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Abstract: The whole-life-cycle state of charge (SOC) prediction plays a significant role in various applications of lithium-

ion batteries, but with great difficulties due to their internal capacity, working temperature, and current-rate variations. In this 

paper, an improved feedforward-long short-term memory (FF-LSTM) modeling method is proposed to realize an accurate 

whole-life-cycle SOC prediction by effectively considering the current, voltage, and temperature variations. An optimized 

sliding balance window is constructed for the measured current filtering to establish a new three-dimensional vector as the 

input matrix for the filtered current and voltage. Then, an improved steady-state screening model is constructed for the 

predicted SOC redundancy reduction that is obtained by the Ampere-hour integral method and taken as a one-dimensional 

output vector. The long-term charging capacity decay tests are conducted on two batteries, C7 and C8. The results show that 

the battery charging capacity reduces significantly with increasing time, and the capacity decreases by 21.30% and 22.61%, 

respectively, after 200 cycles. The maximum whole-life-cycle SOC prediction error is 3.53% with RMSE, MAE, and MAPE 

values of 3.451%, 2.541%, and 0.074%, respectively, under the complex DST working condition. The improved FF-LSTM 

modeling method provides an effective reference for the whole-life-cycle SOC prediction in battery system applications. 

Keywords: whole-life-cycle state of charge; lithium-ion battery; capacity fading; feedforward-long short-term memory; 

sliding balance window; steady-state screening model 
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Highlights:  



• Improved feedforward-long short-term memory (FF-LSTM) modeling for SOC prediction

• Sliding balance window of dimensional current-voltage-temperature variation vectors

• Optimized steady-state screening model built with Ah integration and output vector

• Whole-life-cycle feature analysis for current, voltage, temperature, and capacity

1. Introduction

With the development of new energy technologies, lithium-ion batteries have been widely used in complex 

power supply conditions. How to predict the battery’s state accurately under complex working conditions has also 

become a global challenge that needs to be solved urgently. The inevitable aging process of lithium-ion batteries 

negatively affects the safe and stable operation of energy storage systems [1-3]. An accurate state of charge (SOC) 

prediction is required to realize the remaining energy prediction, real-time power management, and service life 

extension. The chemical causes of the aging process are analyzed for lithium-ion batteries by considering the 

influence of environmental temperature variations with a feedforward migration neural network to achieve a long 

battery life [4]. The aging data set is also used to train the feedforward neural network for the aging trajectory 

prediction. 

Lithium-ion batteries have strong nonlinear dynamic characteristics due to the internal coupling reaction 

process. The degradation mechanisms are investigated by differential voltage analysis with the alternating current 

impedance [5]. Also, the working environment, series-parallel circuit network, and application conditions affect 

the operation of the batteries significantly [6-9]. Considering the battery aging process, predictive energy 

management is necessary for the aging and temperature characterization with active and adaptive aging prediction, 

so an adaptive equivalent consumption minimization strategy is constructed with a recurrent neural network 

(AECMS-RNN) [10]. The characteristic features are extracted based on the parameter and state variations during 

the reaction. The mathematical expression is formed to simulate the steady-state and dynamic response 

characteristics of the batteries [11]. A new quantitative aging model is established by performing the state-space 



expression, and the battery aging changes are realized by the fractional difference expression [12]. Based on this 

modeling strategy, the aging characteristics of lithium-ion batteries are extracted for the sub-zero temperature 

conditions to establish a robust capacity decay prediction model [13-15]. Also, the method of constructing the 

working process function has good applicability based on the correlation between the charge-discharge current 

rates and the closed-circuit voltage (CCV) variation [16]. This method is suitable for processing characterization, 

thermal conductivity description, temperature simulation, and aging effect expression [17-19]. Combining the 

sensitivity and thermal mechanism analysis [20], the effective characterization of battery performance degradation 

under wide temperature variations has become the mainstream of modeling for the series-parallel optimizing 

method, which is an essential solution for accurate battery state characterization. 

Most of the modeling methods are concerned with single influencing factors, and the research on the multi-

parameter coupling mechanism has not matured under the influence of multiple factors. The performance 

parameters of different charge-discharge stages vary significantly, and the influencing factors between battery 

cells change obviously [21]. Therefore, considering the multi-factor coupling and the periodic changing law, it is 

an effective way to balance the modeling accuracy and complexity. It is also used to explore the influence of the 

parameter changes and mutual variation degree while obtaining the parameter description law and optimization 

method in different modes [22]. Multiple cells are connected in series to improve the voltage level, in which case 

there are negative effects such as short-circuiting [23]. These serious problems are caused by the cell-to-cell 

difference that needs to be characterized accurately, so the capacity fading process is an essential characteristic 

for the mathematical description of the lithium-ion battery model to optimize the energy supply capabilities [24]. 

The capacity fading mechanism analysis is carried out [25], and its attenuation monitoring is conducted using 

optical fibers [26]. The current density of the defect-induced capacity attenuation is introduced through the local 

electroplating of lithium-ion batteries [27]. Capacity decay and cyclic aging are considered at various SOC levels 

[28], in which the changes in lithium-ion concentration are taken into consideration to get the capacity decay 



mechanism. 

The open-circuit voltage (OCV) highly affects the terminal voltage of lithium-ion batteries, and the working 

state change is used as the main influencing factor for their working condition monitoring. Through the OCV 

characteristic relationship analysis, the aging diagnosis is realized online for lithium-ion batteries [29]. Also, the 

aging mechanism is highly influenced by the OCV characteristic analysis of the half-cell and full-cell levels, 

which is considered to conclude the aging mechanisms towards cell capacity reduction. [30]. The fast-charging 

effect is analyzed for lithium-ion batteries when working at low-temperature conditions, in which the fast charging 

effects are investigated on the performance of a high-energy cell [31]. The state of power (SOP) is predicted under 

the maximum operating temperature constraint by introducing various temperature indication methods into the 

state prediction process by analyzing the temperature dependence of the lithium electroplating phenomenon [32]. 

The cyclic stability is analyzed for lithium-ion batteries under high working temperature levels [33], which shows 

that the capacity decays fast at 60 °C and the capacity retention rate is as low as 47% after 100 cycles.  

In the battery modeling process, it is necessary to determine the core parameters and introduce them into the 

real-time state monitoring process. The co-prediction of model parameters and SOC is performed with recursive 

restricted total least squares (RRTLS) [34] and the unscented Kalman filtering (UKF) method [35]. Also, an 

improved adaptive dual unscented Kalman filter (DUKF) is proposed for online parameter identification and SOC 

prediction [36]. The online parameter identification is carried out through the improved instrument variable 

prediction [37] and the impedance-based diagnosis [38, 39], including the multiple output correlation and vector 

regression to identify the physical parameters. Based on the simplified electrochemical modeling and aging mode 

analysis, the physical parameter identification is carried out effectively [40]. The parameter identification is 

established with an improved recursive least square (RLS) method by multiple-time inner loop update of the 

parameter vector [41]. The online complexity reduction parameter prediction technology is introduced into the 

equivalent circuit modeling process [42], and the aging model is built [43] by introducing the multidisciplinary 



parameters. 

The state prediction of lithium-ion batteries can be realized by the characteristic analysis, which is useful for 

the effective energy supply process throughout the whole life-cycle aging process. On the discharge curves, both 

the state of health (SOH) and remaining useful life (RUL) are estimated accurately in real-time by combining the 

electrochemistry-based electrical and semi-empirical capacity fading models [44]. Based on the extended state 

observer of a generalized proportional-integral type, a reliable SOC prediction is observed for lithium-ion batteries 

[45]. The battery modeling is established by considering the hysteresis effect based on an improved Coulomb 

counting method [46]. Combined with the support vector machine (SVM) [47], the Gaussian process (GP)-

Bayesian filters [48] are constructed for the SOC monitoring of lithium-ion batteries. For an effective energy 

supply process, the battery management methods are analyzed under complex working conditions. A numerical 

simulation of a multi-micro channel radiator is introduced to research thermal management system. The effect of 

phase change and heat pipe coupling is carried out on the performance enhancement in the thermal management 

system. Thermal safety management includes current issues and opinions by the application of tree-like micro-

channel heat sinks and numerical optimization [49]. The reduction of the qualifying time is characterized through 

state prediction and health management, in which the anomalies in the capacity fade curve of unhealthy batteries 

can be detected by analyzing the fading trend [50]. The thermal management performance is studied to provide 

an effective way to manage the temperature in the battery packs [51]. 

The overall modeling method ignores the internal electrochemical reactions and the cell-to-cell difference, 

making it suitable for battery modeling in complex conditions. A battery model is established under different 

working conditions by considering the influence of temperature on capacity and internal resistance [52]. The cut-

off voltage adopts the cell’s first cut-off voltage during the charge-discharge process with simplicity and easy 

implementation advantages. The self-discharge rate difference is also considered with the internal resistance and 

capacity variations. The average difference modeling method obtains the electrical parameters based on the 



average arithmetic method, which superimposes the difference to correct the key parameter variation, such as the 

impact of high-power charging on safety [53], to realize the dynamic characterization. It also accurately describes 

the differences between battery cells with the coupling relationship between current magnification and capacity 

[54]. The influencing mechanisms are discussed for internal resistance, SOC, and the external environment on the 

current distribution. The battery data is compressed and reconstructed using the frequency division multiplexing 

principle [55-58], according to which the prediction methods are analyzed with numerical simulation for effective 

correction of the model parameters. 

The electrochemical analysis of battery aging and capacity decay effects are investigated, and life cycle 

comparison and evaluation are conducted to solve the capacity decay problem in EVs. The influence of the 

increase in resistance due to capacity decay is analyzed to establish a global self-discharge model for lithium-ion 

batteries [60]. By considering the capacity attenuation, the capacity decay of the long battery life is analyzed for 

the buffer application of EV superchargers [61]. The electric bus fleet is dispatched optimally by the dynamic 

mathematical programming, as it experiences capacity decays and thermal stability after overcharging [59]. A 

comprehensive model has been developed to describe the Coulomb efficiency and capacity decays under different 

aging conditions.  

By considering the current, voltage, and temperature variations, an improved feedforward-long short-term 

memory (FF-LSTM) modeling method is proposed to guarantee the whole-life-cycle SOC prediction performance. 

An improved sliding balance window is established for the measured current filtering so that a new three-

dimensional vector is constructed for the filtered current and voltage. An optimized steady-state screening model 

is constructed for the predicted SOC value based on the Ampere-hour integral method as a one-dimensional output 

vector. The long-term dynamic stress test procedure is designed for the training process. A special three-

dimensional current, voltage, and temperature variation procedure is designed for the variable temperature 

capacity test, composite OCV measurement, hybrid pulse power characterization (HPPC) test, and the dynamic 



stress test for experimental verification.  

2. Mathematical analysis 

The improved FF-LSTM modeling method is proposed by considering the current, voltage, and temperature 

variations. An improved sliding balance window is established for the measured current value filtering, with an 

improved steady-state screening model is constructed as a one-dimensional output vector. A pulse-current test 

procedure is designed, including the capacity, OCV, and other parameters in the whole-life-cycle working 

condition simulation to express the fading process.  

2.1. Improved feedforward-long short-term memory method 

Based on the frame network structure, the functional expression is designed for different output levels and 

internal parameter coupling relationship characterization. The aging characteristics are considered in the iterative 

calculation procedure for the current, SOC, and temperature, which are used to establish a processing model that 

reflects the working characteristics and the present weighting coefficient. The variation law of the ohmic 

resistance and polarization effects are explored with the phased expression of the instantaneous voltage rise, 

deceleration, and stabilization after the current interruption. The FF-LSTM training and correction sub-model is 

constructed to realize the step-by-step prediction, as shown in Figure 1. 
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(a) LSTM-based prediction network (b) FF-LSTM sub-model architecture 

Figure 1. The FF-LSTM-based long-term SOC prediction and correction 

In Figure 1, the equivalent parameters are introduced into the iterative calculation procedure by constructing 

the state-space equations to realize the accurate working characteristic description. Based on the capacity 



attenuation process, multi-stress failure processing is conducted. The improved sliding balance window is used to 

update the model parameters in real-time and characterize the degradation trend effectively. Two state factors are 

introduced into the FF-LSTM model, including the information from the cell state 𝐶𝑡 and the hidden state ℎ𝑡. The 

present cell state is formed by considering the cell state 𝐶𝑡−1 at time point 𝑡 − 1 and the extracted information 

from the input parameters. The forget gate 𝑓𝑡 is used to determine which state information should be discarded. 

Then, the information continues to the cell state with the present input signals of the prediction procedure design, 

as shown in Equation (1). 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (1) 

In Equation (1), 𝑡 is the information update time point, and 𝑓𝑡 is the output of the forget gate, which determines 

whether information from the input data 𝑥𝑡  and hidden state ℎ𝑡–1  should be retained or discarded. 𝑊𝑓  is the 

weighting coefficient; ℎ𝑡−1 is the hidden state output of the cell at time point 𝑡 − 1; 𝑥𝑡 is the input parameter at 

the time point 𝑡; 𝑏𝑓 is the bias vector; 𝜎(∗) is a sigmoid function that is used to make the output value vary from 

0 to 1, where 1 means retaining and 0 means discarding the information.  

The next step is to determine which information should be retained and introduced into the network at time 

point 𝑡 using the input gate, which is divided into the following two parts. Firstly, a sigmoid layer is designed for 

the input gate, which determines the updated information and the discarded information. Secondly, the 𝑡𝑎𝑛ℎ layer 

creates a cell state vector 𝐶̃𝑡  for the new information, which is used to update the cell state information by 

multiplying these two parts, as shown in Equation (2). 

{
𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐
 (2) 

In Equation (2), 𝑊𝑖 and 𝑊𝑐 are two weighting coefficients for the input gate, and 𝑏𝑖 and 𝑏𝑐 are two bias vectors 

for the input gate and memory cell, respectively. Then, the combination vector of these two states is introduced 

into the 𝑡𝑎𝑛ℎ layer, according to which the candidate input state of the present cell state 𝐶̃𝑡 is established. Finally, 



the cell state 𝐶𝑡−1 at the previous time point and the present input cell state 𝐶̃𝑡 are multiplied by the forget gate 

and the input gate to obtain the present cell state 𝐶𝑡, as shown in Equation (3). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (3) 

In Equation (3), combining the past cell state 𝐶𝑡−1 and the forget gate ft with the point-wise multiplication of 

the input gate and the cell state vector 𝐶̃𝑡, the present cell state 𝐶𝑡 is established. The output gate determines the 

information released from the cell state, which is also the memory cell information state passed on to the next cell 

of the network. The candidate cell state is introduced into the 𝑡𝑎𝑛ℎ layer combined with the output gate, which is 

then multiplied by the output information of the sigmoid function to establish the output gate, as shown in 

Equation (4). 

{
𝑜𝑡 = 𝜎(𝑊0[ℎ𝑡−1, 𝑥𝑡]) + 𝑏0

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)
 (4) 

In Equation (4), 𝑜𝑡 is the information of the output gate at time point 𝑡 and 𝑊0 is the weighting coefficient of 

the output gate. 𝑏0 is the bias vector of the output gate, 𝜎(∗) is a sigmoid function, and ℎt is the final output 

information. Consequently, the adaptability of the dynamic timing part of the observation input is improved, and 

the long-term dependence problem is eliminated. Compared with the original modeling method, the improved 

method introduces the dependence feature of the time series data into the inner network so that the dependency 

relationship is fully considered in the prediction process. By introducing the cell state 𝐶𝑡, both the outside cycle 

between the networks in the hidden layer and the self-circulation in the inner cell state are effectively realized. 

The cell state is the crux that penetrates both the input layer and the output layer, in which the information 

flow changes slightly. Consequently, the cell state is updated using these three gates so that the information is 

stored accurately. The discrete dynamic modeling structure is established and optimized by considering the current 

fluctuation and ambient temperature influence. Prediction accuracy is ensured with limited data provided by the 

battery system in the early stages. Therefore, it is relatively difficult to explore the implicit relationship deeply 



between aging inducement, multi-parameter prediction, and SOC levels. Over time, the data scale and quality 

available for the network’s training is gradually improved, which synchronously improves the SOC prediction 

accuracy. The training and testing of the FF-LSTM method are conducted using a stochastic gradient optimizer, 

the adaptive moment estimate (Adam), which is computationally efficient and has little tuning and low memory 

requirements. The gradient (β1) and squared gradient (β2) decay rates are defined as 0.9 and 0.999, respectively. 

A learning rate of 0.01 and a batch size of 64 are set based on the performance of the network during the training 

and testing. Also, a gradient threshold of 1 and a decay rate of 0.95 are used to train the network for SOC prediction. 

2.2. Real-time sliding balance window functional adaptation 

Combined with the correction of key parameters and weighting factors, the intermittent aging degree 

evaluation and real-time correction are conducted. The sliding balance window function is introduced to obtain 

the prediction results and improve the model construction continuously to realize the prediction-correction process, 

as shown in Figure 2. 
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Figure 2. Prediction-correction process based on sliding balance window function 

In Figure 2, considering the influence of sliding window size on calculation complexity and accuracy, through 

comparative analysis of test results, its value is set to 4 to achieve good results with less computational cost. The 

measurement experiment of the standard charge-discharge capacity is carried out with the Ampere-hour integral 

method to obtain the discharged capacity 𝑄𝑛. 𝑆𝑂𝐶𝑛 is used to describe the SOC value mathematically during the 

charge-discharge process. The rated capacity 𝑄𝑛 _𝑅  is characterized by 𝑆𝑂𝐶0 , and the relative change ratio is 



calculated by taking 𝛿𝑆 as the influencing coefficient, as shown in Equation (5). 

{
𝐾𝑄 = 𝛿𝑆 =

𝑆𝑂𝐶𝑛
𝑆𝑂𝐶0

× 100%=

𝑄𝑛_𝐷
𝑄0_𝑅

× 100%

𝑄𝑛 = 𝐾𝑄𝑄𝑛 _𝑅 − 𝛥𝑄𝑛, 𝛥𝑄𝑛 = 𝑓(𝑁)

 (5) 

In Equation (5), 𝑛 is the cycle number for the latest capacity measurement; 𝛥𝑄𝑛 is the subsequent charge-discharge 

influence on the rated capacity. The initial value of the full charge is obtained by the balance-charging treatment, and 𝑄𝑛 is 

designed by considering the slow change characteristics of the aging process. The influencing coefficient 𝐾𝑄 is introduced 

to realize the normalized characterization of 𝑄𝑛. Through the synchronous correlation between the rated capacity and cycling 

number, the functional relationship is obtained to calculate 𝛥𝑄𝑛. By considering the aging factor’s influence on the rated 

capacity, these two parts are superimposed to obtain the corrected value of 𝑄𝑛. For the measurement target of 𝑄𝑛, the initial 

value 𝑆𝑂𝐶0 after the full charge in the constant current-constant voltage (CC-CV) mode is used to replace 𝑄𝑛 _𝑅.  

2.3. Feedback correction framework  

Considering the relationship between the model parameters, current rate, and temperature, the feedback correction 

framework of the prediction process is constructed. Based on the correction of the temperature and current magnification, 

the modeling performance evaluation is conducted to improve the model with the accuracy and adaptability of the SOC 

prediction. The data preprocessing, feature vector extraction, selection of training set, and validation set are 

expressed, as shown in Figure 3.  
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(a) FF-LSTM-based long-term SOC prediction (b) Flowchart of FF-LSTM-based data preprocessing 

and correction for SOC prediction 

Figure 3. FF-LSTM-based long-term SOC prediction and data preprocessing correction 

In Figure 3, the model parameters, state variables, and variance are updated in the cyclic iteration process in real-time to 

improve the SOC prediction robustness and enhance the modeling adaptability for complex working conditions. For the 

uncertainty noise, the internal resistance is estimated with a controlled error range to improve the stability and convergence 

of the FF-LSTM-based prediction network. The data preprocessing and SOC are carried out synchronously to ensure the 

accuracy of the constructed FF-LSTM network, which improves the prediction accuracy and reduces the computational 

complexity in the training process. 

2.4. Composite OCV-HPPC evaluation procedure  

The approximate current rate and temperature change tests are conducted, in which the main parameters are 

obtained through dynamic stress tests closely related to real-time working conditions. The fading process is 

described effectively by considering the effects of varying temperatures and current rates. So the improved test 

procedure is performed using the flexible feature with the real-time state monitoring of lithium-ion batteries. 

During the capacity test, the battery is filled with power at a current rate of 1 C using the CC-CV charging mode. 

Then, it is discharged to the cut-off voltage at a current rate of 0.3 C. This step is repeated three times throughout 

the succession at varying temperatures and current rates. The procedure of the capacity and the HPPC tests are 



performed, as shown in Figure 4. 
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Figure 4. The experimental procedure for the battery capacity test and the HPPC test with the OCV 

measurement 

In Figure 4, the battery is rested for 1 hour after the chamber is set to be stable in the exposed temperature 

conditions. The aim is to make the initial temperature of the battery the same as the chamber temperature. Then, 

the 0.3 C capacity test is conducted to get the accurate capacity to fully charge the battery and discharge it at a 

current rate of 0.3 C after the 1-hour rest period. Then, the 1 C capacity test is conducted after the 1-hour rest, in 

which a 1 C current rate is used for the charge-discharge pulse. The 2 C capacity test is conducted on the battery 

with the 2 C fast discharge current rate using the CC pulse mode. Finally, the battery is fully charged using the 

CC-CV charging mode, which always leaves the battery in a good state. 

Combining these two parts is computationally efficient since the battery should be rested for a long time in 

both the HPPC test and OCV measurement. Consequently, the pulse rest period is used in both the OCV 

measurement and the HPPC test to obtain the dynamic characteristics for the continuous pulse excitation sequence. 



The combined test procedure is designed for the HPPC test and OCV measurement. The composite testing 

procedure is designed for different temperature conditions, in which the HPPC, OCV measurement, and variable 

temperature parameters are introduced into the training process. The temperature condition is set by the chamber 

setting, including 2, 25, and 45 °C. Then, the battery is rested for 1 hour to realize the thermal exchange and 

inside-outside balance. The battery is charged to full capacity using the CC-CV pulse. The rest time is set to be 2 

hours for an accurate OCV determination, the value of which can be measured after this long-time process. Then, 

the HPPC test and OCV measurement are conducted every 21 cycles, as the battery energy is discharged for 5% 

recycling time in the whole pulse-current discharging process. 

Multiple current rates of the HPPC test are conducted, including 0.3, 0.5, 1.0, 2.0, and 3.0 C, to obtain 

experimental data. In the HPPC test, the pulse-current charge-discharge treatments are conducted, including the 

CC discharge for 10 s, rested for 40 s, CC charge for 10 s, and rested for 15 min. The last long-time rest is to 

ensure the electrochemical and thermal equilibrium of the state of the battery before the next HPPC test profile. 

After the multiple current-rate tests, the battery is rested again for 2 hours so that the intermittent OCV and HPPC 

tests are completed, and the battery characteristics are obtained for different SOC levels, such as 95%, 90%, 

85%, …, 0%. After 21 cycling tests, the battery is fully charged before the next test using the CC-CV charging 

pulse, providing an effective approach to the battery characteristic test for the multiple current rates and various 

temperature conditions. 

2.5. Performance evaluation criteria and calculation 

The mean squared error (MSE) is used to evaluate the effectiveness of the prediction results. The calculation 

procedure is shown in Equation (6). 

𝑀𝑆𝐸 =
1
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𝑖
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𝑖
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2

𝑛
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 (6) 



In Equation (6), 𝑖 is the value of data point at each time point, n is the total number of data points in the sample, 

and 𝑦𝑖 is the actual SOC for each data point. The predicted value 𝑦̂𝑖 is compared with the actual SOC value at each 

time point 𝑡 . The squared value is averaged and squared to obtain the minimized loss function of the linear 

regression. The root-mean-square error (RMSE) is the square root of the MSE between the predicted value and 

the actual value at each time point for the entire sequence 𝑛. The mathematical expression for the calculation of 

the RMSE is shown in Equation (7).  
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𝑛
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)
2
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𝑖=1

 (7) 

In Equation (7), the RMSE is used to measure the deviation between the predicted value and the actual value, 

which is the error away from the mean. The mean absolute error (MAE) is introduced to evaluate the average 

absolute value of the error between the predicted value and the actual value. The mathematical expression for the 

MAE is shown in Equation (8). 
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In Equation (8), the predicted value is completely consistent with the actual value. When the error is equal to 

0, it means a perfect model. In this case, if the dispersion of the error is high, it means the maximum deviation is 

large, which increases the RMSE value. Also, the mean absolute percentage error (MAPE) is introduced, and its 

calculation is shown in Equation (9). 
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Equation (9) is the mathematical calculation expression for the MAPE, which ranges from 0–100%. A MAPE 

of 0% indicates a perfect model, whereas a MAPE of 100% indicates a poor model. 



3. Experimental analysis 

The test procedure is conducted for the whole-life-cycle process, including the evaluation of the temperature 

variations and the composite test process of OCV and HPPC. The working condition parameter initialization of 

the BBDST experiment. The aging characteristics verification is conducted, including the cyclic OCV change, 

capacity attenuation, pulse-current characteristic comparison, cut-off voltage change, and long-term charging 

energy attenuation to weaken the noise effect under complex working conditions.  

3.1. Comparative cyclic OCV measurement and temperature variation under capacity fading effect 

The relevant data features are extracted from the original experimental data using effective processing methods. 

At different SOC levels, the relationship between internal parameters is obtained so that an accurate battery 

characteristic description is achieved. The dynamic working condition change includes the ambient temperature 

and current rate and is used to obtain the whole-life-cycle aging process characteristics. For the dynamic battery 

characteristics, a collaborative architecture is designed for each factor to express the impact on multi-time-scale 

state monitoring. Based on the detailed model, the changing law of OCV, capacity attenuation, temperature change, 

and inconsistent charge-discharge current rate characteristics are obtained. The composite HPPC test is performed 

at the same intervals as the SOC levels during the cyclic battery test.  

The interval between adjacent pulse power tests is one hour, in which the battery is discharged at a current rate 

of 1 C for 6 min at a SOC level reduction of 0.1. The voltage measurement is performed online, thereby defining 

the state relationship between all the internal parameters, including the OCV-SOC functional relationship, which 

has a nonlinear positive correlation until 3.356 V. The discrete points are obtained through an intermittent 

discharge process that achieves the overall variations through the curve fitting method. The functional relationship 

is obtained by mathematical analysis, which is then introduced into the battery modeling process under different 

temperature conditions. When the ambient temperature is high, the cut-off voltage is low, and the capacity is large 



for the discharge. Then, the OCV changes correspond to the SOC variation, which shows a downward shift. At a 

low ambient temperature, the discharging cut-off voltage is high, so the battery power cannot be released 

efficiently.  

Experimental tests are conducted for the varying-temperature capacity fading characteristic test. When 

conducting the test, the battery working conditions are set to T = 5, 25, and 45 °C for the capacity test. The 

discharging capacity is measured and recorded for further comparison. The aging process is conducted for 200 

cycles, and the capacity is measured after a long-term aging process, which is conducted at different working 

conditions at T = 5, 25, and 45 °C ambient temperatures and current rates of 0.3, 1.0, and 2.0 C. The final 

experimental results are compared with different working conditions. Subsequently, the varying-temperature 

capacity fading and voltage variation results are obtained, as shown in Figure 5. 
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(a) Original OCV variation under varying temperature 
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(b) Curve fitting results of the OCV variation under 
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(c) Capacity variation for a new battery C7 when T = 
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(d) Capacity variation for a new battery C7 when T 

= 25 ℃ 
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(e) Capacity variation for a new battery C7 when T = 

45 ℃ 

(f) Capacity variation for the aged battery C8 when 

T = 5 ℃ 

  
(g) Capacity variation for the aged battery C8 when T 

= 25 ℃ 

(h) Capacity variation for the aged battery C8 when 

T = 45 ℃ 

  
(i) Capacity variation for aging battery C7 under 

varying temperatures 

(j) Normalized variation for aging battery C7 under 

varying temperatures 

Figure 5. Experimental results for the cycling test under different temperature conditions 

In Figure 5, the discharge capacity of the aging battery is significantly lower than that of the new battery at the 

same temperature. In this paper, Cr is the measured capacity value with the current rate that is obtained for the 

conditions of 0.3, 1.0, and 2.0 C for a temperature varying from 5 to 45 °C. The ambient temperature highly affects 

the battery discharge capacity in the experimental results. When the temperature is 5, 25, and 45 °C, the average 

discharge capacity of the new battery is 2.08, 2.203, and 2.30 Ah, respectively. The battery discharge capacity 

increases as the temperature rises. The discharge capacity trend of old batteries is similar, which provides an 
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effective reference to the working state management of whole-life-cycle lithium-ion batteries. 

3.2. Pulse-current characteristics comparison 

The voltage measurement is performed online to determine the battery cell status, thereby defining the inner 

factor relationship between each internal parameter, including the OCV-SOC variations. The 200 cyclic aging test 

is performed at a temperature of 25 °C. The experimental results are obtained from the first 20 test cycles where 

the battery voltage is observed to respond to the current changes. The experimental results of the aging test are 

obtained, as shown in Figure 6. 

  
(a) Current variation for 20 test cycles (b) Voltage variation for 20 test cycles 

  
(c) Energy variation for 20 test cycles (d) Capacity variation for 20 test cycles 

Figure 6. Experimental results for the cyclic aging test 

In Figure 6, the battery voltage responds to current changes applied to the characteristic description of the 

whole-life-cycle batteries by combining the correction mechanism, thereby further improving the collaborative 

state prediction accuracy. 

3.3. Long-term charging capacity attenuation 

As for the long-term working conditions, the charging capacity is measured at the end of each last-time 
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charging process, which is used as a signal of the capacity variation after each 10-cycling BBDST working 

condition experiment. The surrounding temperature is set to be the same in each cyclic test that is fixed at 25°C. 

The external conditions vary highly from the inner part of the battery due to the current influence fluctuations and 

the ambient temperature. The charging capacity of the last cycle for the 10 cyclic tests for the battery C7 is 

obtained, as shown in Table 1. 

Table 1. The charging capacity of the cyclic test for battery C7 

Test cycle Charging capacity Test cycle Charging capacity 

10 2.160 110 1.983 

20 2.151 120 2.001 

30 2.099 130 1.836 

40 2.091 140 1.849 

50 1.987 150 1.847 

60 1.994 160 1.856 

70 1.993 170 1.855 

80 2.015 180 1.862 

90 2.012 190 1.830 

100 1.848 200 1.715 

In Table 1, there are nonlinear changes in the charging capacity for the whole-life-cycle BBDST working 

condition experiment for battery C8. Another experimental test was carried out on battery C8 to analyze the effect 

of this nonlinear change. The experimental test results are obtained accordingly, as shown in Table 2. 

Table 2. The charging capacity of the cyclic test for battery C8 

Test cycle Charging capacity Test cycle  Charging capacity 

10 2.132 110 1.803 

20 2.077 120 1.809 

30 2.055 130 1.662 

40 1.949 140 1.672 

50 1.924 150 1.678 

60 1.807 160 1.682 

70 1.816 170 1.687 

80 1.820 180 1.689 

90 1.823 190 1.692 

100 1.829 200 1.694 

In Table 2, the table data is drawn as a graph for the detailed variations based on the experimental result. After 

the curve fitting method and special variation description, the charging capacity change of the experimental 

BBDST working condition is described accordingly, as shown in Figure 7. 



 

 

(a) Charging capacity variation for battery C7 (b) Charging capacity variation (dots) and deviation 

(curve) from the actual values for battery C7 

  
(c) Charging capacity variation for battery C8 (d) Charging capacity variation (dots) and deviation 

(curve) from the actual values for battery C8 

Figure 7. The charging capacity variation under the whole-life-cycle BBDST working condition 

In Figure 7, the charging capacity changes as the cycle number increases, showing a monotonic decreasing 

order. By mathematically analyzing and comparing the results, the capacity changes for batteries C7 and C8 are 

0.460 Ah and 0.482 Ah, respectively. The relative rate of capacity change of battery C7 is 0.460/2.160 * 100% = 

21.30%, and that of battery C8 is 0.482/2.132 * 100% = 22.61%. For further power supply applications, it can 

provide an effective reference for the working state management of the whole-life-cycle of lithium-ion batteries.  

3.4. SOC prediction for BBDST training and DST testing using the FF-LSTM method 

Various failure thresholds are used to realize the whole-life-cycle SOC prediction and verify the effectiveness of the 

proposed method. The FF-LSTM-based training and testing results of the whole-life-cycle SOC prediction are obtained and 

compared intuitively with the absolute errors, as shown in Figure 8.  
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(a) FF-LSTM-based SOC prediction training 

validation curves 

(b) FF-LSTM-based SOC prediction training 

performance curves 

 

 
(c) FF-LSTM-based SOC prediction training error (d) FF-LSTM-based SOC prediction training 

accuracy 

  
(e) FF-LSTM-based SOC prediction curve (f) Prediction error  

Figure 8. The FF-LSTM-based training performance and SOC prediction under the complex DST working 

condition 

Figure 8 shows the training performance of the FF-LSTM for SOC prediction. Figures 8 (e) and (f) are the SOC 

prediction results. In Figure 8 (e), SOC is the actual SOC, and SOC is the predicted SOC1 by the FF-LSTM method. It can 
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be observed in Figure 8 (f) that the maximum error is 3.53%, which demonstrates the effectiveness of the proposed FF-

LSTM method with high accuracy and robustness over a long-term prediction period. The metric values of the prediction 

result obtained using the FF-LSTM method are low for the long-term prediction, with RMSE, MAE, and MAPE values of 

3.451%, 2.541%, and 0.074%, respectively, under the complex DST working condition. 

4. Conclusion 

For the relevant parameter changing law of lithium-ion batteries along with the external temperature variations, 

an improved feedforward-long short-term memory (FF-LSTM) modeling method is proposed to realize the 

accurate whole-life-cycle SOC prediction by considering the current, voltage, and temperature variations. An 

optimized sliding balance window is constructed for the measured current filtering. Then, an improved steady-

state screening model is constructed for the predicted SOC redundancy reduction. The core parameter change 

characteristics are obtained and analyzed under a long-term experimental dynamic stress test working condition. 

The long-term discharging capacity decay rate results show that the battery charging capacity reduces significantly 

with increasing time. The change in the charging capacity rate for batteries C7 and C8 is 21.30% and 22.61%, 

respectively, after 200 cycles. The maximum SOC prediction error is 3.53% with RMSE, MAE, and MAPE values 

of 3.451%, 2.541%, and 0.074%, respectively, under the complex DST working condition. The proposed FF-

LSTM method lays the foundation for accurate state prediction in long-term operation conditions, improving 

energy management and safety. 

Supplementary information 

The whole-life-cycle testing results are available to all researchers using the link: 

https://www.researchgate.net/project/Battery-life-test. 
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