
WIJEKOON, A. and WIRATUNGA, N. 2021. Reasoning with counterfactual explanations for code vulnerability
detection and correction. In Sani, S. and Kalutarage, H. (eds.) AI and cybersecurity 2021: proceedings of the 2021

Workshop on AI and cybersecurity (AI-Cybersec 2021), co-located with the 41st Specialist Group on Artificial
Intelligence international conference on artificial intelligence (SGAI 2021), 14 December 2021, [virtual event]. CEUR

workshop proceedings, 3125. Aachen: CEUR-WS [online], pages 1-13. Available from: http://ceur-ws.org/Vol-
3125/paper1.pdf

This document was downloaded from
https://openair.rgu.ac.uk

Reasoning with counterfactual explanations for
code vulnerability detection and correction.

WIJEKOON, A. and WIRATUNGA, N.

2021

http://ceur-ws.org/Vol-3125/paper1.pdf
http://ceur-ws.org/Vol-3125/paper1.pdf

Reasoning with Counterfactual Explanations for Code
Vulnerability Detection and Correction
Anjana Wijekoon1, Nirmalie Wiratunga1

1Robert Gordon University, Aberdeen, Scotland

Abstract
Counterfactual explanations highlight “actionable knowledge” which helps the end-users to understand
how a machine learning outcome could be changed to a more desirable outcome. In code vulnerability
detection, understanding these “actionable” corrections can be critical to proactively mitigate security
attacks that are caused by known vulnerabilities. In this paper, we present the case-based explainer
DisCERN for counterfactual discovery with code data. DisCERN explainer finds counterfactuals to
explain the outcomes of black-box vulnerability detection models and highlight actionable corrections to
guide the user. DisCERN uses feature relevance explainer knowledge as a proxy to discover potentially
vulnerable code statements and then used a novel substitution algorithm based on pattern matching to find
corrections from the nearest unlike neighbour. The overall aim of DisCERN is to identify vulnerabilities
and correct them with minimal changes necessary. We evaluate DisCERN using the NIST Java SAR
dataset to find that DisCERN finds counterfactuals for 96% of the test instances with 13 ∼ 14 statement
changes in each test instance. Additionally, we present example counterfactuals found using DisCERN
to qualitatively evaluate the algorithm.

Keywords
Counterfactual Explanations, Vulnerability Detection, Explainable AI

1. Introduction

Security attacks that exploit hidden software code flaws pose serious risks that compromise
system performance and services. Therefore the ability to detect these vulnerabilities in a timely
manner as well as being able to detect potential flaws is a desirable feature that can help to avoid
disastrous financial and societal consequences. Application of AI for data-driven vulnerability
detection has increased significantly in recent years [1, 2]. This is mainly due to the availability
of large amounts of open-source code needed for training vulnerability detection models. Tradi-
tional classifiers such as SVM and Naive Bayes [3] as well as neural architectures for sequence
modelling (e.g. LSTMs) have been successfully used for code vulnerability classification [4].
Given the textual nature of the data; these classifiers make use of text representation methods
from information retrieval [3] as well as deep embedding techniques to represent software code
and nodes in the abstract syntax tree [5].

Once vulnerabilities are detected or classified into flaw categories, the software needs to be
fixed. Explainable AI (XAI) techniques are used for explaining AI model outcomes and to the

AI-CyberSec 2021: Workshop on Artificial Intelligence and Cyber Security, December 14, 2021, Cambridge, UK
$ a.wijekoon1@rgu.ac.uk (A. Wijekoon); n.wiratunga@rgu.ac.uk (N. Wiratunga)
� 0000-0003-3848-3100 (A. Wijekoon); 0000-0003-4040-2496 (N. Wiratunga)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:a.wijekoon1@rgu.ac.uk
mailto:n.wiratunga@rgu.ac.uk
https://orcid.org/0000-0003-3848-3100
https://orcid.org/0000-0003-4040-2496
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

best of our knowledge, only very little work has been done to assist with this code revision
phase. Authors of [1] took a factual explanation approach by using their convolutional feature
activations to highlight parts of the code that contributed most to the AI model decision. In this
paper, we demonstrate how research in counterfactual explanations can be conveniently adapted
to generate code correction operators to guide the fixing of vulnerable software segments that
are detected by a classifier.

Counterfactual explanations for AI (CAI) have accrued benefits from counterfactual thinking
research from psychology and GDPR guidelines for AI [6]. Unlike other forms of post-hoc XAI
methods, CAI does not require exposure to the underlying AI model parameters. It instead rea-
sons with the inputs, the outputs and the relationships between these to formulate a situationally
(locally) relevant explanation to convey how a “better” or “more desirable” output (outcome)
could have been achieved by minimally changing the inputs (situation). Which inputs to change
and by how much to change, are interesting research questions that we address in this paper in
relation to fixing code vulnerabilities. Here inputs relate to software code and the proposed
change relates to the code correction operation. We adapt the CAI algorithm, DisCERN [7], to
locate the specific area of vulnerability in a code segment, and to generate a correction at the
statement-level using substitution operations. These substitutions are extracted from a code
segment that is considered similar to the vulnerable segment. This similar segment needs to be
threat-free; and therefore is referred to as the vulnerable segment’s nearest unlike neighbour
(here we say "unlike", because it differs in terms of the class label i.e. not vulnerable). The idea
is to exploit similarities between pairs of code segments, where one of the pairs is considered to
be vulnerable and the other is non-vulnerable; and to make use of the non-vulnerable segment
to fix the vulnerability. Since we work with similar pairs (proximal property of CAI), we expect
to identify minimal code corrections (sparsity property of CAI) to fix the detected vulnerability.
Accordingly, this paper makes the following contributions:

• re-purpose feature relevance explainers like LIME [8] to find vulnerabilities in code;
• introduces a substitution algorithm based on pattern matching to correct vulnerable code

statements; and
• present DisCERN counterfactual Explainer for code vulnerability correction which brings

together knowledge from feature relevance explainers and the substitution algorithm.

The rest of the paper is organised as follows. The introduction of the NIST Dataset and
detection of code vulnerabilities using Machine Learning methods is presented in Section 2.
Section 3 presents the DisCERN algorithm which discovers counterfactuals for vulnerable code
segments and thereby guide the user to correct the vulnerabilities. The evaluation methodologies,
performance metrics with quantitative and qualitative results are presented in Section 4, followed
by conclusions and future work in Section 5.

2. Vulnerability Detection with the NIST Java Dataset

NIST Software Assurance Reference Dataset (SARD) Project promotes the detection and correc-
tion of known security flaws in programming code. They have a publicly available repository
of datasets from different programming languages that are labelled for flaws and possible

(a) Code Segment labelled ’Vulnerable’ (b) Code Segment labelled ’Not Vulnerable’

Figure 1: Pre-processed Code Examples

corrections. The flaws are standardised by the community maintained Common Weakness
Enumeration (CWE) list which consists of software and hardware weaknesses. In this work, we
selected the Java dataset from SARD 1. Here Java files are grouped under their CWE code and
each file contains a class object with one or more methods. For supervised learning we make
use of two methods in the code: one with the code vulnerability and the other demonstrating
the fix for the code vulnerability.

2.1. Pre-processing Code Segment Data

The supervised task involves a binary classification of ’Vulnerable’ or ’Not Vulnerable’ given
some code segments. Forming the dataset involved the extraction of code segments and labelling
them into one of the two classes and carrying out a masking step to ensure there is no target
leak that can influence model training. The steps taken to organise this dataset for classification
are as follows:

1. Split methods that contain a vulnerability and those that don’t into two separate files.
Java methods were labelled as ’Vulnerable’, if they contain a comment that starts with
either ’FLAW’ or ’POTENTIAL FLAW’; and a ’Not Vulnerable’ label is assigned when a
comment that starts with ’FIX’ is found.

2. Entity obfuscation steps are applied to each file.
a) Replace any method name with ’method’
b) Replace any Parameter type with ’Parameter’
c) Replace comments with ’/*comment*/’
d) Change all method signatures to ’public void method()’

1https://samate.nist.gov/SARD/testsuite.php

(a) Vulnerable Dataset (b) Not Vulnerable Dataset

Figure 2: BOW Distributions Figure 3: Class Distribution

An example of pre-processed code segments appear in Figures 1a and 1b. Here the "if" statement
is used to check the size of data as a fix to the vulnerable code segment.

Using the Bag-of-Word (BoW) vectorisation method we analyse the distribution of the pre-
processed dataset over the 1074 unique language tokens (see Figures 2a and 2b). The class
distribution of the dataset (see Figure 3) suggests a class imbalance between the ’Vulnerable’
and ’Not Vulnerable’ data which indicates that not all files have a ’corrected’ version of the
code.

2.2. Code Vulnerability Classification

The most common Machine Learning (ML) pipeline for classification with text data is to use a
Tokenizer followed by a Vectoriser to transform the text data into a vector representation and
then apply a classification algorithm to learn from labelled data. Code data can be seen as a text
that follows grammar rules defined by the Java Compiler. In this work, the tf-idf feature vector
representation is used for classification purposes where each feature value is a real-valued
number that denotes the importance of that token for a code-segment instance given the full
corpus of code segments. The summary of the final dataset appears in Table 1.

Table 1
Dataset summary

Feature Value
Number of data instances 104905
Classes ’Vulnerable’ or ’Not Vulnerable’
Number of train and test instances (75/25) 78677 / 26226
Number of test instances labelled ’Vulnerable’ 10019
Mean number of statements 40.56
Tf-idf features 500

Results from a comparative study of classifiers on the dataset are presented in Table 2. Overall
we can see that Random Forest performs extremely well on this dataset and therefore forms
the AI model for our explainability evaluation studies. It is worth noting that the CAI method
used here is model agnostic and we could use it with any classifier; however it makes sense to
work with one that already has high accuracy so that explanations are underpinned by accurate
predictions.

Table 2
Classification Algorithms and Performance

Tokenizer Classifier Accuracy Macro-F1 Precision Recall

Tf-idf

Naive Bayes 0.7206 0.6926 0.6625 0.5478
k-Nearest Neighbour 0.9387 0.9340 0.9572 0.8788
SVM 0.9574 0.9544 0.9706 0.9164
Random Forest 0.9722 0.9704 0.9730 0.9536

3. Counterfactual XAI for Vulnerability Detection

The use case of code vulnerability detection can benefit from different types of explanations. For
example, given a code segment that is labelled “Vulnerable”, a Factual Explanation will point to
the part of the code segment that led the AI model to label it as “Vulnerable”. An example factual
explanation is shown in Figure 4 where text highlights indicate “Vulnerable” code and “Not
Vulnerable” code in a Red to Green heat map scale. For an expert user this type of explanation
should be sufficient given that they have the knowledge to correct the vulnerability. In contrast,
a counterfactual explanation will compare the query with a similar yet ’Not Vulnerable’ code
segment and identify how to correct the vulnerable code segment. A counterfactual example
is presented in Figure 5 where the algorithm has highlighted the substitution changes guided
by the Nearest Unlike Neighbour. This type of explanation is informative for both expert
and non-expert users. In this paper, we focus on generating counterfactual explanations
and introduce DisCERN counterfactual algorithm specifically designed for code vulnerability
correction. DisCERN was originally proposed in [7] which finds counterfactuals in tabular data.

Figure 4: Factual Explanation

Figure 5: Counterfactual Explanation Example

3.1. DisCERN Counterfactual Explanations

Consider a query code segment 𝑥, with 𝑚 statements where the 𝑖𝑡ℎ statement is denoted by
𝑠𝑖. If the vulnerability detection pipeline used to predict the code vulnerability consists of a
Tokeniser, 𝑡, and a classification model, 𝑓 , the outcome predicted for 𝑥 is 𝑦.

𝑥 = [𝑠1, 𝑠2, ..., 𝑠𝑚]

𝑦 = 𝑓(𝑡(𝑥))
(1)

For a given query 𝑥, there are five steps to discovering counterfactuals with DisCERN:

1. find the Nearest Unlike Neighbour (NUN), �̂�;
2. find the feature relevance weights for the query, 𝑥, using the Feature Relevance Explainer

LIME [8];
3. given a token, 𝑧, in 𝑥, find statements pair, i.e. a list of statements in 𝑥 and a list of

candidate statements in �̂� as potential vulnerability corrections;
4. create a perturbed code segment, 𝑥′ by adapting a vulnerability correction and check 𝑥′

for outcome change using the vulnerability detection pipeline; and
5. repeat steps 3 and 4 until desired outcome is achieved.

Once the perturbed code segment achieves the desired outcome (i.e. not vulnerable), it is
identified as the counterfactual of the query. Next, we will explore each of these steps in detail.

3.1.1. Finding the Nearest Unlike Neighbour

Given a query 𝑥, the NUN, �̂�, is the nearest instance found in the train data with a different
outcome. In theory, by selecting the NUN as the starting point of counterfactual discovery, we
expect to minimise the actionable changes needed to flip the classifier decision. As in Equation 2,
�̂� has 𝑛 number of statements and the predicted outcome is 𝑦. Importantly, �̂� and 𝑥 have
different number of statements (i.e. 𝑛 ̸= 𝑚) and different prediction outcomes (i.e. 𝑦 ̸= 𝑦).

�̂� = [�̂�1, �̂�2, ..., �̂�𝑛]

𝑦 = 𝑓(𝑡(�̂�)) | 𝑦 ̸= 𝑦
(2)

Any encoder which transforms text to a vector representation can be used to model the feature
space to find the NUN. We use the Sentence Transformers library 2 to encode code segments.
Sentence Transformers Library is a publicly available collection of state-of-the-art sentence
encoder models that are based on the Sentence-BERT architectures [9]. The Sentence-BERT
architecture uses BERT encoder in a Siamese architecture such that it is trained for similarity
comparison. Sentence-BERT can be trained using data from different domains to suit different
tasks, however, there is no encoder trained for encoding Java code. Accordingly, we use the
generic pre-trained all-MiniLM-L6-v2 encoder which is trained using a large and diverse dataset
training pairs to support multiple domains.

Given a code segment, 𝑥, the encoder 𝐸 generates a vector representation, 𝑣, of size 𝑙. From
the train data set𝒳 , we filter data instances for which 𝑦𝑖 ̸= 𝑦 and create the subset𝒳 ′. Each data
instance in 𝒳 ′ is encoded using the same encoder 𝐸 to obtain the set of vectors 𝒱 ′. The cosine
similarity between the query 𝑥, and any other instance, 𝑥𝑖 can be calculated as in Equation 3.

𝑐𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑥𝑖) =

∑︀𝑙
𝑗=1 𝑣𝑖𝑗𝑣𝑗√︁∑︀𝑙

𝑗=1 𝑣𝑖𝑗

√︁∑︀𝑙
𝑗=1 𝑣𝑗

(3)

Once pair-wise similarity is computed (between 𝑥 and each 𝑥𝑖 in 𝒳 ′), we select the train
instance 𝑥𝑖 from the pair with the highest similarity as the NUN of 𝑥. In the rest of this paper,
this function is referred to as 𝑛𝑛 which given, 𝑥, 𝒳 ′ and the similarity metric returns �̂� as the
output.

3.1.2. Finding Feature Relevance Weights

In DisCERN we hypothesise that if parts of the code that contributed most to the current
outcome is substituted, we can find the minimal changes needed to flip the class outcome. Here
Feature Relevance Explainers can provide the knowledge needed to identify important parts
in the code. Accordingly, in this section, we use LIME Feature Relevance Explainer to find the
feature relevance weights of the query to identify which parts of the code contributed to the
current outcome.

LIME is a model-agnostic feature relevance explainer that creates an interpretable model
around a data instance to estimate how each feature contributed to the black-box model out-
come [8]. LIME creates a set of perturbations within the instance’s neighbourhood and labels
them using the black-box model. This newly labelled dataset is used to create a linear inter-
pretable model (e.g. a weighted linear regression model). The resulting surrogate model is
interpretable and only locally faithful to the black-box model (i.e. correctly classifies the input
instance, but not all data instances outside its immediate neighbourhood). The new interpretable

2https://www.sbert.net/

model is used to predict and explain the classification outcome of the data instance. The ex-
planation of the current outcome is formed by obtaining the weights that indicate how each
feature contributed to the outcome.

In the context of code segment data, the Tokenizer, 𝑡, used in the vulnerability detection
pipeline considers language tokens in the code as “features”. Accordingly, LIME assigns a weight
for each token which indicates how much the token contributes to the classification outcome.

𝐿𝐼𝑀𝐸(𝑥, 𝑡, 𝑓)→ {𝑤(𝑧) | 𝑤(𝑧) ∈ R, 𝑧 ∈ 𝑍} (4)

If the vocabulary of code segments is 𝑍 , LIME assigns a weight 𝑤 for each token 𝑧 in 𝑍 as
in Equation 4. A positive weight (𝑤 ≥ 0) indicates that the corresponding token contributes
positively and a negative weight (𝑤 < 0) contributes negatively towards the prediction. The
weights are sorted using the partial order condition in Equation 5 to obtain the list of tokens
ordered by their contribution towards the current outcome as 𝑍 ′.

𝑧𝑖 ⪯ℛ 𝑧𝑗 ⇐⇒ ℛ :: 𝑤(𝑧𝑖) ≥ 𝑤(𝑧𝑗) (5)

3.1.3. Segment corrections with the substitution operation

Given a language token in the query, the goal of the substitution algorithm is to find a matching
set of statements in the query and in the NUN to adapt the query such that it contributes towards
a positive outcome change (i.e. from not vulnerable to vulnerable). A Pattern Matching (𝑝𝑚)
algorithm is used here to find matching statement blocks as presented in Algorithm 1 for
substitution. Since the Feature Relevance Explainers used with DisCERN identify important

Algorithm 1 substitute

Require: 𝑥′ = [𝑠′1, 𝑠
′
2, ..., 𝑠

′
𝑚]: perturbed query

Require: �̂� = [�̂�1, �̂�2, ..., �̂�𝑛]: NUN as a list of statements
Require: 𝑧: token in the query

1: 𝑆′ ← [𝑠 ∈ 𝑥′ | 𝑧 ∈ 𝑠] ◁ find the list of statements in 𝑥′ that include 𝑧
2: for 𝑠𝑗 ∈ 𝑆′ do
3: 𝑠′𝑖𝑘, �̂�𝑔ℎ ← 𝑝𝑚(𝑠𝑗 , [𝑠

′
1, 𝑠

′
2, ..., 𝑠

′
𝑚], [�̂�1, �̂�2, ..., �̂�𝑛]) ◁ find the suggested change

4: 𝑐𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒(𝑠′𝑖𝑘, �̂�𝑔ℎ) ◁ similarity between current and suggested code
5: end for
6: (𝑠′, �̂�′)← arg max

(𝑠𝑖𝑘,�̂�𝑔ℎ)
𝑐𝑗 ◁ select maximum similarity pair i.e. similar yet corrected

7: 𝑥′′ ← 𝑎𝑑𝑎𝑝𝑡(𝑥′, 𝑠′, �̂�′) ◁ replace 𝑠′ in 𝑥′ with �̂�′

8: return 𝑥′′ ◁ return the newly perturbed query

tokens, the first step involves finding the matching list of statements 𝑆′ in the query that
contains the important token 𝑧. We use a simple lookup function to identify all code statements
in the perturbed query 𝑥′, that contain the token 𝑧 (Line 1). The next steps of finding the
vulnerable statements and their replacements from NUN are based on the hypothesis that if a
statement 𝑠𝑖 in 𝑆′ is vulnerable, it must be corrected in the NUN. Accordingly, for statements in
𝑆′, we use the edit changes that are proposed by a pattern matching (𝑝𝑚) algorithm and select

the change (based on statement-level similarity) as the most likely substitution to correct the
code vulnerability.

A 𝑝𝑚 algorithm like the Gestalt Patten Matching or Levenshtein Edit Distance can find the
minimum changes required to transform one string to another. The changes can be “replace”,
“insert” and “delete” 3. We use 𝑝𝑚 at the statement granularity level to find what changes are
proposed for a given statement, 𝑠𝑗 . The 𝑝𝑚 algorithm will return a list of matching pairs of
statements to the query (𝑠𝑖𝑘) and list of statements in the NUN (�̂�𝑣𝑤) where i,k,v,w are start and
end indices of statements and 𝑠𝑗 is found within 𝑠𝑖𝑘 (Line 3).

Next, we calculate the similarity between the two lists of statements using Cosine similarity.
Similar to Section 3.1.1 we use the all-MiniLM-L6-v2 encoder to transform the statements to
vector representations and calculate Cosine similarity. Once we have all the pairs for 𝑆′, and
their similarities, we select the pair, (𝑠′, �̂�′) that has the maximum similarity. We assume a
vulnerable code segment and its corrected counterpart are different yet carry some similarities.
Accordingly, by selecting the highest similarity we expect to discard any changes found by 𝑝𝑚
that are not vulnerability corrections. Finally in Line 7 we replace the list of statements 𝑠′ in
the perturbed query 𝑥′ with the list of code statement �̂�′ to return the new perturbed query 𝑥′′.

3.1.4. DisCERN Counterfactual Discovery

Algorithm 2 DisCERN Algorithm

Require: 𝑥 = [𝑠1, 𝑠2, ..., 𝑠𝑚]: query as a list of statements
Require: 𝑓(𝑡(.)): vulnerability detection pipeline
Require: 𝑋 : train dataset
Require: 𝑦 = 𝑓(𝑡(𝑥)): predicted outcome of the query

1: 𝒳 ′ ← {𝑥𝑖 ∈ 𝒳 | 𝑦𝑖 ̸= 𝑦} ◁ filter the train dataset
2: �̂�← 𝑛𝑛(𝑥, 𝒳 ′, 𝑠𝑖𝑚) ◁ find the NUN using function 𝑛𝑛
3: {𝑤(𝑧)} ← 𝐿𝐼𝑀𝐸(𝑥, 𝑡, 𝑓) ◁ the set of weighted tokens from LIME in Equation 4
4: 𝑍 ′ ← ℛ({𝑤(𝑧)}) ◁ list of tokens ordered usingℛ in Equation 5
5: Initialise 𝑥′ = 𝑥 and 𝑦′ = 𝑦 ◁ Initialise counterfactual as query
6: for 𝑧 ∈ 𝑍 ′ do
7: 𝑥′ ← 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒(𝑥′, �̂�, 𝑧) ◁ from Algorithm 1
8: 𝑦′ = 𝑓(𝑡(𝑥′)) ◁ predict outcome of the perturbed query 𝑥′

9: if 𝑦′ ̸= 𝑦 then ◁ check if the outcome is changed
10: Break ◁ stop perturbing if outcome is changed
11: end if
12: end for
13: return 𝑥′ ◁ return the perturbed query as the counterfactual

DisCERN (Algorithm 2) brings together methods from Sections 3.1.1 to 3.1.3 to discover
counterfactuals. Given the query 𝑥, and the train dataset 𝑋 , in Lines 1 and 2 we find the NUN

3In this paper we used the Gestalt Pattern Matching algorithm implemented by cdifflib Python package
https://github.com/mduggan/cdifflib

as discussed in Section 3.1.1. Next, we find the LIME feature weights for the query and use
these to sort the list of tokens that indicate which parts of the code contributed to the current
outcome (Line 3 and 4). We iterate over the list of tokens where for each token we consider
a substitution correction until a prediction outcome is changed. In each iteration for a given
token 𝑧, Algorithm 1 finds the best matching adaptation to create a new perturbed query 𝑥′.
It then obtains a prediction to check the outcome class for the adapted 𝑥′ using the original
classification pipeline 𝑓(𝑡(.)). The iteration is terminated when a change in the outcome is
observed and the algorithm returns the perturbed query 𝑥′ as the counterfactual.

4. Evaluation

This section presents the preliminary evaluation of the counterfactual DisCERN algorithm for
vulnerable code correction. To the best of our knowledge, there are no other counterfactual
algorithms in the literature for counterfactual discovery for this application. Accordingly, we
are not able to compare any performance metrics with other algorithms in this work. Instead,
we compare DisCERN algorithm with an ablated version of DisCERN as listed below.

DisCERN-rand considers a random order of statements in Algorithm 2. This is instead of
using LIME feature relevance as in Lines 3 and 4. This ablated version evaluates the
impact of using feature relevance knowledge to guide efficient counterfactual discovery.

DisCERN: is presented in the Algorithm 2.

4.1. Quantitative Evaluation

DisCERN algorithm is evaluated using the NIST Java dataset. We only use 10019 test data
instances that were classified as ’Vulnerable’ by the vulnerability detection pipeline in the
DisCERN evaluation. Following metrics are used to measure the performance of the algorithm
on the NIST Java dataset.

• Validity: measures the percentage of data for which DisCERN successfully finds a
counterfactual. At this stage, the only requirement for a counterfactual discovered by the
DisCERN algorithm is to achieve a "positive" change of outcome 4. Given the set of test
instances that were predicted ’Vunerable’ are𝑋𝑣 , and the subset for which DisCERN found
a counterfactual is 𝑋𝑐

𝑣 , the validity is calculated as in Equation 6. A higher percentage of
validity is desirable and unlike in DisCERN for tabular data, with unstructured data (like
code), we cannot yet guarantee the validity of the generated code data.

𝑉 𝑎𝑙𝑖𝑑𝑖𝑡𝑦 =
|𝑋𝑐

𝑣|
|𝑋𝑣|

× 100 (6)

• Sparsity: measures the mean number of statements that are changed for a change
in outcome. Given the number of statements changed in each test instance in 𝑋𝑐

𝑣 is

4A more stringent metric would be to evaluate if the change conforms to grammar rules of the Java Compiler,
which we will explore in future work.

[𝑟1, 𝑟2, ..., 𝑟𝑁], where𝑁 = |𝑋𝑐
𝑣|, the sparsity is calculated as in Equation 7. In Algorithm 1,

number of statement changes for operations “replace”, “delete” and “insert” are calculated
as 𝑚𝑎𝑥(𝑘 − 𝑖, ℎ− 𝑔), 𝑘 − 𝑖 and ℎ− 𝑔 respectively. Lower value of sparsity is desirable.

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1

𝑁

𝑁∑︁
𝑗=1

𝑟𝑗 (7)

In addition to Validity and Sparsity, we also report the mean number of statements in the
counterfactual discovered by each algorithm. This is to show the contrast between the mean
number of statements in the test instances which is 44.62.

4.1.1. Results

Table 3 presents the quantitative evaluation results of DisCERN using the NIST Java dataset.
DisCERN finds counterfactuals for 96.49% of the test instances while the random version only
finds counterfactuals for 83.48% (13% less). Sparsity is comparably similar in both algorithms,
this means that they both have a comparable number of statement changes 12 ∼ 14 needed to
flip the class of the query. DisCERN-rand records a slightly lower sparsity, and this could be
explained by the 13% of counterfactuals additionally found by DisCERN having longer code
segments (thereby increasing the number of statement changes).

Both DisCERN and DisCERN-rand record comparable values for the mean number of state-
ments in the counterfactuals. In comparison to the mean number of statements in the query,
both algorithms find counterfactuals with 4 ∼ 6 more statements. Interestingly, the mean num-
ber of statements in the NUNs was 51.81, however, this did not mean that DisCERN completely
changed each test instance to its NUN in order to achieve outcome change. We explore this
further in qualitative evaluation (Section 4.2).

Table 3
Quantitative Results

Algorithm Validity (%) Sparsity Mean Number of Statements
in Counterfactual

DisCERN-rand 83.48 12.44 49.28
DisCERN 96.49 13.58 50.62

4.2. Qualitative Evaluation

In the qualitative evaluation we present few examples of counterfactuals found by the DisCERN
algorithm. In this preliminary work, we do not check if the counterfactual based code corrections
follow grammar rules defined by the Java Compiler. However, we examined a sample of the
generated code to closely examine if they are indeed correcting code vulnerabilities and are
sensible modifications.

Consider Figures 6a and 6b which presents two counterfactual examples. In each, the query
is on the left, the NUN is on the middle and the counterfactual (CF) is on the right. The

(a) Example 1: Successful Adaptation

(b) Example 2: Unsuccessful Adaptation

Figure 6: DisCERN Counterfactual Examples

adaptations are highlighted with coloured boxes and arrows. Example in Figure 6a shows how
feature relevance weights have guided the algorithm to select correct adaptations to perturb the
query into a counterfactual that is similar to NUN and achieved the class outcome change. In
contrast, the example in Figure 6b shows that in some cases, the adaptation does not result in
grammatically correct counterfactuals. In such cases, the vulnerability detection pipeline may
recognise the perturbed query as “Not Vulnerable” but the adaptations applied to the code have
lost some of the original functionality. Such examples suggests, that DisCERN is a promising
approach to discovering counterfactuals, however it requires further adaptation heuristics and
code correction knowledge to ensure accurate code corrections from counterfactuals.

5. Conclusion

In this paper, we presented a novel approach to finding counterfactual explanations for correcting
vulnerabilities in code. We used feature relevance explainer knowledge as a proxy to discovering
potentially vulnerable code statements and then used a novel substitution algorithm based on

pattern matching to find corrections from the nearest unlike neighbour. Overall aim of our
algorithm was to identify vulnerabilities and correct them with minimal necessary changes.
We evaluated our algorithm using the NIST Java SAR dataset to find that DisCERN finds
counterfactuals 96% of the time with 13 ∼ 14 statement changes to the query. Additionally, we
presented example counterfactuals found using DisCERN to qualitatively evaluate the algorithm.
These suggest that further correction operations and heuristics are needed to ensure plausible
code changes. Future work will also expand upon our evaluation to include additional SAR
datasets in different programming languages and the use of qualitative evaluation through
crowd-sourcing techniques.

Acknowledgments

This research is funded by the iSee project (https://isee4xai.com) which received funding from
EPSRC under the grant number EP/V061755/1. iSee is part of the CHIST-ERA pathfinder
programme for European coordinated research on future and emerging information and com-
munication technologies. Authors would like to thank Dr. Harsha Kalutarage and Ashish
Upadhyay at the Robert Gordon University for their enlightening discussions.

References

[1] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, M. McConley,
Automated vulnerability detection in source code using deep representation learning, in:
2018 17th IEEE international conference on machine learning and applications (ICMLA),
IEEE, 2018, pp. 757–762.

[2] Z. Bilgin, M. A. Ersoy, E. U. Soykan, E. Tomur, P. Çomak, L. Karaçay, Vulnerability prediction
from source code using machine learning, IEEE Access 8 (2020) 150672–150684.

[3] B. Chernis, R. Verma, Machine learning methods for software vulnerability detection, in:
Proceedings of the Fourth ACM International Workshop on Security and Privacy Analytics,
2018, pp. 31–39.

[4] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, A. Ghose, Automatic feature learning for
vulnerability prediction, arXiv preprint arXiv:1708.02368 (2017).

[5] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, H. Jin, A comparative study of deep learning-based
vulnerability detection system, IEEE Access 7 (2019) 103184–103197.

[6] S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening the
black box: Automated decisions and the gdpr, Harv. JL & Tech. 31 (2017) 841.

[7] N. Wiratunga, A. Wijekoon, I. Nkisi-Orji, K. Martin, C. Palihawadana, D. Corsar, Discern:
Discovering counterfactual explanations using relevance features from neighbourhoods,
arXiv preprint arXiv:2109.05800 (2021).

[8] M. T. Ribeiro, S. Singh, C. Guestrin, " why should i trust you?" explaining the predictions
of any classifier, in: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016, pp. 1135–1144.

[9] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,
arXiv preprint arXiv:1908.10084 (2019).

	coversheet_template
	WIJEKOON 2021 Reasoning with counterfactual (VOR)
	WIJEKOON 2021 Reasoning with counterfactual (VOR).pdf
	1 Introduction
	2 Vulnerability Detection with the NIST Java Dataset
	2.1 Pre-processing Code Segment Data
	2.2 Code Vulnerability Classification

	3 Counterfactual XAI for Vulnerability Detection
	3.1 DisCERN Counterfactual Explanations
	3.1.1 Finding the Nearest Unlike Neighbour
	3.1.2 Finding Feature Relevance Weights
	3.1.3 Segment corrections with the substitution operation
	3.1.4 DisCERN Counterfactual Discovery

	4 Evaluation
	4.1 Quantitative Evaluation
	4.1.1 Results

	4.2 Qualitative Evaluation

	5 Conclusion

