JANJUA, G.M.W., FINLAY, D., GULDENRING, D., HAQ, A.U. and MCLAUGHLIN, J. 2019. A low-cost tonometer
alternative: a comparison between photoplethysmogram and finger ballistocardiogram and validation against
tonometric waveform. IEEE access [online], 7, pages 142787-142795. Available from:
https://doi.org/10.1109/ACCESS.2019.2944212

A low-cost tonometer alternative: a comparison
between photoplethysmogram and finger
ballistocardiogram and validation against

tonometric waveform.

JANJUA, G.M.W., FINLAY, D., GULDENRING, D., HAQ, A.U. and
MCLAUGHLIN, J.

2019

mAl R This document was downloaded from

@RG U https://openair.rgu.ac.uk



https://doi.org/10.1109/ACCESS.2019.2944212

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 2, 2019, accepted September 19, 2019, date of publication September 27, 2019,
date of current version October 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2944212

A Low-Cost Tonometer Alternative: A Comparison
Between Photoplethysmogram and Finger
Ballistocardiogram and Validation Against
Tonometric Waveform

GHALIB MUHAMMAD WAQAS JANJUA", (Member, IEEE), DEWAR FINLAY ", (Member, IEEE),
DANIEL GULDENRING, ATTA UL HAQ, AND JAMES MCLAUGHLIN™, (Member, IEEE)

Nibec Nanotechnology and Bioengineering Centre (NIBEC), Ulster University, Belfast BT37 0QB, U.K.
Corresponding author: Ghalib Muhammad Wagqas Janjua (g.janjua@ ulster.ac.uk)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program through the Marie Sklodowska-Curie
Grant under Agreement 676201.

ABSTRACT Hypertension is a silent killer and one-third of its sufferers are unaware of its presence.
Tonometric devices, like SphygmoCor, Compilor etc., represent the gold standard in pulse wave veloc-
ity (PWV) and augmentation index (AIx) measurements which are limited by their high cost and operational
accuracy. Here, we present an alternative technology that is low cost and may be suitable for the ‘wearable’
setting. We undertook the comparisons of arterial waveforms obtained by photoplethysmogram (PPG)
and finger ballistocardiogram (BPP) sensors which were then validated against a SphygmoCor tonometric
device. Specifically, the agreement analysis of the augmentation, stiffness, reflection, elasticity, ejection
elasticity and dicrotic reflection indexes showed that arterial distension waveform sensing using BPP sensor,
has precision and accuracy similar to that of a SphygmoCor tonometric device whilst outperforming the
volumetric arterial flow sensing using a PPG sensor, in every index. BPP indexes showed the 1 fit of up to
0.95 and Spearman’s rank correlation up to 0.91 when validated against the SphygmoCor tonometer. The
estimated individual transfer functions for the BPP sensor, with reference to SphygmoCor, have accuracies
of above 85% and 98% for 2 and 4-element windkessel (WK) models, respectively. The findings reported in
this work may also be useful for the development of systems that are beneficial in the early and/or routine
detection of hypertension.

INDEX TERMS Augmentation index (Alx), finger ballistocardiogram (BPP), cuff-less blood pressure,
electrocardiogram (ECG), photoplethysmogram (PPG), pulse wave velocity (PWV), stiffness index (SI),

reflection index (RI).

I. INTRODUCTION

Hypertension is a silent killer and reported to be prevalent
in 1.13 billion adults worldwide in 2015. Arterial stiffness
[1], [2] is one of the leading causes of hypertension and car-
diovascular diseases. Aortic stiffness increases the burden on
the left ventricle and consistent and/or longer duration of the
condition results in lower ejection fraction. Eventually, this
results in wear and tear to the heart muscles and increases the
chances of heart failure, seizures, and strokes events. It causes
chronic cardiovascular diseases which in turn significantly
increases the cost of healthcare. Earlier detection can control
the cardiovascular morbidity & mortality and their forerun
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interventions can cure the issue through minor changes to
daily lifestyle that do not require further medical intervention
—even in the form of prescribed medications [3].

Many new technologies [1], [4] have been developed and
old technologies augmented in order to provide bio-signal
monitoring and the associated analyses of arterial waveforms,
in a wearable device for the assessment of augmentation
indexes [5], [6]. However, the detection of hypertension
through the monitoring of blood pressure has not seen the
advances that other areas such ECG and heart rate monitoring
because the technology that allows easy non-obtrusive reli-
able blood pressure monitoring has yet to be realized.

The aim of the presented work is to investigate
novel unobtrusive/modest methods for the assessment of
arterial stiffness which could, in turn, be used to predict
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cardiovascular risk. This study collates a novel dataset which
compares arterial stiffness indexes on BPP and PPG arterial
waveforms and validates against the SphygmoCor tonometric
arterial waveform. This novel dataset compares and validates
the arterial waveforms at the distal phalanx to radial arterial
waveform. Their agreement analysis examines the functional
parameters™ such as stiffness index (SI), reflection index
(RI), aging index (AI), augmentation index (Alx), elasticity
index (EI), cardiac ejection elasticity index (EEI) and dicrotic
reflection index (Dai). The results are reproducible with an
accuracy comparable to the maned operated SphygmoCor
tonometer device.

Il. BACKGROUND

In 1877 J. W. Gordon first illustrated the concept of the
ballistocardiogram (BCG) in this paper where he showed the
movement of the needle, due to blood ejected from the heart,
whilst standing on a weight scale [8]. In more recent years,
there has been a renewed interest in the BCG with more recent
studies illustrating the effect of embedding BCG technology
in pervasive items such as chairs, beds, weight scale and body
worn items [7].

In 1903 the Noble Laureate Willem Einthoven invented the
ECG which measures the electrical activity of the heart and
the most commonly practiced test in diagnosing heart related
diseases.

In 1938 Hertzman discovered the relationship between
backscattered light and volumetric blood flow, the phe-
nomenon known as photoplethysmography [8]. It non-
invasively measures the oxygenation saturation level which
are used in primary health care systems daily.

In 1862 Von Graefe made the indentation tonometer to
measure the pressure of the eyeball and in 1867 his pupil
Weber made the applanation tonometer [9]. Goldmann appla-
nation tonometry principle states that when an artery is flat-
tened against the bone by a force, until its diameter becomes
zero, then the internal pressure is equal to the externally
applied pressure [10].

This study focuses on the assessment of the arterial
stiffness to keep the track of vital signs in a wearable set-
ting through a subject normal day routine. The blood pres-
sure (BP) is a key parameter to diagnose hypertension and
arterial stiffness is a pre-cursor to this stage. This study is part
of our continuing research [11] and future works are planned
to test hypertensive subjects in a clinical environment.

. MATHEMATICAL BACKGROUND

The heart pumps the blood in a non-continuous way to the
aorta, which works under WK principle (electrical analogy
of RC parallel circuit shown in figure 1 and described in
equations (1&2) and forms the continuous flow.

P(t) = 1(t)"r + Pc(1) ey
1) = Pl dPc() )
) =— 0 @
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FIGURE 1. An electrical analogy of 3-element Windkessel model of an
arterial branch.

where arterial flow analogous to electrical model parameters
are: ‘P(¢)’ is an aorta blood pressure in mmHg, ‘I1(¢)’ is a
blood flow from heart in cm3/s, ‘r’ is an aortic blood flow
resistance in mmHg x s/cm?, P.(r)’ is an aortic compliance
in cm3/mmHg, ‘C’ is an arterial compliance in cm?/mmHg
and ‘R’ is a systematic arterial system peripheral resistance
in mmHg x s/cm?>.

By using state space canonical representation and the
Laplace transformation, it is possible to describe the transfer
function of the 3-element WK model as:

H(s) = +r 3)

RCs +1

Propagation of PWV depends on the elasticity of the arter-
ies i.e. stiffer the arteries the higher the PWV. This relation-
ship is described in Moens-korteweg (equation 4) [12].

Eh
pd

PWV = )
where, ‘E” is a Young’s modulus of the arterial wall; ‘A’ is
the wall thickness; ‘d’ is the arterial diameter and ‘p’ is the
blood density.

Pulse pressure is the pulse height of an arterial wave-
form which is the volumetric difference between systolic and
diastolic peaks which inherit the hemodynamic characteris-
tics. Waveform analysis can demonstrate the outcome of the
hemodynamic parameter and arterial stiffness indexes.

IV. MATERIAL AND METHODS

The Biopac MP36R unit (Biopac System, USA) was used
for the simultaneous acquisition of electrocardiogram (ECG),
photoplethysmogram (PPG), SphygmoCor tonometer (SPH)
and finger ballistocardiogram (BPP) signals. The acquisition
device has four synchronized acquisition channels which
digitize the data at a sample rate of 2 kHz with a resolution
of 24-bits, in real-time. The acquisition device is serially
connected to a PC (Windows 10 OS) through AcqKnowledge
4 software which enables data analysis and export. The sys-
tem block diagram is shown in Figure 2.

We captured the ECG signal which provided the reference
location of the cardiac cycles for analyzing the rest of the
captured signals. Three electrodes were placed proximally
(i.e. on the left shoulder, right shoulder and at the pubis) to
capture Einthoven lead-1. The chest area provides the stable
anchoring position for the ECG signal which limits noise and
motion artefacts. Before placing the electrodes, the subject’s
skin was cleaned with non-alcoholic wipes and hair was
removed to make a good surface contact. Biopac SS2LB lead

VOLUME 7, 2019



G. M. W. Janjua et al.: Low-Cost Tonometer Alternative: Comparison Between PPG and Finger BCG

IEEE Access

SphygmoCor
Tonometer

—F
'
SSOLA ‘“

BPP sensor Piezo Film

LDT1-028K

PPG sensor ECG sensor
Lab Amplifier  gg41.A SS2LB

X

SSOLA '“ ]

Biopac MP36R

FIGURE 2. The signal acquisition system block diagram.

TABLE 1. Configuration parameters for piezo file lab amplifier.

Mode Voltage—1G (50pF)
Filter low frequency 0.1Hz
Filter high frequency 10Hz
Gain 10dB typical
Power 9V Battery

was used to capture the data on channel 1 of Biopac MP36R
unit.

We placed the PPG sensor at the distal phalanx of the
index finger, to capture the volumetric flow of the radialis
indicis artery. A photodiode of 960 nm wavelength was used
to illuminate the finger area and changes were captured at
a photodetector, corresponding to the optical absorption in
volumetric blood flow. The wavelength of 960 nm penetrates
the greatest depth in hypodermis layer [13] which gets the
response from radialis indicis artery at the distal phalanx
in the index digit. The reflectance sensing technique pro-
vided enough backscattering for the experiment. The skin
of a subject was cleaned with alcoholic wipes before sensor
placement. Biopac SS4LA lead was used to capture the data
on Channel 2 of Biopac MP36R unit.

We used a Polyvinylidene Fluoride (PVDF) piezoelectric
sensor [14] to measure the distension waveform of radialis
indicis artery due to pulsating blood flow (named as finger
ballistocardiogram (BPP)). The PVDF piezoelectric sensor
(Measurement Specialist Ltd., USA) was used and its output
was interfaced to an amplifier (Piezo Film Lab amplifier by
Measurement Specialist). The sensor surface was insulated
with electrostatic tape to isolate it from skin contact. The
sensor amplifier setting is shown in table 1. The output of
an amplifier was interfaced with SS9LA lead through a BNC
cable at Channel 4 of Biopac MP36R unit. The sensor was
wrapped on top of the PPG sensor fixture and strapped around
the distal phalanx of the index finger. The stacking of the
BPP sensor over the PPG sensor gave the vertical spatial
alignment for a single point simultaneous acquisition of the
waveforms. The configuration of BPP and PPG sensors on
the index finger is shown in Figure 3.

The SphygmoCor (AtCor Medical, Australia) tonometry
system’s (SPH) limited version, with the analog output of
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FIGURE 3. The stacking of BPP and reflective PPG sensors on index finger
lateral view (on left) and cross-sectional view (on right).

FIGURE 4. The 3D printed fixture to hold the wrist (on right) and
acquisition scenario (left).

tonometer, was used for capturing applanation tonometric
data at the radial artery. The output of the system was acquired
with the SS9LA interface, as an analog signal, at channel 3
of the Biopac MP36R unit. We selected the radial artery
for applanation across the radius bone. We used a micro-
manipulator, with six degrees of freedom, for the unaided
human operation to achieve a consistent minimum acceptable
operator index of 85%. The micromanipulator provided the
best repeatability and accuracy in the signal acquisition in
our experiment. The radial artery at the wrist was propped
with the help of a semi-circular fixture. We 3D printed a
fixture, using a Fortus 380mc 3D printer, semi-circular wrist
clamp for subjects as shown in Figure 4. The radial artery
was palpated and marked to align the tip of the tonometer
accurately. For each subject, tonometer vertical pressure was
adjusted manually by observing the saturation/clipping in the
arterial waveform in the SphygmoCor system suite.

A Huntleigh Smartsigns LitePlus Vital Signs Monitor was
used to measure the brachial blood pressure of subjects
with medium size arm cuff in a seated posture. The Nokia
Body Cardio scale was used to measure subject’s weight in
kilograms. The subject’s height was measured with a wall
mounted height measurement scale. The Subject’s mood and
time since food and coffee were last ingested, was recorded
before measurement. All the sensors were placed on the
subject’s left-hand index digits. The room temperature was
controlled at 22° C.

The study compared with dimensionless units as wave-
forms were normalized and we have not quantized and/or
quantified the sensor’s waveforms with reference to blood
oxygenation and pressure levels in the artery. We have
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FIGURE 5. Flow chart of data collection protocol.

FIGURE 6. The arterial waveforms signal acquisition environment of the
subject 11 - same for all of the subjects in the study.

neglected the hydrostatic and gravitation effect by keeping
the same height and posture consistent across all the subjects.

We have conducted this study in 14 healthy volunteers of
age 3616 years with mixed ethnic background. For this study,
ethics of experiment followed the Helsinki declaration and
approval was obtained by the local research ethics committee,
IRAS Project ID 166742. Subjects were asked to refrain from
consuming alcohol for 36 hours before the data collection.
They were also instructed not to take any food meal or
coffee 2 hours before the data collection. The study protocol
is shown in Figure 5 and acquisition environment is shown
in Figure 6.

V. FIDUCIAL ANALYSIS

The captured arterial waveform plot of SPH, PPG and BPP
signal is shown in Figure 7. The fiducial points [15] of the
wave are marked in the Figure 8 and their descriptions are:
‘S’ represents the diastolic peak of blood pulse in the artery
— it shows the aortic valve opening point and lowest pressure
of blood flow; ‘P’ represents the systolic peak of blood flow
in the artery — it shows the highest pressure point of the
blood flow; ‘T’ represents the tidal wave of blood flow in
the artery — it shows the reflected wave by smaller arteries;
‘C’ represents the incisura wave of blood flow in the artery —
it shows the aortic valve closure; ‘D’ represents the dicrotic
wave of blood flow in artery — it shows the reflected pressure
wave.

The fiducial points [5] of the second derivative, also called
accelerated plethysmography (APG), are shown in Figure 9.
APG waveforms are: ‘a-wave’ is a pre-systolic positive
peak of APG; ‘b-wave’ is the pre-systolic negative peak of
APG; ‘c-wave’ is the post-systolic crest of APG: ‘d-wave’
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FIGURE 9. The APG waveform representing the fiducial locations (a, b, c,
d, and e) as indicated in the graph.

posts systolic trough and ‘e-wave’ align with incisura wave.
In healthy subjects, ratios of b-wave with respect to a-wave
increase with age and vice versa for rest of the waves [15].
Information regarding arterial indexes can be found in sup-
plementary document.
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shows 1.96SD of agreement analysis.

V1. DIGITAL SIGNAL PROCESSING

The data was initially recorded/stored in raw ascii text for-
mat then data was imported into the MATLAB platform

VOLUME 7, 2019

(Mathworks, USA) for signal processing. The data was man-
ually inspected and cropped to remove signal noise due to
motion artefact. The PPG, SPH and BPP signal were filtered
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FIGURE 11. The regression analysis of arterial indexes, SPH against BPP waveform indexes (on top) and SPH against PPG waveform
indexes (on bottom), respectively for each pair of rows (doesn’t include Rl index due to in significant correlation values).

4) The ensemble average of the PPG, BPP and SPH
signals were calculated at R-peak on 10 cardiac cycles;
arterial waveform width for each cardiac cycle was
set to 1.4 times of R-R interval for the respective
cycle

SPH, BPP and PPG foot, peak, tidal, dicrotic notch
peak and foot fiducial points were detected

The SI, RI, Al, Alx, EI, EEI and Dai indexes were
calculated, see the supplementary document for calcu-
lation of indexes.

Thr agreement analysis was performed via Bland-
Altman analysis and verified by weighted Kappa for
BPP and PPG waveform indexes against SPH wave-
form indexes, individually.

with a least square technique using a Savitzky-Golay filter,
as it is better than FIR filter in preserving higher frequency
component of signal, filter with -3db at 41Hz. The Pans-
Tompkins algorithm [16] was used to detect and mark the
ECG R-wave and this was taken as the gating location of
each cardiac cycle for rest of the arterial signals. Data SNR
got increased in the arterial waveform signals by ensemble
averaging for 10-second windows at R-peak of ECG for the
signal which were within a standard deviation of £1. The
following algorithm steps was implemented on steady periods
of cohort data, steps are as follows:

1) Signal pre-processing and filtering

2) Detrending and normalization of the signals

3) ECG R-peak was detected

5)

6)

7)

142792 VOLUME 7, 2019
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TABLE 2. The bland-altman and kappa analysis, SPH against BPP on left and SPH against PPG on right.

BPP Indexes Vs SPH Indexes PPG Indexes Vs SPH Indexes

Kappa Systematic Difference Limit of Agreement Kappa Systematic Difference Limit of Agreement
Ind LoA Mean sD Lower 95% CI Upper 95% CI LoA Mean sD Lower 95% CI Upper 95% CI
limit Limit limmat Limit

RI 0.1407 0.0111 0.0032 0.0028 -0.0023 -0.0052 0.0087 0.0059 -0.0496 0.0247 0.0063 -0.0001 -0.0124 -0.0188 0.0123 0.0059
to to to to

0.0005 0.0116 -0.0060 0.0187

Alx 0.2425 0.0203 0.0063 0.0052 -0.0038 -0.0081 0.0164 00112 0.2543 0.0374 0.0095 0.0061 -0.0126 -0.0222 0.0247 0.0151
to to to to

0.0014 0.0216 -0.0029 0.0343

SI 0.3950 0.0923 -0.0356 0.0236 -0.0817 -0.1056 0.0106 -0.0133 -0.0445 0.4082 0.1041 -0.0413 -0.2453 -0.3507 0.1628 0.0575
to to to to

-0.0579 0.0344 -0.1400 0.2682

Al 0.5596 0.1089 -0.0074 0.0278 -0.0619 -0.0859 0.0470 0.0189 0.2394 0.1906 -0.0486 -0.0264 -0.1217 -0.1709 0.0689 0.0197
o to to to

-0.0338 0.0751 -0.0725 0.1181

Dai 0.2705 0.2415 -0.0635 0.0616 0.1842 -0.2465 0.0573 -0.0050 0.0539 0.4389 0.1120 -p.0111 -0.2306 -0.3438 0.2083 0.0951
to to to to

-0.1219 0.1196 -0.1173 03216

EI 0.2425 2.1303 -0.1618 0.5435 -1.227 -1.7766 0.9034 0.3537 0.2394 2.5695 0.6555 -0.0609 -1.3457 -2.0087 1.2238 0.5608
to to to to

-0.6773 1.4530 -0.6828 1.8867

EEI 0.2425 2.1539 0.1631 0.5495 0.9138 -1.4695 1.2401 0.6843 0.2394 2.6108 0.6660 0.0544 -1.251 -1.9246 1.3598 0.6862
to o to to

-0.3581 1.7958 -0.5774 2.0334

TABLE 3. The regression and spearman’s analysis for the arterial indexes, SPH against BPP waveform (on left) and SPH against PPG waveform (on right).

Indexes Spearman's Linear Spearman's Linear
Rank Correlation Regression Rank Correlation Regression
SPH vs Significance rho r’ Indexes Significance rho r
level level
Al BPP P=0.005 0.720 0.95 AI PPG P=0.1440 0.429 0.22
SI BPP P<0.0001 0.875 0.92 SI PPG P=0.058 0.537 0.61
Alx BPP P<0.0001 0.907 0.83 Alx PPG P=0.034 0.588 0.66
EI BPP P<0.0001 0.860 0.81 EI PPG P=0.159 0.434 0.35
EEI BPP P<0.0001 0.825 0.80 EEI PPG P=0.0245 0.364 0.34
Dai BPP P=0.003 0.747 0.77 Dai PPG P=0.5533 0.181 0.09
RI BPP P=0.194 0.385 0.50 RI PPG P=0.7890 -0.0824 0.19

*Ascending order based on 7°’values of linear regression among the Indexes

8) The regression analysis and Spearman’s rank corre-
lation were performed for BPP and PPG waveform
indexes against SPH waveform indexes, individually.

VII. RESULTS
The agreement analysis was performed via Bland-Altman
analysis between, 1) PPG waveform arterial indexes to SPH
waveform arterial indexes, and 2) BPP waveform arterial
indexes against SPH waveform arterial indexes, individu-
ally, shown in figure 10, arranged in ascending order with
respect to limit of agreement (LoA). The indexes calcu-
lated from the BPP waveforms has shown a narrower/closer
limit of agreement (LoA) than indexes calculated from
PPG waveform when compared against SPH waveform,
individually. The indexes comparison based on LoA sig-
nifies the higher accuracy of BPP waveform than PPG
waveforms. Where RI and Alx had the closest/narrowest
LoA and EEI shown widest/highest LoA. To validate the
trend shown by Bland-Altman, the weighted Kappa anal-
ysis (WKA) was used, where (none<(.2>slight<0.4>
fair<(0.6>moderate <0.8>perfect<1).

In WKA, among indexes of SPH waveform versus BPP
waveforms, Al and SI indexes (on top of ascending order)
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showed the moderate relationship while the rest of the indexes
showed fair relationship except RI which showed the slight
relationship. The WKA among indexes of SPH waveform
versus PPG waveforms, Alx, Al, EI and EEI indexes showed
fair relationship and the rest of the indexes showed no rela-
tionship, shown in Table 2.

The outlier from each data set was removed and then
regression analysis was performed to find the correlation of
indexes of the BPP waveform and PPG waveforms against
SPH waveform, individually, plots are shown in figure 11.
The similar behavior as Bland-Altman analysis was observed,
that BPP waveform indexes showed a higher correlation
to SPH waveform than PPG waveform indexes correlation
to SPH waveform. When regression values are arranged in
ascending order Al, SI, Alx, EI, EEI and Dai of BPP wave-
form showed highest correlation. The Spearman’s rank corre-
lation was used to validate the trend shown by the regression
analysis. The Spearman’s rank correlation between indexes of
the BPP waveform and SPH waveform showed that Alx, SI,
EI (on top of ascending order) and EEI showed a very strong
positive correlation, Al and Dai showed a strong correla-
tion, and RI showed moderate correlation. In the Spearman’s
correlation between indexes of PPG waveform and SPH
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waveform, SI showed the strong positive correlation while
Alx, EI, EEI and Al showed moderate positive correlation and
the rest of the indexes showed very weak correlation as shown
in Table 3. Further details of these analyses are available in
the supplementary document.

The 2 & 4-element WK models was estimated only for
BPP waveform to SPH waveform for the radial artery branch-
ing from the wrist to distal phalanx in the index finger
by using the MATLAB system identification toolbox. The
accuracies of the individual transfer function of 2-element
WK model was higher than 85% and the accuracies of
the individual transfer function of 4-element WK model
was higher than 98%. The parametric mean and standard
deviation of transfer function are shown in supplementary
notes.

VIIl. DISSCUSION

With reference to SPH waveform, accumulatively the BPP
Alx index performed best among all parameters. The
overall best performances are shown by AI, EEI and SI
indexes of BPP waveform which were supported by Wow-
ern et. al. parametric results [5]. However, in our study,
the BPP outperforms PPG at indexes on a one-to-one basis
as well as in the overall performance. The Dai index
showed a weak but significant relationship, whereas RI
showed almost no significance among the BPP measured
parameters.

The APG demarcation of the fiducial wave is mathemati-
cally complex and intensive, which becomes more difficult
in PPG waveform, as the tidal wave is not easily visible.
Whereas, in the BPP waveform the tidal wave was visi-
ble in all the subjects. This inconsistency has also been
reported elsewhere [19]. The dicrotic notch and the tidal wave
are consistently visible in BPP waveform, as found in this
study, which makes the BPP waveform superior to the PPG
waveform.

The clinical associations with cardiovascular diseases are
well established in the literature for Alx and Al indexes
[5], [9] to their relationship. It was out of scope for this
study to reverify or establish any such relationship among the
healthy and patients’ groups.

Due to the high sensitivity of PVDF sensor to mechanical
vibration, the BPP waveform sensing may be limited to stable
posture to avoid motion artefacts. Likewise, it becomes a
future topic to find the method which reveals the signal
information underline the motion artefacts.

The 2-element WK model is a simpler function and
can have an easier physiological interpretation for person-
specific parameters; which will provide the possibility of
adaptive tracking (suggested future work) as suggested by
Mukkamala et al. [1].

The BPP is independent of the subject’s skin color and
the effect of cosmetics on skin’s surface compared to PPG
waveform. Another advantage is being operatorless makes
more attractive compared to SPH waveform.
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IX. CONCLUSION

The BPP measurement technique has shown to be
unaided/operatorless, cheaper and easier to use compared to
conventional tonometric devices and outperforms the con-
ventional state-of-the-art PPG technique. In wearable tech-
nologies, assessment of arterial indexes may help the early
detection and prevention of CVD.

APPENDIX
Supplementary notes (*).
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