels, and the results of multiscale segmentation were treated as the input
for a rotation forest classifier. Finally, the majority voting rule was used to combine the classification
results from different segmentation scales.

An image pyramid refers to an image that is subject to repeated smoothing and subsampling
and generates a series of weighted down images [10]. Li et al. [11] proposed a segmented principal
component analysis and Gaussian pyramid decomposition-based multiscale feature fusion algorithm for
HSIC. The Gaussian image pyramid was used to generate images with multiple spatial sizes following
PCA dimension reduction. Fang et al. [12] applied a multiscale adaptive sparse representation for
selecting the optimal regional scales for different HSIs with various structures. Liu et al. [13] proposed
a multiscale representation based on random projection. This method modeled the spatial characteristics
at all reasonable scales comprising each pixel and its neighbors. A multiscale joint collaborative
representation with a locally adaptive dictionary was developed to incorporate complementary
contextual information into classification by multiplying different scales with distinct spatial structures
and characteristics [14]. He et al. [15] proposed feature extraction with a multiscale covariance
map for HSIC. In their work, a series of multiscale cubes were constructed for each pixel in the
dimension-reduced imagery. A Gaussian pyramid and edge-preserving filtering were also used
to extract multi-scale features. The final classification map was produced using a majority voting
method [16]. Most of these multiscale classification methods independently extract features or spatial
structures at different image scales and fuse the classification results in the final prediction stage.
Thus, there is no interaction between the features at different scales.

Deep learning-based models have also been introduced for the HSIC in recent years. Spatial-spectral
features can be extracted using a deep convolutional neural network, and these features represent
low-to-high level semantic information. Different deep learning architectures have also been introduced
for HSIC [17–23]. Li et al. [17] proposed a pixel-pair method to significantly increase the number of
training samples. This was necessary to overcome the imbalance between the high dimensionality of
spectral features and limited training samples (also known as the Hughes phenomenon). A similar
cube-pair 3-D convolution neural network (CNN) classification model has also been proposed [18].
Du et al. proposed an unsupervised network to extract high-level feature representations without any
label information [19]. Recurrent neural network (RNN) and parametric rectified tanh activation functions
have been introduced for HSIC [20]. Self-taught learning was used for unsupervised extraction of
features from unlabeled HSI [21]. Lee et al. [22] proposed a network to extract features with multiple
convolution filter sizes. Residual connection and 3-D convolution have also been applied to HSIC [23],
and semi-supervised classification methods have been developed as well [24–26]. He et al. [24] proposed
a semi-supervised model using generative adversarial networks (GAN) to use the limited labeled samples
for HSIC. A multi-channel network was proposed to extract the joint spectral-spatial features using
semi-supervised classification [25]. Zhan et al. [26] developed 1-D GAN to generate hyperspectral samples
that were similar to real spectral vectors. Ahmad et. al [27] proposed a semi-supervised multi-kernel class
consistency regularizer graph-based spatial-spectral feature learning framework.

More recently, various convolution neural networks with multiscale spatial-spectral features have
been introduced for hyperspectral image classification [28–41]. Jiao et al. [28] used a pooling operation to
generate multiple images from HSI, and a pretrained VGG-16 was introduced to extract multiscale features.
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Fusion features were then fed into classifiers. Liang et al. [29] also used pretrained VGG-16 to extract
multiscale spatial structures and proposed an unsupervised cooperative sparse autoencoder method to
fuse deep spatial features and spectral information. Multiscale feature extraction has also been proposed
using multiple convolution kernel sizes and determinantal point process priors [30]. An automatic design
CNN was introduced with automatic 1-D Auto-CNN and 3-D Auto-CNN [31]. An attention mechanism
was also introduced for HSIC [32–34]. Fang et al. [32] proposed a 3-D dense convolutional network with
a spectral attention network. Wang et al. [33] designed a spatial-spectral squeeze-and-excitation residual
network to exploit the attention mechanism for HSIC. Mei et al. [34] used RNN and CNN to design
a two-branch spatial-spectral attention network. Zhang et al. [35] proposed 3-D lightweight CNN for
limited training samples and also presented two transfer learning strategies: (1) cross-sensor strategy and
(2) cross-modal strategy. An unsupervised spatial-spectral feature learning strategy was proposed using
3-D CNN autoencoder to learn effective spatial-spectral features [36]. A multiscale deep middle-level
feature fusion network was proposed to consider the complementary and related information among
different scale features [37]. Two convolution capsule networks were proposed to enrich the spatial-spectral
features [38,39]. Pan et. al [40] proposed rolling guidance filter and vertex component analysis network to
utilize spatial-spectral information. Several other CNN-based HSIC methods were also proposed [41–43].
However, some of these multiscale methods still focus on independently extracting multiscale features
based on different image scales. Most importantly, these methods only use image patches as model inputs,
which limits the understanding of the remote sensing image.

This paper proposes an image-based classification framework for HSI to address the inefficient
performance of existing methods. Based on this framework, this paper proposes a novel HyMSCN
(Multiscale Spatial-spectral Convolutional Network for Hyperspectral Image) network to improve the
representation ability for HSI. The main contribution of the proposed approach can be summarized
as follows:

(1) A novel image-based classification framework is proposed for hyperspectral image classification.
The proposed framework is more universal, efficient, and straightforward for training and testing
processes compared to the traditional patch-based framework.

(2) Local neighbor spatial information is exploited using a residual multiple receptive field fusion
block (ReMRFF). This block integrates residual learning and multiple dilated convolutions
featured as lightweight and efficient feature extraction.

(3) Multiscale spatial-spectral features are exploited using the proposed HyMSCN method.
The method is based on the feature pyramid structure and considers both multiple receptive
field fused features and multiscale spatial features at different levels. This approach allows for
comprehensive feature representation.

The remainder of this paper is organized as follows. Section 2 introduces the dilation convolution
and the feature pyramid. Section 3 presents the details of the proposed classification framework
and HyMSCN. Section 4 evaluates the performances of our method compared with those of other
hyperspectral image classifiers. Section 5 provides a discussion of the results, and the conclusion is
presented in Section 6.

2. Related Works

2.1. Dilated Convolution

Dilated convolution, or atrous convolution, has been shown to be effective for semantic
segmentation [44–47]. The dilated convolution refers to “convolution with a dilated filter”, and the
operator of dilated convolution can apply the same filter at different ranges using different dilation
factors [44]. It is likely constructed by inserting holes between each pixel in the convolution kernel.
The operation of one 3×3 dilated convolution with different dilation factors is shown in Figure 1. It can
be found that the dilation factor decides the sampling distance of the convolution kernel. Naturally,
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the extracted features represent spatial structure information at different scales. A larger convolution
kernel can be used to enlarge the receptive field (such as 5×5 or 7×7). However, the number of
parameters should be small to prevent overfitting since HSI contains a small number of training
samples [5]. Dilated convolution can enlarge the receptive field with the same number of parameters,
and is well adapted for HSIC.

Figure 1. An illustration of the receptive field for one dilated convolution with different dilation factors.
A 3×3 convolution kernel is used in the example.

A “gridding problem” is known to exist in the dilated convolution framework [44,45]. This can
result in serration gridding, as shown in Figure 2. Wang et al. [46] addressed this problem by developing
a hybrid dilated convolution (HDC) to choose a series of proper dilation factors to avoid gridding.
Chen et al. [45,47] proposed atrous spatial pyramid pooling (ASPP) to exploit multiscale features by
employing multiple parallel filters with different dilation factors. The main purpose of both methods
is to ensure that the final size of the receptive field fully covers a square region without any holes or
missing edges. Following their work, we also designed a lightweight dilated convolution block to fuse
multiple receptive field features (see Section 3.2).

Figure 2. The gridding problem resulting from dilated convolution. (a) True-color image of Pavia
University. (b) Classification results with dilated convolution. (c) Enlarged classification results for (b).

2.2. Feature Pyramid

Most hyperspectral image classification methods [11,14–16,28,29] construct image pyramids to
extract multiscale features, such as in Figure 3a. These features are independently extracted for each
image scale, which is a slow process. Most importantly, the image pyramid suffers from a deficiency in
semantic classification and lacks interaction between different feature scales.

The feature pyramid network was first proposed by Lin et al. [48] for object detection. The method
is developed to detect objects at different scales. Multiscale features enable the model to obtain
a large range of scales at different pyramid levels for segmentation. A convolution network can extract
hierarchical features layer by layer, and a convolution layer with a stride greater than one can change the
feature spatial size to construct inherent multiscale features within a pyramid (Figure 3b). The feature
pyramid produces multiscale features with strong semantic representation even at high-resolution
feature scales. Additionally, the architecture combines low-to-high level features with top-down feature
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fusion which has rich semantics at all levels [48]. The hyperspectral image classification network was
designed based on this strategy (see Section 3.3).

Figure 3. The image and feature pyramid. (a) The image pyramid independently computes features
for each image scale. (b) The feature pyramid creates features with strong semantics at all scales.

3. Proposed Methods

In this section, we propose an image-based framework for HSI that has greater flexibility
and efficiency compared with the tradition patch-based classification framework (see Section 3.1).
A novel multiscale spatial-spectral convolutional network, or HyMSCN, was developed based on this
framework. The network is composed of two components, including a residual multiple receptive
field fusion block (ResMRFF) and feature pyramid. ResMRFF mainly focuses on extracting multiple
receptive field features with lightweight parameters to avoid overfitting (see Section 3.2). In Section 3.3,
the network structure containing the feature pyramid is developed and used to extract multiple
features that have strong semantics at different scales. The multiscale features are then fused for the
final classification.

3.1. Patch-Based Classification and Image-Based Classification for HSI

Most deep learning-based hyperspectral image classification methods generate image patches as
training data to extract spatial-spectral information. This is known as a patch-based classification for
hyperspectral imagery. The patch-based classification framework is displayed in Figure 4. The training
pixel and its neighbor pixels are selected as training patches. These patches are fed into the model to
predict the labels for the center pixel of each patch. This method is observed to generate patches pixel
by pixel during testing. Patches are then inputted into the model one by one and finally reshapes the
predicted labels to the spatial size of the input image.

Figure 4. An illustration of patch-based classification for hyperspectral image (HSI).

Obviously, the patch-based classification method has several disadvantages. Firstly, the patch size
restricts the receptive field of the classification model. In CNN-based hyperspectral image classification
models, the model cannot obtain information larger than the patch size even though the model is
composed of a series of 3×3 convolution layers. Secondly, the model must be redesigned if the patch
size changes. Most importantly, the optimal patch size is decided by the ground sample distance (GSD)
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of a remote sensing image. It is difficult to design a universal patch-based model to fit arbitrary images.
Thirdly, the pixel-by-pixel processing of the test phase is inefficient. The testing patches will consume
more memory than the original image because of the redundant information between different patches.
In addition, for CNN-based model, the testing process with one by one processing will consume more
bandwidth in the central processing unit (CPU) and graphics processing unit (GPU).

In this study, we propose an image-based classification framework as an alternative to overcome
the above issues associated with patch-based classification (Figure 5). The image-based framework
can utilize an arbitrary semantic segmentation model for hyperspectral image classification. Due to
the fact that only a small number of pixels with labeled information can be used for training in
HSIC. The training phase is different from the one of semantic segmentation model used in computer
vision [34–36]. In training phase, the image containing training samples is used as the input, and the
output is the predicted labels for all corresponding pixels. Since only part of pixels in this image has
labels, the position of labeled samples acting as a mask covers the output to select the corresponding
pixels. The loss is calculated between the selected pixels and labeled pixels. In testing phase, an image
is used as input and the corresponding labels are predicted for all the pixels. The image-based
classification framework can fully utilize the graphics processing unit during testing to accelerate the
inference process with non-redundant information. Moreover, the receptive field is not affected by the
patch size since there is no slicing operation, and the testing process is simple and straightforward.
This can directly output the results of the test image in one inference instead of pixel-by-pixel processing
each patch. This will save more computing resources than the patch-based classification framework.

Figure 5. An illustration of image-based classification for HSI. The model is similar to the segmentation
model used in computer vision which takes an input of an arbitrary size and produces an output with
a corresponding size. Additionally, the predicted labels should be selected in the output according to
the training pixel position during training.

3.2. Residual Multiple Receptive Field Fusion Block

The residual block is a popular CNN structure used in many computer vision tasks [49,50].
The method uses a skip connection to construct identity mapping which enables the block to learn the
residual function. The residual function can be formulated as: Xi=f (Xi-1)+Xi-1, where Xi-1 and Xi refer
to the input and output of one residual block and f (·) refers to the non-linear transformation. A typical
illustration of the residual block is shown in Figure 6. This method suggests that the forward and
backward signals can be directly propagated from one residual block to another block. This can enhance
the gradient transfer from top to bottom of the network and mitigate the gradient disappearance in the
deep network.
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Figure 6. An illustration of the residual block.

Following the strategy of the residual block, we designed a new block called ResMRFF which
consists of residual learning and multiple receptive field fusion block (MRFF). In the new block,
MRFF is used to replace the convolution layer of the original residual block to enlarge the receptive
field with fewer parameters. MRFF is designed to enlarge the receptive field of features with fewer
parameters based on the dilation convolution (Figure 7). The structure is designed following the
reduce-transform-merge strategy. Firstly, a 1×1 convolution layer is used to reduce feature dimension.
Secondly, dilation convolution layers are used to extract features with a variety of dilation factors.
Lastly, multiple features are fused using a hierarchical feature fusion strategy [51]. Larger receptive
field features are fused with smaller receptive field features to improve representation at different
spatial ranges.

Figure 7. A schematic of the residual multiple receptive field fusion block (ResMRFF). The basic
strategy of the multiple receptive field fusion block is represented as Reduce-Transform-Merge.

Due to only a small number of labeled samples are available in HSIC, it is reasonable to reduce
the number of parameters to avoid overfitting. For an input feature Xi−1 ∈ RHin×Win×Cin , a standard
convolution layer contains Cout kernels k ∈ Rk×k×Cin to produce output feature Xi ∈ RHout×Wout×Cout . H,
W, C, and k represent the height and width of the features, channels, and kernel sizes, respectively.
The number of parameters is Cin×k×k×Cout for a standard convolution layer. The MRFF module is
designed to follow the reduce-transform-merge strategy to reduce the number of parameters and to
make the network more computationally efficient [52–54]. Firstly, a 1×1 convolution layer is introduced
to reduce the feature dimension by a factor of 4. Secondly, dilated convolution layers with different
dilation factors are utilized to obtain multiple spatial features in parallel. Finally, multiple spatial
features are fused using a 1×1 convolution layer with a hierarchical feature fusion strategy. The MRFF

module is thus stated to have (C in)
2/4 + (kC in

)2
/4 + CinCout parameters. Conversely, a standard

convolution has Cin×k×k×Cout parameters. Generally, the MRFF has fewer parameters and this enables
the module to be faster and more efficient.

Additionally, MRFF can obtain multiple receptive field features. A standard convolution layer
has a k × k receptive field. Conversely, the receptive field of one dilated convolution layer is (k−1)d+1,
where k and d refer to kernel size and dilation factor. In our MRFF module, four different dilation
factors (1,2,3,4) are used and the receptive field of merged features is similar to Figure 8. MRFF employs
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multiple dilated convolutions to enlarge the diversity of features and remove the gridding artifact by
hierarchical fusion before concatenation of multiple features.

Figure 8. An illustration of the receptive field for the merged features in one MRFF block.

A dropout layer, instance normalization layer, and a ReLU non-linearity activation function
are added following MRFF to prevent overfitting and to improve the generalization of the network.
The skip-connection should be replaced by a 1 × 1 convolution layer to implement the operation
of an element-wise plus if Cin , Cout or stride , 1, where stride refers to the pixel shifts over the
input features. The stride is set to 1 or 2 in our method, and the corresponding illustration of each
situation is shown in Figure 9. ResMRFF enables the output feature size to stay the same as the input
when setting stride = 1. Conversely, the ResMRFF will down-sample the feature size to produce
hierarchical features at a low spatial scale when stride = 2. The pooling layer can also implement
the down-sample operation. However, the fixed-function for pooling is disadvantageous for learning
hierarchical features and a max-pooling or min-pooling operation can result in a loss of information.

Figure 9. An illustration of two ResMRFF blocks with different strides, where s refers to the convolution
stride and d refers to the dilation factor. (a) refers to the ResMRFF block designed with stride=1,
(b) refers to the ResMRFF block designed with stride=2.

3.3. Multiscale Spatial-Spectral Convolutional Network

Two networks were designed based on the ResMRFF module, HyMSCN-A, and HyMSCN-B
(Figure 10). Both networks were designed using the bottom-up pathway to compute hierarchical
features at several feature levels. The difference between these two networks relates to whether the
feature pyramid has been used.

In both networks, a 1×1 convolution layer, instance normalization layer, and non-linearity
activation function are combined to form the basic feature extraction module. The process is repeated
three times to extract spectral features from HSI.

The two networks are observed to contain different feature extraction and utilization abilities.
The first network (HyMSCN-A) is composed of several ResMRFF blocks with stride = 1. The spatial
size of all feature maps is the same since it does not contain any spatial scaling structure (see Figure 10a).
The network takes hyperspectral imagery as input and learns the high-level spatial-spectral features to
produce classification results. In comparison, the second network (HyMSCN-B) employs the feature
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pyramid structure to fully take advantage of the hierarchical features with different spatial scales as
shown in Figure 10b. There are several stages in the network with different feature levels, where
one stage refers to the blocks that produce features with the same spatial size. The output feature
maps of one stage are used as inputs in the next stage and are then transferred to one pyramid level.
Therefore, the feature pyramid is constructed based on the arrangement of multiscale features in the
pyramid shape.

Figure 10. An illustration of the proposed two networks, (a) HyMSCN-A and (b) HyMSCN-B.

The features of different pyramid levels are fused using a top-down pathway. This suggests that
a coarser-resolution but semantically stronger feature can be upsampled and merged with the feature
from a previous pyramid level. Here, bilinear interpolation is used to upsample coarser-resolution
features. Additionally, merged features are interpolated to the finest-resolution spatial size and
concatenated together. Finally, two 1×1 convolution layers, a normalization layer, and an activation
function are integrated to produce the output feature maps.

The output feature is sliced into a vector according to the position of training samples following
the proposed image-based classification described in Section 3.1. Cross entropy [55] is used to calculate
the loss between the vector labels and the corresponding true labels.

The parameters of the proposed networks are shown in Table 1. Here, the Indian Pines is used as
an example and the spatial size of this image is 145×145. The differences between the output sizes for
HyMSCN-A and the HyMSCN-B can be clearly observed. The output size for HyMSCN-A remains the
same, while HyMSCN-B features a multiscale output size. Furthermore, we set two feature dimensions
for each network to evaluate feature size performance. A-64 feature refers to the HyMSCN-A network
with a feature size of 64, and A-128 feature refers to parts of the HyMSCN-A network that contain
a larger feature size.
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Table 1. The parameter settings of the proposed networks. The same colors refer to the same pyramid levels.

Layer HyMSCN-A HyMSCN-B
Output1 Stride A-64 Feature A-128 Feature Output1 Stride B-64 Feature B-128 Feature

CNR2
×3 145 × 145 1 64 64 145×45 1 64 64

ResMRFF 145×145 1 64 64 73×73 2 64 64
ResMRFF 145×145 1 64 64 73×73 1 64 64
ResMRFF 145×145 1 64 64 37×37 2 64 64
ResMRFF 145×145 1 64 64 37×37 1 64 64
ResMRFF 145×145 1 64 128 19×19 2 64 128
ResMRFF 145×145 1 64 128 19×19 1 64 128
ResMRFF 145×145 1 64 128 10×10 2 64 128
ResMRFF 145×145 1 64 128 10×10 1 64 128

CNR - - - - 10×10 1 64 64
CNR - - - - 19×19 1 64 64
CNR - - - - 37×37 1 64 64
CNR - - - - 73×73 1 64 64
CNR - - - - 145×145 1 64 64

Note: 1 We used the spatial size of Indian Pines (145 × 145) as an example. 2 CNR refers to the convolution layer,
normalization layer and ReLU activation function layer.

4. Experiment Results

4.1. Experiment Setup

Three hyperspectral images were used to evaluate the performance of the proposed model
including Indian Pines, Pavia University, and Salinas.

(1) The first dataset included imagery of Indian Pines in Indiana and was gathered by the AVIRIS
sensor. It contains 145×145 size with 220 spectral bands with a range of 400–2500 nm. However,
20 spectral bands were discarded due to atmospheric absorption. The GSD was 20 m and the available
samples contained 16 classes as shown in Figure 11.

(2) The second dataset included imagery of Pavia University that was gathered by the ROSIS
sensor using a flight campaign in Pavia, Italy. It contained 610× 340 pixels and 115 spectral bands with
a range of 430–860 nm. However, 12 bands were discarded due to atmospheric absorption. The GSD
was 1.3 m. The color composite and reference data are displayed in Figure 12.

(3) The third dataset was collected by the AVIRIS sensor and was located in Salinas Valley,
California. The imagery contained 512 × 217 pixels with 224 spectral bands. A total of 20 water
absorption bands were discarded (nos. 108–112, 154–167, and 224). The GSD was 3.7 m per pixel and
the ground truth contained 16 classes shown in Figure 13.

The Kaiming weight initialization method [42] was adopted to initialize the parameters of the
proposed network. Considering the convergence speed and convergence accuracy, the network was
trained using an Adam optimizer [56] with the default parameters set as: β1 = 0.9, β2 = 0.999,
and = 10−8. Taking account of the training stability, the initial learning rate was set as 3× 10−4 after
selecting the optimal parameter. The learning rate decay was 0.9 per 500 epochs and the total epochs
was 2000. The batch size was set to one since only one input image was used in each experiment.
The PyTorch deep learning framework [57] was used to train the proposed network. The computing
environment consisted of the following specifications: i7-6700 CPU, 16 GB of RAM, and a GTX 1070
8GB GPU.
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Figure 11. Indian Pines imagery with (a) color composite, (b) reference data, and (c) class names.

Figure 12. Pavia University data: (a) color composite, (b) reference data, and (c) class names.

Figure 13. Salinas data: (a) color composite, (b) reference data, and (c) class names.

4.2. Experiments using the Indian Pines Dataset

Indian Pines data was used to compare the proposed model with other well-established models
such as the support vector machine (SVM), SSRN [23], 3DCNN [58], DCCNN [59], UNet [60],
and ESPNet [51]. SSRN, 3DCNN, DCNN were used as a means for comparing patch-based classification.
UNet and ESPNet were used as classic semantic segmentation methods for the image-based classification
network. Among these methods, SVM represents a typical classifier that only uses the information in
the spectral domain, and the grid search was used to tune the hyper-parameters of SVM.

In our first test, 30 samples per class were randomly selected with a total of 444 training samples.
This was a small training sample size that only accounted for approximately 4.3% of the total
labeled samples. Only half of the sample size in this class were randomly selected in training if the
number of samples of one class was less than 30. The overall accuracy (OA), average accuracy (AA),
and kappa coefficient (k) were used to assess the performance of different methods. For SSRN, 3DCNN,
and DCCNN, the patch size and optimizer methods were set as the original papers. Table 2 reports the
individual classification results of different methods. Figure 14 shows the corresponding classification
maps of different methods.
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Figure 14. Classification maps for Indian Pines data with 30 samples per class: (a) training samples,
(b) ground truth, and classification maps produced by different methods, including (c) SVM (67.46%),
(d) SSRN (78.66%), (e) 3DCNN (86.16%), (f) DCCNN (89.73%), (g) UNet (89.50%), (h) ESPNet (91.80%),
(i) HyMSCN-A-128 (92.68%), and (j) HyMSCN-B-128 (93.73%).

A number of observations can be made based on the above data. Firstly, SVM was observed to have
the worst performance. This indicates that classifiers that only use spectral information cannot achieve
high classification accuracy when using a small number of training samples. Secondly, image-based
classifiers (e.g., UNet, ESPNet, HyMSCN) provided higher classification accuracy compared to SSRN,
3DCNN, and DCCNN. This demonstrates that image-based classification is a powerful framework for
HSI. Thirdly, HyMSCN and ESPNet achieved superior results compared to UNet, proving that multiple
receptive fields features can improve classification accuracy (where ESPNet also contains multiple
dilation convolutions). Lastly, HyMSCN-B-128 provided the best results, thereby demonstrating
that a well-designed network combining multiscale and multi-level features is suitable for HSIC.
It should be noted that the classification map for HyMSCN-B-128 preserved the clear boundaries for
ground objects shown in Figure 14j. Although the classification results in each class do not achieve
the best accuracy, the overall classification accuracy is the highest. Compared with other methods,
the classification results of the proposed method are more balanced.

Table 2. Overall, average, k statistic, and individual class accuracies for the Indian Pines data with 30
training samples per class. The highest accuracies are highlighted in bold.

Class Train
(Test) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSC-A1 HyMSCN-B1

Alfalfa 30(46) 40.17% 75.41% 92.00% 83.64% 95.83% 97.87% 88.46% 92.00%
Corn-no till 30(1428) 60.45% 68.50% 82.28% 90.08% 83.68% 95.65% 91.10% 90.85%

Corn-min till 30(830) 54.72% 75.95% 72.50% 77.05% 88.11% 86.10% 86.37% 84.57%
Corn 30(237) 31.33% 67.16% 77.63% 85.25% 86.05% 89.39% 86.76% 94.42%

Grass-pasture 30(483) 78.95% 77.45% 91.07% 91.52% 94.22% 99.52% 94.29% 95.01%
Grass-trees 30(730) 90.45% 81.98% 97.10% 93.02% 96.92% 98.04% 94.31% 96.93%

Grass-pasture-m 14(28) 76.67% 96.55% 37.84% 30.43% 40.00% 47.46% 29.47% 62.22%
Hay-windrowed 30(478) 99.53% 92.02% 97.54% 97.15% 100.00% 95.98% 99.38% 99.17%

Oats 10(20) 45.45% 48.78% 80.00% 64.52% 80.00% 90.91% 71.43% 86.96%
Soybean-no till 30(972) 51.41% 68.28% 73.24% 79.98% 73.24% 80.21% 81.48% 88.14%

Soybean-min till 30(2455) 78.39% 88.54% 90.08% 93.58% 93.88% 88.24% 97.37% 97.06%
Soybean-clean 30(593) 62.85% 64.63% 94.89% 91.48% 88.80% 100.00% 97.44% 86.82%

Wheat 30(205) 92.61% 89.04% 97.10% 93.58% 90.71% 99.03% 99.51% 99.03%
Woods 30(1265) 92.20% 94.34% 95.57% 97.72% 99.39% 98.96% 98.13% 99.68%

Buildings/Grass 30(386) 41.78% 75.08% 76.56% 98.21% 88.40% 93.90% 98.44% 97.72%
Stone-Steel-Towers 30(93) 98.89% 68.38% 92.00% 76.03% 93.94% 89.42% 96.84% 97.89%

Overall accuracy 67.46% 78.66% 86.16% 89.73% 89.50% 91.80% 92.68% 93.73%
Average accuracy 68.49% 77.01% 84.21% 83.95% 87.07% 90.67% 88.17% 91.78%

k statistic 0.6362 0.7596 0.8429 0.8833 0.881 0.9065 0.9171 0.9287
1 HyMSCN-A and HyMSCN-B refer to the HyMSCN-A-128 and HyMSCN-B-128 networks, respectively.
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In our second test using the Indian Pines dataset, we validated the performances of our proposed
method using a different number of training samples. The sensitivity of the model to the number of
samples was evaluated by randomly selecting 10, 20, 30, 40, and 50 samples per class. Table 3 reports
the overall accuracy for these classification methods using different training samples. The results
reveal similar conclusions to the first experiment presented above. First, although the classification
accuracy of SVM can be improved by selecting optimal training samples to enhance the generalization
performance of classifier [61–63]. In our work, SVM was observed to have the worst classification
accuracy with the random non-optimized training samples. Secondly, image-based classifiers provided
superior performance compared to the patch-based method. Lastly, HyMSCN-B-128 achieved the
best accuracy in comparison to the other methods in each group. These results demonstrate that the
proposed method is both reliable and robust.

Table 3. The overall accuracies obtained from various classification methods for Indian Pines data
using different training samples. The best performances for each group are highlighted in bold.

Sample Classification Method

(Per Class) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSCN-A-128 HyMSCN-B-128

160(10) 58.42% 68.79% 67.58% 71.84% 74.03% 78.95% 76.22% 82.29%
320(20) 63.13% 73.57% 79.32% 86.76% 85.89% 86.82% 87.03% 87.07%
444(30) 67.46% 78.66% 86.16% 89.73% 89.50% 91.80% 92.68% 93.73%
584(40) 71.95% 85.35% 88.79% 91.53% 91.69% 94.40% 94.13% 94.59%
697(50) 72.54% 89.26% 90.49% 94.06% 94.83% 95.78% 95.26% 96.37%

4.3. Experiments Using the Pavia University Dataset

In this section, Pavia University dataset was used to compare the performance of different
classification methods. Firstly, 30 samples per class were randomly selected as training data with
a total of 270 samples (approximately 0.63% of the labeled pixels). Table 4 displays the overall
accuracy, average accuracy, k statistic, and individual accuracy. Figure 15 displays the corresponding
classification maps, training, and testing samples.

Figure 15. Classification map for Pavia University data with 30 samples per class: (a) training samples,
(b) ground truth, and classification maps produced by different methods, including (c) SVM (81.40%),
(d) SSRN (81.51%), (e) 3DCNN (72.79%), (f) DCCNN (82.19%), (g) UNet (90.64%), (h) ESPNet (91.71%),
(i) HyMSCN-A-128 (92.86%), and (j) HyMSCN-B-128 (96.45%).
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From Table 4, we can draw conclusions similar to the results of the Indian Pines experiment.
The HyMSCN-B-128 network achieved the highest individual classification accuracy in most of
the classes. Moreover, SSRN, 3DCNN, DCCNN, UNet, ESPNet, and HyMSCN provided a more
homogeneous classification map compared to SVM. Conversely, the SVM classification map contained
a large amount of salt-and-pepper noise. This demonstrates that the spatial-spectral classifier can greatly
improve classification performance by taking advantage of the spatial neighborhood information.

Table 4. Overall, average, k statistic, and individual class accuracy for Pavia University data with 30
training samples per class. The highest accuracies are highlighted in bold.

Class Train
(Test) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSCN-A1 HyMSCN-B1

Asphalt 30(6631) 93.78% 89.53% 98.77% 98.45% 94.25% 98.64% 99.44% 99.55%
Meadows 30(18649) 91.07% 98.54% 99.66% 99.36% 99.85% 99.51% 99.99% 99.67%

Gravel 30(2099) 71.87% 56.11% 39.76% 57.16% 56.08% 68.90% 89.53% 95.41%
Trees 30(3064) 81.36% 87.17% 76.80% 75.25% 95.50% 93.22% 88.55% 95.86%

Painted metal sheets 30(1345) 97.38% 71.01% 97.39% 92.00% 97.96% 97.25% 98.75% 99.78%
Bare Soil 30(5029) 57.18% 70.53% 44.09% 55.26% 78.26% 79.04% 70.29% 92.82%
Bitumen 30(1330) 47.34% 59.75% 73.55% 82.47% 73.20% 71.70% 95.82% 99.70%

Self-Blocking Bricks 30(3682) 81.47% 71.76% 78.24% 87.67% 97.95% 86.22% 95.17% 81.71%
Shadows 30(947) 99.89% 77.71% 97.83% 98.85% 93.20% 96.53% 100.00% 99.68%

Overall accuracy (OA) 81.40% 81.51% 72.79% 82.19% 90.64% 91.71% 92.86% 96.45%
Average accuracy (AA) 80.15% 75.79% 78.45% 82.94% 87.36% 87.89% 93.06% 96.02%

k statistic 0.7590 0.7716 0.6722 0.7792 0.8798 0.892 0.9078 0.9535
1 HyMSCN-A and HyMSCN-B refer to the HyMSCN-A-128 and HyMSCN-B-128 networks, respectively.

The performances of the classification methods were further assessed using different training
samples of Pavia University data. A training set was generated by randomly selecting 10, 20, 30,
40, and 50 samples per class. Table 5 displays the overall accuracy for each group. The proposed
network was observed to achieve a high classification accuracy with a limited number of training
samples. For instance, HyMSCN-B-128 yielded a 95.80% overall accuracy when only using 20 training
samples per class. A comparison of the proposed network with other methods reveals that multiscale
spatial features can capture spatial neighbor structure information at multiple feature levels and greatly
improve classification accuracy.

Table 5. The overall accuracies produced by various classification methods for Pavia University data
using a different number of training samples. The best performances for each group are highlighted
in bold.

Sample Classification Method

(Per Class) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSCN-A-128 HyMSCN-B-128

90(10) 72.78% 75.00% 67.32% 69.39% 79.03% 81.28% 82.33% 84.65%
180(20) 78.33% 79.81% 68.91% 74.62% 80.75% 87.11% 88.90% 95.80%
270(30) 81.40% 81.51% 72.79% 82.19% 90.64% 91.71% 92.86% 96.45%
360(40) 83.28% 85.87% 80.07% 83.45% 91.52% 95.14% 96.54% 98.23%
450(50) 85.64% 91.73% 86.57% 90.44% 96.36% 96.77% 98.46% 99.50%

4.4. Experiments Using the Salina Dataset

In this experiment, we first randomly selected 30 samples per class with a total of 480 samples
(approximately 0.88% of the labeled pixels) to form the training set. The classification map and results
obtained from different methods are shown in Figure 16 and Table 6. The HyMSCN-B-128 network
was observed to provide the best performance. The proposed HyMSCN-B was observed to enhance
the utilization of features from low-to-high levels in the network and improved the representation of
multiscale features. Moreover, SSRN provided the worst performance, which indicates the instability
and sensitivity of the method. HyMSCN-A also obtained higher classification accuracies relative to
UNet and ESPNet by integrating local neighbor spatial information. HyMSCN-A and HyMSCN-B
displayed more homogeneous classification maps with a clearer edge compared to the other methods.
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Figure 16. Classification maps for Salina data with 30 samples per class: (a) training samples,
(b) ground truth, and classification maps produced by different methods, including (c) SVM (88.48%),
(d) SSRN (68.55%), (e) 3DCNN (80.99%), (f) DCCNN (82.42%), (g) UNet (84.38%), (h) ESPNet (87.85%),
(i) HyMSCN-A-128 (97.05%), and (j) HyMSCN-B-128 (97.31%).

Table 6. The overall, average, k statistic, and individual class accuracies for the Salina dataset with 30
training samples per class. The best results are highlighted in bold typeface.

Class Train
(Test) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSCN-A-128 HyMSCN-B-128

Weeds_1 30(2009) 100.0% 96.08% 81.75% 86.04% 100.00% 99.95% 100.00% 100.00%
Weeds_2 30(3726) 98.31% 84.44% 63.46% 66.73% 99.76% 100.00% 100.00% 99.97%
Fallow 30(1976) 96.84% 87.23% 69.81% 78.31% 88.68% 98.91% 99.31% 99.90%

Fallow_P 30(1394) 94.62% 93.80% 96.08% 96.66% 48.96% 61.11% 90.23% 96.07%
Fallow_S 30(2678) 98.82% 83.29% 85.24% 93.72% 77.14% 72.03% 99.69% 99.47%
Stubble 30(3959) 99.92% 84.01% 90.32% 94.94% 99.22% 99.42% 100.00% 99.92%
Celery 30(3579) 97.86% 90.24% 95.48% 84.94% 96.94% 99.62% 99.69% 99.11%
Grapes 30(11271) 77.29% 74.69% 85.05% 88.18% 87.45% 87.53% 99.29% 98.64%

Soil 30(6203) 98.79% 96.89% 81.87% 95.62% 94.74% 99.73% 99.92% 99.53%
Corn 30(3278) 85.24% 51.88% 76.55% 78.78% 88.78% 94.01% 92.74% 88.40%

Lettuce_4wk 30(1068) 79.75% 28.17% 62.67% 63.40% 93.97% 91.98% 87.41% 86.40%
Lettuce_5wk 30(1927) 95.71% 95.09% 91.82% 78.29% 66.33% 69.13% 99.64% 99.84%
Lettuce_6wk 30(916) 95.75% 44.04% 59.17% 49.56% 95.31% 81.21% 99.46% 93.27%
Lettuce_7wk 30(1070) 83.80% 19.30% 77.90% 77.25% 98.97% 89.70% 98.70% 97.03%
Vinyard_u 30(7268) 68.96% 62.33% 77.70% 76.61% 63.16% 75.37% 88.83% 93.62%

Vinyard_vertical 30(1807) 99.35% 64.61% 97.36% 93.81% 100.00% 92.32% 99.94% 99.94%

Overall accuracy 88.48% 68.55% 80.99% 82.42% 84.38% 87.85% 97.05% 97.31%
Average accuracy 91.94% 72.26% 80.76% 81.43% 87.46% 88.25% 97.18% 97.31%

k statistic 0.8718 0.6566 0.7892 0.8065 0.8261 0.8649 0.9672 0.9701

A second test of the Salina data was used to evaluate the performance of various classification
methods using a different number of training samples. These were randomly selected from 10 to 50
samples per class. Table 7 shows the overall accuracy produced by various classifiers. As expected,
the classification accuracy increased with the number of training samples. The patch-based method
provided unstable performance for the Salina dataset. This can be explained by the patch-based
classification not being able to acquire a larger range of receptive field features, especially in the case
of limited training samples. However, the proposed HyMSCN-A-128 and HyMSCN-B-128 networks
achieved robust performance and high accuracy along with local spatial consistency and multiscale
feature representation.

The above results suggest that the proposed HyMSCN method achieves superior individual and
overall classification performance and provides more homogeneous classification maps with a clear
object edge. The classification results for the different number of training samples also demonstrate the
robustness of the proposed method.
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Table 7. The overall accuracies produced by different classification methods for the Salina dataset using
a different number of training samples. The best results are highlighted in bold type.

Sample Classification Method

(Per Class) SVM SSRN 3DCNN DCCNN UNet ESPNet HyMSCN-A-128 HyMSCN-B-128

160(10) 83.14% 62.64% 76.34% 78.99% 74.58% 76.01% 94.71% 94.49%
320(20) 87.11% 66.16% 79.05% 80.12% 83.63% 85.15% 94.82% 96.51%
480(30) 88.48% 68.55% 80.99% 82.42% 84.38% 87.85% 97.05% 97.31%
640(40) 90.71% 77.80% 86.50% 87.37% 91.84% 93.03% 98.15% 99.38%
800(50) 91.23% 86.05% 87.41% 89.96% 92.79% 95.48% 98.38% 99.45%

5. Discussion

5.1. Comparing Time Consumed by Patch-Based Classification and Image-Based Classification

The training and testing times are investigated to compare the efficiency of patch-based and
image-based classification. SSRN [23] and HyMSCN-B-64 were used as examples for patch-based
classification and image-based classification, respectively. For a fair comparison, the maximum
batch size was set based on the experimental conditions for SSRN. Conversely, the batch size for
HyMSCN-B-64 was set to 1 since the image-based classification processes an entire image at one time.
For these tests, 50 samples per class were randomly selected as training samples. Only half of the
sample size in this class was used in training if the number of samples for one class was less than 50.
Furthermore, we also investigated the effect of different patch sizes on training and testing times.

Table 8 lists the training and testing times for these two networks. Clearly, the training times of
HyMSCN were 6 to 10 times shorter than those of SSRN. The number of training samples for Pavia
University was 450, and one iteration contained all training samples when we set the batch size as 450
for SSRN. Despite this fact, SSRN training was still slower than HyMSCN. Similarly, a very large batch
size was set for SSRN in the testing phase, and the results revealed the method lasted 160 to 800 times
longer than HyMSCN. It can be imagined that the patch-based classification method will consume
more time when processing a larger image. This is because adjacent patches contain a lot of redundant
information and a large number of computer resources are wasted on repeated calculation. In contrast,
there is no redundant information in the image-based classification and the processing of testing phase
is faster than the patch-based classification.

Table 8. The training and testing times for patch-based and image-based classification. Each control
group is highlighted with the same color.

Indian Pines Pavia University Salinas

SSRN SSRN HyMSCN SSRN SSRN HyMSCN SSRN SSRN HyMSCN

Patch Size 7 9 - 7 9 - 7 9 -
Train Maximum Batch Size 510 420 1 450 450 1 620 460 1
Train Time of One Epoch (s) 2.76 3.13 0.34 1.35 1.36 0.62 3.12 3.28 0.56
Test Maximum Batch Size 680 530 1 2150 1580 1 2150 1620 1
Test Time of One Epoch (s) 25.65 35.40 0.11 109.43 339.67 0.42 64.18 115.69 0.41

5.2. Evaluating the Multiple Receptive Field Fusion Block

The effectiveness of the multiple receptive field fusion block (MRFF) was evaluated when using
HyMSCN-A-64 as the network backbone. For the compared network, the dilation factors of all MRFF
were set to 1 and the changed network is called HyMSCN-N. A total of 50 samples per class were
randomly selected as training samples for each dataset and the total epochs were set to 1000.

Figure 17 displays the results of the overall accuracy for over 1000 training epochs. For these
three datasets, HyMSCN-A-64 achieved superior results compared to HyMSCN-N by approximately
3%, 2.7%, and 1.1% for Indian Pines, Paiva University, and Salinas data, respectively. These results
suggest that MRFF with multiple dilation factors can improve the classification performance of all
three datasets.
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Figure 17. An evaluation of the overall accuracy for multiple receptive field fusion (MRFF): (a) Indian
Pines, (b) Pavia University, and (c) Salinas.

In the MRFF block, the number of dilation factors also means the number of channels where
different scale features were extracted. Therefore, the performances of different number dilation factors
were evaluated for the MRFF block and the HyMSCN-B-64 was used as the backbone. The classification
results for the different number of dilation factors are shown in Figure 18. In this experiment, seven
kinds of combination for the dilation factors were considered including: (1), (1,2), (1,2,3), (1,2,3,4),
(1,2,3,4,5), (1,2,3,4,5,6) and (1,2,3,4,5,6,7), and 30 samples per class were selected as training samples.

Figure 18. Test accuracy for the different number of dilation factors in MRFF block. (a) Indian Pines
data, (b) Pavia University data, (c) Salina data

With the increasing of number dilation factors, the classification accuracy also improves.
Comparing with a small number of dilation factors, a larger number of dilation factors leads to
extract more diverse features. However, the classification accuracy begins converge when the number
of dilation factors reaches 5. This means the representation of the used model achieves the maximum
under the condition of limited training samples. Although a larger number of dilation factors leads
to achieving a higher precision, we set the number of dilation factors to (1, 2, 3, 4) as a compromise
trade-off between the number of parameters and efficiency of the model.

5.3. Evaluating the Feature Pyramid

To validate the effectiveness of the feature pyramid structure, we compare the performance of
proposed networks: HyMSCN-A and HyMSCN-B. As illustrated in Section 3.3, HyMSCN-A used an
MRFF block with the same feature size to construct the network and did not contain any multiscale
features or feature pyramid structure. Conversely, HyMSCN-B included both multiple receptive field
features and multiscale features. Furthermore, the performance of different feature dimensions was
also investigated, including HyMSCN-A-64, HyMSCN-A-128, HyMSCN-B-64, and HyMSCN-B-128.
A total of 50 samples per class were used as training data. The training process for each network was
repeated five times using the same training samples. Figure 19 displays the average overall accuracy.

HyMSCN-B-64 and HyMSCN-B-128 featured an improved classification accuracy compared with
HyMSCN-A-64 and HyMSCN-A-128. Furthermore, it is worth noting that increasing the number of features
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did not significantly improve the classification accuracy. In the case of small samples, the major factor that
determined classification accuracy was the diversity and validity of features rather than the number of features.

Figure 19. The overall accuracy for different networks (A-64, A-128, B-64, and B-128 refer to HyMSCN-A-64,
HyMSCN-A-128, HyMSCN-B-64, and HyMSCN-B-128, respectively). (a) Indian Pines, (b) Pavia University,
and (c) Salinas.

6. Conclusions

Hyperspectral image is characterized by an abundance of spectral features and spatial structure
information. It has been demonstrated that convolutional neural networks have a strong ability
to extract spatial-spectral features for classification and feature representation. In this context,
we proposed an image-based classification framework for the hyperspectral image to overcome
the inefficiency of patch-based classification. The results revealed that the processing speed of the
image-based classification framework was 800 times faster than the patch-based classification for the
test set, especially for larger hyperspectral images. Different regional scales are known to contain
complementary but interconnected information for classification. In this context, the HyMSCN
network is designed to integrate multiple local neighbor information and multiscale spatial features.
Experiments performed on three hyperspectral images suggest that the proposed HyMSCN network
can achieve a high classification accuracy and robust performance.
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Abbreviations

HSI Hyperspectral image
HSIC Hyperspectral image classification
HyMSCN Multiscale spatial-spectral convolutional network for hyperspectral image
MRFF Multiple receptive field feature block
ResMRFF Residual multiple receptive field fusion block
CNN Convolution neural network
RNN Recurrent neural network
GAN Generative adversarial networks
ASPP Atrous spatial pyramid pooling
HDC Hybrid dilated convolution
GSD Ground sample distance
CPU Central processing unit
GPU Graphics processing unit
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SVM Support vector machine
OA Overall accuracy
AA Average accuracy
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