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Abstract
Deep Neural Networks (DNNs) methods are widely proposed for cyber security monitoring. However,

training DNNs requires a lot of computational resources. This restricts direct deployment of DNNs to

resource-constrained environments like the Internet of Things (IoT), especially in federated learning

settings that train an algorithm across multiple decentralized edge devices. Therefore, this paper

proposes a memory efficient method of training a Fully Connected Neural Network (FCNN) for IoT

security monitoring in federated learning settings. The model‘s performance was evaluated against

eleven realistic IoT benchmark datasets. Experimental results show that the proposed method can reduce

memory requirement by up to 99.46 percentage points when compared to its benchmark counterpart,

while maintaining the state-of-the-art accuracy and F1 score.
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1. Introduction

The Internet of Things (IoT) consists of network-enabled intelligent devices that use embedded

systems, such as processors, sensors and communication hardware to collect and exchange

data. IoT is an ecosystem use in smart-home, smart-cities, and many intelligent automation

systems [1]. However, these devices are increasingly becoming a potential target for various

cyber attacks. The Distributed Denial-of-Service (DDoS) attack on Dyn domain name servers

in 2016, which used a network of 100,000 odd IoT devices, powered by a virus called Mirai

(Linux. Gafgyt), testifies to this [2]. Most IoT devices are made up of limited processors and

memory, so security solutions designed for mainstream computing devices cannot be deployed

on resource constrained IoT devices. Therefore, security challenges in the IoT must be addressed

with resource-efficient and effective mechanisms, ideally in a federated learning manner that

supports to overcome data sharing and privacy issues.

Recent intrusion detection research has shown the capabilities of AI techniques, especially

Deep Neural Network (DNN), in cyber security monitoring [3]. However, building DNN based

detection technique requires a lot of resources during the model training. As IoT devices are
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resource-constrained and distributed in nature, DNN-based cyber security techniques cannot be

directly deployed for intrusion detection in IoT networks. In that context, Federated Learning

(FL) [4] approach that supports for data privacy may not scale through IoT devices due to their

lack of computational resources. To respond to this challenge, we propose an efficient training

method for Fully Connected Neural Network (FCNN) for IoT security monitoring, in particular

to reduce the memory footprint during the training while maintaining the same or higher level

of accuracy than its benchmark counterpart.

For our experiments, we utilize a FCNN along with eleven IoT benchmark datasets to build

a memory-efficient DNN (MEDNN) model. The experimental results are encouraging as the

resulting MEDNN shows lower memory consumption with better classification performance

in both centralized and federated settings against each data set used in our experiments. The

federated integration of the model also helps to preserve the privacy of IoT device data during

on-device model training.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3

describes the proposed method and the utilized FL technique, while Section 4 describes the

evaluation process. Results and discussion can be found in Section 5. Finally, Section 6 concludes

the paper with future research directions.

2. Related Work

This section presents related studies concerning deep learning for IoT intrusion detection

followed by recent FL techniques applied to IoT security monitoring.

Significant research has been conducted on IoT security monitoring using AI techniques.

Most of these methods utilized DNN. Mohammad et al. [5] described the potentiality of DNN

for IoT data analysis and classification tasks. Kodali et al. [6] employed DNN, especially FCNN,

for classification tasks on resource-limited devices. Shen et al. [7] proposed compact structure-

based learning with Convolutional Neural Network (CNN) for an IoT resource-constrained

environment. Most of the optimization approach considered the quantization of weights and

bias parameters. However, our proposed approach in this paper aims to reduce memory require-

ments. The method exploits pruning, simulated micro-batching and parameter regularization to

optimise the resulting model in terms of memory requirements and accuracy performance. This

is useful, especially for the task of distributed learning in a resource-constrained environment.

Recently, researchers from several disciplines explored FL methods from different perspectives.

In the field of IoT security monitoring, FL is gaining popularity. Preuveneers et al. [8] explored

FL applications for intrusion detection in IoT networks. Lim et al. [9] and Imteaj et al. [10]

describes open research problems on FL for resource-constrained IoT devices. Thein et al.

[11] utilized FL to detect attacks on industrial IoT devices. Liu et al. [12] conduct a similar

investigation by considering sensor reading data. Jiang et al. [13] utilized model pruning for

efficient FL training on edge devices. Bonawitz et al. [14] proposed a scalable FL framework for

mobile devices to reduce communication overhead. However, none of these proposals considers

optimizing FL training to reduce memory consumption on IoT networks using pruning and

micro-batching. We address this challenge by optimizing the federated training procedure using

raw network traffic datasets from various IoT devices. Then, we proposed a MEDNN FL method



with minimal resource consumption. This method maintains state-of-the-art accuracy while

reducing memory consumption.

3. Research Methodology

We propose a framework that manipulates and optimizes an FCNN version of DNN to yield a

compact classification model (see Figure 1). We later validated this framework by training the

FCNN on IoT benchmark datasets in federated and centralized settings to build MEDNN. This

requires evaluating the FCNN regularization to produce a loss function that identifies various

parameters relevant to model shrinking. We demonstrate that knowledge of architecture and

optimizing parameters is sufficient to produce the MEDNN model. The optimized model can

classify malicious activities on IoT networks.

Figure 1: Effective IoT Attack Detection Framework.

3.1. Baseline FCNN Training

A DNN is a neural network containing deep layers of neurons representing the input data. These

neurons correspond to computing units. They are capable of transmitting the computational

results operated with their activation function and the input. FCNN is a sequential DNN

connecting neurons by linking them with their corresponding weights and bias parameters.

The weights and biases serve as information storage components. The baseline FCNN model

(ℳ𝑛) in Algorithm 1 is consist of network topology, activation functions and corresponding

values for weights and bias. The weight and bias values settings can minimize the error function

ℰℳ𝑛 evaluated over the labelled training data 𝒟𝑡𝑟 . The function BASE in line 1 of Algorithm 1

describes theℳ𝑛 training using a gradient descent algorithm with backpropagation [15]. This

is determined to minimizes the cost function in Equation 1 and Equation 2 in-order to properly

map unseen samples using a function that learned from 𝒟𝑡𝑟. The resulting FCNN approach

uses supervised neural networks as a classifier,ℳ𝑛 can accept an input 𝒟𝑡𝑟 and outputs a

probability class of vector 𝑌 . The desired output 𝑌 are rounded up to the closest integer using

a specified threshold value 𝑡 as in Equation 3. This output represents either the benign (1) or

the attack (0) traffic instance.



Algorithm 1 Baseline FCNN Training

Input: Labelled data 𝒟𝑡𝑟 , Number of iteration 𝒯 , Batch size 𝒮
Output: Baseline Modelℳ𝑛

1: function Base(𝒟𝑡𝑟[ ]) ◁ Training baseline model

2: for 𝑖 = 1 to 𝒯 ; do
3: Sample mini-batch 𝐵 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐷𝑡𝑟

4: 𝐹𝑝(𝐵) ◁ forward pass

5: ℰ𝑖 ← 𝐿 ◁ 𝐿 = Base loss

6: 𝐵𝑝(B) ◁ backward pass based on model parameters for 𝐹𝑘(𝐵)

7: Compute gradients for parameters update

8: Estimate 𝑚𝑖 ◁ Execution memory at epoch 𝑖
9: ℳ𝑛 = Trained model that estimate ℰ𝑖,𝑚𝑖

10: end for
11: return (ℳ𝑛,𝑚𝑖, ℰ𝑖)
12: end function

𝐽(𝑊, 𝑏) =
1

𝑚

𝑚∑︁
𝑖=1

𝐿(𝑌
𝑖
, 𝑌 𝑖) (1)

𝐿(𝑌
𝑖
, 𝑌 𝑖) = −(𝑌 log 𝑌 + (1− 𝑌 )log (1− 𝑌 )ˆ (2)

𝑂𝑢𝑡𝑝𝑢𝑡 =

{︃
0 if 𝑌 ≤ 𝑡

1 if 𝑌 > 𝑡
(3)

3.2. Memory Efficient MEDNN Training

Training a resource efficient DNN model can be a challenging task [16]. Especially in consider-

ations of model parameters requirements in designing and building the desirable architecture.

The complexity of such an approach increases with multidimensional datasets.

To this end, we utilize the baseline ℳ𝑛 model (a trained FCNN model) to produce the

memory efficient version of it (MEDNN). The training procedure described in Algorithm 2

optimizes a function that requires 𝒟𝑡𝑟 to return the efficient 𝑀𝑒 correspond to the MEDNN

model. As described in line 4 in Algorithm 2, the optimization procedure utilized micro-batching

[17, 18] for efficient training. To reduce network complexity, we used a penalty [19] (weight

elimination) technique with a threshold parameter 𝑤0 as shown in regularized Equation 4. This

is a requirement to discover those sets of relevant weights from the irrelevant ones. Particularly

in determining the significant and insignificant large weights of the baseline FCNN model.

Weights greater than 𝑤0 that yield a complexity cost closer to 1 requires a regularization using

the penalty parameter 𝜆. The regularization considers a scenario where the baseline produces a

higher error value ℰ𝑖 as in line 9. For better performance, we utilized the set of parameters to

produce a lower error value ℰ𝑗 . This process can reduce the complexity of the FCNN model

while building the MEDNN.



Algorithm 2 Procedure to build MEDNN

Input: Penalty term 𝜆
Output: Efficient Modelℳ𝑒

1: function Efficient(𝒟𝑡𝑟[ ]) ◁ 𝒟𝑡𝑟 in Alg. 1

2: for 𝑗 = 1 to 𝒯 ; do ◁ 𝒯 in Alg. 1

3: Sample mini-batch 𝐾 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐷𝑡𝑟

4: Sample micro-batch 𝑀 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐾
5: 𝐹𝑝(𝑀 ) ◁ forward pass

6: ℰ𝑗 ← 𝐿+ 𝜆
∑︀𝑊

𝑗=1

(𝑤2
𝑗 /𝑤

2
0)

(1+𝑤2
𝑗 /𝑤

2
0)

◁ 𝐿,𝑊,𝑤0 = Loss, total weights, threshold

7: 𝐵𝑝(M) ◁ backward pass based on model parameters for 𝐹𝑘(𝑀 )

8: Compute gradients for parameters update

9: if (ℰ𝑗 ≤ ℰ𝑖) then ◁ ℰ𝑖 in Alg. 1

10: 𝜆 = 𝜆+△𝜆
11: Estimate 𝑚𝑗 ◁ Execution memory at epoch 𝑗
12: if 𝑚𝑗 ≤𝑚𝑖 then ◁ 𝑚𝑖 in Alg. 1

13: 𝑚𝑡𝑟 = 𝑚𝑗 ◁ 𝑚𝑡𝑟 = Efficient memory footprint

14: ℳ𝑒 = Trained model that estimate ℰ𝑗 ,𝑚𝑡𝑟

15: end if
16: end if
17: end for
18: return (ℳ𝑒,𝑚𝑡𝑟, ℰ𝑗)
19: end function

𝑅 = 𝜆
𝑊∑︁
𝑗=1

(𝑤2
𝑗/𝑤

2
0)

(1 + 𝑤2
𝑗/𝑤

2
0)

(4)

3.3. MEDNN in Federated Learning

FL is a machine learning approach that supports distributed model training using multiple

clients without exposing their training data. This technique updates a shared global model by

aggregating each client training output [20]. Building a federated model can be a challenge

for resource-constrained IoT devices. With this in mind, we tested the proposed MEDNN in

FL settings to see how much memory it can save in model training. Our federated learning

approach is less complex, efficient and effective for the task of IoT intrusion detection compared

to its benchmark counterpart (see experimental results in Section 5.3).

4. Evaluation

This section describes benchmark datasets and the evaluation procedure used to build the

MEDNN and FCNN techniques in centralized and federated learning settings.



4.1. Utilized Datasets

The N-BaIoT dataset consists of various raw subsets data instances from many commercial IoT

devices (see Table 1). Each device contains data samples of attacks and benign network traffic

flows [21]. These devices are either infected by BASHLITE or Mirai attacks with some benign

instances. The overall dataset serves as a benchmark for the proposal of IoT intrusion detection

methods. We consider device subsets data of the N-BaIoT to train and test our models. The

distribution of the benign and attack samples for each subset of the data show its unbalanced

nature. Each device subset data consists of 115 features vector.

Table 1
Distribution of benign and attack instances for each device of the N-BaIoT.

Device Benign instance Attack instance
Danmini Doorbell 49 548 968 750

Ecobee Thermostat 13 113 822 763
Philips B120N10 175 240 923 437

Provision PT-737E 62 154 766 106
Provision PT-838 98 514 729 862

Samsung SNH-1011-N 52 150 323 072
SimpleHome XCS7-1002-WHT 46 585 816 471
SimpleHome XCS7-1003-WHT 19 528 831 298

Kitsune dataset contains multiple traffic captured on an IoT network setting [22]. A subset of

this data employed to evaluate our models has 764,137 instances of Mirai and regular traffic.

This dataset has 115 features with a normal distribution of 121,621 raw traffics data.

IoT-DDoS consists of various captured traffics representing the DDoS botnet attacks and

some portion of regular traffic [23]. We consider 79,035 benign data and 398,391 attack data

samples for empirical model evaluation.

WUSTL consists of multiple flows of traffic from an emulated SCADA system [24]. The

dataset can be used to investigate the feasibility of ML algorithms in detecting various attacks.

The raw data consists of 7,037,983 data samples. For experimental purposes, the distribution of

471,545 attacks and 6,566,438 normal instances was considered.

4.2. Data Preprocessing

The choice of utilized datasets allows efficient model training for investigations purposes. The

classes in these datasets are unbalanced, making them suitable for IoT security monitoring.

Employed datasets are categorized into 80% for training and 20% testing samples. Data input

vectors are normalized using the unity-based normalization feature scaling. With 𝑛 data features

𝑥1, 𝑥2, ..., 𝑥𝑛, within a dataset, the normalization is performed using the formula in Equation 5.

The description 𝑥𝑖
′
, represents the normalized value of the ith feature, 𝑥𝑖 the original value,

while 𝑚𝑖𝑛𝑥𝑖 and 𝑚𝑎𝑥𝑥𝑖 represents the minimum and maximum value of the 𝑖𝑡ℎ feature over

the entire dataset.

𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖

𝑚𝑎𝑥𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖

(5)



4.3. Experimental Setup

We profile the memory usage for each model training procedure using the integrated memory

usage [25]. We used Python 3.76 on a desktop computer with Intel Xeon E5-2695(4 core) CPUs

running at 2.10 GHz with 16.0 GB installed memory. For models analytics, the Spyder scientific

Integrated Development Environment (IDE) [26] was used to store the model for each dataset.

At training, parameters remain constant to enable a fair comparison. This applied to the baseline

FCNN model and optimized MEDNN. The code used for this study can be accessible at [27].

4.4. Implementation Details

FCNN andMEDNNModels. For building the sequential FCNN and MEDNN with each dataset,

we used the scientific NumPy python module [28]. Each sequential model consists of an input

layer, three hidden layers, and an output layer. Regarding the eight device subset data of N-BaIoT,

the topology used consists of 83 neurons in the first and last hidden layer, with 128 neurons in

the second hidden layer (83-128-83). The network architecture used with the kitsune dataset

consists of 83 neurons in the first and third hidden layers, with 141 neurons in the second hidden

layer (83-141-83). For each implementation of these mentioned models topology, the input layer

has 115 neurons representing the number of data features, while the output has one neuron.

The network architecture used with the Wustl dataset has three hidden layers with 26 neurons

each (26-26-26), while the input and output layers have 6 and 1 neurons, respectively. The

model topology used against the IoT-DDoS dataset consists of 20 neurons in each of the three

hidden layers (20-20-20), while the input and output layer has 12 and 1 neurons.

These topology architectures are the requirement for the task of binary classification. The

setting considers meant to minimize training computations while increasing the performance

metrics. These architectures settings are identical for evaluating the baseline FCNN and the

proposed MEDNN model. The only difference during the training would be FCNN used Algo-

rithm 1, while MEDNN utilized Algorithm 2. This indicates that significant memory reduction

was due to the optimization procedure in Algorithm 2.

For training each model, a mini-batch gradient descent was used. The weight and bias

parameters are initialized randomly within [0,1]. The baseline and optimized training procedure

utilized 𝑙𝑟 = 0.001. We used 0.01 values for 𝜆,△𝜆 and threshold 𝑤0 [29] with 4 micro-batches

to build the MEDNN model. The activation function considered in the fully connected layers is

relu with sigmoid in the output layer. Models are trained in 128 batches within the 100 epochs

for accuracy to converge. Parameters and hyperparameters were choosing based on grid search.

Binary cross entropy was utilized for calculating loss function. See Figure 2a and Figure 2b for

the learning process using the chosen epoch for the optimized and baseline training procedure.

The optimized training algorithm provides better training accuracy even with fewer iterations

than its baseline counterpart.

Low Precision 16-bit Implementation. In Numpy, training with 16-bit floating precision

(FP16) requires calling the .float16() method on all model parameters and input data. We consider

FP16 while training the baseline FCNN and in obtaining the efficient MEDNN model.

FL Setup. For the FL experimental settings, we used PyTorch version 1.4.0 [30] and PySyft

version 0.2.9 [31]. Pysyft framework simplifies the creation of virtual workers. These workers



(a) (b)

Figure 2: Effect of epoch with accuracy for (a) optimized and (b) baseline training with Danmini Doorbel
data

emulate real virtual machines and can run as a separate process within the same python program.

Our federation training procedure utilized three virtual workers representing clients and a

coordinating worker. As we utilized Federated averaging (FedAvg), a Stochastic Gradient

Descent (SGD) was used to optimize each model. Federated models are trained in 128 batches

within four epochs in 30 workers iterations. After the clients model training is complete, average

weights values are sent to the coordinating worker. This worker aggregates those weights to

update the global model.

5. Results and Discussion

This section discusses the experimental results. It details the evaluation comparison of the

optimized MEDNN and baseline FCNN models in centralized and federated settings across

datasets.

5.1. MEDNN Model Training (Centralized Manner)

With 11 IoT data sets, we first examined the memory requirements for training FCNN and

MEDNN models in a centralised manner. Table 2 presents the memory profile in MB across each

dataset. The optimized MEDNN model training requires a lower memory. It reduces the memory

requirements of training with Philips B120N10 by 97.60 percentage points and achieves a higher

classification accuracy of 84.10 percentage points than its baseline counterpart. These results

show the regularization advantage [32, 33] on accuracy with certain datasets. It indicates the

less complexity, faster learning capability and better performance behaviour of the optimized

model. These resources minimization make it a better choice for IoT security monitoring.

5.2. Low Precision 16-bit Training of MEDNN

Training with reduced precision has become the de facto technique for increasing the energy

efficiency of deep learning hardware [34]. Therefore we investigated the memory efficiency of



Table 2
Model training (Centralized): Comparison of training memory consumption between MEDNN and
FCNN.

Dataset Model Memory Memory Test Accuracy
(MB) Reduction (%) (%)

Danmini Doorbell
FCNN 4.039 N/A 95.11

MEDNN 0.098 97.57 95.11

Ecobee Thermostat
FCNN 4.125 N/A 1.50

MEDNN 0.121 97.07 93.32

Philips B120N10
FCNN 4.082 N/A 15.92

MEDNN 0.098 97.60 84.10

Provision PT-838
FCNN 3.438 N/A 13.97

MEDNN 0.098 97.15 88.08

Provision PT-737E
FCNN 3.980 N/A 92.52

MEDNN 0.098 97.54 92.52

Samsung SNH-1011-N
FCNN 3.789 N/A 13.94

MEDNN 1.199 68.36 86.07

SimpleHome XCS7-1002-WHT
FCNN 3.680 N/A 94.65

MEDNN 0.102 97.23 94.65

SimpleHome XCS7-1003-WHT
FCNN 3.969 N/A 97.72

MEDNN 0.102 97.43 97.72

Kitsune
FCNN 3.656 N/A 84.09

MEDNN 0.102 97.21 84.09

IoT-DDoS
FCNN 1.738 N/A 83.34

MEDNN 0.047 97.30 83.34

Wustl
FCNN 1.516 N/A 94.26

MEDNN 0.063 95.84 94.26

the proposed MEDNN with low precision implementation. Table 3 presents training memory

usage while integrating the FP16 precision. Across each dataset, memory consumption was

reduced by the complete training iterations. Regarding the Philips data, the reduction is 43.63

and 80.61 percentage points with the baseline and optimized training process, respectively. With

the same data, the accuracy increased by 68.18 percentage points using the optimized method.

The results suggest that FP16 operations can influence memory reduction using the optimized

training method. It demonstrated that FP16 integration does not influence MEDNN accuracy

reduction in most cases. It can reduce the FCNN classification accuracy across some datasets.

As a result, the regularized MEDNN can maintain a better accuracy with FP16 computations.

5.3. MEDNN Model Training (Decentralized Manner)

The results in Table 4 are for the implemented FL method with baseline (FCNN) and its optimized

model (MEDNN). These results compared the training memory requirements and accuracy

across each dataset. In federated training, the MEDNN model requires lower memory across

all datasets. It saves 99.46 percentage points of memory while training the SimpleHome XCS-



Table 3
Model training (Low precision): Comparison of training memory consumption between MEDNN and
FCNN.

Dataset Model Memory Memory Test Accuracy
(MB) Reduction (%) (%)

Danmini Doorbell
FCNN 3.125 N/A 4.90

MEDNN 0.285 90.88 95.12

Ecobee Thermostat
FCNN 2.313 N/A 1.50

MEDNN 0.023 99.01 93.32

Philips B120N10
FCNN 2.301 N/A 15.92

MEDNN 0.019 99.17 84.10

Provision PT-838
FCNN 1.961 N/A 11.93

MEDNN 0.113 94.24 88.07

Provision PT-737E
FCNN 2.343 N/A 9.60

MEDNN 0.098 95.82 92.52

Samsung SNH-1011-N
FCNN 3.039 N/A 13.94

MEDNN 0.148 95.13 86.07

SimpleHome XCS7-1002-WHT
FCNN 1.949 N/A 6.30

MEDNN 0.055 97.18 94.63

SimpleHome XCS7-1003-WHT
FCNN 1.988 N/A 97.67

MEDNN 0.027 98.64 97.70

Kitsune
FCNN 2.813 N/A 84.09

MEDNN 0.160 94.31 84.09

IoT-DDoS
FCNN 0.227 N/A 83.34

MEDNN 0.027 88.11 83.34

Wustl
FCNN 0.199 N/A 94.26

MEDNN 0.012 93.97 94.26

1003-WHT dataset. Across all tested datasets, the classification accuracy is not degraded by the

proposed method. This result demonstrates the advantage of the optimized model in building

an efficient federated training method, and the usefulness of the proposed method for effective

attack detection on resource-constrained devices.

We investigated the effect of the proposed method in federated learning using all the datasets.

However, due to the space constraint, we only present the result of the SimpleHome XCS-

71003-WHT device data to show the significant memory reduction (see Table 5). In addition

to the significant memory reduction by the MEDNN model, it outperforms the FCNN model

with low precision 16-bit implementation. As shown in the table, FP16 integration reduces the

accuracy of the FCNN by 0.05 percentage points while reducing that of the MEDNN by only

0.02 percentage points, respectively. In centralized and federated training procedures, both

models demonstrate equal accuracy performance. These results suggest the significance of

our optimized model compared with its benchmark counterpart. It indicates that the proposed

method is efficient and effective for on-device training in a distributed manner.



Table 4
Model training (Fedarated): Comparison of training memory consumption between MEDNN and FCNN.

Dataset Model Memory Memory Test Accuracy
(MB) Reduction (%)

Danmini Doorbell
FCNN 8.637 N/A 95.11

MEDNN 0.402 95.34 95.11

Ecobee Thermostat
FCNN 9.426 N/A 93.35

MEDNN 0.070 99.26 93.35

Philips B120N10
FCNN 9.695 N/A 84.08

MEDNN 0.465 95.20 84.08

Provision PT-838
FCNN 10.26 N/A 88.07

MEDNN 0.418 95.93 88.07

Provision PT-737E
FCNN 10.23 N/A 92.52

MEDNN 0.117 98.86 92.52

Samsung SNH-1011-N
FCNN 12.27 N/A 86.07

MEDNN 4.195 65.80 86.07

SimpleHome XCS7-1002-WHT
FCNN 9.598 N/A 94.65

MEDNN 0.117 98.78 94.65

SimpleHome XCS7-1003-WHT
FCNN 10.15 N/A 97.72

MEDNN 0.055 99.46 97.72

Kitsune
FCNN 8.223 N/A 84.09

MEDNN 0.156 98.10 84.09

IoT-DDoS
FCNN 6.492 N/A 83.34

MEDNN 0.804 87.62 83.34

Wustl
FCNN 5.867 N/A 94.26

MEDNN 1.102 81.22 94.26

Table 5
Performance comparisons against training procedure.

Procedure Model Memory (MB) Accuracy (%)

Centralized
FCNN 3.969 97.72

MEDNN 0.102 97.72

Low precision (FP16)
FCNN 1.988 97.67

MEDNN 0.027 97.70

Decentralized (FedAvg)
FCNN 10.15 97.72

MEDNN 0.055 97.72

5.4. Model Performances

Table 6 describes the federated model performance evaluated by test set accuracy, precision,

recall and harmonic mean on randomly chosen datasets. As the chosen IoT datasets are often

unbalanced, test accuracy alone would not be a sufficient metric to measure the performance in



security applications. Instead, the F1 score that corresponds to the harmonic mean of precision

and recall is more appropriate. It considers accuracy for each class sample. Employed metrics

utilized the True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN).

Accuracy, precision, recall and F1 score are defined in Equation 6, 7, 8 and 9. In each scenario,

the optimized MEDNN model maintains similar detection performance across all metrics. The

performance metrics result presented in Table 6 remained identical for models trained in

centralized settings against each dataset. In each case, accuracy, precision, recall and F1-score

remained similar. The results indicate that the utilized number of virtual workers nodes in the

federated settings had a minor influence on model performance. This behaviour indicates the

lightweight advantage and effectiveness of MEDNN in detecting IoT attacks with good F1-score

performance.

Table 6
Testing performance comparisons across datasets.

Dataset Model Accuracy (%) Precision Recall F1-Score

IoT-DDoS
FCNN 83.34 0.8334 1.0000 0.9091

MEDNN 83.34 0.8334 1.0000 0.9091

Wustl
FCNN 94.26 0.9426 1.0000 0.9705

MEDNN 94.26 0.9426 1.0000 0.9705

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2× 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(9)

6. Conclusion

This paper investigated the possibility of reducing memory consumption during DNN training,

intending to use DNN-based security solutions in resource-constrained environments. Using

FCNN, we proposed a memory-efficient MEDNN for the effective detection of cyber attacks

on IoT devices. The effectiveness of MEDNN was tested using eleven IoT benchmark datasets

in both centralized and federated learning manners. Experimental results showed that the

proposed MEDNN can outperform its benchmark counterparts for memory efficiency and

accuracy performance, especially with federated learning. This could be because many clients

are involved in training in a federation and thus the cumulative savings are higher than with

centralized training on a single node. In addition, the aggregation of models in federated



training can influence faster learning compared with centralized training. However, these

initial experimental results are encouraging and warrant further investigation, particularly

consideration of more computational nodes in a virtual and realistic federated environment.

Therefore, in future, we plan to deploy the model in a real IoT network and examine its

capabilities to detect IoT attacks in near real-time in a federated learning setting. In addition,

we plan to investigate the impact of adversarial attacks on the proposed MEDNN.
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