
MOSS, L., CORSAR, D., SHAW, M., PIPER, I. and HAWTHORNE, C. 2022. Demystifying the black box: the importance of 
interpretability of predictive models in neurocritical care. Neurocritical care [online], 37(Supplement 2): big data in 

neurocritical care, pages 185-191. Available from: https://doi.org/10.1007/s12028-022-01504-4  

 
 
 
 

© 2022 The Author(s). 

This document was downloaded from 
https://openair.rgu.ac.uk 

Demystifying the black box: the importance of 
interpretability of predictive models in 

neurocritical care. 

MOSS, L., CORSAR, D., SHAW, M., PIPER, I. and HAWTHORNE, C. 

2022 

https://doi.org/10.1007/s12028-022-01504-4


Neurocrit Care (2022) 37:S185–S191
https://doi.org/10.1007/s12028-022-01504-4

BIG DATA IN NEUROCRITICAL CARE

Demystifying the Black Box: The Importance 
of Interpretability of Predictive Models 
in Neurocritical Care
Laura Moss1,2* , David Corsar3, Martin Shaw1,2, Ian Piper4 and Christopher Hawthorne5

© 2022 The Author(s)

Abstract 

Neurocritical care patients are a complex patient population, and to aid clinical decision-making, many models and 
scoring systems have previously been developed. More recently, techniques from the field of machine learning have 
been applied to neurocritical care patient data to develop models with high levels of predictive accuracy. However, 
although these recent models appear clinically promising, their interpretability has often not been considered and 
they tend to be black box models, making it extremely difficult to understand how the model came to its conclu-
sion. Interpretable machine learning methods have the potential to provide the means to overcome some of these 
issues but are largely unexplored within the neurocritical care domain. This article examines existing models used in 
neurocritical care from the perspective of interpretability. Further, the use of interpretable machine learning will be 
explored, in particular the potential benefits and drawbacks that the techniques may have when applied to neuro-
critical care data. Finding a solution to the lack of model explanation, transparency, and accountability is important 
because these issues have the potential to contribute to model trust and clinical acceptance, and, increasingly, regula-
tion is stipulating a right to explanation for decisions made by models and algorithms. To ensure that the prospec-
tive gains from sophisticated predictive models to neurocritical care provision can be realized, it is imperative that 
interpretability of these models is fully considered.
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Introduction
A neurointensive care unit (NICU) is a cognitively chal-
lenging environment; large volumes of patient data are 
required to be analyzed, and decisions are rapidly made, 
often on the basis of uncertain information [1]. Monitor-
ing systems found in the NICU capture streaming physi-
ological data, which can be combined with electronic 
health record data, creating a data-rich environment. 

Data can be complex and heterogenous, structured and 
unstructured, and high and low frequency, and can also 
have quality issues, such as incompleteness and artifacts. 
Although analysis of these patient data has the potential 
to drive clinical knowledge discovery and aid in patient 
treatment, such a large volume of data is beyond the nor-
mal abilities of human cognition and hence cannot be 
analyzed easily.

To overcome this data challenge, techniques such as 
machine learning (ML) are increasingly applied and are 
becoming  viewed as essential for supporting clinical 
decision-making [2]. ML is a subfield of artificial intel-
ligence focused on the development of algorithms that 
extract patterns (or models) from large data sets, which 
can then be applied to other data for tasks such as pre-
diction, prognosis, and classification [2]. The nature of 
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NICU patient data means that ML is an ideal technique 
to be applied in this domain.

Although models derived from ML appear clinically 
promising, their interpretability has often not been con-
sidered. Applications in the NICU have focused on devel-
oping models that, when applied to new patient data, 
tell the clinician what is likely to happen for a particular 
scenario (e.g., mortality following traumatic brain injury 
[3]); the focus is on the output of the model rather than 
the inner workings of the model. The intrinsic interpret-
ability of ML models range from techniques such as 
decision trees, which produce human-readable rules, 
to neural networks, which are often considered as black 
box approaches because they produce complex mod-
els that provide very little (or no) ability to comprehend 
the model created [4]. The model’s lack of interpretabil-
ity and accountability is important, and alongside issues 
such as bias [5], lack of validation [6], ethics [7], and 
lack of technical infrastructure [8], it may contribute to 
reduced trust and clinical acceptance.

Recently, there has been a significant amount of societal 
interest in increasing the accountability of approaches 
such as ML; this has largely focused on opening-up 
black box algorithms to enable the user to understand 
the model. More widely, automated decision-making is 
increasingly being regulated, which has implications for 
health care, for example, the European Union directive 
General Data Protection Regulation stipulates the right 
to explanation for decisions made by algorithms, stating 
that individuals have the right to “meaningful informa-
tion about the logic involved, as well as the significance 
and the envisaged consequences of such processing” [9].

At this point, it is worthwhile distinguishing between 
interpretation and explanation. A useful definition for 
these terms is provided by Miller [10]: interpretability 
can be considered as “how well a human could under-
stand the decisions in the given context.” Applied to 
modeling, this can be thought of as how easy it is to iden-
tify cause and effect from the model’s inputs and outputs, 
i.e., what is happening in the model. For example, in the 
APACHE II model [11], a patient’s severity of disease is 
linearly calculated on the basis of the sum of points asso-
ciated with 12 physiological variables taken on admis-
sion to critical care. The more points a patient has, the 
higher the patient’s disease severity. It is easy to see how 
the model uses the input data to make a final severity 
score. Models produced from ML approaches can repre-
sent complex relationships, but this complexity is also the 
reason they may not be interpretable. An explanation can 
be considered as answering questions such as ‘why’ and 
‘how’ [10]. Explanation, within the context of ML, can 
be considered as a form of post-hoc interpretability [12]. 
To generate an explanation from a model, understanding 

and knowledge of the inner workings of the model is 
needed, i.e., it requires reasoning about the variables, 
which in turn requires domain knowledge and model 
context. With respect to the APACHE II model, you do 
not need to have intensive care unit domain knowledge 
to interpret how the score is calculated. However, to 
explain why (the higher the score, the more severely ill 
the patient is) requires knowledge and understanding of 
the model’s physiological variables and how the possible 
values of these variables relate to a patient’s condition.

The NICU can be considered as a high-risk application 
domain; patients are critically ill, and consequences of 
incorrect modeling are severe. By making the workings 
of models and algorithms explicit, it provides end users 
with the ability to understand and evaluate the model 
and interrogate it to detect possible issues, such as bias, 
incompleteness, and incorrectness. Further, removing 
some of the opaqueness associated with ML models can 
contribute to building clinicians’ trust and increase use of 
models in clinical practice [13].

Neurointensive Care Models
A wide variety of models are relevant to the NICU and 
range in interpretability. The majority of those in clinical 
use are not yet from black box ML algorithms but from 
what is thought of as classical statistics. It is still worth 
exploring these from the perspective of interpretability to 
enable comparison. Further, it is acknowledged that there 
is no hard boundary between statistical inference and 
ML, and some methods fall into both domains [14, 15].

Classification models are often easily interpretable. The 
Glasgow Coma Scale Score [16] combines the findings of 
the three components of the Glasgow Coma Scale into 
a single index that can classify the patient’s condition as 
mild, moderate, or severe for the purposes of research 
studies. How the final score is calculated is immediately 
transparent to the user.

Prognostic models relate a patient’s characteristics 
with their risk of a particular future outcome. The Inter-
national Mission for Prognosis and Analysis of Clinical 
Trials in Traumatic Brain Injury [17, 18] and the Corti-
costeroid Randomisation After Significant Head Injury 
[19] models are based on logistic regression analysis, 
and the sum scores and calculation of the probability of 
6-month outcome are available for scrutiny.

Cerebral autoregulation (AR) can be modeled 
using physiological data in correlation methodolo-
gies and mathematical models [20]. The pressure reac-
tivity index  (PRx) and low-frequency autoregulation 
index  (LAx) are relatively intuitive AR models. PRx is 
calculated on high-frequency data (LAx on minute-by-
minute data) as a moving Pearson correlation between 
intracranial pressure and arterial blood pressure and 
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assigns a value between − 1 and 1; 0 implies no correla-
tion; 1 is positive correlation, in which pressure reactiv-
ity is impaired; and − 1 is negative correlation, in which 
pressure reactivity is intact [21]. Specialist software 
enables the values and correlation to be visualized [22]. 
Optimum cerebral perfusion pressure (CPPopt)  for an 
individual patient is calculated by combining continuous 
monitoring of cerebral perfusion pressure and a meas-
ure of AR through a process of data thinning and colla-
tion, resulting in a quadratic polynomial linear regression 
model fit [23, 24]. Although the software can display an 
almost continuous estimation of CPPopt, the underlying 
model requires more advanced knowledge to interpret.

Models are also used for analysis of electroencepha-
logram signals for monitoring depth of anesthesia and 
sedation [25, 26]. The Bispectral Index (BIS) monitor 
(Medtronic) collects raw electroencephalogram data, 
and a multivariate model using nonlinear functions of 
electroencephalography-based subparameters calculates 
the BIS score (i.e., the prediction of depth of anesthesia). 
The BIS is an example of another type of model opaque-
ness; in this case, the interpretability of the model is poor 
owing to only the principles and not the specifics of the 
proprietary algorithm being publicly available.

More recently, techniques from the field of ML have 
been applied to NICU data to create predictive models 
(e.g., prediction of neurological recovery). For a more 
detailed overview of ML in the NICU see the article by 
Chaudhry et al. [14]. Models derived from ML are often 
more complex, are much less intuitive, and are not yet 
widely applied in the NICU. For example, a neural net-
work can consist of multiple layers of artificial neurons 
with possibly thousands of parameters. An ML expert 
could conceptually explain what is happening in the lay-
ers, but it is effectively impossible to follow the compu-
tation and explain how all the thousands of parameters 
worked together to generate the prediction. As ML mod-
els become more prevalent in NICU clinical practice, this 
lack of interpretation is problematic.

Interpretable ML
To overcome the black box nature of some ML models, 
there is a growing interest in the use of interpretable ML. 
There are generally three different approaches to devel-
oping interpretable models [27]: firstly, to use models that 
are intrinsically understandable by a human; secondly, to 
apply interpretation methods after model creation using 
model-agnostic methods; and thirdly, for example-based 
methods to use an instance from the data to explain the 
behavior of the model. For a more detailed overview of 
interpretable ML, see the articles by Molnar [27] and 
Linardatos et al. [28], and for an overview of its benefits 
for health care, see the article by Ahmad et al. [29].

Using intrinsically understandable models offers the 
easiest approach to model interpretability. One such 
model is a decision tree; each node of the tree contains 
a question, and every child node (or “branch”) con-
tains a possible answer to the question. To interpret 
the model, starting with the root node, the branches 
are followed through the child nodes until reaching 
the predicted outcome on the leaf node. Each node is 
a subset of the data, and each edge is an AND func-
tion. The advantage is that a tree structure is an intui-
tive visualization and lends itself to human-friendly 
interpretations [30]. Disadvantages include an inability 
to represent linear relationships and that the tree can 
quickly become too large. More generally, a disadvan-
tage is that intrinsically understandable models may 
not offer the same accuracy as nonintrinsically under-
standable models.

Using post-hoc model-agnostic methods means that a 
modeler does not have to restrict themselves to intrin-
sically interpretable ML algorithms nor to one type of 
interpretation. Post-hoc interpretation methods may 
explain an individual patient prediction (local interpreta-
tion) or the whole model (global interpretation).

Local interpretable model-agnostic explanations 
(LIME) [31] is a model simplification technique, creating 
a local interpretable surrogate model to represent what is 
happening within a black box algorithm. This is done by 
changing the black box algorithm inputs and creating a 
new data set consisting of the perturbed samples and pre-
dictions. Using this data set, LIME trains an interpretable 
model weighted by the closeness of the new instances to 
the original instances. LIME has the advantages that it 
generates human-friendly explanations; works for tabu-
lar, text, and image data; and is relatively easy to use, 
whereas disadvantages include manual experimentation 
with different kernel settings for each application and a 
lack of stability in the explanations generated [28].

Other post-hoc model-agnostic methods focus on fea-
ture importance. Shapley Additive Explanations (SHAP) 
calculates an additive feature importance score for each 
model prediction [32]. Shapley values is an approach 
from cooperative game theory that fairly attributes how 
much each of a model’s input features contributed to its 
output. SHAP values refer to Shapley values that have 
been applied to a conditional expectation function of 
an ML model. An advantage to this approach is that it is 
built on solid theory and has desirable properties (local 
accuracy, missingness, and consistency). Disadvantages 
include requiring a large amount of computing time, 
returning only a value rather than a model (which limits 
answering ‘what-if ’ questions), and generating explana-
tions using all the features rather than sparse explana-
tions [28].
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Example-based methods are generally model-agnostic 
methods and help a human to create a mental model of 
the ML model and the data it has been trained on [28]. 
Using examples to reason with is common in everyday 
life; we often use what we know from similar situations 
to make inferences about a current situation. For exam-
ple, counterfactual explanations of a prediction identify 
the feature value changes required to change the output 
of the model [33]. Example-based methods work well if a 
feature value is associated with context and represented 
in a human understandable way (e.g., text), whereas they 
can be harder to apply to tabular data because an instance 
can consist of many features that are unstructured [28].

Model interpretations should be helpful to a human 
achieving a given objective. Doshi-Velez and Kim [34] 
suggest a taxonomy of evaluation approaches: applica-
tion grounded (involving domain expert experiments to 
evaluate the quality of the interpretation within the con-
text of its end-task, e.g., identification of errors), human 
grounded (involving simpler human-subject experiments 
in which more general notions of a good interpretation 
are evaluated, e.g., which interpretation is preferred 
under time constraints), and functionally grounded 
(involving no humans and instead focusing on a formally 
defined notion of interpretability as a proxy, e.g., showing 
that your model performs better with respect to sparsity).

Although not widely applied, interpretable ML algo-
rithms have been applied to critical care data, largely 
focusing on prediction of patient outcome. Table 1 sum-
marizes some of these applications.

Discussion
Models and algorithms can significantly advance NICU 
patient treatment. As the NICU becomes more technol-
ogy driven and growing amounts of patient data become 
available, ML provides a valuable tool with which to ana-
lyze these data, but models need to be accessible and 
accountable to aid adoption into NICU clinical practice.

Interpretable ML is an approach that has the poten-
tial to enhance the utility and acceptance of ML models, 
but there are challenges. Compared with black box ML 
approaches, there can sometimes be a reduction in per-
formance when applying intrinsically interpretable ML 
models. Consequently, for a given task, there can be a 
trade-off between accuracy and the intrinsic interpret-
ability of the model. For example, in the article by Cowan 
et al. [35], a decision tree model to predict intensive care 
unit patient hospital survival led to poorer discrimina-
tive ability than several black box algorithms, and in the 
article by Holmgren et  al. [36], an artificial neural net-
work outperformed the Simplified Acute Physiology 
Score 3, which is built using linear regression. However, 

a reduction in model performance when using interpret-
able ML is not always found [37].

The requirements for interpretability of ML models 
and the acceptable trade-off between model accuracy and 
interpretability may depend on the context in which the 
model is being applied. For example, a model to predict 
whether a patient is likely to survive the NICU has the 
potential to substantially influence the treatment of a 
patient; no matter how accurate the model, it is unlikely 
that a clinician will fully trust the model without requir-
ing understanding of how the model came to its conclu-
sion. However, there will be more subtle scenarios for 
which the trade-off between accuracy and interpretability 
is not as straightforward. Little research has been con-
ducted to examine such scenarios and to explore, within 
the NICU context, what are acceptable trade-offs. It is 
proposed that this will be context specific and may dif-
fer between clinicians on the basis of attitude to risk and 
experience level. How a model is being used by clinicians 
may also be important, for example, if a clinician is using 
the output of a model with other sources of information, 
then the requirement for a more accurate model may be 
stronger than the requirement for a  more interpretable 
one because the clinician will not be relying solely on the 
model for the decision-making.

Interpretability can be applied to multiple stages of the 
modeling process to provide transparency of the algo-
rithm’s process and aid comprehension of the model or 
understanding of how parts of the global model affect 
predictions, understanding of a single model prediction, 
and interpretation of model predictions for multiple 
instances [28]. The way that interpretability is presented 
to the end user is highly dependent on the chosen algo-
rithm. There is no agreed-on definition of interpret-
ability, nor is there agreement on which characteristics 
define a useful interpretation for NICU clinicians. Previ-
ous research has focused on developing the techniques 
to provide interpretation mechanisms rather than iden-
tifying what would be considered a useful or valid inter-
pretation of a model [34]. Consequently, there can be a 
disconnect between a clinician’s requirements for inter-
preting an ML model and existing notions of interpret-
able ML [38]. Further, interpretable ML techniques 
indicate the parts of the data that contributed most to an 
ML model’s output but cannot indicate why (i.e., offer an 
explanation). It is important to be aware of this limitation 
because the clinician is left to make their own interpreta-
tion of what they think the model reasoning was, and this 
may be biased by their own prior knowledge and experi-
ence [39]. It is suggested that an international consensus 
is developed regarding the requirements for interpreta-
tion of predictive models in the NICU and for the stand-
ardization of approaches.
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Finally, some post-hoc interpretable ML approaches 
(e.g., LIME) are often more time and resource inten-
sive, compared with intrinsically interpretable ML 
approaches, and often require expertise to implement; 
if a computer system applies a model and then subse-
quently generates an explanation each time it is used, this 
may reduce the overall system performance. If interpret-
able ML approaches are to be adopted in clinical practice, 
they will need to overcome real-world NICU require-
ments and run in clinically useful timescales despite lim-
ited computing infrastructure and processing power.

It is important from the perspective of patient safety, 
ethics, and accountability that algorithms that can be 
used to influence patient treatment are “opened up” and 
that attempts are made by those who use them to under-
stand the underlying processes. Interpretable ML meth-
ods provide one solution to this problem, but there is also 
an onus on NICU education and training to keep up to 
date with analytical and technological advances so that 
clinicians can understand not only the benefits of these 
approaches but also the limitations. Blind faith in black 
box models is something that the NICU community 
needs to be aware of and should be seeking to avoid.
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