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ABSTRACT In subjective full-reference image quality assessment, a reference image is distorted at
increasing distortion levels. The differences between perceptual image qualities of the reference image and
its distorted versions are evaluated, often using degradation category ratings (DCR). However, the DCR has
been criticized since differences between rating categories on this ordinal scale might not be perceptually
equidistant, and observers may have different understandings of the categories. Pair comparisons (PC)
of distorted images, followed by Thurstonian reconstruction of scale values, overcomes these problems.
In addition, PC is more sensitive than DCR, and it can provide scale values in fractional, just noticeable
difference (JND) units that express a precise perceptional interpretation. Still, the comparison of images
of nearly the same quality can be difficult. We introduce boosting techniques embedded in more general
triplet comparisons (TC) that increase the sensitivity even more. Boosting amplifies the artefacts of distorted
images, enlarges their visual representation by zooming, increases the visibility of the distortions by a
flickering effect, or combines some of the above. Experimental results show the effectiveness of boosted
TC for seven types of distortion (color diffusion, jitter, high sharpen, JPEG2000 compression, lens blur,
motion blur, multiplicative noise). For our study, we crowdsourced over 1.7 million responses to triplet
questions. We give a detailed analysis of the data in terms of scale reconstructions, accuracy, detection rates,
and sensitivity gain. Generally, boosting increases the discriminatory power and allows to reduce the number
of subjective ratings without sacrificing the accuracy of the resulting relative image quality values. Our
technique paves the way to fine-grained image quality datasets, allowing for more distortion levels, yet with
high-quality subjective annotations. We also provide the details for Thurstonian scale reconstruction from
TC and our annotated dataset, KonFiG-IQA, containing 10 source images, processed using 7 distortion types
at 12 or even 30 levels, uniformly spaced over a span of 3 JND units.

INDEX TERMS Subjective quality assessment, full-reference, artefact amplification, zooming, flicker test,
triplet comparisons, scale reconstruction, just noticeable difference.

I. INTRODUCTION
Full-reference image quality assessment (FR-IQA) quanti-
fies the perceptual image qualities of distorted versions of
pristine reference images. In addition, FR-IQA quantifies the
trade-off between the bitrate and perceived quality in per-
ceptual image compression, which helps in the optimisation
of encoding parameters. Similarly, the development of other
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image processing applications such as image restoration and
enhancement may profit from knowing the expected percep-
tual quality of their output images.

Since it is not feasible to assess perceptual image quality
by a subjective study each time in such applications, auto-
mated FR-IQA algorithms must be used that estimate the
quality from the image data without any human interaction.
To develop and train such FR-IQA algorithms, annotated
image datasets, derived from subjective studies, are required.
In such studies, images are judged by subjects according
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to their perceived quality, either individually or in compar-
ison with one or more other images. This paper contributes
boosting methods for the presentation of the image stimuli in
subjective studies that improve the accuracy and sensitivity
of the perceptual measurements.

A. SUBJECTIVE FULL-REFERENCE IMAGE QUALITY
ASSESSMENT
In subjective studies, test stimuli may be presented one at
a time and rated according to a 5-point absolute category
ratings (ACR) scale, i.e., Bad (1), Poor (2), Fair (3), Good
(4), and Excellent (5). For each stimulus, the integer values
of the ratings from many subjects are averaged, yielding
corresponding mean opinion scores (MOS), which serve as
scalar perceptual image qualities [1]. ACR is likely to lead
to low sensitivity in distinguishing among stimuli of similar
qualities. A modified version of ACR, degradation category
rating (DCR), provides higher sensitivity [2], [3]. In a DCR
test, distorted stimuli are presented with their references,
either sequentially or simultaneously side by side. Stimuli
are rated according to the 5-point DCR scale, namely Very
Annoying (1), Annoying (2), Slightly Annoying (3), Percep-
tible but not Annoying (4), and Imperceptible (5). Average
ratings are called degradation mean opinion scores (DMOS).

The approaches mentioned above, although straightfor-
ward, have some limitations.

(1) Observers may have different understandings of the
quality categories [4], [5], leading to large variances of
ratings and therefore requiring a large number of ratings
to achieve the desired precision of the mean opinion
scale of ACR or DCR.

(2) There is the danger of a saturation effect. If a subject
scores an image in the best (or worst) quality category,
another item to be judged may come up with a perceived
quality that is even significantly better (or worse). Then
this item can only be scored with the same category as
before. There is no way to correct previously assigned
quality values to accommodate the overall larger than
expected dynamic range in quality.

(3) ACR and DCR scales should be regarded as ordinal,
not interval scales [4]–[6], even though in practice the
categories Bad, Poor, etc. are linked to the numerical
values 1, 2, and so on. This means that pairs of stimuli
with an equal difference in MOS, resp. DMOS are not
generally perceived to have the same perceptual dis-
tance.

(4) Given the mean opinion scores s and s + 1s of two
images, there is no meaningful interpretation for the dif-
ference in perceptual quality based on s and1s. It would
be desirable to have a scaling property similar to that
provided by the peak-signal-to-noise ratio (PSNR) for
the case of objective image quality. For example, if two
distorted images have a difference of 1 dB in PSNR,
then we know that the mean-square-error in one image
is 100.1 ≈ 1.259 as large as that in the other one.

The pair comparison method (PC) is an alternative to ACR
and DCR. In the 2-alternative forced-choice (2AFC) setting,
observers are presented with pairs of test images and asked
to identify the image in each pair with less distortion, i.e., the
image with better quality. The PC method is an indirect
measurement, and scale values cannot be generated simply by
averaging ratings. Instead, an algorithm that ‘‘reconstructs’’
the latent quality scale values is required

Many reconstruction methods have been proposed. In psy-
chophysics, the field that studies the relationship between
physical stimuli and the perceived experiences they evoke,
methods based on probabilistic models have become the
de facto standard for this purpose. In Thurstonian models,
the perception of each stimulus is modelled quantitatively
as a scalar Gaussian random variable. The random variables
corresponding to sequences of stimuli under investigation are
most commonly taken to have the same variance of 0.5 so
that quality differences in PC have a unit variance when
the independence of the random variables is assumed. This
setting defines the units of measurement. Initially, following
Thurstone’s pioneering work [7] in 1927, a least-squares
approach was taken to solve for the reconstructed scale values
based on his model. Nowadays, the method of choice is
maximum likelihood estimation (MLE) [8].

The PC method overcomes all of the above-listed limita-
tions of ACR and DCR.
(1) Such a comparison does not rely on the particular inter-

pretation of a nominal category of quality. Therefore the
task is clear and more natural than ACR and DCR.

(2) By design, the saturation effect is eliminated.
(3) The reconstruction for PC yields quality values on an

interval scale. Specifically, according to the Thursto-
nian model, pairs of stimuli with an equal difference in
scale value are perceived as having the same perceptual
distance in the sense of the old, famous psychological
rule of thumb: Equally often noticed differences are
equal, unless always or never noticed [9]. Thus, for a
difference of1s on the perceptual quality scale, the pro-
portion of subjects who consider the stimulus with the
larger latent scale value to be the one with better quality
is a function of 1s alone.

(4) By appropriately choosing the variance of the Gaussian
distribution in the Thurstonian model, we can define the
perceptual scale such that one unit difference between
the two values of a pair corresponds to a fraction of 75%
of the subjects choosing the correct better quality item
among the pair. This corresponds to the usual definition
of the just noticeable difference (JND): The JND is the
perceptual quality difference for which the probability of
detecting the better quality image is 50%. In PC (2AFC)
for this case, therefore, half of the subjects will detect
and choose the correct stimulus as the better one, while
the other half has to guess and will be correct half of the
time, leading to the 75% ratio.

Based on the first point above, forced-choice PCs are easier
to decide in subjective trials and require less time than the
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ACR or DCR categorization task. In addition, the PC method
yields the lowest measurement variance and thus provides the
most accurate results [10].

In a slight variation of PC, the reference stimulus is placed
in the middle of the pair of stimuli to be compared. The
task of the observers is to select the one that looks more
(or less) similar to the reference [11]–[14]. Similar to DCR,
assessing the (dis)similarity of the distorted stimuli to the
reference should lead to a more appropriate, informed choice
of the subject than a PC without reference. Such an approach
can be seen as a special case of triplet comparisons (TC).
In TC tests, three stimuli are displayed simultaneously, and
the (dis)similarity to the stimulus placed in the middle, called
the pivot, is asked to be compared. In general, the pivot can be
any element of the sequence of distorted stimuli (general TC),
and the PC with reference corresponds to TC where the pivot
is fixed and equal to the reference for all comparisons. In our
main experimental study, we applied the latter approach,
which we call baseline TC. In a secondary experiment,
we used general triplets and showed their potential to further
increase the performance of FR-IQA compared to DCR and
baseline TC.

Like PC, TC avoids the problems discussed above of
ACR and DCR. The subject responses to baseline TC can
be interpreted as answers to the corresponding 2AFC ques-
tions that show only the two distorted stimuli with the ref-
erence. Therefore, the same Thurstonian reconstruction may
be applied. However, for general triplet comparisons with
arbitrary pivot stimuli, this is not possible. Triplet compar-
isons had already been introduced in psychophysics by Torg-
erson [15] in 1958, and recently found much interest in vision
science andmachine learning [16].Many scale reconstruction
methods for TC have been proposed. However, with just one
exception, none of them are based on the Thurstonian model
allowing to give scale values in meaningful JND units as
discussed above. Hence, in this paper, we propose a complete
method for scale reconstruction from triplet comparisons,
based on Thurstone’s model and MLE, to produce scale
values expressed in perceptual JND units.

B. CURRENT VISUAL QUALITY DATASETS
In addition to FR-IQA, there are other applications in which
a visual reference stimulus is distorted to various levels of
severity and compared. For example, in full-reference video
quality assessment (FR-VQA), short image sequences of a
few seconds are viewed and evaluated for visual quality.
Since video data transmission is the dominant load on the
Internet traffic, FR-VQA for compressed video streaming is
the most relevant application of visual quality assessment
methods. Recently, it has been proposed to replace the quality
assessment scale based on MOS or DMOS from subjective
categorical or nominal ratings by the just noticeable differ-
ence [36]. In JND assessments, the distorted reference images
or videos are also compared to the reference, and the minimal
distortion level that leads to a perceivable difference of the
stimulus is reported. In all of these cases of visual quality

assessment, the boosting techniques that we have developed
can be applied to increase the sensitivity, allowing for a more
fine-grained visual analysis of the range of distortions.

In Table 1 we present an overview of the currently available
datasets for subjectively assessed visual quality for FR-IQA,
FR-VQA, and JND. In this paper, we contribute a new dataset,
KonFiG-IQA (Konstanz Fine-Grained IQA), which is also
listed in the table. Several points are noteworthy:

(1) Quality and JND assessment techniques of the current
datasets are dominated by the classical approaches such
as ACR, DCR, and their variations where a discrete or
continuous ratio scale replaces the categorical scale. For
TID2008, TID2013, and MDID, baseline triplet com-
parisons were carried out. For the scale reconstruction,
the Swiss-system tournament style point scoring resp.
a ranking procedure based on insertion sort was used.
The only dataset for which a probabilistic MLE-based
reconstruction from comparisons was carried out is
MCL-V, without final conversion into JND units. Here,
the Bradley-Terry model was used, which is very similar
to the Gaussian Thurstonian model. Thus, in all current
IQA and VQA datasets, possibly except for MCL-V,
artefacts due to the nonlinear scaling of perceptual qual-
ity may be present.

(2) In all current IQA and VQA datasets, only a small num-
ber of distortion levels were applied, up to 6 for images
and up to 11 for video. This choice corresponds to the
small number of only 5 nominal quality values available
in ACR and DCR. It would be desirable to introduce
IQA and VQA datasets with a larger number of distor-
tion levels, especially at the high end of quality. This
would allow for training machine learning techniques
for objective quality assessment aimed at applications
delivering high quality imagery and streaming video
over the Internet at a minimal but sufficient bitrate.

(3) Two recent trends can be observed. In 2019,
the first crowdsourced FR-IQA dataset was introduced
(KADID-10k), and more are likely to come, like the two
sets included in this paper. Moreover, since 2016 the
first datasets for JND were established both for images
and video, and more of them can be expected, including
crowdsourced JND datasets.

The new dataset from our study, KonFiG-IQA, stands out
from the rest of the FR-IQA datasets in the following aspects:

(1) The number of distortion levels is larger and designed
by perceptual consideration, namely 12, resp. 30 dis-
tortion levels, perceptually equally spaced over a range
of 3 JND.

(2) The number of ratings, resp. triplet comparisons, aver-
aged per distorted image, is much larger, with 97 per
image in Part A and up to 875 in Part B. This allowed for
an extensive analysis of the reliability and convergence
of the resulting scale values.

(3) The scale values are derived from the probabilis-
tic Thurstonian MLE process and converted to give
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perceptually linear quality scale values in meaningful
JND units.

C. BOOSTING FOR VISUAL QUALITY ASSESSMENT:
MOTIVATION
When designing visual quality datasets, the creators usu-
ally try to cover the complete range of visual quality with
only a few samples taken from a very large pool of images
or videos. In the case of FR-IQA or FR-VQA, for each
source stimulus, a large range of values for the distortion
parameters of the chosen distortion types may be applied,
yielding stimuli that are very close to the original as well
as others with severe distortions. It may be hard to reliably
assess the resulting small and large quality differences in
subjective quality assessment experiments. Let us illustrate
this, assuming the Thurstionian model for visual quality
impairment.

Consider a sequence of M + 1 images I0, . . . , IM , where
I0 is a pristine source image and I1, . . . , IM are increasingly
distorted versions of the source. Let their image qualities on
the impairment scale be modelled by random variables with
Gaussian distributions with means µ0, . . . , µM and standard
deviations equal to σ =

√
0.5/8−1(0.75) ≈ 1.0484, where

8 is the normal cumulative distribution function (CDF). This
particular choice of the variance scales the quality values
to be expressed in convenient JND units as pointed out in
Subsection I-A.

When comparing two such stimuli that are close to each
other in their mean values, the corresponding effect size 2
determines the difficulty of assessing their difference. A com-
mon way to define the effect size is the standardized mean
difference. In our case,

2 =
|µi − µj|

σ
≈ 0.95391µi,j.

Smaller effect sizes indicate the necessity of larger sam-
ple sizes. Effect sizes 2 ∈ [0.2, 0.5), [0.5, 0.8), [0.8, 1.3)
and 2 ≥ 1.3 are called small, medium, large, and very
large, respectively. For example, at 1µ = 1 JND, we have
2 = 0.9539 ∈ [0.8, 1.3), and thus, a large effect size. This
is in line with the detection rate of 50% at 1 JND quality
difference. However, for differences 1µ < 0.2097 JND we
have 2 < 0.2 and therefore a very small effect size.
Typically, image quality datasets have hundreds of images

with perceptual qualities ranging over just a few JND. If one
were to compare these images to each other, such small effect
sizes would become relevant. Therefore, quality assessment
techniques that enlarge the effect size would be beneficial,
allowing one to distinguish image qualities with small dif-
ferences with a smaller number of samples. For this pur-
pose, we propose and study our boosting methods in this
contribution.

It is quite natural that small visual differences are difficult
to assess. It has been observed, in addition, that large quality
differences are hard to quantify: Stimulus differences larger
than about 1.5 JND cannot be reliably assessed by the human

visual system, presumably due to a kind of saturation effect
by overwhelming noise [37].

In addition to the problem of subjectively quantifying large
distortions reliably, there is the numerical problem of recon-
structing such large quality differences from paired compar-
isons with the subsequent Thurstonian scale reconstruction.
In the Thurstonian model, a quality difference is given by
a normal random variable with unit variance and the mean
equal to the quality difference on the perceptual quality scale.
Thus, a fraction p ∈ (0, 1) of observations that correctly
identify the better quality image in the given pair gives rise to
the reconstructed quality difference 8−1(p), where 8 again
denotes the normal CDF. However, when the quality differ-
ence is large, most observers (k out of n) will agree on which
image is of better quality. Therefore, the fraction p = k/n is
close to 1 and 8−1(p) depends very sensitively on p when
p is near 1 or 0. For k = n, we even have p = 1 and
8−1(1) = ∞. So, if just one observer would change his/her
response, the reconstructed quality difference between the
stimuli would drastically change.

We analyse this effect by simulating subjective PC using
the probabilistic model to compute Erms, the root of the
expected square error of the reconstruction as follows.
We assume a quality difference of1µ and collect n responses
for the corresponding pair comparison. Then we make use of
the binomial distribution with probability 8(1µ) to get the
result.1

Erms(1µ, n) =

[
n∑

k=0

(
n
k

)
8(1µ)k (1−8(1µ))n−k

×

(
8−1

(
k
n

)
−1µ

)2
]1/2

Figure 1 illustrates this root-mean-square error (RMSE) as
a function of1µ for n = 5, 10, 20, 40. For increasing quality
differences, we see that Erms is stable and nearly constant
until about 2 or 3 JND. From then on, the error increases
approximately linearly. This gives another reason to restrict
paired comparisons (resp. triplet comparisons) to cases where
image quality differences are not too large, i.e., up to about
2 or 3 JND.

With our boosting methods implemented to enlarge the
distortions applied to source images, this effect of decreased
psychovisual sensitivity and increased reconstruction noise at
large distortion levels can be overcome partially, as our exper-
iments will show. However, by boosting image differences
also between distorted images, we will show that also for
large distortions, fine-grained quality scaling can be achieved
reliably.

1The straightforward implementation of this formula will lead to the so-
called zero-frequency problem when k = 0 or k = n. In these cases,
8−1

(
k
n

)
will be ±∞, rendering a reconstruction infeasible. To avoid this

problem, it is common practice to install a ‘prior’ by adding half a vote to
either option, thus computing 8−1

(
k+0.5
n+1

)
, which is what we have done

here as well.
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TABLE 1. IQA/VQA/JND datasets with artificial distortions.

D. BOOSTING BY ARTEFACT AMPLIFICATION AND
ZOOMING
The approach of boosting for visual quality assessment is
to enlarge the differences between stimuli artificially. In the
basic setting, using baseline triplets for comparison, we are
asking subjects to identify the distorted image of the pre-
sented pair that most closely resembles the reference image,
which is equal to the source image for generating the distorted
versions. Here it is the distortions in each derived image
that need to be enlarged for the boosting effect. Distortions
typically occur in two main aspects, in terms of greyscale
intensity, respectively color, or spatially. Therefore, the first
two boosting techniques are as follows:
(1) Artefact amplification (A): In a triplet comparison,

the similarity of two distorted images with respect to
the pivot image has to be judged. Artefact amplification
scales the pixel-wise differences of each distorted image
in the three color channels linearly.

(2) Spatial zooming (Z): A linear scaling of the size of
the image enlarges the visual representation of image
differences. Due to limitations on the available screen
size, spatial zooming may make it necessary to crop the
distorted and zoomed image.

In Figure 2 we show an example of how this boosting reveals
otherwise invisible or hard to detect distortions caused by
JPEG2000 compression.

E. BOOSTING BY THE IMAGE FLICKER METHOD
In PC, the image stimuli are usually displayed on a screen
side by side. To detect a small detail that differs between
two images, the observer must search over both images and
memorize the last examined detail of one image when the eye
fixation point moves to the corresponding location in the
other image. This task can be difficult. It is at the core of the
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FIGURE 1. In this simulation, we consider the reconstruction of a quality
difference from a set of n pair comparisons of two stimuli with a given
difference of mean observed qualities, shown on the horizontal axis.
On the vertical axis, the resulting RMSE of the reconstruction of the
difference is shown. This simulation confirms that it is not advisable to
apply paired comparisons when the difference to be assessed is so strong
that nearly all observers agree on which of the two stimuli should be
chosen as the better (or stronger) one.

popular fun game for kids, where differences between two
seemingly identical comic drawings are to be found.

The change detection task can be simplified by displaying
the two images in the same screen space, one in the fore-
ground and the other one invisible in the background. The
observer can toggle the view between the two images using
keystrokes or mouse clicks. In this setting, the eye needs to
scan only half of the screen space, and the saccadic eye move-
ments between the two images are replaced by key clicks.
Moreover, from an evolutionary perspective, it is plausible
that the fundamental ability of human perception to detect
a change in the visual environment has developed to a high
level. Thus, small changes in the visual field should be easier
to detect than the differences between two objects (or images)
next to each other.

The visual sensitivity to contrast change has been
researched for a long time [38]. For simple test scenes,
contrast is defined as the ratio of the target intensity to the
background intensity. When the contrast changes periodi-
cally, e.g., in a sinusoidal fashion, the change becomes visible
when its amplitude surpasses a certain threshold, called the
contrast threshold. Its inverse is the contrast sensitivity, and its
variation as a function of temporal frequency can be described
by the temporal contrast sensitivity function (TCSF). For a
sufficiently high luminances, the contrast sensitivity reaches
a maximum of about 200 near a frequency of 8Hz.

In 2014, the above concepts were applied for the first time
in an image flicker viewing method for subjective assessment

FIGURE 2. This figure shows an example of boosting by artefact
amplification and zooming. The top left image is an original, undistorted
source image. On the right, a zoomed crop of it is pictured. The source
image was compressed by JPEG 2000 with a compression ratio of 1:47.34,
resulting in the lower-left image. The distortions due to
JPEG 2000 compression are barely visible. However, on the lower right,
the same compressed image is shown after artefact amplification and
zooming. Now, by this boosting technique, the distortions in the flower
petals and stigma became emphasized and clearly visible.

of barely visible image compression artefacts [39]. Observers
were presented with an original reference image, temporally
interleaved with a test image, which was reconstructed from
the compressed reference. The flicker frequency was chosen
as 7.5Hz, close to the maximum of the TCSF. This method
was expected to make even subtle artefacts visible that would
be undetectable in a side-by-side comparison. The paper did
not compare the performancewith that achievable by the side-
by-side display, however.

In our work, we provide such studies by including the
flicker viewing method as our third option of boosting
techniques:
(3) Image flicker (F): Two images to be compared are dis-

played temporally, interleaved at a frequency of 8Hz.
The application of the flicker viewing technique in a triplet
comparison requires adapting the visual appearance of the
displayed scene. The triplet (i, j, k) has the pivot image Ij,
and we are asking the observer to determine whether the
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perceived differences in the left image pair (Ii, Ij) are larger
or smaller than those in the right pair, (Ik , Ij). Therefore, with
the flicker viewing technique, we show two flickering images
side by side: On the left, image Ii alternates with the pivot, and
on the right, it is Ik that alternates with the pivot.

F. CONTRIBUTIONS
We expect (and we will show) that the boosting methods, out-
lined in the previous subsections, increase the measurement
sensitivity on the visual impairment scale, enabling the detec-
tion of more subtle artefacts. In our experiments, we inves-
tigated the performances by measuring sensitivities with
respect to themagnitude of the applied distortion.We selected
ten source images from the MCL-JCI dataset [29], each
of which was distorted by seven types of distortion: color
diffusion, jitter, high sharpen, JPEG2000 compression, lens
blur, motion blur, and multiplicative noise. Figure 3 shows
the flowchart of our boosted triplet comparison method for
subjective IQA.

Along with the boosting of sensitivity, however, we have
to accept that the absolute values of impairment, given in
JND units, will be different and typically larger than those
obtained using plain pair or triplet comparison or by using the
DCRmethod. For example, if a particular distortion produces
an impairment of 1.5 JND, measured by plain comparison,
we may obtain a much larger impairment of perhaps as much
as 3 JNDwhen using one of the boosting methods. Therefore,
we have also devised a method to adaptively transform the
boosted impairment quality values back so that they approx-
imately match the range of impairment scales as measured
by plain comparison, however, without sacrificing the better
discrimination ability.

To summarize, in this paper, we present the first study
on the potential of perceptual boosting techniques in the
context of subjective image quality assessment. The main
contributions are the following:

1) We propose three boosting strategies (artefact amplifi-
cation, zooming, and flicker) that can enlarge the sensi-
tivity of pair and triplet comparisons, as well as increase
the accuracy of visual quality assessment.

2) We propose a method based on Thurstone’s model and
MLE to reconstruct the perceptual qualities of images
from triplet comparisons.

3) We generate an IQA dataset of 1140 images with distor-
tions from 10 source images. We provide the responses
to all triplet comparisons from a large subjective crowd-
sourcing campaign together with the reconstructed qual-
ity values from plain triplet comparison and seven types
of boosted triplet comparison. This dataset will be made
available after publication.

4) We provide an extensive performance analysis of
boosted triplet comparisons for image quality assess-
ment, including measures of the true positive responses,
detection rates, sensitivity, effect size, convergence, cor-
relation, and time complexity.

G. GLOSSARY
Sequence. A sequence is a list of images (I0, I1, . . . , IK )

where I0 is a pristine reference image and the others are
increasingly distorted versions of it. The index k of Ik is
called the distortion level of Ik .

Triplet. A triplet is a list (i, j, k) of three non-negative indices
referring three stimuli (Ii, Ij, Ik ) of an image sequence.
In a triplet comparison, the observer is asked to deter-
mine whether the left or the right image (Ii or Ik ) is
perceptually closer to the so-called pivot image Ij in the
middle.

Baseline triplet. A triplet of the form (i, 0, k), where the
pivot is the pristine reference image I0.

General triplet. A triplet of the form (i, j, k), where the
pivot could be any image (could be the pristine reference
image or a distorted one).

Pivot. The stimulus that is placed in the middle of a triplet.
JND. The natural unit on the perceptual scale. The percep-

tual difference between the two compared images is
1 JND (just noticeable difference) when the difference
is perceived by a random observer of the population of
observers with a probability of 0.5.

HIT. A human intelligence task is a self-contained, virtual
task that a worker can work on. A HIT may contain
several questions to be answered.

Assignment. A completed HIT that is submitted by a unique
worker.

Response. Equals vote or answer for a pair or triplet com-
parison.

Rating. Selected image quality or degree of impairment in
an ACR or DCR assessment.

Plain. A plain triplet comparison is a conventional one,
where the images to be compared are not processed
(boosted).

A, Z, F. Abbreviations for triplet comparisons with artefact
amplification, zooming, and flicker, respectively.

AZ, AF, ZF, AZF. Abbreviations for triplet comparisons of
combinations of A and Z, A and F, Z and F, and A, Z,
and F.

II. RELATED WORK
A. BOOSTING BY ARTEFACT AMPLIFICATION AND
ZOOMING
Amplification and zooming are common techniques applied
in image and video processing, for the purpose of highlighting
details in an image or for overall image enhancement. For
instance, histogram equalization enhances contrast by enlarg-
ing small intensity differences. Image sharpening enhances
the appearance of edges, e.g., by adding to the input image
a signal that is a scaled high-pass filtered version of the
original image.Motion and color magnification reveals subtle
variations in video sequences that cannot be perceived by
human senses, such as heartbeats showing in faces [40], and
can even reconstruct sounds from videos of objects subtly
vibrating in response to those sounds [41]. Exaggeration also
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FIGURE 3. Flowchart of the proposed boosted triplet comparison method for subjective IQA. Each pristine source image is distorted by seven types of
distortion at N levels, respectively. For a given distortion type, samples of three distorted images are drawn, and for each triplet, subjective
assessments are made as to whether the left or the right image is perceptually closer to the center, pivot image. Three boosting strategies
(amplification, zoom, and flicker) are deployed individually or in combination to enhance the perceptual sensitivity of comparisons between distorted
images. With the flicker option turned on, only two (flickering) images are shown side by side. The yielded triplet comparison results are to be used to
estimate image quality impairment scales using Thurstonian reconstruction.

is one of Disney’s twelve basic principles of animation [42],
applied in particular to motion. The cartoon characters were
designed to maintain the illusion that they follow the laws of
physics, however, in a wilder, more extreme form.

In spite of the widespread applications of amplification and
zooming in multimedia applications, we have not become
aware of any previous work on adapting, applying, and val-
idating these techniques for the purpose of subjective visual
quality assessment.

The only exception is our earlier work [43], in which we
applied image distortion amplification and zooming to prop-
erly cropped frames to compare interpolated video frames
with the corresponding ground-truth frames. However, this
technique was a side issue in that contribution, and there was
no systematic analysis of the performance and potential of
amplification and zooming.

B. BOOSTING BY THE IMAGE FLICKER METHOD
In [39], flicker tests were proposed for the task of determining
the JND of distorted images. In order to test for noticeable
distortions in compressed images, two images were placed
side by side. One of them was a still reference image.

The other was an animation in which a reference image
alternated with the distorted image at the same spatial posi-
tion. The display frame rate was 30 fps, and the alternation
occurred every four frames, yielding a flicker frequency
of 7.5Hz. Observers were asked to identify which of the two
images was the still (or non-flickering) one (two-alternative
forced-choice).

Shortly later, the ISO/IEC standard 29170-2:2015(E)
was set up with recommendations for the subjective qual-
ity evaluation of single frames from JPEGXS encoded
videos [44]. The focus of the standard was on visually
lossless, low-latency, and lightweight video compression
schemes. Therefore, subjective tests were prescribed for
image JND assessment rather than conventional MOS from
ACR or DCR procedures. The standard directly follows the
ideas in [39], with one notable exception: The flicker rate was
recommended to be 10Hz instead of 7.5Hz.

The first study, based on the new standard, was pub-
lished in 2017. In a large lab experiment with 120 subjects,
the flicker test was used for video frames, produced by the
Video Electronics Standards Association (VESA) Display
Stream Compression, which is a lightweight codec designed
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for visually lossless compression [45]. An in-depth discus-
sion of this application of the flicker test for the criterion
of perceptually lossless compression as prescribed in the
ISO/IEC standard was presented in [46]. The authors’ conclu-
sionwas that ‘‘if the goal is to conservatively evaluate the pos-
sibility that a compression artefact might be visible under any
situation, then the flicker paradigm is a viable approach as it
highlights differences between images regardless of whether
they are noticeable in the absence of a reference.’’ However,
a quantitative comparison of the sensitivity of the flicker test
protocol versus the traditional side-by-side presentation was
not included.

In 2016, a JPEGXS Call for Proposals with subjective
quality evaluations based on the flicker test of the ISO/IEC
standard was issued [47]. The results of the submissions to
the call were summarized in [48]. Different from the ISO/IEC
standard recommendations, a flicker frequency of 8Hz was
applied, and subjects were given a third option for their
response, namely to cast a no-decision vote. This was deemed
to alleviate subject fatigue.

In other recent work, the flicker test was applied to a palette
of different image modalities: high dynamic range (HDR)
images [49], foveated images in head-mounted displays
(HMD) [50], and stereoscopic imagery [51].

In our pre-study [52], presented at the ICME 2020 Work-
shop on Data-driven Just Noticeable Difference for Multime-
dia Communication, we have provided the first experiment to
compare the performance of the flicker test with conventional
side-by-side comparisons. The purpose of the tests was to
assess the JND for JPEG image compression. As a result,
we reported that the flicker test was about twice as sensitive
as the classical side-by-side comparisons with forced choice.
However, this experimental study was small, and the focus
was rather on a new adjustment method for JND detection
using a slider-based design. Moreover, the flicker tests were
done in a lab situation, while the classical 2AFC pair com-
parison ran on a crowdsourcing platform. So the results of
the comparison regarding sensitivity is only a preliminary.
Our contribution here provides a much more elaborate study
targeted specifically at the validation of the performance of
several boosting techniques, with flicker being one of them.

The previous works on the image flicker method men-
tioned above have applied flicker in a single stimulus or
in a double stimulus method where one of the two stimuli
was a still image. We extend these procedures by comparing
two flickering stimuli in the context of a triplet comparison.
Moreover, in past approaches, the flickering was between the
undistorted reference image and a test image. We will show
the advantages of considering flicker images in comparisons
where the flicker is between two test images.

C. RECONSTRUCTION OF SCALE VALUES FROM TRIPLET
COMPARISONS
Direct quality assessment proceeds by collecting and averag-
ing quality ratings from a sufficiently large set of observers.
Absolute category rating is the most common technique in

visual quality assessment. Scale value reconstruction is an
indirect procedure, deriving the scales of latent variables from
the pair comparisons of the perceptual quality or from the
comparison of quality differences in triplets or quadruplets.
Other approaches are possible, like reconstruction from the
rankings of images in subsets of stimuli. For the application
of boosting methods in subjective visual quality assessment,
indirect methods seem more appropriate because boosting
enhances the perception of differences between a test stim-
ulus and its corresponding reference.

One of the first indirect approaches, based on the scaling of
perceived distances of stimuli, attained from triplet compar-
isons, was proposed in 1952 by Torgerson [53] and named the
method of triads. Although the goal was multi-dimensional
scaling, it is clear that the method can also be used to derive
the scalar values of a latent variable. In a nutshell, for the
1D case, the reconstruction is based on a model of random
variables Xi, i = 0, . . . ,M , for the latent stimuli qualities
with the assumption that their pairwise distances

Di,j = |Xi − Xj|

are random variables with a normal distribution of unit vari-
ance. Then scale values of these distances can be recon-
structed from the pairwise comparison of distances arising
from the triplet comparisons. This step is analogous to the
Thurstonian scale reconstruction from pair comparison of
stimulus values, where instead of scales for the random vari-
ables Xi, scales for the distances Di,j are considered.
However, since the triplet comparisons (i, j, k) give infor-

mation only about differences in distances (namely whether
Di,j < Dk,j), the reconstruction of the distances can be
determined only up to an additive constant. In [53], the least
squares solution to solve the problem of the additive constant
was proposed.

At the end, a square matrix of distances
(
di,j
)
, i, j =

0, . . . ,M is yielded, from which a one-dimensional embed-
ding can be generated. One can solve the optimization prob-
lem, where estimates for the latent variables are found as a
minimizer of a cost function, for example,(

µ̂0, . . . , µ̂M
)
= arg min

µ0,...,µM

∑
i<j

(
|µi − µj| − di,j

)2
.

The method of triads has been criticized as being ad
hoc [54], as it does not directly follow the basic setup of
Thurstonian models, where the latent variables of the stimuli
themselves are normally distributed. Moreover, distances are
non-negative and cannot be modelled accurately by normal
distributions.

In our contribution, we propose a complete solution for
the reconstruction of scale values from triplet questions that
strictly adheres to the considerations of Thurstonian models.
Let us assume such a model of a set of normally distributed
random variables Xi, i = 0, . . . ,M of equal variance, for
the visual qualities of a corresponding set of stimuli. We will
make use of a formula for the probabilities Pr

(
Di,j < Dk,j

)
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for the outcome of a given triplet comparison (i, j, k), that
was derived by Ennis et al. [55] in 1988.
Let Qi,j,k denotes the empirical estimation of

Pr
(
Di,j < Dk,j

)
given by the fraction of responses to the

comparison for the triplet (i, j, k) that indicate that the left
stimulus Ii is closer to the pivot Ij than the right one, Ik . Then
the task to be solved is to reconstruct the mean values of the
model such that the model predictions for the TC outcomes
match the empirical data:

Pr(Di,j < Dk,j) ≈ Qi,j,k .

For this purpose, in [55] the method of least squares was
proposed,

min
µ0,...,µM

∑
i<k,j6=i,k

(
Qi,j,k − Pr

(
Di,j < Dk,j

))2
.

This is equivalent to theMLE inwhich the prediction errors
Pr(Di,j < Dk,j) − Qi,j,k are modelled as independent normal
random variables with equal variance [56]. This assumption
generally cannot hold since for small or large probabilities
Pr(Di,j < Dk,j) near 0, resp. 1, the error distribution neces-
sarily must be skewed. Therefore we favor the general MLE
method, i.e., to maximize the model likelihood of the set of
observations Qi,j,k .

While this choice follows the common approach taken in
psychometrics [57], the most widely used one-dimensional
scale reconstruction method for vision science applications
is probably maximum likelihood difference scaling (MLDS).
It solves the difference scaling problem of quadruplet ques-
tions (i, j, k, l), where the perceptual distance of the first pair
of stimuli, (Ii, Ij), is compared to that of the second pair,
(Ik , Il), in a 2AFC setting. In MLDS, the decision variable
employed by an observer of such quadruplet questions is
modelled as

Z = |xj − xi| − |xl − xk | + Nσ ,

where xi, i = 0, . . . ,M are the (crisp) unknown qualities
and Nσ is a zero-mean Gaussian noise term with variance
σ 2. The unknown variance characterizes the difficulty of
the particular set of quadruplet questions together with the
uncertainty of the subjects.

It is worth noting that MLDS presents an approach of
a fundamentally different type than Thurstonian models.
In Thurstonian models, the decision variable is Z = |Xj −
Xi| − |Xl − Xk | and deterministic, but the qualities on the
perceptual scales are uncertain, given by normally distributed
random variables Xi, i = 0, . . . ,M . In MLDS, it is just
the opposite. The quality values are crisp, while there is
uncertainty in the decision variable.

The number of free parameters for the M + 2 unknowns
in MLDS is M , and one may set the range of scale values to
[x0, xM ] = [0, 1] and solve for the variables x1, . . . , xM−1
and σ , using MLE. Alternatively, one can set x0 = 0,
the variance σ 2 to a fixed value, and then solve for the
scales x1, . . . , xM .

In this paper, we contribute a method for the selection
of the variance σ 2 of the noise term such that the resulting
reconstruction yields scale values in approximate JND units.

A recent survey discusses the MLDS method, its varia-
tions, and a very large number of applications in different
fields [58]. The two contributions, most closely related to our
work on visual quality assessment, are [59] and [60] where
quadruplet comparisons for image sequences with distortions
due to compression were undertaken and analysed byMLDS.

Although MLDS was designed for scale reconstruction
from quadruplet comparisons, it is clear that it can also be
applied to triplet comparisons (i, j, k), simply by restricting to
quadruplets of the form (i, j, j, k). Then the decision variable
is Z = |xj − xi| − |xk − xj| + Nσ . In practice, it can
be expected that its normal distribution is very similar to
that for the decision variable Z = |Xj − Xi| − |Xk − Xj|
which arises from the Thurstonianmodel (Xi,Xj,Xk normally
distributed with variance 1/2). However, for our particular
applications in visual quality assessment (FR-IQA), we prefer
a reconstruction method that can produce scale values in JND
units. MLDS was not designed for this purpose.

There are several other methods for scale reconstruction
from triplet comparisons, some of which have recently orig-
inated from the machine learning community [16]. Usu-
ally, these methods are for multi-dimensional scaling. Some
of them can be restricted to the one-dimensional case.
In Section IV, we compare our results with those computed by
MLDS and stochastic triplet embedding (STE) [61]. In terms
of correlation with ground truth, all methods showed excel-
lent performance. However, as for MLDS, also STE cannot
be expected to yield estimates on JND scales.

Let us finally remark that there also is an ISO standard
that proposed triplet comparison [37]. Observers rate each
image in a triplet using a 5-point ACR scale, and from that,
all three pair comparisons in the triplet are deduced. The
selections of the triplets in an experiment is prescribed and
rather restricted. This setting would not support the boosting
strategies discussed in this paper.

III. BOOSTING STRATEGIES
We apply three methods to boost the perceptual sensitivity of
comparisons between distorted images: 1)Artefact amplifica-
tion amplifies the artefacts of distorted images relative to their
references, 2) Zooming enlarges the visual representation of
the images, and 3) Flicker increases the perceptual sensitivity
to the distortions by rapidly alternating between distorted
images and their corresponding reference images.

A. ARTEFACT AMPLIFICATION (A)
Many ways can be conceived to amplify artefacts due to
distortions in images. For this study, we consider one of
the simplest kinds, namely the linear pixel-wise scaling of
RGB color differences between the distorted and the refer-
ence images. Let v, v̂ be the RGB pixel values of a pixel in
the reference and a distorted image, respectively. Then we
replace v̂ by v̂′ = v+ α(v̂− v).
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FIGURE 4. Illustration of artefact amplification and zooming. The upper row shows an original source image and its distorted version when jitter is
applied, at a level corresponding to 0.5 JND. The artefacts are amplified with factors α = 1.5, 2, and 3 in the three top right images. Differences between
the reference and the distorted image are barely visible, but with increasing amplification, they become more noticeable. The bottom row presents a
zoomed version of the upper row. The visibility of the distortions is further enhanced by zooming.

Algorithm 1 Pixel-Wise Artefact Amplification
1: α← 2 F default amplification factor
2: v← (vr, vg, vb) F ground truth pixel
3: v̂← (v̂r, v̂g, v̂b) F distorted pixel
4: for c ∈ {r,g,b} do
5: if v̂c − vc > 0 then
6: αc,max← (255− vc)/(v̂c − vc)
7: else if v̂c − vc < 0 then
8: αc,max←−vc/(v̂c − vc)
9: else

10: αc,max← α

11: end if
12: end for
13: α← min(α, αr,max, αg,max, αb,max)
14: v̂′← v+ α(v̂− v) F amplified pixel v̂′ ∈ [0, 255]3

The multiplication by the factor α > 1 ensures consistency
with Fechner’s law [62], which states that the subjective
sensation is proportional to the logarithm of the stimulus
intensity. In our context, this means that equal relative incre-
ments of distortion, i.e., the same factor α applied in artefact
amplification, should correspond to equal increments of per-
ceived impairment in these images.

However, due to the finite range of RGB color components
in digital images, the linear scaling is limited and RGB pixel

TABLE 2. Fraction of pixels clamped in artefact amplification of Figure 4.

values exceeding the limit must be clamped. Thus, to restrict
the RGB components of v̂′ to the range [0, 255] for 24-bit
color images, we reduce α accordingly for those pixels where
clamping is needed. Note that this may cause a local nonlin-
earity and saturation effect of the artefact amplification. See
Algorithm 1 for details.

An example of artefact amplification is shown in Figure 4.
Comparing the distorted image with the reference image in
the first row, the distortion is hardly visible. In contrast,
some distortions are noticeable after artefact amplification
and become more and more obvious with the increase of the
amplification factor (top right row).

Table 2 shows the fraction of the pixel color components
and the overall number of pixels that are clamped in the
amplification process, for the example shown in Figure 4.
These fractions are monotonically increasing with the ampli-
fication factor α. In order to avoid a widespread nonlinearity
and the saturation effect due to clamping too many pixels,
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FIGURE 5. Overview of plain triplet comparison and seven types of boosted triplet comparison. In plain triplet, three stimuli, selected
from an image sequence with increasing distortion levels, are displayed side by side. The task is to judge which side is perceptually
closer to the pivot in the center. The three boosting techniques, artefact amplification, zooming, and flicker, help to improve the
accuracy, reliability, and speed of the subjective assessment. When boosting with flicker, the left and right images are displayed side by
side, each alternating with the pivot eight times per second. In this case, observers judge which side has the stronger flicker effect.

α should be chosen appropriately. Note that, depending on
the application, more or less strong amplification can be used.
In triplet comparisons, we applied the amplification relative
to the pivot stimulus displayed in the center. Therefore, for
baseline triplets of the sort (i, 0, k) the differences that are
amplified, are typically larger than for most general triplets
(i, j, k) with i < j < k or i > j > k . Thus, a more
conservative (i.e., smaller) amplification factor α should be
used for baseline triplets. In this paper, we set α = 2 as the
artefact amplification factor.

B. ZOOMING (Z)
Apart from enlarging color differences by amplifying arte-
facts, artefacts appear more visible when enlarged spatially.
In fact, participants in an IQA experiment may be tempted
to enlarge the images displayed in their browser or to move
closer to the screen to detect fine differences between images.
However, to ensure a uniform and controlled quality assess-
ment, participants are asked to refrain from such ad hoc
zooming actions. Instead, we propose to deliver the displayed
images already in a zoomed and cropped fashion.

Figure 4 (bottom row) shows an example. Images are
cropped to half their linear size and zoomed by a factor of two.
The cropped regions were manually selected, and bicubic
interpolation was adopted for scaling up. Distortions in the
zoomed images are more clearly visible, especially as the
artefact amplification factor α increases.

Similarly to artefact amplification, larger zoom factors are
better for the visual detection of artefacts, but at some point,
undesirable side effects like pixelation set a limit on zooming.
Due to the required cropping, only a part of the image con-
tent is maintained in the zoomed images, possibly masking
image areas with more severe local distortions. In this paper,
we chose a fixed zoom factor of two.

Regarding the area for cropping, we manually cropped the
images based on the content. We cropped to a reasonable
and sensible scene. For instance, cutting half of a face was
avoided.

C. FLICKER (F)
The visibility of distortions can also be enhanced by making
use of the flicker effect as explained in Subsection I-E. In this
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scenario, a distorted image and its reference are displayed
successively at a frequency of 8Hz. As already mentioned,
for a triplet comparison (i, j, k), using the flicker technique,
we show two flickering images side by side, on the left, image
Ii alternates with the pivot Ij, and on the right Ik alternates
with the pivot. Observers are asked to select the side that has
a stronger flickering effect.

D. COMBINATIONS OF BOOSTING TYPES
With the three boosting options on hand, we can apply
them individually or in combination, for example, zooming
together with artefact amplification. This gives rise to seven
cases that we abbreviate with the letters A, Z, and F assigned
to the boosting methods artefact amplification, zooming, and
flicker, respectively. The combinations are A, Z, F, AZ, AF,
ZF, and AZF. Without boosting, we obtain plain results,
which serve as a reference when assessing the performance
of the boosting methods. Figure 5 shows an overview of
the different kinds of boosting options as applied for triplet
comparison.

IV. THURSTONIAN RECONSTRUCTION FROM TRIPLET
COMPARISONS
Let us consider a set of M + 1 stimuli. In our experi-
ments, these are a source image I0 together with derived
distorted images I1, . . . , IM . The magnitudes of the per-
ceived stimulus qualities are taken to be unknown latent
variables, modelled by normally distributed real-valued ran-
dom variables X0, . . . ,XM with variance equal to 1/2. It is
the purpose of reconstruction to estimate their means µ =
(µ0, . . . , µM ) ∈ RM+1 from a collection of responses to sub-
jective triplet comparisons of stimuli. This setup corresponds
to the assumptions Thurstone established as Case V in his
analysis for pair comparisons [7].

In Subsection IV-A, we present formulas for the compu-
tation of the probabilities of the responses for the triplet
comparisons, followed by MLE of the means in Subsec-
tion IV-B. In Subsection IV-C, we compare the reconstruction
performances of MLDS, STE, and our method by means of a
simulation with available ground truth data. We also compare
the probabilistic model for the decision random variable in
MLDS with the uncertainty of the means in the Thurstonian
model. This gives rise to a choice of the unspecified variance
of the MLDS decision variable such that the reconstructions
of the means of the stimuli values on the perceptual scale are
given in approximate JND units.

A. FORMULAS FOR THE PROBABILITIES OF THE
RESPONSES
We define that for a triplet t = (i, j, k) with i, j, k ∈
{0, . . . ,M}, a subjective comparison yields a response Rijk =
1, if the observer judges the left stimulus, numbered i, closer
to the pivot stimulus j than the right one, k . Otherwise,
the response is Rijk = 0.

Algorithm 2 Probability of a Response Rijk ∈ {0, 1} to a
Triplet Comparison (i, j, k)
1: µ = (µ0, . . . , µM ) F stimuli means in model
2: u0← µk − µi
3: v0← (µk + µi − 2µj)/

√
3

4: p← 1−8(u0)−8(v0)+ 28(u0)8(v0)
5: if Rijk = 1 then F stimulus i closer to j than k
6: Return p
7: else F stimulus k closer to j than i
8: Return 1− p
9: end if

From the Thurstonian probabilistic model, it follows that
observers act according to the sign of the decision variable

Zijk =
∣∣Xk − Xj∣∣− ∣∣Xi − Xj∣∣ , (1)

such that

Rijk =

{
1 if Zijk > 0
0 if Zijk ≤ 0

. (2)

Next, we first give an expression, based on a result of [55],
for the probability that the decision variable is positive. It will
be a function of the unknown means µ = (µ0, . . . , µM ),
so we write it as the conditional probability Pr(Zijk > 0 |µ).
Given a triplet comparison t = (i, j, k), the probabilities for
the response Rijk = 1 (left stimulus i is closer to the pivot
stimulus j than stimulus k) and the opposite, Rijk = 0, is

Pr(Zijk > 0 |µ) = 1−8(µk − µi)−8
(
µk + µi − 2µj

√
3

)
+ 28(µk − µi)8

(
µk + µi − 2µj

√
3

)
Pr(Zijk ≤ 0 |µ) = 1− Pr(Zijk > 0 |µ). (3)

Algorithm 2 summarizes the computation.
Other probabilistic models differ from the above by

specifying a different probability for the triplet responses.
In MLDS [63], we have

Zijk =
∣∣µk − µj∣∣− ∣∣µi − µj∣∣+ Nσ .

In this case,

Pr(Zijk > 0 |µ) = 8

(∣∣µk − µj∣∣− ∣∣µi − µj∣∣
σ

)
. (4)

The default for the parameter is σ = 1. In stochastic
triplet embedding (STE, [61]), the probability for a positive
response is given directly as

Pr(Zijk > 0 |µ) =
e−α(µi−µj)

2

e−α(µi−µj)
2
+ e−α(µk−µj)

2 . (5)

The parameter α > 0 is not contained in the original
method. Thus, its default value is α = 1. Here, we have
introduced it for the purpose of model calibration.

In the special case of baseline triplets of the form (i, 0, k),
we have that the response Ri0k = 1, i.e., that the left stimulus,
numbered i, is closer to the pivot 0 than the right stimulus k ,
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may also be interpreted as the judgement that the impairment
in stimulus k is greater than the impairment in stimulus i.
In effect, this amounts to a response to a regular pair com-
parison, and the probabilistic model for the decision random
variable simply becomes

Pr(Zi0k > 0 |µ) = 8(µk − µi) . (6)

The difference from the normal interpretation of a triplet
comparison is that here the impairment of the pivot is fixed
to be equal to 0. In the general triplet comparison, however,
all stimuli are modelled as random variables.

B. MAXIMUM LIKELIHOOD ESTIMATION OF THE MEANS
For the actual reconstruction by the maximum likelihood
method we take as input a finite multiset T of annotated
triplets, (i, j, k,Rijk ), where Rijk ∈ {0, 1} is the response to the
triplet comparison (i, j, k) as in the above part. In subjective
quality assessments with triplet comparisons, each triplet may
be presented multiple times, collecting a response each time.
Thus, T may contain multiple copies of both, (i, j, k, 0) and
(i, j, k, 1). To keep the notation simple, we trust that it is clear
from the context what Rijk refers to in each case. Assuming
that the responses are independent, we have that the negative
log-likelihood of this data under the model assumptions is
given by

L(µ) = −
∑

(i,j,k,Rijk )∈T

pRijk (1− p)1−Rijk , (7)

p = Pr(Zijk > 0 |µ).

The MLE estimate of the latent variable then is given by

µ̂ = argmin
µ=(µ0,...,µM )

L(µ).

In our experiments, we allowed a third option for triplet
question responses, namely an answer not sure (see Subsec-
tionV-B). To account for such undecided responses, we sim-
ply assign the value Rijk = 1/2 to the corresponding triplets
(i, j, k) and use Equation (7) as given.
There are many algorithms for such nonlinear optimization

problems, and generally, there is no guarantee that the global
maximum will be attained. In our computations, we used
the ‘‘fmincon’’ function in MATLAB, which is a nonlinear
programming solver that finds the minimum of a constrained
nonlinear multivariable function.

Solutions to this optimization are unique up to an additive
constant. This constant can be chosen arbitrarily, and we have
used this option to align all reconstructions such that the
reconstructed scale value for the undistorted reference stimu-
lus I0 is µ0 = 0. These reconstructions of impairment scales
are not yet in JND units because their probabilistic model
assumed Gaussian distributions with the variance of 0.5.
Since the JND unit corresponds to a value of 8−1(0.75) ≈
0.6745, we divide the results by that to obtain impairment
scales in JND units.

FIGURE 6. Reconstructions from a sample of 20 000 simulated random
triplet question responses for 31 stimuli, spread over a range of 3 JND
units. All three reconstruction methods yielded excellent correlations
of 0.99, see Table 3, but only our reconstruction also reproduced the
correct range of the means.

C. COMPARISON OF TRIPLET RECONSTRUCTION
ALGORITHMS
Given that there are a number of available methods for the
reconstruction of latent scale values from triplet comparisons,
the question arises of which of them is the most suitable
one to process subjective responses to triplet comparisons
for visual quality assessment. For this purpose, we consider
in this subsection simulated responses to triplet comparisons
based on the Thurstonian model, i.e. the impairment scale of
a distorted image is given by a normally distributed random
variable with a correspondingmean and variance equal to 1/2.

For the reconstruction by MLE, we compute the likeli-
hoods from one of the equations (3), (4), and (5), corre-
sponding to our proposed reconstruction, MLDS, and STE,
respectively. We expect that our proposed method gives
the most accurate approximations because Equation (3) is
directly derived from the Thurstonian model and the others
are not. However, in terms of time complexity, each evalua-
tion of the decision probability Pr(Zijk > 0 |µ) requires two
evaluations of the normal CDF, while MLDS needs only one,
and STE none.

For baseline triplets of the form (i, 0, k), where the pivot
is given by the undistorted source image I0 as a reference,
we may interpret the response also as a response to a tra-
ditional pair comparison (i, k). In this case, we can also
apply the usual Thurstonian reconstruction method for pair
comparison.

For our simulation, we firstly considered an artificial
sequence of 31 stimuli as the ground truth, with impairments
on the perceptual scale, ranging from µ0 = 0 to µ30 =

2.0235, which corresponds to 2.0235/8−1(0.75) ≈ 3 JND.
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TABLE 3. Simulation for 31 stimuli over a range of 3 JND. Correlation with ground truth, and range of reconstructed means, averaged over
1000 repetitions.

We randomly sampled from the uniform distribution on the
interval [0, µ30] to obtain the remaining 29 stimulus means.
The triplets (i, j, k) were randomly sampled with the con-

straint i 6= j 6= k 6= i. The baseline triplets (i, 0, k) were
chosen randomly with i, k 6= 0 and i 6= k . In five rounds we
drew 1000 to 20 000 triplets of each kind and generated one
response per triplet according to the Thurstonian probabilistic
model. We then applied all triplet reconstruction methods to
the responses to triplets of the general type (i, j, k). For the
baseline triplets (i, 0, k) we carried out the reconstruction
according to pair comparison and our proposed reconstruc-
tion. We repeated the procedure 1000 times.

The results of our simulation are presented in Figure 6
and Table 3. As expected, it is confirmed that our recon-
struction does faithfully reconstruct the ground truth means
from the triplet comparisons that were generated by the same
Thurstonian probability model that underlies our reconstruc-
tion method. For baseline triplet comparisons, the recon-
struction for pair comparisons from 20 000 ratings gave very
similar results in terms of correlation as the reconstruction
for our triplet comparisons, an SROCC of 0.996 (not shown
in the table).

Even more notable are the findings that the other algo-
rithms, MLDS and STE, also produced excellent results in
terms of the Pearson linear as well as the Spearman rank-
order correlation. However, the reconstruction ranges are
around 2 JND, thus, well below the correct 3 JND.

To calibrate the STE and MLDS methods to give results
in JND units, one could tune their parameters α and σ such
that the range of reconstructed impairment values is equal
to 3. For our simulation, we applied the bisection method
to determine these parameters and obtained α = 0.5316
and σ = 1.6594. The resulting correlations are excellent
again (see Table 3). The RMSE over all 30 reconstructed
impairments are 0.1089 forMLDS and 0.0646 for STE, while
for our method (without tuning a parameter), we obtained an
RMSE of 0.0520.

Of course, the above procedure is not feasible in general
because the ground truth range is not known as in our sim-
ulation here. One would have to resort to an estimation of a
suitable parameter α for MLDS or σ for STE. To this end,
we propose two approaches.

1) Estimate the range of the expected scale values. In our
simulation, it was 3 JND, for example. Then proceed as
in our simulation. Randomly choose a sequence of scale

values in the selected range, and then tune the parameter
α, respectively σ , to achieve a reconstruction by MLDS,
resp. STE, to match the selected range.

2) Minimize the mean square error of the MLDS probabil-
ities for a response Rijk = 1 by selecting σ̂ ,

σ̂ = argmin
σ>0

∫ 1

−1

∫ 1

−1

|e(r, s | σ )|2 dr ds

where the error e(r, s | σ ) is given by

8

(
|s| − |r|
σ

)
− 1+8(s)+8

(
r + s
√
3

)
− 28(s)8

(
r + s
√
3

)
.

Here, r = µi − µj and s = µk − µj denote the left and
right differences of impairments in the triplet (i, j, k),
ranging over the square domain [−1,1] × [−1,1].
Similarly, one can do the same for STE. In Figure 7,
we visualize the probability functions according to the
Thurstonian model along with their approximation in
the MLDS and STE methods and the corresponding
errors e(r, s | σ ) resp. e(r, s |α). Inspecting this figure,
it becomes apparent that the globally optimal parameter
σ will be difficult to obtain as it strongly varies locally.

In summary, all three methods produced excellent results.
For baseline triplet comparisons, reconstruction by the tradi-
tional Thurstonian approach (with MLE) was as good as our
method for triplet construction. If one needs to have results
on the perceptual scale given in JND units, then our proposed
reconstruction should be applied.

V. EXPERIMENTAL SETUP: MATERIALS AND
PROCEDURES
The purpose of our experimental studies was to investigate
the potential and limitations of the proposed boosting strate-
gies in the application of subjective full-reference image
quality assessment. In current FR-IQA datasets, the main
approaches have been DCR and PC with the reference image
shown additionally, i.e., a case of baseline triplet compari-
son (Table 1). For both of these, boosting of the underlying
image distortions can be applied. Thus, we carried out three
main experiments, starting out with baseline triplets, which
we then extended to general triplets, finally followed by a
smaller study for DCR. In the following, we refer to these
as Experiments I, II, and III.
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FIGURE 7. The top row shows plots of isolines of the probabilities Pr(Zijk > 0 |µ) for the Thurstonian (left), STE (middle), and MLDS (right) models. The
parameters α = 0.5316 for STE and σ = 1.6594 for MLDS were obtained by ensuring that the range of the corresponding reconstructed scales is equal to
3 JND. The bottom row (center and right) shows the difference between the resulting probabilities of STE resp. MLDS and those of the Thurstonian model.
The model fit for STE is much closer to the Thurstonian reference than that of MLDS. The bottom right plot shows the parameter σ for MLDS that locally
yields equality with the Thurstonian probabilities.

In order to evaluate aspects like accuracy, reliability, and
convergence, a large number of comparisons is beneficial.
Therefore, our subjective IQA experiments were conducted
via crowdsourcing. For the study, a set of original pristine
source images, each distorted by various types of distortions,
was selected. For each source image and each distortion type,
a sequence of increasingly distorted images was generated.
By means of a pilot study, we took care to calibrate our
dataset such that each such image sequence uniformly spans
a perceptual quality range of approximately 3 JND. In the
following subsections, we briefly describe our setup and
procedure to achieve these goals.

A. SUBJECTIVE CROWDSOURCED IQA STUDY
In terms of experimental methodology, lab studies are well
established and considered reliable because the experimental
environment can be controlled, and the whole procedure can
be monitored. On the other hand, the number of images that
can be assessed is limited due to the time requirements as
well as the cost. Alternatively, crowdsourcing studies are
more economical, more efficient, and more scalable, and can
have sufficient reliability if the setup, with a quality control
mechanism included, is appropriate [64] and a suitable outlier

removal strategy is employed [65]. We have installed several
measures of control to ensure the validity of the results from
our crowdsourcing campaigns, described in the following.

The experiments were carried out on the AmazonMechan-
ical Turk [66] platform, in which requesters create and sub-
mit their human intelligence tasks (HITs) for workers who
carry out the subjective quality assessment. Workers receive
a monetary reward for completing a HIT. Requesters specify
the number of assignments for each HIT to control howmany
workers can submit work for that HIT.

In our experiments with triplet comparisons, a HIT con-
sisted of 20 questions that gave rise to 20 (ternary) responses
or answers from each crowdworker that completed an assign-
ment for that HIT. For the experiment with degradation cat-
egory ratings, HITs also had 20 questions each, and workers
provided the corresponding ratings on a 5-point DCR quality
scale.

B. INTERFACE
At the beginning of the experiment, a detailed instruction was
shown to the crowd workers, after which they were allowed
to start doing assignments.
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FIGURE 8. The interface of the triplet comparison experiments without a
flickering effect. Crowd workers were asked to select the image that they
think looks more similar to the pivot. They could choose ‘‘not sure’’ if they
could not distinguish the differences. For the experiments with a
flickering effect, the interface was the same as the one without a
flickering effect shown here, except that three still images were replaced
by two flickering images, and the question got changed to ‘‘Which image
has a stronger flickering effect?’’.

• In the parts of Experiments I and II that used TC without
a flickering effect (Plain, A-, Z-, and AZ-boosted TC),
three images were displayed in a row, see Figure 8.
Crowd workers selected the image that looked more
similar to the pivot image in the middle by clicking
‘‘left’’ or ‘‘right’’. If they could not decide, a third
choice, ‘‘not sure’’, was available. This option was intro-
duced in subjective evaluations of the JPEGXS image
compression [67] and had been found useful to reduce
subject stress and fatigue. In an earlier study on the
unforced-choice paradigm in applications in audiology,
it was also concluded that the efficiency of pair compari-
son might be compromised when participants are forced
to choose between stimuli [68].

• In the other parts of Experiments I and II that used TC
with a flickering effect (F-, AF-, ZF-, and AZF-boosted
TC), two flickering images were displayed side by side.
Crowd workers selected the image with a stronger per-
ceived flickering effect by clicking ‘‘left’’ or ‘‘right’’,
or use the ‘‘not sure’’ option.

• For Experiment III using DCR, two images were dis-
played side by side, with the reference image on the
left and the test image on the right, see Figure 9. Crowd
workers rated the distortion of the test image on the
5-scale category ratings ranging from 0 (imperceptible)
to 4 (very annoying).

For each of the 20 questions in one assignment, crowd work-
ers had eight seconds to enter their responses. The images
were shown only during the first five seconds. In case no
answer was given by the crowd worker within the eight sec-
onds, the response was labelled as ‘‘skipped’’. Thus, the total
time for an assignment was 2m 40s.

C. HIT-LEVEL QUALITY CONTROL
The subjective assessment of image quality through crowd-
sourcing may pose some challenges due to the lack of control

FIGURE 9. DCR Interface. Two images were placed side by side, with the
reference image on the left. Crowd workers were asked to rate the
distortion of the right image w.r.t. its reference on the left on one of the
five categories: 0 (imperceptible), 1 (perceptible but not annoying),
2 (slightly annoying), 3 (annoying), 4 (very annoying).

over the experimental environment, lack of knowledge about
the background of the workers, and limited reliability of
the experimental results. Therefore, we need to detect and
filter out low-quality responses. Unreliable responses may
be caused by technical problems with the workers’ screens
and devices, a misunderstanding of the subjective task, e.g.,
limited English proficiency of some international workers,
and a lack of attention. In addition, some of the workers
may try to answer quickly to get the maximum payment in a
shorter amount of time, resulting in responses of insufficient
quality.

We ensured the quality of workers’ answers in the crowd-
sourcing studies by monitoring the number of questions in
each assignment that the workers skipped and including
one hidden test question in each assignment. For exam-
ple, to select suitable test questions for Experiment I,
we proceeded as follows. Based on our pilot study (see
SubsectionV-H2 below), we first chose baseline triplets with
distorted images on the left and right, for which the perceptual
difference in distortion was relatively large, about 1.75 JND.
By a following visual inspection, we then discarded triplet
comparisons that did not seem to suggest a straightforward
correct response. For Experiments II and III, we proceeded
similarly.

If a worker skipped (did not answer) more than three
questions in an assignment or the hidden test question was
answered incorrectly, the assignment was rejected, and all of
the responses were discarded. We did not pay the workers for
their rejected assignments.

The responses from rejected assignments were re-collected
by making the HITs available again for new workers. This
rejection and re-collection procedure was carried out for three
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rounds.We did not reject any assignments in the last, smallest
re-collection round, regardless of the performance on test
questions and the number of provided responses. By this
procedure, we filtered out the low-quality responses at the
assignment level and ensured that the desired number of
assignments was achieved.

Accepted assignmentsmight still contain outlier responses.
In the next subsection, we describe the procedure for remov-
ing such outliers. The statistics of the rejected assignments
and outliers for all experiments are provided in Table 5.

D. ROBUST HIT-LEVEL OUTLIER REMOVAL
During data collection in each experiment, unreliable assign-
ments for HITs were discarded and penalized as described
above in Section V-C. However, there may still have been
uncovered unreliable data left that should be identified as
outliers and removed before the reconstruction of quality
scales. It seems inappropriate to classify individual responses
to triplet questions as outliers since the answers are not on an
interval scale but ternary (‘‘left’’, ‘‘right’’, and ‘‘not sure’’).
Therefore, we considered outlier removal at the HIT assign-
ment level, requiring a multivariate method. After the qual-
ity control during each experiment, each assignment carried
16–19 answers for the 19 triplet comparisons per assignment,
not counting the single test question per assignment and
allowing for skipping up to three questions.

To this end, we aim at a robustmultivariate outlier detection
method that flags a prescribed percentage of assignments that
markedly differ from the consensus given by the remaining
majority of assignments. A robust approach deviates from
conventional ones in that the statistics used to identify outliers
do not suffer from the influence of the outliers themselves.

The most common and recommended multivariate outlier
detectionmethod in this spirit is a fast version of theminimum
covariance determinant (Fast-MCD) approach [69]. How-
ever, the MCD method operates with Mahalanobis distances
that are not suitable in our case since the multivariate data are
not only vectors of ternary decisions rather than being from
a real Euclidean vector space, but also of variable dimension
(16–19).

A similar approach was given by the k-means– algo-
rithm [70]. This modification of the classical k-means cluster-
ing algorithm takes a desired number of outliers into account
that is farthest from the cluster centers. Convergence of local
optima was proven. Cluster centers are given by the means
of the cluster data points. For our application, the method
would have to be run for a single cluster (k = 1). However,
this does not work since data from HIT assignments are not
simply vectors of some vector space, and these data cannot
be averaged.

To remove HIT assignments that are outliers, we propose
an adaptation of the above two robust detection methods.

Firstly, we define the consensus of a subset of assignments
for a HIT due to the reconstructed impairment scale values
for all stimuli involved in the corresponding experimental

study. This consensus replaces the cluster means as used in
Fast-MCD and k-means–.

Secondly, we need an algorithm to compute the distance
of each assignment to the consensus given by the impair-
ment scales reconstructed from the corresponding majority
of assignments. A small distance should indicate that the
responses collected in a HIT assignment agree well with the
reconstructed impairments. Large distances suggest strong
disagreement with the consensus and that the corresponding
HIT assignments may be regarded as outliers.

1) DISTANCE TO CONSENSUS FOR AN ASSIGNMENT OF
TRIPLET COMPARISONS
For the case of triplet comparisons, we define this distance for
an assignment as the complementary weighted true positive
rate of the corresponding N responses with respect to the
given consensus as follows. Considering the n-th response
to a triplet question of type (i, j, k) for a particular reference
image I0, a given distortion type, and corresponding distorted
images Ii, Ij, Ik that make up the triplet question, we compare
it with the corresponding impairment scale values µ̂i, µ̂j, µ̂k
from the current consensus. If the answer ‘‘left’’ (resp.
‘‘right’’) for this n-th triplet question is in accordance with
the consensus, we assign a score of value vn = 1 to it. The
answer ‘‘not sure’’ earns a score of vn = 0.5. The following
table completes the definition of the score vn for the response
to the n-th triplet question (i, j, k).

Response |µ̂k − µ̂j| ≥ |µ̂i − µ̂j| |µ̂k − µ̂j| < |µ̂i − µ̂j|

left 1 0
right 0 1

not sure 0.5 0.5

The difficulty of triplet questions varies according to the
difference between the left and right differences of impair-
ment scales, Dl = |µ̂i − µ̂j| and Dr = |µ̂k − µ̂j|.
If Dr ≈ Dl , the decision which is perceptually the smaller
one is hard. In this case, an answer that disagrees with the con-
sensus should not be penalized severely. On the other hand,
if |Dr − Dl | is large, a wrong decision should be penalized
more strongly. Therefore we introduce the weight

wn = |Dr − Dl | = |µ̂k − µ̂j| − |µ̂i − µ̂j|

for the n-th response and define the distance of the assignment
w.r.t. the consensus as

d = 1−

∑N
n=1 wnvn∑N
n=1 wn

. (8)

We have that 0 ≤ d ≤ 1, and the maximal distance
of d = 1 implies that all responses in that assignment were
against the consensus of the majority.

2) DISTANCE TO CONSENSUS FOR AN ASSIGNMENT OF
DCR QUESTIONS
In case of an assignment of DCR questions, the consensus
produced by a subset of HIT assignments is given by the
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FIGURE 10. The (cropped) source images for our experiment. From upper left to lower right: source images with a resolution of 512× 384 cropped from
the images in MCL-JCI dataset with the following IDs: SRC01, SRC03, SRC06, SRC07, SRC09, SRC17, SRC28, SRC31, SRC45, and SRC50, respectively. The
green inset rectangles (256× 192 pixels) indicate the regions used for the boosting methods with zooming.

corresponding DMOS values for all test images involved in
the experiment. In a HIT assignment with ratings rn for pairs(
In0 , I

n
k(n)

)
and corresponding DMOS values µ̂

(
Ink(n)

)
, n =

1, . . . ,N , from the consensus, we define the distance of the
given ratings to the consensus as the mean of the absolute
differences to the consensus,

d =
1
N

N∑
n=1

∣∣∣rn − µ̂ (Ink(n))∣∣∣ . (9)

With these definitions made, we now give the iterative,
robust outlier removal algorithm.
1) Input: M HIT assignments with responses, a target

L < M of assignments to be kept.
2) Start with the subsample of allM HIT assignments.
3) Compute the consensus of the subsample: the recon-

struction of all impairment scales.
4) Compute the distances of all M assignments from the

consensus with Equation (8), resp. (9).
5) Choose the L smallest distances and create a new subset.
6) Repeat steps 3 to 5 until convergence (the new subset is

the same as the old one) or a timeout.
In our experiments, we removed a fraction of 5% of HIT
assignments as outliers and observed convergence in just
4–7 iterations.

E. SOURCE IMAGES
Ten source images were selected from the MCL-JCI
dataset [29], whose original resolution is 1080×1920. In our

subjective study, the original resolution is too large to display
on the screens of crowd workers. To ensure that a triplet
can be displayed without image re-scaling, we manually
cropped each image to 512 × 384 pixels. We chose to crop
portrait-mode subimages because triplets of such images bet-
ter utilize screen space. We further cropped the images to
256× 196 pixels for experiments with boosting by zooming
and subsequently upscaled them back to 512×384 pixels for
display. Figure 10 shows the ten (cropped) source images and
their parts used for zooming.

F. DISTORTION TYPES
For our validation experiments, the source images were
degraded by seven distortions, selected from [21], [71], [72].
All distortions were implemented in MATLAB, with the
source code made available by the authors.

• Color Diffusion converts an image from RGB to
CIELAB color space, where a 2D Gaussian smoothing
kernel is used to blur the a and b channels. Its distortion
magnitude is determined by the standard deviation of the
kernel.

• High Sharpen applies the unsharp masking method to
sharpen an image. An image is sharpened by subtracting
a blurred unsharp) version of the image from itself. Its
distortion magnitude is determined by the parameter of
the strength of the sharpening effect.

• Jitter warps an image according to two matrices
describing random local shifts of each pixel in horizontal
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FIGURE 11. One of the source images (upper left) is distorted by each of the seven considered types of distortion. The degree of
distortion is the largest used in this study. It corresponds to the third JND w.r.t. the source image.

and vertical directions. The amount of distortion is deter-
mined by the magnitude of the shift.

• JPEG2000 is an image compression standard with the
distortion magnitude determined by the compression
ratio.

• Lens Blur performs spatial 2D filtering on each color
channel of an image with a circular kernel, whose distor-
tion magnitude is determined by the radius of the kernel.

• Motion Blur performs spatial 2D filtering on each color
channel of an image with a kernel oriented at 45 degrees.
The distortionmagnitude is determined by the size in the
direction of motion.

• Multiplicative Noise adds speckle noise to an image
I , obtaining I + n � I , where n(x, y) are i.i.d. random
variables, uniformly distributed with zero mean and an
adjustable variance. The magnitude of the distortion is
determined by the variance.

Figure 11 shows one of our source images together with
distorted images for all of the seven distortion types.2

G. DISTORTION LEVELS: DESIGN
For each combination of a source image and a distortion type,
a sequence of increasingly distorted images is to be defined.

2In a pilot study prior to this work (unpublished), we used JPEG com-
pression, Gaussian noise, and Gaussian blur. The results showed that the
boosting strategies (A-,Z-, and AZ-Boosting) work well also for these types
of distortions.

In previous FR-IQA datasets, only 4–6 levels of distor-
tion were considered (Table 1). The boosting techniques are
expected to help differentiate between distorted images that
look the same at first glance. Thus, for our first main exper-
iment, we strove to generate image sequences such that the
perceptual difference of any two successive images is fixed at
only 0.25 JND. This is a very small difference: According to
the Thurstonian probabilistic model, in a 2AFC experiment,
the fraction of observations that correctly identify the stimu-
lus with better quality is 8(0.258−1(0.75)) ≈ 0.5670. The
corresponding detection rate is only 2 ·0.5670−1 ≈ 0.1339.
Our second main experiment shrunk the spacing even more,
to 0.1 JND, corresponding to an expected detection rate of
merely 0.0538. However, in this case, we considered only one
particular type of distortion to keep the overall cost within our
budget for the crowdsourcing.

Having defined the psychovisual spacing of distortion in
each image sequence, the question remained over what range
of distortions the sequence should span. In a recent study on
just noticeable differences in video sequences, it was found
that the perceptual quality at the third JND is between fair and
poor on the 5-point ACR scale [32]. The authors concluded
that distortions stronger than 3 JND are not acceptable by
today’s viewers. Thus, we set the range of impairment for
each image sequence to 3 JND. For content providers of high-
quality media, we believe the first third of this range, from
lossless compression up to 1 JND is the most relevant.
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Therefore, in our first main experiment, an image sequence
consisted of the pristine, original image together with 12 dis-
torted versions at impairments of 0.25 k JND, with k =
1, . . . , 12. In the second experiment, we had even 30 distorted
images uniformly ranging over 3 JND. Inmany of our figures,
we show results over these 12, respectively 30, distortion
levels. Since all reference source images and all distortion
types test images at the same distortion level correspond to
nearly the same perceived magnitude of distortion, we can
average results over these image sequences for each distortion
level.

H. TEST IMAGE GENERATION
In order to generate sequences of distorted images with the
desired equal spacing on the perceptual scale, we carried out
a pilot study. The overall procedure for each of the 70 image
sequences (10 source images, 7 distortion types) was as
follows:
1) Generate a sequence of 12 distorted images by increas-

ing the corresponding scalar distortion parameter λ. The
parameters are chosen using the method of bisection to
yield an image sequence that is equally spaced according
to the structural similarity index SSIM [73].

2) Run a crowdsourcing study using pair comparison
with the additional display of the corresponding source
image, which is equivalent to the baseline triplet com-
parison strategy.

3) Reconstruct the impairment scales from the comparison
data in JND units. Calibrate the scales such that the
impairment for the pristine source image is equal to 0.
The result is a sequence of impairments, parametrized
over the corresponding distortion parameter λ for the
given distortion type.

4) Truncate this sequence such that only the last remaining
impairment value is outside of the range from 0 to
3 JND. Fit a straight line to these data points, constrained
to pass through the point for the source image. Without
loss of generality, we may assume that this is the origin,
(0, 0). Let the slope of the line fit be s > 0. Then the
expected impairment at parameter λ according to the line
fit is sλ.

5) Define the sequence of distortion parameters as

λk =
k
4s
, k = 0, . . . , 12.

6) Generate the sequence of distorted images according
to these parameter settings. As a result, the impair-
ment scale of the k-th image will be approximately
0.25 k JND, and the distortions span a total range of
about 3 JND.

Figure 12 shows an example of impairment reconstructions
for one image sequence together with the line fit and the
resulting choices of 12 physical distortion parameters, which
we can expect to correspond to distorted images uniformly
spaced 0.25 JND apart from each other.

For the second experiment the intended spacing in impair-
ment is 0.1 JND, and the procedure is the same as above,

except for Step 5, where we set λk = k
10s , k = 0, . . . , 30.

This was done for 10 image sequences from the 10 source
images, but only one distortion type, motion blur.

In the rest of this subsection, we briefly describe the details
of the selection of the baseline triplet comparisons in the pilot
study, the numbers of collected responses, and the quality
control.

1) SAMPLING STRATEGY
Our sampling strategy proceeded in three rounds of data
collection. The first round was for initialization. For each of
the 70 image sequences, we randomly sampled pairs of the
13 test images (including the source image) by choosing the
edges of a random sparse graph with a vertex degree of six
and nodes corresponding to images. Thus, each image was
randomly compared to six other images of the same sequence.
For all sequences together, this resulted in 39 × 70 = 2730
triplets of images. We used baseline triplet comparisons,
so the pivot image in the center of the triplets was fixed as
the corresponding source image.

In the second and third rounds, we applied an active sam-
pling strategy. A minimal spanning tree connecting 13 nodes
(i.e., test images) was produced for each sequence. The
12 edges then yielded the test images for the triplet questions
and were chosen based on maximizing the expected informa-
tion gain, following [74]. This resulted in 12 × 70 = 840
triplets of images in each round.

Each triplet question was presented to 30 crowd workers.
Hence, overall (2730+ 2× 840)× 30 = 132 300 responses
were collected.

2) QUALITY CONTROL
The quality of the experiment was controlled as described
in SectionV-C and by a simplified outlier removal process.
There were 1035 assignments that were rejected and recol-
lected because the test question was answered incorrectly,
or more than three questions were skipped.

The outlier detection in the pilot study was chosen differ-
ently from that in the main experiment. This is because the
pilot study’s purpose was merely to help generate test image
sequences with prescribed impairment scales. This required
accurate reconstructions of these scales for the test images
used in the pilot study. To identify HIT assignments with
unreliable responses, we, therefore, could rely on the ground
truth, given by the ordering of the test stimuli on the physical
distortion scale.

Consider the n-th baseline triplet comparison (i, 0, k) of
a HIT assignment, where i and k denote the indices of the
test images in a given sequence. Similar to SubsectionV-D1,
we gave a score un ∈ {0, 0.5, 1} to its response as specified
in the following table.

Response i < k k < i
left 1 0
right 0 1

not sure 0.5 0.5
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FIGURE 12. Example of the linear fitting procedure in the pilot study for
the image sequence with source image SCR03 and distortion type ‘‘High
Sharpen’’. On the horizontal axis, the physical distortion parameter for the
selected distortion type increases linearly. 13 impairment values (blue
crosses) were reconstructed, the last 4 of them being greater than 3 JND.
The last 3 of these are disregarded and not shown. From the remaining
10 points, the line fit was generated. Using this result, 13 equally spaced
physical distortion parameters, as shown, were obtained, which span the
range of 3 JND on the perceptual impairment scale. These parameters
define the twelve distortion levels for the image sequence used in
Experiments I and III. For this example, a difference of one distortion
level corresponds to a difference of 0.322 for the physical distortion
parameter of the type ‘‘High Sharpen’’.

Note, that by construction, i 6= k . The normalized sum of
the scores in an assignment, 1

N

∑N
n=1 un can be called the true

positive rate. The distance of an assignment w.r.t. the ground
truth ordering is defined as

d = 1−
1
N

N∑
n=1

un. (10)

After computing these distances to ground truth ordering
for all assignments, we sorted them according to distance and
removed the last 10% of them as outliers.

I. COMPARISON OF RESOLUTIONS OF FR-IQA DATASETS
Our dataset is the first one designed based on perceptual
criteria that had been assessed in a pilot study. For each
combination of a source image and a distortion type, the goal
was to generate a sequence of distorted images with equal
increments of perceived impairment. In Part A of our dataset,
this increment is 0.25 JND, and in Part B, it is 0.1 JND.
In other datasets, the distortion parameters either were
selected manually (e.g., LIVE, VCL@FER, CID:IQ, MDID,
and KADID-10k) or according to a plan w.r.t. increments of
PSNR or bitrate (e.g., TID2008 and TID2013).

For an image sequence in a fine-grained FR-IQA dataset,
we expect a large number of distortion levels spread over the

FIGURE 13. The resolution of FR-IQA datasets, defined by the number of
distortion levels per dB on the PSNR scale, generally varies between
0.2 and 0.5 levels/dB for conventional datasets. Our new fine-grained
datasets, KonFiG-IQA, Parts A and B, have much greater resolution over a
large portion of the entire PSNR range. The data points (black crosses)
are samples of the resolution function, computed for KonFiG-IQA, Part A.
The curves in the figure were obtained by a Gaussian averaging filter of
width 2 dB.

respective ranges of distortion, in our case 3 JND. To quan-
tify and compare different FR-IQA datasets in this regard,
we introduce the notion of dataset resolution. As a ref-
erence scale, we adopt the PSNR in dB. The resolution
for an FR-IQA dataset then is a function of the PSNR,
which indicates how close PSNRs of consecutive images
from image sequences are in the neighbourhood of the given
PSNR.We chose to define resolution locally this way because
of the nonlinear relationship between PSNR and perceived
quality which causes the resolution function to vary sig-
nificantly, particularly for our perceptually guided FR-IQA
datasets.

TID2013 adopted a spacing of 3 dB PSNR between con-
secutive images in a sequence, so its dataset resolution is
1/3 level per dB PSNR, in this case uniformly over the entire
range of distortion. A resolution of 0.4 levels/dB at 28 dB
PSNR means that the average length of intervals of PSNR
values of consecutive images in a sequence including 28 dB,
is 2.5 dB, the inverse of the resolution of 0.4 levels/dB.

We computed the dataset resolution functions for our
datasets, KonFiG-IQA Parts A and B, and six other datasets,
namely LIVE, CSIQ IQA, VCL@FER, TID2013, CID:IQ,
and KADID-10k. For each of these, the procedure was
as follows. First, we scanned consecutive images in each
image sequence of the FR-IQA dataset and collected the
corresponding PSNR intervals. Secondly, we sampled the
PSNR scale uniformly with a step size of 0.2 dB, and for
each sample value, we averaged the lengths of all those
intervals that contain the PSNR sample. The inverse of this
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FIGURE 14. Average reconstructed impairment scales over 70 sequences
for 8 types of TC with baseline triplets. Scales from AZF-boosted TC have
the largest range, almost 3 times as large as the range of Plain TC.

average length is the value of the resolution function at
the given PSNR sample value. Due to the discrete nature,
the resolution function is only piecewise constant and appears
noisy as there are some intervals of very small size. For
visualisation, therefore, we show a smooth approximation
obtained using a Gaussian averaging filter with a width
of 2 dB PSNR.

Figure 13 shows the resulting resolution functions for
the selected datasets and also the samples collected for
KonFiG-IQA (Part A). The figure confirms that our new
fine-grained datasets have much greater resolution over a
large portion of the total PSNR range.

We also note that for TID2013, the design goal to have
3 dB PSNR between consecutive images in each sequence
(0.33 levels/dB) was not strictly followed. The dataset resolu-
tion mainly varies between 0.2 and 0.4 levels/dB and exceeds
1 level/dB at the low end of the PSNR scale.

VI. EXPERIMENT I: BOOSTING FOR BASELINE TRIPLET
COMPARISON
The purpose of our first experiment is to apply the proposed
boosting methods to our FR-IQA dataset in a crowdsourc-
ing campaign for the analysis of the performance w.r.t. that
achieved without boosting as traditionally done. Here we use
baseline triplet comparisons, i.e., we present two different
distorted test images, Ii and Ik , together with the undistorted
reference image I0 in the middle of the triplet, which is
denoted by (i, 0, k). This interface corresponds to that used
in TID2008, TID2013, and MDID.

We recall from the previous section that we have 10 source
images, each distorted by 7 types of distortion, giving
70 image sequences, each consisting of a reference (source)

image I0 and 12 increasingly distorted versions of the refer-
ence image, I1, . . . , I12. By design, the distortions span 3 JND
units on the perceptual scale, so the perceptual difference
between two consecutive images is 0.25 JND. For each of the
70 sequences, we applied 8 types of baseline triplet compar-
isons, namely the plain TC without boosting and A-, Z-, AZ-,
F-, AF-, ZF-, AZF-boosted baseline TC.

In this setup, for each sequence, there are
(13
2

)
= 78

possible triplet comparisons. Since there is less information
gain in responses for triplets for which the correct answer
is obvious, we only considered the 68 triplets (i, 0, k) with
|k− i| ≤ 8 and k 6= i. Thus, triplets (i, 0, k) with a perceptual
distance between Ik and Ii greater than 2 JND were omitted.
In this way we generated two groups of 68×70×4 = 19 040
triplets each. The first group contained those triplets that were
used for comparisons without boosting by flicker. For the
other group of triplets, to be used with F-boosting, a dif-
ferent interface had to be applied (see SectionV-B), so they
were collected in separate HITs in the crowdsourcing. The
triplets were randomly oriented (either as (i, 0, k) or (k, 0, i))
and shuffled in each group. Finally, they were split up and
distributed into crowdsourcing HITs. Each HIT consisted
of 19 triplet comparisons and 1 additional triplet comparison
from our pool of test questions.

We spawned 20 assignments per HIT, i.e., we collected
20 responses for each triplet comparison. We controlled
the quality of the experiment and removed outliers as
described in SectionsV-C andV-D. In the end, 37 206
assignments of HITs with 706 914 TC responses remained
for the reconstruction of impairment scales for 70 image
sequences and analysis. For details see Table 4 and 5. Using
the method proposed in Section IV, the perceived impair-
ments of the images were reconstructed from the set of
TC responses. We evaluated and compared the perfor-
mances of the eight types of TC by several criteria as
follows.

A. RESULTS: RECONSTRUCTED IMPAIRMENT SCALES
Figure 14 summarizes the reconstructed impairment scales
for stimuli at the 12 distortion levels. Each curve represents
the average taken over all 70 image sequences of seven
distortion types. Themain findings from this global view over
the range of 3 JND are as follows:

• The result from plain triplet comparisons is given by
the black dashed curve. It shows a linearly increasing
impairment, reaching 3.1 JND for distortion level 12.
Thus, Experiment I confirms our expectations from the
pilot study quite well, a perceptually linearly increasing
impairment over 3 JND.

• The three colored dashed curves are for the results with-
out boosting by flicker. They are well above the baseline
given by plain TC and extend the range of perceived
distortion from 3 to about 4 JND, with the red curve
for combined AZ-boosting yielding the largest increase.
Thus, for boosting with artefact amplification, zooming,
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TABLE 4. Overview of all subjective studies.

TABLE 5. Number of HIT assignments in all experiments.

or their combination, we have gained 1 JND over the
range of the first 3 JND.

• The four solid curves are for the results with boosting
by flicker. These provide an additional large increase in
performance. Just the boosting by flicker alone extends
the range of perceived distortion to 5 JND. The com-
binations with either zooming or artefact amplification
provide about 6.5 JND in place of only 3 JND, given
by traditional plain comparisons. However, the top per-
forming boosting is the combination of all three meth-
ods, AZF-boosting, giving close to 9 JND and providing
an overall increase by a factor of almost 3 over plain
comparison.

These findings hold for the averages taken over all distor-
tion types and source images. The impairment curves for the
different distortion types, averaged over the 10 source images
for the sequences, showmore detailed views of the results and
can be found in Figure 15.

B. RESULTS: SENSITIVITY GAIN
The strongest effect of the boosting strategies can be observed
for smaller distortion levels, up to 1 JND. To quantify the
performance of the boosting strategies also locally at different
distortion levels, we introduce the concept of sensitivity and
sensitivity gain. In general, a sensitivity analysis determines
how changes in an independent variable affect a particular
dependent variable. If a differentiable function gives their

functional dependence, we can use its derivative as a measure
of sensitivity.

In our case, we think of the distortion level as the
independent variable and the corresponding reconstructed
impairment scales from the eight types of TC as depen-
dent variables. Although the distortion levels are discrete,
they correspond to equally spaced, physical, and real-valued
distortion parameters. It may be assumed that the resulting
impairments of image quality can be modelled by a contin-
uous and differentiable function. Given our data, we applied
the 5-parameter logistic fitting [17] to the curves in Figure 14
using

β1

(
1
2
−

1
1+ exp (β2(x − β3))

)
+ β4x + β5, (11)

where x denotes the distortion level, and β1 to β5 are
the parameters for the fit. In the numerical optimiza-
tion procedure for the curve fitting, local optima will be
obtained, depending on the choice of initial parameters.
Therefore, we ran the optimization multiple times with dif-
ferent initial conditions and visually checked the fitting
quality.

The derivatives of the fitted functions then model the
observed sensitivities of the plain and boosting techniques to
assess the impairment. The sensitivity is also a function of
the physical distortion magnitude, respectively the distortion
level, allowing a local analysis.

We define the sensitivity gain, provided by a particular
boosting method as the quotient of the sensitivity for a boost-
ing method and the sensitivity of the method using plain
triplet comparisons. A gain larger than 1 indicates an increase
in the sensitivity of that factor due to boosting. Figure 16 (left)
illustrates the procedure for the case of AZ-boosting. Firstly,
it clearly shows that the curve fitting yielded visually con-
vincing smooth functional approximations of the empirical
data. Secondly, we see that AZ-boosting yielded a sensitivity
gain greater than 1 for distortion levels up to 5 (correspond-
ing to about 1.25 JND), but the method using plain baseline
TC was more sensitive for larger levels than the one with
AZ-boosted TC.

The right part of Figure 16 shows the sensitivity gain
as a function of the distortion level for all seven types of
boosting. The curves demonstrate that the boosting methods
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FIGURE 15. Average reconstructed JND scales as in Figure 14 for each type of distortion. Each point on any of these graphs corresponds to the mean
impairment scale in JND units of the 10 source images, distorted with the respective type and at the given level.

for baseline triplet comparison are most effective for smaller
distortions up to about 1 JND,which corresponds to distortion
level 4. Especially for the boosting with flicker, sensitivity
gains larger than 2 were achieved.

For larger distortion levels near 2 JND, a kind of saturation
effect can be noticed; the gain dropped below 2 but still is
larger than 1, except for A- and AZ-boosting. This indicates
that perceptually, boosting small distortions to a reference
image makes their difference more apparent than boosting
large distortions. This effect is particularly strong for arte-
fact amplification among the basic A-, Z- and F-boosting
techniques. The sensitivity gain almost linearly drops from
2 at distortion level 0 to 0.8 at distortion level 12. This may,
in part, be explained by the nonlinearity of the boosting due
to pixel value clamping, see Table 2. Naturally, for small
distortions in the test images, there is less clamping to be
expected than in test images with large distortions, and such
a deficiency does not hold for the other two basic boosting
types.

C. RESULTS: TRUE POSITIVE RATE
Recall from SectionV-H2 that the true positive rate (TPR)
for a set of baseline triplet responses is the ratio of correct
answers w.r.t. the ground truth given by the ordering of the

TABLE 6. True positive rate and average response times for triplet
comparisons.

stimuli of an image sequence. In this regard, a response of
type ‘‘not sure’’ scores 1/2 point. Therefore, the TPR can
also be considered a criterion for validating the performance
improvement by the boosting methods. A TPR of 0.5 can
be achieved by guessing alone. The TPR for boosted TC is
expected to be larger than for plain TC, as boosting should
enable observers to make more correct decisions regarding
image quality differences.

Table 6 shows the first overall average results for the TPRs
in Experiment I (with increasing order) and confirms our
expectation. The TPRs show a similar ordering as observed
in the average reconstructed impairment scales at larger dis-
tortion levels, as shown in Figure 14:

Plain, Z, A, AZ, F, AF, ZF, AZF.
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FIGURE 16. Left: The sensitivity gain of AZ-boosted baseline triplet comparison is illustrated. The gain is the ratio of the derivatives of the fitted
impairment scale functions. Thus, the gain is the factor by which an increase of perceived distortion is multiplied when AZ-boosting is applied.
Here, the sensitivity gain is greater than 1 for distortion levels up to 5 but less than 1 at larger levels. This indicates that AZ-boosting is more
sensitive than plain baseline TC for small distortions up to around 1.25 JND and less sensitive for larger levels. Right: Sensitivity gain for all seven
types of boosted baseline triplet comparisons. It shows that boosting in baseline triplet comparisons is most effective for smaller distortions.

For a more detailed perspective, we consider comparisons
as typically done to assess the JND threshold in image
sequences with increasing distortion. This amounts to com-
parisons of distorted images with the corresponding source
reference images. In terms of triplet comparisons, we there-
fore look at triplets (0, 0, k) (or (i, 0, 0)). We expect that the
TPR increases with the distortion level k (resp. i) and that
boosted TCs give rise to larger TPRs.

Figure 17 shows the TPRs for this analysis, averaged over
the 70 sequences in our dataset. Corresponding detection
rates linearly increase from 0% for a TPR of 0.5 to 100%
for a TPR of 1, and the JND threshold on one of the curves is
reached at a TPR of 75%. For the case of plain TC, we see
that the JND threshold was reached at distortion level 3.
The dataset was designed to have the threshold at distortion
level 4, and there the TPR is 0.76, still close to 0.75 as
expected.

All seven types of boosting increase the TPR compared to
plain TC. To give an example, consider test images having
just one distortion level difference (0.25 JND). Plain compar-
ison yielded a TPR of only 0.52, which is not much better than
guessing.3 On the other hand, with combined AZF-boosting,
the TPR is 0.88, a very strong improvement.

On the far end of the scale at levels 6 to 8, corresponding to
distortions 1.5 to 2 JND, the gains in TPR achieved by boost-
ing are smaller. This is due to the saturation effect described
earlier, i.e., consistent with our findings for the sensitivity

3In SectionV-G we showed that the expected TPR of the corresponding
2AFC pair comparison for a perceptual difference of 0.25 JND is 0.567,
which is a bit larger than the empirical TPR of 0.52 observed here. This may
be due to the basic assumption in Thurstonian models that the distributions
of the latent perceptual image quality scales are perfectly Gaussian. It is
unknown to what extent this assumption holds true.

FIGURE 17. For assessment of the JND threshold, distorted images are
compared with the source image. The figure shows the corresponding
TPRs from our corresponding triplet comparisons, averaged over all
70 image sequences. Corresponding detection rates linearly increase from
0% for a TPR of 0.5 to 100% for a TPR of 1. Boosting increases the TPR
and reduces the JND threshold, which can be read off the graphs at the
TPR of 0.75.

gain by boosting. These gains are much more pronounced for
small distortions levels.

D. RESULTS: RESPONSE TIME
Boosting not only helps observers to find the correct answers
to comparisons but also reduces their response time. Table 6
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shows the response times in seconds for all methods with and
without boosting, averaged over all baseline triplet compar-
isons and with corresponding standard deviations. A response
for a plain TC required 2.3 seconds on average. All types
of boosted TC were faster, with AZF-boosting requiring
slightly less than 2 seconds on average. The two-sample t-test
revealed that these time savings are statistically significant,
with very small p-values less than 10−11.

VII. EXPERIMENT II: BOOSTING FOR GENERAL TRIPLET
COMPARISON
In the previous section, we noticed that there is a saturation
effect for larger distortion levels, and the reason could be
that boosting small distortions of two test images makes their
difference stand out better than boosting large distortionswith
the same difference in distortion levels.

To ameliorate this drop in effectiveness of boosting for
larger distortion levels, we consider general triplet compar-
isons (i, j, k), where the pivot image Ij is not fixed to be the
undistorted reference image I0 of a sequence. Instead, wemay
allow arbitrary triplets with different pairwise stimuli and
select the stimulus with the median distortion magnitude as
the pivot.

The artefact amplification then linearly increases the dif-
ferences with respect to the pivot as before and not the dis-
tortions concerning the pristine reference images. Typically,
these image differences to be enlarged will be smaller than in
Experiment I with baseline triplets. Likewise, in the flicker
technique, the flicker is between distortion levels that typi-
cally are closer together than with baseline triplets. In Exper-
iment I, we have seen larger sensitivity gains for such smaller
quality differences. Thus, we expect to arrive at a sensitivity
gain that is enlarged over the whole range of distortion levels,
thereby reducing or even eliminating the saturation effect
observed for baseline triplet comparisons.

The second motivation to conduct Experiment II is to
assess and compare the performance of boosted versus plain
TC in terms of the convergence as the number of TCs
increases. On the one hand, the reconstructed impairment
scales converge, and for the analysis, we consider their
confidence intervals from samples of TCs as estimates for
the precision of the computed impairment scales. On the
other hand, for a given set of distorted images derived from
a fixed reference image, the ordering of the reconstructed
impairment values should converge, and the Spearman rank-
order correlation (SROCC) is the appropriate measure for this
analysis.

To study such convergence aspects, a very large pool of
TC responses and a challenging set of image sequences are
desirable. Therefore, we increased the number of distortion
levels in each image sequence from 12 to 30, so that the
spacing between consecutive test images is only 0.1 JND.
The number of TCs per image sequence was increased from
1360 to 9585 and 29 070 for boosted and plain TC, respec-
tively. To limit the cost for such an enlarged study, we chose
to restrict Experiment II to only one type of distortion,

FIGURE 18. Experiment II (general triplet comparisons, motion blur
distortion): The reconstruction of impairment scales from plain and
AZF-boosted TC are shown by the curves with square and circular
markers, respectively. On average, the red curve increases with a slope
7 times as large as that for the blue curve. Thus, the overall gain in
sensitivity by AZF-boosting is given by a factor of about 7. The sensitivity
gain function for AZF-boosting is also shown (solid red curve). It is
globally larger than 5, while the corresponding sensitivity gain function
from Experiment I (baseline triplet comparisons, motion blur distortion),
shown by the solid green curve, is everywhere below 5.

motion blur, and to the most promising type of boosting,
AZF-boosting. All 10 source images were used, resulting
in 10 sequences of increasing motion blur distortion.

For 31 images I0, I1, . . . , I30 in each of the 10 image
sequences, we considered triplets (i, j, k) with i < j < k .
We further limited the span of these triplets. The span of
a triplet (i, j, k) is S = max(i, j, k) − min(i, j, k) which
in this case is S = k − i. For boosted TC, we set the
maximal span to 10, and for plain TC to 20, corresponding
to 1 and 2 JND, respectively.We anticipated that small differ-
ences were harder to detect with plain TC, so larger spans for
plain TC than for boosted TC would be advisable for a fair
comparison. The number of triplets for each image sequence
thus was

∑S
n=2(31 − n)(n − 1), which is 3230 for plain and

1065 for boosted TC.
For each of the triplet comparisons, we collected

9 responses from the crowd workers. The presentation of
the triplets was randomized in sequence and in orientation,
showing either (i, j, k) or (k, j, i). The quality control and
outlier removal were carried out as in Experiment I. For
details regarding the numbers of HITs that were rejected or
classified as outliers, see Table 5.

A. RESULTS: RECONSTRUCTION AND SENSITIVITY GAIN
We reconstructed the impairment scales for the 10 sequences
from the collected responses to the plain and the
AZF-boosted triplet comparisons. The results, averaged over
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FIGURE 19. Average TPR for all triplets (i, j,k) and distance
D =

∣∣|i − j | − |k − j |
∣∣ for all 10 sources. The advantage of boosting by

artefact amplification, zooming, and flickering is obvious: The easiest
plain triplet comparisons are for D = 8, and yet they are harder than the
hardest AZF-boosted triplet comparisons at D = 1.

the 10 sequences, are shown in Figure 18. For plain TC we
obtained a very slowly increasing impairment, reaching 4.0
JND at distortion level 30. For AZF-boosted TC, however,
we obtained a range of 30 JND. Thus, over the range of 3 JND
of motion blur distortion, we recorded an average sensitivity
gain of 7.5 for AZF-boosting. The same boosting for baseline
triplets gave an average gain of only 1.8.

Figure 18 also displays the achieved local sensitivity gain
of AZF-boosted TC over plain TC as functions of the dis-
tortion levels. The gain function is shown for baseline triplets
used in Experiment I (green curve) and for the general triplets
used here (red curve). Over the whole range of distortion
levels, the gain achieved in Experiment II is larger than 5.
Moreover, the gain is decreasing up until level 12 and then
increases again, reaching 9.6 at level 30. In contrast, for
baseline TC of Experiment I, the gain is limited below 5 and
slowly decreases down to 1.9.

Altogether, our first conjecture, to improve on the sen-
sitivity gain by using general triplets in place of baseline
triplets, was clearly confirmed with an impressive tripling of
performance in sensitivity.

B. RESULTS: TRUE POSITIVE RATE
The true positive rate is an indicator of the ease of the cor-
responding set of triplet comparisons. As for Experiment I,
we computed the true positive rate for plain and boosted
triplet comparison, in this case, averaged over all triplets
i, j, k with i < j < k and span S = k − i ≤ 10. The
average TPR for the 10 sequences of motion-blurred images
is 0.5583 for plain TC and 0.8810 for AZF-boosted TC.

Compared to Experiment I, we see that AZF-boosting brings
about an even larger increase of overall TPR. We obtained an
improvement of 0.3227 using AZF-boosted TC over plain TC
with general triplets.With baseline triplets, the corresponding
improvement was smaller, 0.1313, for the case of motion blur,
and 0.0924 for all types of distortion on average.

Figure 19 shows a more detailed view, breaking up the
averages into eight parts, based on the absolute differences
D = ||i− j| − |k − j|| = 1, . . . , 8. Triplet comparisons with
larger values of D can be expected to be easier to judge
correctly, and this is reflected in themonotonic increase of the
TPR. It is remarkable that the TPR for AZF-boosting, even
for the smallest difference of just 1 level between perceptual
distances of the left and right image to the pivot image,
is larger than any of the detailed TPRs for the plain triplet
comparison.

C. RESULTS: CONVERGENCE IN PRECISION
Assuming that the ratios of responses ‘‘left’’, ‘‘right’’, and
‘‘not sure’’ for each TC (i, j, k) converge as the number of
responses tends to infinity, we may expect that the recon-
structed impairment scales for the corresponding image
sequence also converge. In this subsection, we aim to assess
the precision of the reconstructions for given budgets of TCs.
For this purpose, we consider the 95% confidence inter-
vals (CI) for all of the reconstructed impairment scales.

For each of the 10 image sequences with motion blur,
we had collected approximately 8900 responses for plain and
also for AZF-boosted TC with a span of at most 10 distortion
levels. For a given budget of responses, one may create a
sample of that size from each of these pools of 8900 responses
for triplets, using random resampling with replacement. From
each such sample, a reconstruction can follow. For each
image sequence and each budget of responses, we carried out
this procedure and computed the 95% confidence interval for
the resulting impairment scale of each image and recorded
their lengths.We used budgets from 50 up to 10 000 responses
per sequence and collected 500 resamplings each time.

For a fair comparison of the lengths of the confidence
intervals derived from plain and boosted TCs, we must take
the sensitivity gain of boosted TC into account. The impair-
ment scales reconstructed from boosted TC are approx-
imately 7.5 times larger (SectionVII-A), and therefore
the corresponding confidence intervals should be scaled
by 1/7.5 ≈ 0.13.

Figure 20 shows the resulting (scaled) lengths of the CI for
the images at distortion levels 5, 15, and 25, averaged over the
10 sources, on a doubly logarithmic grid. For both methods,
plain and boosted TC, the sizes of the confidence intervals
shrink by about two orders of magnitude when the budget of
responses is increased from 50 to 10 000. The precision given
by reconstructions from 10 000 responses for plain TC can be
achieved by only 300–400 responses with the AZF-boosted
TCs. In other words, in this experiment, a single response
for a boosted TC gave as much benefit in terms of resulting
precision as 25 to 33 responses for plain TCs.
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FIGURE 20. Comparative study on the precision of reconstructions from TCs. Impairment scales were reconstructed for each of the 10 image sequences
from sets of 500 random samples of a variable number of responses for plain and AZF-boosted TCs. The figure shows the average lengths of the
corresponding 10 confidence intervals for the stimuli at distortion levels 5, 15, and 25 as indicators of precision. The best achievable performance for
plain TC, obtained from 10 000 responses per sequence, was surpassed by reconstructions derived from as few as 400 responses to AZF-boosted TCs.

TABLE 7. Convergence in SROCC for AZF-boosted and plain TC.

D. RESULTS: CONVERGENCE IN ORDERING
To compare the convergence of the quality assessment using
boosted TCs with that for plain TCs, we followed the same
approach as in the previous SectionVII-C. Using resam-
pled data for given budgets of TC responses per sequence
of 31 images, we computed the impairment scale reconstruc-
tions and their corresponding SROCC w.r.t. the ground truth
determined by the distortion levels of the images. For each
size of budget, we produced 500 resamplings and recorded
the median SROCC and the corresponding 95% CI (using the
percentile method). Finally, we averaged the median SROCC
and lengths of the CIs over the 10 image sequences.

These results are listed in Table 7 and visualised
in Figure 21. The SROCC for plain TC is smaller than 0.9 for
all sample sizes up to 2000 responses per sequence, while for
AZF-boosted TC, the SROCC is above 0.9, even for samples
of only 50 responses per sequence. The SROCC of 0.9412 for
plain TC using 10 000 responses is surpassed by the SROCC
for boosted TC with as few as 100 responses.

We demonstrate the advantage of boosted TC over plain
TC by means of an example. We pick a source image and
its 30 distorted versions, labelled by motion blur distor-
tion levels 0 to 30. Then, for each plain and boosted TC,
we choose samples of 100, 1000, and 10 000 randomly

FIGURE 21. This figure illustrates the data from Table 7. Impairment
scales were reconstructed from random samples of a variable number of
responses for plain and AZF-boosted TCs. We show their (median)
rank-order correlation (SROCC) with the ground truth ordering, averaged
over image sequences from 10 sources. The upper and lower bound of CI
(95%) was averaged over 10 sequences. The best achievable performance
for plain TC required 10 000 responses but was beaten by reconstructions
derived from as few as 100 responses to AZF-boosted TCs.

selected responses (with replacement), followed by recon-
struction of the 31 impairment scales. Sorting the image
labels for each reconstruction according to increasing impair-
ment scales yields permutations of (0, 1, . . . , 30). See Table 8
for the results. The table also shows the corresponding
SROCC and the number of inversions in the permutations,
which express the quality of the orderings (lower is better).
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FIGURE 22. The DMOS of the DCR study of Experiment III show a
sensitivity gain when assessing the perceptual image quality with small
distortions up to about 0.75 JND (corresponding to level 3). The DMOS
values are averaged over 70 sequences. 95% confidence intervals were
computed for the DMOS of each distorted image. For each of the
distortion levels, the average length of the corresponding 70 CIs was
computed. The figure shows the centerd CIs with these average lengths.
The solid red curve is the corresponding sensitivity gain function.

The number of inversions is equal to the number of swaps
required for sorting a permutation by the Bubble Sort
algorithm.

The best result for plain TC is from a sample of 10 000 TC
responses and has 40 inversions and an SROCC of 0.9331.
It has about the same quality as a result obtained from a
sample of only 100 AZF-boosted TC responses which has
42 inversions and an SROCC of 0.9484. With 1000 responses
for boosted TCs, the ordering of the reconstruction is almost
perfect, with only a single inversion left.

To summarise, in this experiment, each of the first
100 responses for AZF-boosted TC was worth more than
100 responses for plain TCs in terms of the resulting SROCC
of the reconstruction. To obtain an SROCC of 0.95, our
boosting method was 100 times as efficient as plain TC.

VIII. EXPERIMENT III: BOOSTING FOR DEGRADATION
CATEGORY RATING
In our third and last experiment, we briefly tested the potential
of boosting together with degradation category rating (DCR),
which is one of the standard methods for subjective FR-IQA.

Since in the conventional DCR approach, the distorted
and reference images are displayed side by side, it is not
appropriate to show a flickering image in such a scenario.
Hence, only still images can be considered. In Experiment
I, AZ-boosted TC provided the largest sensitivity gain for
TC among the non-flickering boosting techniques. There-
fore, here we repeated Experiment I, investigating the per-
formance of plain and AZ-boosted comparisons applied

in the DCR setting, denoted as Plain-DCR and AZ-DCR,
respectively.

The experimental setup, the quality control, and the outlier
removal for this study were as described earlier in SectionV
and shown in Figure 9. As in Experiment I, we used all
70 image sequences from 10 sources and 7 distortion types,
each containing a source reference image and 12 increasingly
distorted images. The set of all Plain-DCR and AZ-DCR
questions was shuffled and distributed into a sufficient num-
ber of HITs, each one also containing one test question for
quality control. For each image, we collected 50 ratings. The
statistics of the collected data is detailed in Tables 5 and 4.

A. RESULTS: RECONSTRUCTION AND SENSITIVITY GAIN
Figure 22 shows the DMOS for the two types of DCR, aver-
aged over the 70 sequences. Both methods worked well. The
DMOS curve for AZ-DCR is above that for Plain-DCR and
spans over a larger interval. Thus, on average, AZ-boosting
provided an increased sensitivity as anticipated. However,
the gain in sensitivity is restricted to small distortions, up to
level 3 (0.75 JND). For larger distortions, the sensitivity gain
is less than 1, showing a saturation effect similar to A- and
AZ-boosted baseline triplet comparison, compare Figure 16.

Note that the DMOS should ideally be equal to 0 at dis-
tortion level 0, since when the reference image is compared
to itself, there is no difference between the two, and the
distortion should be rated ‘‘imperceptible’’ with a score of 0.
However, from Figure 22, the DMOS at level 0 is not equal to
0 but even larger than 1 for both of theDCR tests.We think the
reason for this outcome is that in this experiment, observers
were instructed to expect to see distorted images on the right
side, and during the work on the assignments, this expectation
was fulfilled, almost always. Therefore, the participants in
the study may have been hesitant to declare that they could
not detect any difference. So many rated the distortion for
a displayed test image as ‘‘perceptible, but not annoying’’ or
even worse, although it actually was identical to the reference
image.

B. RESULTS: PRECISION
We evaluated the precision of the acquired DMOS results by
computing their 95% confidence intervals. Figure 22 shows
the results for Plain- and AZ-DCR, where we have averaged
the full width of the confidence intervals over the 70 image
sequences. These average confidence intervals, based on up
to 50 collected ratings per test image, range from ±0.220
to ±0.295 on the 5-point DCR impairment scale. The confi-
dence intervals for boosted AZ-DCR are slightly smaller than
for Plain-DCR.

IX. RESCALING BOOSTED IMPAIRMENTS BY HYBRID
TRIPLET COMPARISONS
Our boosting techniques of artefact amplification, zooming,
and flickering were designed to perceptually magnify differ-
ences between compared stimuli so that human observers are
enabled to distinguish fine-grained distortion levels better.
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TABLE 8. Orderings from the reconstructions for source image SRC07 and motion blur distortion. Last column: Number of inversions.

The experiments of the previous sections have confirmed this
intended effect.

However, boosting amounts to a nonlinear scaling of per-
ceptual distortion, as already apparent from Figure 14. More-
over, this nonlinearity may depend on the distortion type and
the content of the source images. For example, using boosting
by zooming and flicker, the impairment range of 3 JND units
for plain TC was stretched to 7 JND for the jitter distortion,
but only to 5.5 JND for color diffusion, see Figure 15.
This nonlinear scaling of perceptual distortion could be

disregarded when building FR-IQA datasets. After all, it is
a commonly accepted practice to use DCR or reconstruc-
tions from pair comparison for subjective quality assessment,
although also theDMOS scale is not perceptually linear and is
also not proportional to the reconstruction from pair compar-
isons. Moreover, as shown in Table 1, the creators of FR-IQA
and FR-VQA datasets have applied various other methods for
the assessment of impairment scales, but there is no agreed
upon standard that provides any particular scale as a common
ground that other scales can be related to. Only recently,
procedures were proposed to merge impairment scale values
from different methodologies (pair comparison and category
rating) and from different datasets, see [75]–[77].

In this section, we propose a similar approach to transform
impairment scale values from boosted triplet comparisons
back to scales obtained in the traditional way without
boosting perceptual discrimination power. For this purpose,
we construct a (nonlinear) monotonic transformation of
boosted scales for each image sequence. Thereby, we pre-
serve the discrimination of fine-grained distortion differences
achieved by the boosting approach while simultaneously
ensuring that the ranges of transformed absolute impairment
scales match those that are obtained when comparing dis-
torted images without boosting. In other words, the trans-
formed impairment values reflect the perceived qualities of
the original distorted images rather than the qualities of the
images with perceptually boosted distortions.

Towards this end, we propose a hybrid method by allowing
for a fraction of triplet comparisons without boosting. The
scale reconstruction from these plain comparisons provides
a rough estimate of the desired impairment scales. We then
fit a smooth scalar transformation for each sequence of dis-
torted images that maps the boosted scales to the target
scales in the least-squares sense. This transformation should
be smooth and monotonic so that the high-quality relative
differences of close scale values and the overall ordering
of the image sequences obtained from boosted comparisons

FIGURE 23. Example of the impairment scale recalibration by the hybrid
method with parameters K = 400 and α = 0.5. The data stems from the
image sequence for source image SRC06 and distortion type jitter,
assessed by plain and AZF-boosted triplet comparisons in Experiment I.
The hybrid method fits the reconstruction from (1− α)K = 200 boosted
TCs (blue line with circles) to that from αK = 200 plain TCs (green dashed
line), with the result shown by the black line with crosses. For
comparison, the reconstruction from all 1360 plain TC responses is also
shown (red dashed line).

are maintained. In this way, we recalibrate the scales from
boosted comparisons to follow those from standard compar-
isons without boosting. By construction, this recalibration
is adaptive w.r.t. the source image contents and the type of
distortion.

In Algorithm 3, we outline the hybrid method in the
form of a pseudo code.4 Then we provide the results of it
when applied to the comparisons that we had collected in
Experiment I.

For our implementation of the hybrid method we chose
the 5-parameter logistic function of Equation (11) as fγ .
We forced it to be monotonically increasing by the constraint
β1, β2, β4 ≥ 0.
Figure 23 shows the results for the example of one

image sequence. For each of the 70 image sequences of
Experiments I, we sampled K = 400 random triplet

4In lines 8 and 9, the functions fγ , resp. fγ̂ , are applied to each component
of their arguments.
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Algorithm 3 Hybrid Method: Re-Calibration of Scales From
Boosted Triplet Comparisons
1: Input: I0, . . . , IN F sequence with N distorted images
2: Parameters: K , α F budget of comparisons, 0 < α < 1
3: Do (1− α)K boosted triplet comparisons
4: Result: µboost

0 , . . . , µboost
N F reconstructed scales

5: Do αK plain triplet comparisons
6: Result: µplain

0 , . . . , µ
plain
N F reconstructed scales

7: fγ : R→ R F select family of monotonic functions
8: γ̂ = argminγ ||fγ (µboost)− µplain

||
2
F function fitting

9: Output: fγ̂ (µboost) F transformed impairment scales

FIGURE 24. Recalibration of the scale reconstruction from boosted triplet
comparison of Experiment I by the hybrid method. The right point cloud
(blue circles) is the scatter plot of the reconstruction from the
AZF-boosted triplet comparison versus those from plain triplet
comparisons. The recalibration by the hybrid method produced the left
part of the scatters plot along the diagonal as intended for the
recalibration. Note that for visual clarity, the figure truncates the
reconstructions from boosted comparison to a maximum of 12 JND. There
are additional points (blue circles) further to the right, which are not
shown. See the main text for more details.

comparisons, half of them as plain triplet comparisons in
Step 4 (α = 0.5). Since the result of the hybrid method
depends on the chosen samples for the TCs, we repeated
the hybrid procedure (random sampling and reconstruction,
followed by recalibration) 100 times and kept only themedian
result w.r.t. the mean-square difference between the recali-
brated reconstructed scales from boosted TC and the scales
from plain TC.

Figure 24 illustrates the resulting rescaled impairment
scales for all distorted images from Part A of our
dataset KonFiG-IQA. In Experiment I, we had obtained
1360 responses for each type of triplet comparison and
each of the 70 sequences with 12 distorted images. The
figure shows two scatter plots together. The first one (blue
circles) is for the scales, reconstructed from a random sample
of only 200 AZF-boosted TCs (K = 400, 1−α = 0.5) versus
those reconstructed from all 1360 responses per sequence
from plain TCs. Due to the boosting, the resulting impairment
scales are much larger than those from plain comparison.

These raw scales from (1 − α)K = 200 boosted TCs
were adaptively recalibrated by the hybrid method, using
an additional random sample of αK = 200 responses

TABLE 9. Recalibration for 200 AZF-boosted TCs per sequence.

(per sequence) from plain TC. As in the previous figure,
we kept only the (mean-square difference) median result from
recalibrated reconstructions of 101 random samples of the
budget ofK = 400 TC responses. The corresponding scatters
plot for the recalibrated results is also included in the graph
(black crosses). The recalibration translates each blue circle
horizontally to the corresponding black cross. Thus, the recal-
ibration from boosted TCs conforms to the range of scales
obtained for plain TCs, i.e., represent the perceptual qualities
corresponding to the original distorted images without any
boosting. Table 9 gives the corresponding numerical results
for the fitting procedure in the hybrid method. RMSE denotes
the root-mean-square difference, MAE stands for the mean
absolute difference.

We also examined the extent to which the performance of
the recalibration by the hybrid method depends on the type
of distortion and the choice of the source image. For this
purpose, we computed the RMSE between the corresponding
recalibrated scales and those derived from all 1360 responses
per sequence, using plain comparison. The results are shown
in Table 10. The medians of these mean-square differences
indeed do not vary strongly between source images or dis-
tortion types. However, with only 200 boosted and plain TC
responses per sequence of 13 images, the variation between
different random samples is larger, as shown by the standard
deviations listed in the table.

To judge the usefulness of the hybrid method, it is impor-
tant to keep in mind that the purpose of the recalibration is not
to achieve a ‘‘perfect’’ result of zero RMSE or an SROCC
equal to 1, but only to match the range of the scales recon-
structed from plain comparisons: Due to the increased sen-
sitivity of the boosted image quality assessment, we expect
the details of the reconstructed scales from boosted TCs to
be more accurate than those reconstructed from plain TCs
without boosting.

X. DISCUSSION, LIMITATIONS, AND FUTURE WORK
A. OTHER OPTIONS FOR BOOSTING IN FR-IQA
To exploit the full potential of boosting in FR-IQA, other
options for boosting can be investigated.

1) TYPE OF ARTEFACT AMPLIFICATION
For the artefact amplification, we have worked with the RGB
color space. The RGB color space corresponds well to how
images are technically displayed on devices and how colors
are processed in the human visual system. However, the RGB
space is not a perceptually uniform color space and is not
well suited for human interaction. The HSV color space (hue,
saturation, value) corresponds better to how people experi-
ence color [78]. It separates the chromatic (hue, saturation)
from the achromatic (value) color components. In the context
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TABLE 10. Performance of the recalibration in the hybrid method per source image and distortion Type: Median RMSE (and STDDEV) w.r.t. Scales from
1360 plain TC per sequence.

of artefact amplification, this implies that the clamping of
the value component in HSV space does not affect the color
appearance, while when working in RGB space, the clamping
of an R, G, or B component does. Another option is to extend
the technique to a context-dependent one, which takes into
account the local JND (e.g., [79]) when amplifying the image
distortion at each pixel.

2) AMPLIFICATION AND ZOOM FACTORS
The benefits of our boosting strategies depend on the choices
for the amplification and zoom factors together with the zoom
regions. We had made the choices heuristically, based on
some manual exploration. However, other amplification and
zoom factors may provide improved results, depending on the
content, distortion type, and test environment.

3) FLICKER FREQUENCY
In our flickering study, the displayed image buffer was
swapped between the reference and the distorted image
8 times per second. In other words, the frequency of the visual
signal was 4Hz. This is different from [38], in which the
temporal TCSF suggests a contrast threshold of a flickering
frequency of 8Hz. However, it should be noted that images
are different from the test stimuli used in the experiments
regarding the TCSF. An interesting future work, therefore,
is to characterize the TCSF for our IQA application. Further-
more, buffer swap rates, different from 8 times per second,
may increase the sensitivity for subjective IQA even more.

B. LIMITATION OF GENERAL TRIPLET COMPARISON
In Experiment II, we introduced general triplet comparisons
that provided an improved sensitivity gain compared to base-
line triplet comparisons, especially for larger distortions (2 to
3 JND). However, there is an important limitation of this
method. Such triplet comparisons aim at capturing relations
between perceptual distances of stimuli. The reconstruction
of the corresponding quality scales w.r.t. a reference then
relies on the assumption that the given sequence of stimuli can
bemodelled as a subset of a one-dimensional Euclidean space
such that distances properly add up. Thus, if Ia, Ib, Ic denote
three stimuli with increasing impairment scales, then we
expect for the perceptual distances that d(Ia, Ib)+d(Ib, Ic) =
d(Ia, Ic) holds. This assumption appears natural for each

image sequence derived for a single type of distortion, and
therefore general triplet comparisons, with or without boost-
ing, may be expected to provide meaningful results.

However, general triplet comparisons are no longer appli-
cable if wemix several distortion types in one image sequence
as was done in MDID [13], for example. In this case, con-
sider two images with equal impairment scale, derived from
the same reference image, but with two different types of
distortion like JPEG compression and color diffusion. Then,
clearly, these two distorted images are perceptually notice-
ably different from each other, yet their difference in impair-
ment is equal to 0. In [76] it was therefore suggested to
rename the JND measurement units of impairment scales to
‘‘just objectionable differences’’.

The reason for this discrepancy is that a set of distorted
images, derived from different types of distortions or with
mixed distortions together, cannot be expected to lie on a
one-dimensional continuum in image space. In our future
work, we will study to what extent multidimensional scal-
ing (MDS) methods can facilitate the application of general
triplet comparisons to impairment scale reconstruction also
for image sets derived from a reference image by multiple
distortions. For example, one can consider maximum like-
lihood difference scaling (MLDS, [63]) or stochastic triplet
embedding (STE, [61]) for MDS, select a suitable embed-
ding dimension, and finally derive impairment scales from
the distances in the multidimensional embedding space. The
results can be compared and validated with the corresponding
DMOS values.

C. OPTIMAL ALLOCATION OF TRIPLET COMPARISONS IN
THE HYBRID METHOD
In Section IX we introduced a hybrid method that combined
boosted and plain triplet comparisons in order to recalibrate
reconstructed impairment scales to the traditional impairment
ranges achieved without boosting. A fraction α of a fixed
budget of K comparisons was devoted to plain comparisons.
For our empirical analysis, we have used α = 0.5. The
more responses we collect from boosted TCs, the better the
accuracy and precision of the resulting reconstruction. But
increasing α reduces the number of auxiliary plain TCs and
worsens the alignment with the scale range valid for impair-
ment without boosting.
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To investigate the tradeoff between accuracy, respectively
precision, on the one side and the alignment with the ground
truth result achievable without boosting on the other side,
we will carry out suitable simulations and experiments.
As a first step we will rerun the computations as provided
in Figures 23, 24, and Table 10 with variable parameters K
and α. After defining a suitable target functional that com-
bines accuracy, respectively precision, with alignment qual-
ity, we can estimate an optimal fraction α of plain TCs for
any given budget of K TCs.

D. ADAPTIVE SAMPLING STRATEGIES
The confidence intervals of the reconstructed impairment
of quality scales generally will shrink as more and more
responses to triplet comparison are collected. In our experi-
ments, we used TCs (i, j, k) with an equal number of target
responses per TC. The triplets were moderately restricted,
e.g., to spans of 10 or 20 distortion levels in Experiment II.
However, an adaptive sampling strategy based on information
theoretic considerations may reduce the number of responses
required to achieve the same quality of the result. In such a
procedure, the expected information gain is considered that
can be derived for the next response for a TC or the responses
for a batch of several TCs. This expected information gain
may be maximized, thereby determining the next TCs to be
posted to observers.

Such adaptive sampling approaches have already been
proven useful for pair comparisons, see, e.g., [75] and [74].
A similar general adaptive framework for the assessment
of psychometric functions is QUEST+ [80]. We propose to
tailor such adaptive sampling strategies for the case of triplet
comparisons which would further improve the performance
of impairment scale assessment using boosted triplet com-
parisons.

E. APPLICATION SCENARIO
In general, boosting strategies help to evaluate more con-
servative JND thresholds and increase the discrimination
power of subjective image quality assessment. In the existing
FR-IQA datasets, the distorted images were typically gen-
erated by applying only a few sparse distortion levels to a
reference stimulus. In such cases, it may be expected that
subjective FR-IQA by comparisons without boosting already
provides reliable results. However, in many applications,
assessing slight quality differences is desirable. For exam-
ple, in video compression, fine-grained quality assessment
for small impairment scales up to 1 JND would be desir-
able for content providers that strive to satisfy most of their
consumer clients. Our boosting strategies enable faster and
less expensive reconstruction for such small distortion scales.
If needed, the reconstructed scores of the stimuli with boosted
distortions subsequently can be mapped back to the JND
scale for the stimuli without boosted distortions, as shown in
Section IX. We are currently applying the flicker technique
for subjective assessment of the JND and the satisfied user
ratio (SUR) in image and video compression methods.

Another application of boosting strategies is robust water-
marking. Recently, several methods using JND assessment
have been proposed for robust imagewatermarking [81]–[84].
Our boosting strategies would increase the visibility of the
distortions caused by a watermarking algorithm. Therefore,
the watermarking algorithm can be optimized so that the
watermark distortions would not be visible even when the
distortion of the stimulus is boosted. Thus, this procedure
would result in more robust watermarking.

A further future research direction is the use of boost-
ing strategies for the subjective evaluation of other imaging
modalities, such as stereoscopic imaging and screen content.

F. KonFiG-IQA: THE KONSTANZ FINE-GRAINED IQA
DATASET
Our Konstanz Fine-Grained IQA dataset (KonFiG-IQA, Parts
A and B) has been publically available online in our dataset
repository http://database.mmsp-kn.de. Part A
contains the 10 source images and corresponding dis-
torted versions (7 distortion types at 12 levels, spaced at
0.25 JND), resulting in 840 distorted images in total. We sup-
ply the (MATLAB) code to boost the distortions with respect
to a reference image using artefact amplification, zooming,
and flicker. Part B provides the distorted images for motion
blur only, however, with 30 levels of distortion, spaced at
0.1 JND.

KonFiG-IQA also includes a large number of subjective
responses to triplet comparison and DCR ratings. Only those
responses and ratings that remained after the data clean-
ing process and outlier removal are provided. For each TC
response, we give a record

[source_id, distortion_type, (i,j,k),

response, time_stamp, time_used,

worker_id],

where response denotes the response left, not sure,
right, and worker_id is an anonymous identifier of
the corresponding observer. In total, there are 70 6914 and
36 0544 responses to triplet comparisons for Parts A and B,
respectively.

For Part A we also conducted a DCR study, yielding
36 0554 ratings. For each one we provide a record

[source_id, distortion_type,

distortion_level, rating, time_stamp,

time_used, worker_id].

The last part of the dataset consists of the impairment
scales, reconstructed from the TC responses andDCR ratings.

The source code for generating the distorted images and for
reconstructing impairment scales from triplet responses will
be provided on GitHub.

XI. CONCLUSION
For many applications of full-reference image quality
assessment, reliable and precise subjective image quality
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measurement for small distortions near and also below the
just noticeable difference on the perceptual quality scale is
important. In this contribution, we showed that the sensitivity
of conventional assessment methods w.r.t. small changes in
perceptual quality can be strongly enlarged by several boost-
ing methods. For this purpose, we proposed artefact amplifi-
cation, zooming, the flicker test, and their combinations.

We proposed triplet comparisons for the subjective quality
assessment and provided the details required to reconstruct
impairment scales for distorted images. This reconstruction
is obtained by maximum likelihood estimation, based on the
Thurstonian probabilistic model of image quality, thus com-
patible with the state-of-the-art method applied for classical
pair comparison.

To assess the potential of the approach, we have created
the first FR-IQA dataset, KonFiG-IQA, which was designed
based on perceptual criteria. Sequences of distorted images
were generated with a fine-grained, perceptually equidistant
spacing of distortion levels, only 0.25 JND (or 0.1 JND) apart
from each other.

In a large crowdsourced field study, we collected over
1.7 million responses to triplet comparison questions.
We gave a detailed analysis of this data in terms of scale
reconstructions, their accuracy, convergence, detection rates,
the sensitivity gain achieved by the different boosting meth-
ods, and more. Boosting methods proved to increase the
discriminatory power for the fine-grained dataset, allowing
to reduce the number of subjective quality comparisons while
improving the accuracy of the resulting relative image impair-
ment scales in terms of SROCC w.r.t. the available ground
truth.

Increasing perceptual sensitivity by the boosting strategies
necessarily implies that the obtained impairment scales are
larger than for conventional methods such as degradation cat-
egory rating. However, these larger ranges also depend on the
respective image contents and the type of distortion. In order
to map the high precision boosted impairment scales back
to the ranges corresponding to the original distorted images
without boosting, we proposed a hybrid method that applies
a monotonic numerical transformation of scale values based
on a few auxiliary triplet comparisons without boosting.

Our boosting techniques pave the way to fine-grained
image quality datasets, allowing for an increased number of
distortion levels, yet with high-quality subjective ground truth
annotations facilitated by an amplified perceptual discrimina-
tion power.
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