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Abstract – Accurate detection and early warning of fire hazard are crucial for reducing the associated damages. Due 

to the limitations of smoke-based detection mechanism, most commercial detectors fail to distinguish the smoke from 

dust and steam, leading to frequent false alarms and costly evacuation unnecessarily. To tackle this issue, we propose 

a fast and cost-effective indoor fire alarm system for real-time early fire detection under various scenarios, whilst 

significantly reducing the false alarms. Multimodal sensors are integrated to acquire the data of carbon monoxide, 

smoke, temperature and humidity, followed by effective data analysis and classification. For ease of embedded 

implementation, the support vector machine (SVM) is found to outperform the Random Forests (RF), K-means, and 

Artificial Neural Networks (ANN). On a public dataset and our own dataset, the proposed system performs promising, 

with the values of the precision, recall, and F1 of 99.8%, 99.6%, and 99.7%, respectively.  

Keywords – Fire incident detection; Sensor fusion; Machine learning; Alarm systems; fire safety.
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1. Introduction 

Fire incidents can produce a desperate situation for the buildings and users even before they can realise the fire 

occurrence. A burning table lamp, a lit cigarette, overheated electrical equipment, or any of these can constitute a 

potential source of ignition [1]. In recent years, the dramatic changes in materials and the construction methods of 

buildings have led to an increment of fire growth rate. It is a vital issue for the building furnished with highly 

flammable synthetic materials that react as fire accelerants, resulting in a challenging task for the current fire alarms 

to detect the fire and rouse the residents in a timely manner [2].  

1.1 Background introduction 

According to the nuisance test conducted by the UK Fire Protection Association (FPA)1 , the intelligent detectors 

outperform the traditional optical and ionisation smoke detectors in the stability to false stimuli, including vapor, 

toaster smoke and welding. However, the capabilities of the technologies are still not generally well known by the fire 

and rescue services. In UK, the false alarm rate remains a high level despite the mandatory requirement for 

householders to install a suitable detector in an appropriate location. The fire & rescue incident statistics2 published 

by the U.K Home Office shows that, in England alone, 555 795 incidents were attended by fire and rescue services in 

the year 2019, among which 41% were accounted as false alarms. Within the real 59% of cases, fires events only 

occupied 28% of the incidents, where the remaining were for the non-fire incidents. In other words, only 28% of 

attended cases were real fire events. “Due to apparatus” from the report was the culprit that accounts for 67% of the 

false alarms, which has caused a huge loss of human and financial resources.  

It is reported that, until recently, detectors that solely relying on the smoke detection mechanism still dominate 

around 60% of the market share [3]. Smoke detectors however provide only limited protection due to the shortcomings 

such as not reacting to non-smoke fires and can be tricked by steam, dust, cigarette smoke which leads to the high 

false alarm rate. Multi-sensor detectors on the other hand, measure more than one fire signature, such as the 

temperature, smoke concentration, carbon monoxide (CO), carbon dioxide (CO2), etc [4]. Although it can be costly, 

replacing the fire alarm system with multi-sensor detectors would be a more effective choice to intervene the unwanted 

alarm activations rather than other actions such as enhancing the maintenance level of the system or correctly using 

appropriate approved detectors.  

As fire characteristics regarding the smouldering and flaming fires are different, there are several discriminative 

fire signatures under different situations. To determine the proper signatures to be employed for our purpose of early 

fire detection, Table 1 compares the characteristics with remarkable differences between smouldering and flaming 

 
1 Available: ABI FPA detection demonstration report 2018 
2 Available: UK home office, Fire & rescue incident statistics, England, year ending December 2019 

https://www.abi.org.uk/globalassets/files/publications/public/property/2018/07/abi-fpa-detection-demonstration-report-2018.pdf
about:blank
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stage from all the fire phenomena presented in [5], from which the heat is of cause an important signature, but it is not 

sufficiently discriminative and may lead to false alarms. Besides the heat, the smoke (aerosol) in smouldering stage 

tends to be lighter and spreading quickly. With the fire being developed independently, the smoke tends to be dark, 

heavy and strongly absorbing. There is also the trend that smouldering fire emits much CO and little CO2. In contrast, 

flaming fire emits much CO2 and little CO. Thus, the CO concentration can be considered as another important 

signature for early fire incidents. The gas sensors detecting such fire emitting gas accordingly have the potential in 

early fire detection [6]. The challenge, however, is that the volatiles generated by the nuisances may lead to unwanted 

false alarms. As a result, fire detection systems incorporating gas sensors heavily rely on machine learning (ML) and 

pattern recognition techniques for providing a robust and reliable detection. 

Table 1: Characteristics of smouldering fires and flaming fires [7]. 
Type of fire 

Properties  
and fire phenomena 

Smouldering fires  flaming fires 

Type of smoke (aerosol) light smoke Dark smoke 

Optical properties of smoke Quickly spreading Strongly absorbing, spreading 
little 

Aerosol volume High High (except pure alcohol: none) 

Heat convection Low to medium High 

Combustion gases Much CO, little CO2 Much CO2 

 

Machine learning techniques have the advantage to deal with multiple variables effectively by learning their 

relationships for classification. To achieve effective fire detection, various models have been developed, using 

different machine learning tools such as Adaptive Neuro-Fuzzy Inference [7], surveillance cameras and support vector 

machine (SVM) for early fire detection [8], and multi-stage pattern recognition video images analysing [9], 

unsupervised modified K-means clustering for detecting fire flame pixels [10], as well as deep learning approach e.g. 

convolutional neural network (CNN) [1], and deep neural network (DNN) [11]. Within these methods, the visual-

inspection based approaches have the advantage of a long detection range and wild working environments such as the 

forest. Although deep learning models enables a more flexible classification, the relevant equipment can be much 

more expensive yet the performance can still be severely affected due to insufficient training and modelling. Moreover, 

such detection systems have the shortcomings in terms of delayed response time, due mainly to the complexity in 

dealing with the imagery data and difficulty in acquiring clear images of the smoke or flame in early stage after the 

fire ignition [12]. The physical and chemical sensor-based fire detectors, in contrast, measure indicators such as 

temperature and carbon monoxide, which can thus enable the system to identify the fire events in the early stage. 

Although many vision-based fire detection systems have been developed, they aim mainly to detect outdoor fire events 

whereas we focus on the design of a cost-effective and effective indoor solution for early fire detection. The fusion of 
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multi-sensor readings further can thus improve the reliability of the system whilst significantly reducing the false 

alarms. 

1.2 Related work in multi-sensor fusion and early-stage fire detection 

Some research works have been focused on fire detection in the early stage using multi-sensor fusion based 

approaches. In study [7], smoke, temperature and humidity sensor readings are collected for indoor fire detection, 

where neuro-fuzzy logic is used to determine fire occurrences and send notification via the Global System for Mobile 

communication (GSM). In Rachman et al. [13], fuzzy logic interfaced with multi-sensor is also implemented with a 

low average error. In [14], a similar system is developed for fire detection in an electric car model, by combining the 

Arduino microcontroller and fuzzy logic using data readings collected form temperature sensors, flame sensors, and 

smoke sensors, respectively. 

Actually, multisensory fusion has been widely adopted in smart home environments. In Chou et al. [15], a multi-

sensor data fusion based smart home system is developed, where artificial intelligence enabled interfacing with a 

wearable device is used for remote controlling of the home appliances and locating the position of home residents. 

The Probabilistic Neural Network (PNN) classifier is adopted in the system for dealing with the temperature and CO 

concentration readings. Similarly, a Trend Predictive Neural Network (TPNN) based system is introduced in Nakıp et 

al. [16] to deal with six sensors’ measurements, in which eight sets of the multi-sensors are deployed at different 

locations of a room to improve the accuracy and sensitivity. The study has successfully decreased the false positive 

rate, though the false negative rate still needs to be improved. 

In Lee et al. [17], metal oxide gas sensors were utilised for fire detection. In Salhi et al. [18], multi-sensor readings 

were acquired in a building environment and interfaced with different machine learning methods against gas leakage 

and fire hazard. However, the sampling frequency in the study is relatively low, which may affect the performance of 

early fire investigation, where the sampling frequency during our data acquisition is improved for better tracing the 

trend of the fire characteristics accordingly investigating the fire as early as possible.  

Although various approaches have been proposed for the detection of fire hazard, most of them have difficulty 

in detecting fires at an early stage, suffering from a relatively high false alarm rate, which often show unsatisfactory 

performance for indoor fire detection. The study in [19] also remarks that existing commercially available smoke 

detectors are unable to provide proper protection to building occupants as they are primarily designed for alerting 

flaming fires. To tackle this particular challenge, in this paper, we have proposed a multi-sensor based system for 

effectively early detection of indoor early stage fire incidents. With a microcontroller unit (MCU) Arduino UNO3, the 

 
3 Available: Arduino UNO rev3 

about:blank
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proposed system is cost-effective, and the performance has been validated in different experimental scenarios. Another 

by-product contribution is the collected datasets, on which the SVM classifier outperformed two other classifiers, 

benefitting the hardware implementation as SVM is less resources-demanding than deep learning models.  

The rest of the paper is organised as follows: Section 2 presents the detailed system description, including 

software-based and hardware-based designs, and the system implementation, followed by the description of 

experimental settings. Section 3 discusses the experimental results and the system performance when applied to public 

available dataset and our own dataset, respectively. Conclusions and future works are given in Section 4. The 

nomenclature used in this paper is listed in the appendix. 

2. System Design and Implementation 

2.1 System overview 

In our proposed system, we need conduct various simulations in an enclosed space to acquire data, with a 

sampling rate of 3.7Hz, followed by data modelling and classification. The system architecture for both data 

acquisition and real-time detection is shown in Figure 1. In the red frame, the software-based processing part handles 

the inputted data and performs real-time detection. The data is documented and evaluated through MATLAB. To 

achieve improved performance and simplify the system design for easy implementation using the hardware, the 

optimal classifier was selected from different methods by comparing the results applied on both experimental dataset 

and sample dataset. We execute all experiments on a computer with a 2.6-GHz CPU and 8 GB RAM, where the 

process of fire classification takes less than 0.1 second of responding time after models constructed. Then, as shown 

in the blue frame, the operation program controls the hardware and switch among three different operation modes 

based on the classification result. The hardware implementation design can be obtained from the orange frame.  

 
Figure 1: System Architecture. 

2.2 Software-based processing 

In the software-based processing part, the inputted data needs to be normalised first for reducing the inconsistency 

caused by different amplitude ranges. This is essential for consistently measuring of the difference from various 
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sensors. Next, three popularly used ML approaches were applied, including the SVM, Random Forest (RF), and K-

means.  

The main concept of SVM is to find the optimal hyper-plane that separates instances from different classes by 

finding out the maximum margin between the support vectors, and these instances are closest to the other class. The 

“Kernel trick” is one of the crucial ingredients of SVM, which can help to transfer the low dimensional input space to 

a higher dimensional feature space thus enables an improved classification accuracy. In this study, one of the 

commonly used nonlinear kernel functions, the Radial Bias Function (RBF) is adopted as it tends to produce high 

performance. For the RBF kernel, the tuning parameters include the cost parameter C, and the degree of dependency 

parameter 𝛾𝛾 [20]. The parameter 𝛾𝛾 defines how much a single training instance may affect the performance, whilst 

the parameter C controls the acceptance of misclassification against the maximised margin of the decision function. 

The lower the 𝛾𝛾 value is, the further the effect that each support vector will have. In other words, a small 𝛾𝛾 leads to a 

nearly linear hyperplane with less curvature that may not be able to capture the complexity of the data. On the contrary, 

a high 𝛾𝛾 may have the problem of over-fitting. For parameter C, a higher C value may force the decision function to 

classify the training data correctly but result in longer fitting time and fewer support vectors. Moreover, the error rate 

will no longer be changed when C increases to a certain threshold. Thus, we need to find the optimal combination of 

the parameters with the lowest error rate. 

There are several widely used methods for automatic parameter tuning, such as grid search, random search and 

Bayesian optimisation. In this study, the grid search was used as it has the advantage of high resistance to the over-

fitting problem. As a common wisdom [21], grid search, one of an exhaustive searching methods, is applied with the 

cross validation technique to identify the best pair of the hyperparameter, namely the C and 𝛾𝛾, by maximizing the 

achieved prediction accurately. The main concept of the cross validation is to separate the labelled data into two non-

overlapped subsets, namely the training set and the testing set. In this study, a 5-fold cross-validation is used for grid 

search based parameter tuning, e.g. 80% of data used for training and the remaining 20% for validation. Herein the 

range of the hyperparameters are set to [-10,10] for the parameter C, and [-8, 8] for 𝛾𝛾, both with an increment step of 

1. Consequently, the SVM models is trained with all candidates of C and 𝛾𝛾 and validated through the testing dataset. 

The best performed pair of hyperparameters is then used for the prediction and classification. 

Random Forest [22] is an easy-implemented classifier that collects uncorrelated tree predictors aggregated into a 

combined decision-making. Thus, the ensemble predictions can be more accurate than the result produced by a single 

tree and overcome the shortcomings of each individual tree classifier. For another ML technique, K-means, the basic 

principle is to identify k cluster centres (or centroids) before allocating each instance into the nearest centroid 

iteratively until the point-to-cluster-centroid distances have been minimised. In our implementation, the K-means++ 
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algorithm is used, as it can determine the centroid seeds for K-means clustering via a heuristic process to improve the 

efficiency and efficacy [10].  

The model configurations for RF and K-means are simpler than that for SVM. For RF, the number of trees needs 

to be specified, where the larger the tree number is, the higher the performance should be. However, the improvement 

of accuracy can be negligible when the number of trees exceeds a certain threshold, herein this parameter is set to 150 

for balancing the performance and efficiency. For K-means, the centroid number is set to 3 for the three situations 

(no-fire, smouldering, and flaming). The maximum iteration number is set to 100 due to the clustering distances can 

be minimised in both the public dataset and our dataset with much fewer iteration.  

To further validate the performance of the three classifiers, a sample dataset4 was employed, containing the 

desired three features corresponding to three different situations. Among the 100 samples of the data set, 40 are 

accounted for the flaming, 30 belong to smouldering fire situations, and the remaining 30 are no-fire situations, in 

which stimuli data acquired from kitchen environment is also contained. The values of temperature are recorded with 

degrees Celsius, and smoke and CO concentration in ppm (parts-per-million). 

The quality of classification can be assessed through the confusion matrix which lists the number of TP (True 

Positive), TN (True Negative), FP (False Positive), and FN (False Negative) for each class. Therefore, the AR 

(Accuracy Rate), PR (Precision Rate), RR (Recall Rate) and F1 Score can be determined for evaluation, where 𝑄𝑄𝑃𝑃 

and 𝑄𝑄𝑁𝑁 refer to the quantity of positive and negative, respectively. 

 𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑄𝑄𝑃𝑃 + 𝑄𝑄𝑁𝑁

× 100% (1) 

 𝑇𝑇𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
× 100% (2) 

 𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
× 100% (3) 

 𝐹𝐹1 =
2 × PR × RR
𝑇𝑇𝐴𝐴 + 𝐴𝐴𝐴𝐴

× 100% (4) 

2.3 Hardware-based operation & alarming 

As shown in the blue frame in Figure 1, the operation program controls three LEDs for providing the visible 

notifications of the three operation modes, where the green LED gives the notification of no-fire situation at a certain 

flashing frequency until the software-based program detects fire. The green LED will be switched off and yellow LED 

will be switched on if the smouldering fire is detected, and red LED will be used to alert the flaming fire. Meanwhile, 

both flaming and smouldering situations will have audible notification provided by a buzzer with tones in different 

frequencies. Also, the data and time of the event will be recorded and sent to the pre-specified email address. 

 
4 Available: Fire dataset provided in CN104766433A 

https://patents.google.com/patent/CN104766433A/en
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The remote email notification function sends the alarming email from MATLAB through the SMTP (Simple 

Mail Transfer Protocol) server on the TCP (Transmission Control Protocol) port 465. Compared to the Internet of 

Things (IoT) network or Global System for Mobile (GSM) communications, one of the advantages of using SMTP is 

that extra hardware modules are not required, so that the hardware size can be tinier. It is worth noting that when using 

the SMTP server, the SMTP authentication is required, which means both sending and receiving parties must mutually 

accept and support the authentication procedure that the server supports. For instance, if the email is sending from a 

Gmail account, the client should enable accessing less secure apps in google account settings 5 manually to avoid 

authentication being rejected. 

2.4 Implementation 

As shown in the implementation circuit within the orange frame in Figure 1, the gas sensors used in our system 

are the Metal Oxide Semiconductor (MOS) type gas sensors which belong to the MQ family. These semiconductor 

sensors are the gas sensors of low prices, operating in various working conditions. Their specifications and 

approximate cost are shown in Table 2. The MQ-2 gas/smoke sensor is capable of detecting smoke, alcohol, hydrogen, 

methane, and other flammable gas composites with a high sensitivity and reliable data measurement. Another gas 

sensor, MQ-7, is highly sensitive to CO with a relatively wide detecting range and stable measurement. DHT22 is 

selected for monitoring ambient temperature as from the datasheet6 it has a relatively wide detection range from -40 

ºC to 80 ºC and measures humidity in Relative Humidity (RH). In addition, the components were connected to the 

Arduino UNO. Note that the MATLAB program needs not be downloaded to the MCU.  

Table 2: Sensors’ specifications and approximate cost. 

Sensor Cost (£) Range of 
measurement 

Sensitivity Repeatability 

MQ-2 2.857 
300-10000ppm 

Smoke See Figure 2 (a) Not given 

MQ-7 3.568 20-2000ppm CO See Figure 2 (b) Not given 

DHT-22 4.249 -40℃-80℃ 
0-99.9%RH 

0.1℃ 
0.1%RH 

±0.2℃ 
±0.3%RH 

 
Figure 2 presents the sensitivity characteristics from the datasheets of the MQ-210 and MQ-711 sensors in their 

standard temperature and humidity condition, where Rs is the sensor resistance in target gas with different 

 
5 Available: Google less secure app access setting 
6 Available: DHT-22 datasheet 
7 Available: MQ-2 provided by Pololu 
8 Available: MQ-7 provided by sparkfun 
9 Available: DHT22 provided by DFROBOT 
10 Available: MQ-2 datasheet 
11 Available: MQ-7 datasheet 

https://support.google.com/accounts/answer/6010255?hl=en#zippy=%2Cif-less-secure-app-access-is-off-for-your-account%2Cif-less-secure-app-access-is-on-for-your-account
http://akizukidenshi.com/download/ds/aosong/AM2302.pdf
https://www.pololu.com/product/1480
https://www.sparkfun.com/products/9403
https://www.dfrobot.com/index.php?route=product/product&product_id=1102&search=dht22&description=true#.V3SGssuwcy9
https://www.pololu.com/file/0J309/MQ2.pdf
https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-7.pdf
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concentrations, and R0 in (a) and (b) respectively are the sensor resistance at 1000ppm hydrogen (MQ-2) and 100ppm 

CO (MQ-7). For DHT 22, in the datasheet it shows a good measuring range and sensitivity as well as good 

repeatability. Although the temperature in fire situations generally grows to over 80 ºC, the DHT-22 sensor is still 

selected as the temperature will not be such high at the early stage. In addition, the typical temperature and humidity 

characteristics are also compared from the datasheets of the gas sensors. Compared to the normal working situation at 

around 20℃, sensors suffer from the loss of sensitivity at 20-30% when the temperature increases to 50ºC, which may 

affect the working temperature range of the whole system. Due to a relatively narrow working temperature range of 

the MQ sensors, the system has to be capable of effectively detecting of the fire as early as possible. Also, according 

to the study in [23], it is reported that 60°C is the highest breathable temperature of the saturated air. Therefore, in 

order to ensure the reaction time, 50 ºC can be taken as the temperature limit for the system to perform data analysis, 

Once the temperature of the saturated air exceeds 50 ºC, the system will start to alert. Hence, the DHT-22 with 

detection range up to 80 ºC and strong anti-interference ability satisfies the current needs. In addition, the humidity 

detection function of DHT-22 allows us to test the effect of humidity to the system without any extra components.  

2.5 Experimental settings and data acquisition 

 Different experimental scenarios have been simulated for data acquisition in the proposed system, using a glass 

case of 0.15m wide, 0.15m long, and 0.08m deep, where there are several holes on the top for air circulation with the 

sensors settled around them. Table 3 summarises the experimental settings of the nine scenarios, where the humidity 

was also detected by the DHT-22 sensor. All the measurements were started once the source was ignited or settled in 

the case with a sampling frequency of 3.721Hz. Before each fire or stimuli test, the room is cleaned up to ensure that 

the sensors’ readings are close to the readings in the TNE condition thus to maintain a good repeatability of the 

experiments. The scenarios TNE, TS1, TS2, TF1, TF2, and TF3 were undertaken in the same day and same 

 

Figure 2: (a) Sensitivity Characteristics of MQ-2 at 20℃, 65%RH, (b) Sensitivity Characteristics of MQ-7 at. 20℃, 65%RH 
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environment. The other scenarios were undertaken in another day with similar environments to ensure the consistency 

of data acquisition. Additionally, due to the repeatability of the gas sensors is not given by the providers, we have 

conducted another two normal environment scenarios have been simulated in the same place with similar 

environmental conditions for evaluating the repeatability quantitatively through the Coefficient of Variation (CV), 

which is defined as the ratio of the standard deviation to the mean.  

Since the semiconductor gas sensors were employed here, the leakage of flammable gas is likely to become 

nuisance that causes the false alarm. Hence, two comparable experiments were arranged to use 5ml lighter fluid 

settling 5cm straight underneath the sensors and 15cm away from the sensors. To produce the dust environment, 10 

grams of flour, the small particle that is common in households, were blowed to be saturate the case. As a result, 3800 

instances in total have been documented for analysis, and the results are reported in the next section. Our acquired 

data are available on Github: https://github.com/SiYC/Fire-experimental-dataset. 

For sensor calibration, chemical-based gas sensors for fire detection need to be exposed to the fire standard 

conditions. The standard fire rooms are often used to perform experiments under different fire scenarios, though the 

access to such facilities can be very expensive [24]. Sandbox Electronics12 has provided a method for MQ sensor 

calibration, where the “initial” resistance R0 is the main target of the calibration process. This is achieved by sampling 

and averaging the sensor readings for a certain period under the clean air condition. With the determined R0, the ratio 

of Rs/R0 can be used as the input for modelling, where a linear formula can be adopted to approximate the relationship 

as shown in Figure 2 when converting the analogue output into concentration values in ppm. However, both the MQ 

sensors in Figure 2 are nonlinear, which means that the operation may affect the data integrity. The further calibration 

with high specification meters will be left as the future work. In this study, as all the data have been normalised before 

modelling and the prediction test, the calibration accuracy may not affect the result significantly.  

 
12Available: Sandbox Electronics, MQ-2 Smoke/LPG/CO Gas Sensor Module 

Table 3: Experimental settings in TNE (Test Normal Environment), TS (Test Stimuli), and TF (Test Fire) scenarios. 
 Scenarios Source settings 

TNE Normal environment / 
TS1 humidifying humidifier 
TS2 heating 4 smokeless candles 
TS3 gas leakage 5ml lighter fluid (5cm) 
TS4 gas leakage 5ml lighter fluid (15cm) 
TS5 dusty 10g flour 
TF1 paper flaming 2g paper 
TF2 cotton smouldering 3g cotton 
TF3 paper smouldering 2g paper 

 

http://sandboxelectronics.com/?p=165
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3. Results and discussion 

3.1 Sample data analysis 

Table 4 summarises the performance for the three different classifiers where SVM and RF have used 80% of the 

dataset for training and the rest for testing. To further evaluate the effect of the multi-sensor model adopting the 

temperature, smoke, and CO sensors, the performances of the models employing different combinations of the  sensor 

readings are also given for comparison. Each experiment was repeated 10 times and the average results are reported.  

As seen in Table 4, thanks for the combination of readings from all these sensor, the classification results have 

achieved the best. Both SVM and RF have achieved the accuracy and F1 score over 85%, significantly outperforming 

the K-means by about 38% in accuracy and 30-45% in F1, and also outperform the models using single or two sensors. 

In addition, the SVM surpasses the RF model by about 2% in terms of the accuracy and the F1 score in the three 

sensors scenarios, which has clearly demonstrated the efficacy of the SVM model.  

To further evaluate the performance in predicting the three situations of flaming (1), smouldering (2), and no-fire 

(3), the confusion matrixes are presented in Figure 3. For better visual effects, the values are reported in percentage 

and each row adds up to 100%. As can be seen, no-fire instances are more likely to be confused with the smouldering 

situation in the single and two sensors scenarios. Also, there is a trend among the three classes that no-fire situation 

shows a lower TP and TN rate, and accordingly higher FP and FN rates compared to the other classes. The reasons 

could be the insufficient dataset quantity and the stimuli within the no-fire observations which is acquired in the 

kitchen environment. 

Table 4: 10 times testing results (1-flaming, 2-smouldering, 3-no-fire). 
Method Sensors AR (%) PR (%) RR (%) F1 Score (%) 

SVM 

All 89.50 88.49 88.65 88.55 
Temp + Smoke 83.50 82.61 82.40 82.36 

Temp + CO 85.00 85.29 84.52 84.66 
Smoke + CO 70.00 69.73 68.73 69.09 

Temp 79.50 78.23 78.25 78.18 
Smoke 43.00 36.65 40.04 37.67 

CO 57.00 57.11 60.21 57.25 

RF 

All 87.50 86.74 87.23 86.80 
Temp + Smoke 85.50 84.49 84.54 84.23 

Temp + CO 83.50 82.91 83.20 82.70 
Smoke + CO 73.00 73.59 72.37 72.84 

Temp 81.00 79.13 79.08 79.08 
Smoke 49.50 46.89 46.78 46.45 

CO 63.50 65.51 64.27 64.14 

K-means 

All 50.00 49.10 48.39 48.66 
Temp + Smoke 62.30 57.62 58.38 57.40 

Temp + CO 48.00 46.50 45.13 45.19 
Smoke + CO 23.90 21.57 26.30 22.77 

Temp 52.40 43.19 47.42 44.67 
Smoke 23.80 25.09 26.03 23.64 

CO 48.50 50.98 47.18 47.63 
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As mentioned, the temperature in the early stage usually cannot reach to that in the flaming stage, resulting in the 

unsatisfactory performance in classifying the smouldering and no-fire cases when relying solely on the temperature 

data. Hence, as shown in Figure 3 (m), (n), (o), although the flaming situations are almost correctly identified, 

smouldering and no-fire situations tend to be confused when only using the temperature data. It is worth noting that 

although the K-means model with the temperature and smoke readings has yielded 62.3% overall accuracy and 57.4% 

F1 score, outperforming the three sensors scenario, the higher FN rate of the no-fire situations have indicated its 

limitation. Compared to the models using the single sensor data, multi-sensor fusion has the advantage of significantly 

refined results in detection of the smouldering and no-fire situations, which has successfully reduced the false alarms 

and saved the cost in this context. 

In addition, considering the single source of the stimuli data may cause the inferior capability of the model in 

discriminating between smouldering and no-fire situations, our experiments have emphasised more on the false stimuli 

data acquisition as shown in section 2.4. In summary, the SVM model has overall better performance than other 

models for fire detection in terms of the accuracy and F1 metrics. The robustness of employing the three features in 

SVM and RF based models has also been validated. For the K-means model, the combination of the temperature and 

smoke sensors can be the best choice, and the FP and FN rates can also be suppressed by using multiple sensors, 

however, the overall performance cannot reach the acceptable level. 

3.2 Experimental data analysis 

From the experiments, we have collected the dataset comprising 3800 instances (smouldering – 700, flaming – 

400, no-fire – 2700, including normal – 1000, humidifying – 500, gas leakage 5cm – 400, 15cm – 300, heating – 400 

and dusty – 200 observations). Figures 4-6 presents the sensor observations in different experiment scenarios specified 

in section 2.4. It can be seen from TS1 that out of the three sensors, humidity changes affect the CO and temperature 

sensors, resulting in slightly higher observations than the normal situation. From TS2, the heating scenario, as the 

candle keeps burning, a small amount of CO has been detected. TS3,4 and 5 are conducted in the same environment, 

so the basement of the three test scenarios can be taken from the fist fifty instances. TS3/4 are the gas leakage 

experiments using lighter fluid. Both smoke and CO sensors are highly sensitive to the gas volatising, which is due to 

the mechanism of such semiconductor gas sensors. TS5 has used a blower to blow off the small particles, therefore, 

the temperature increased as the blower also generates heat slightly. However, both gas sensors keep stable during the 

experiments comparing the ST3/4 except an obvious change of smoke data at 450 to 470 instances, which is due to 
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the hardware connection issues. Such a problem also occurred on the CO senser during the paper smouldering test, 

indicating the hardware implementation need to be enhanced.  

 
Figure 3: (a)Temperature observations in various experiment scenarios, (b) Humidity observations of DHT-22 sensor in 

TS1 humidity environment testing. 

 
Figure 4: Smoke observations of MQ-2 in various experiment scenarios.  
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Figure 5: CO observations of MQ-7 in various experiment scenarios. 

 
Compared to TF3, the scenario of paper smouldering, TF1, paper flaming has higher temperature values which 

is same with our subjective observations. However, TF1 shows similar smoke and CO observation values with TF3 

which is probably due to the limitations of relatively small simulation space and few amounts of combustibles, leading 

to the combustibles not completely reaching the flaming phase at first although an open flame was observed. The 

smoke and gas emissions of TF1 gradually decline follows to the temperature reaching the highest value after 400 

instances, indicating the fire achieved the flaming phase. In terms of TF2, cotton smouldering, it was observed that 

the CO observations are like the paper flaming and smouldering scenarios while generating less smoke. However, the 

temperature increases rapidly which even exceeds paper flaming scenario in the first 350 instances. In addition, the 

smoke generation is less than the other two fire tests.  

During the measurement, noise is inevitable, in which sensors’ noise is the primary concern in our experiments. 

According to ISO/IEC 25012 [25], the five main data quality criteria are used as referring indicators for evaluating 

the data quality in the experiments. The corresponding strengths and weaknesses to these five data quality criteria are 

summarised in Table 5. As the sensitivity of the gas sensors may vary as the temperature and humidity change, the 

experimental environment was chosen to be as close to the standard condition specified in the manual as possible. 
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preheated as suggested in the datasheets. Regarding the data processing, to mitigate the noise that may affect the 

modelling performance, pre-processing is applied to remove outliers caused by the transmission noise from the data 

to get rid of any data spikes. For the fire scenarios, we only retain the instances after the sensor readings become 

relatively stable. All these have helped to minimize the effect of noise in our developed system. 

In addition, the CV values are calculated for measuring the repeatability of the system, which are found to be 

0.08% for the temperature, 8.85% for the smoke, and 5.93% for the CO. The results show that the temperature sensor 
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is highly reliable with a CV less than 1%. The CV values of the gas sensors have exceeded 5%, due mainly to the high 

sensitivity of the semiconductor sensors to the environmental variations. While the repeatability of the gas sensors is 

not ideal, it is still acceptable as the CV values of both sensors are within 6-9%.    

 

Table 5: Experimental settings in TNE (Test Normal Environment), TS (Test Stimuli), and TF (Test Fire) scenarios. 
Data Quality 
Characteristic 

Strengths Weaknesses 

Accuracy The DHT22 sensor from the datasheet has a high 
accuracy in measuring the temperature and humidity, i.e. 
± 0.5℃ and 2% RH. 

The accuracy of the gas sensors is unclear from 
the datasheet; also the performance of the 
sensors, especially the gas sensors will be 
affected by ambient temperature and humidity. 

Completeness The data sampled at a frequency of 3.7Hz can acquire 
timely records for tracing the variation of the measured 
fire signatures during different experimental scenarios. 
The measured ranges of the humidity, temperature, 
smoke and CO are 31.4%-99.9%RH, 22.6-40.9℃, 
0.1320-1.6031v, and 0.4594-3.0645v, respectively.  

For a full representation of the experiments, 
humidity data can be recorded in each individual 
scenario, and some data ranges can be extended. 

Consistency The data of each measurement maintains equivalent 
format and unit during all the process. 

The data consistency can be improved through 
recording the gas sensors readings in ppm, which 
requires the calibration process. 

Credibility The data is relatively reliable since the sensors’ setup 
follows the corresponding manuals and noise removal is 
performed in the data processing stage. 

The reliability can be improved through 
performing the calibration process. 

Currentness Data measured by the sensors that need to be updated to 
the computer under specific time periods are updated 
frequently in real time during the experiment. 

Data need to be recorded for events that occur 
under certain conditions e.g. components 
disconnection.  

 

In summary, the smoke sensor shows a strong immunity to high temperature and moisture nuisance. All three 

sensors were barely affected by the dusty environment produced by flour particles. Nevertheless, both the CO and 

smoke sensor react drastically to the flammable gas emitted by lighter fluid. And regarding the fire tests, the fire has 

relatively higher temperature when it reached the flaming phase with a decreasing smoke and CO values which 

validates the characteristics in Table 1.  

To verify our device with the SVM, different sizes of training dataset were applied by taking 38 (1%) to 760 

(20%) instances. The procedure was repeated 10 times and the results is shown in Figure 7. It can be seen the maximum 

accuracy achieves nearly 100% from taking 4% of the experimental dataset as training dataset. The average accuracy 

increases rapidly from 91.4% when taking 1% training instances to 99.2% when the training data size reached 5% and 

keeps a high level as the training data size further increases. The minimum accuracy also exceeds 98% from the 

training data size achieving 7%, indicating the classification effect of the system becomes stable and good overall. 

The SVM results with 380(10%) training instances are presented in Table 6. The ANN is also employed with the 

same training and testing division ratio for comparison. For ANN, Scaled Conjugate Gradient (SCG) backpropagation, 

a commonly used training algorithm is selected, where the number of hidden layers can vary from 1 to 2-3 and even 

more, depending on the input features. The number of neurons in the hidden layer is another concern which is usually 
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decided through trial and errors. In this study, we used 1 hidden layer with 18 neurons to minimise the error rate. The 

procedure was also repeated 10 times. 

 
Figure 6: Comparison of classification accuracies in 10 runs with different training data sizes: blue-average, red-maximum, 

yellow-minimum. 
 

In Table 6, it can be observed the that both methods have similar and overall good performance, where SVM 

outperforms ANN with 0.2% and 0.04% higher F1 scores in flaming and smouldering situations, whilst ANN produces 

higher precision rate than SVM, leading to a higher F1 score in no-fire situation. However, regarding the running time 

including model construction and data prediction, ANN on average, takes 1.04s (27.15%) longer than SVM, which 

validates the efficiency of the model chosen in this study. The running times for RF and K-means are 3.76s and 1.38s, 

respectively, Although the K-means runs quite fast, the performance is not ideal. 

Table 6: Prediction performance for the three classes with 380 (10% of the experimental dataset) training data points. 
Method SVM ANN 

Class PR (%) RR (%) F1-score 
(%) 

Running 
time (s) 

PR 
(%) RR (%) F1-score 

(%) 
Running 
time (s) 

No fire 99.89 99.99 99.94 

2.79 

99.98 99.95 99.96 

3.83 
Flaming 99.97 99.26 99.60 99.17 99.67 99.40 

Smouldering 99.53 99.55 99.54 99.62 99.40 99.50 

Average 99.80 99.60 99.69 99.59 99.67 99.62 

 

Among the three classes, the results show the trend that algorithms perform better in predicting no-fire, validating 

the increment of experimental scenarios in the no-fire situation improves the classification performance. The flaming 

situation that performs best in the sample dataset, in contrast has a relatively low F1 score because of the lower recall 

rate. The reasons are that the patterns of the three features in flaming and smouldering situations are not discriminative 

enough as the fire did not reach the flaming phase before 400 instances as shown in the Figures 5-6. Meanwhile, the 
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number of flaming data points is less than the other two classes, leading to the smouldering data could be misclassified 

to flaming and accordingly the reduces the recall rate. 

 
Figure 7: Confusion matrix of 9 scenarios (TS1-humidifying, TS2-heating, TS3/TS4-glas leakage(5cm/15cm), TS5-dusty, TF1-
paper flaming, TF2-cotton smouldering, TF3-paper smouldering) that randomly using 10% for training and repeated 10 times.  

 

To further understand the impact of each source, we performed the classification 10 times with nine classes where 

each class corresponds to a fire or stimuli source with same training dataset used in determining the performance for 

the three classes classification with taking 380 (10% of the experimental dataset) as training data points.  As shown in 

Figure 8, TF1 and TF2 are most likely to be confused, due to their similar observations in temperature and CO. In 

addition, TS4 and TS5 were misclassified to the paper smouldering situation. The reasons are first, relatively low 

temperature but high CO and smoke were observed in TF3, which is like the characterises that TS3/4 shows. Second, 

the dust stimuli test was conducted in the same environment as TS3/4, leading to a higher smoke and CO values than 

the normal level shown in TNE. Also, as is discussed, the temperature in paper smouldering is not as high as cotton 

smouldering situation, resulting in lower recall rate that observations with higher smoke and CO values could be 

misclassified. In summary, the system shows an overall good performance in discovering fire events with the average 

accuracy value of 99.83% when taking 10% instances as training dataset. Additionally, during the experiment, the 

temperature sensor has shown a poor resilience that decreases slowly from the highest level to the normal level, which 

may have influence on data acquisition. Hence, the experimental data would be improved by replacing with a 

temperature sensor with lower deviation and arranging more fire scenarios of both flaming and smouldering situations. 

4. Conclusions 

Existing fire detection system tends to very sensitive, yet it fails to distinguish certain scenarios e.g. the smoke 

from dust and steam. Also, most of the commercially available fire detectors and vision based methods have no 

advantage in early fire detection whilst reducing the false alarm rate in the building/residential environment. As a 
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result, false alarms can be reported frequently, leading to heavy costs to the business and society. In this study, we 

employed the temperature, smoke and CO sensors to cover the shortages of each individual sensor with a 

microcontroller unit that makes the proposed system cost-effective, and the performance has been fully validated in 

different scenarios. In analysis of the sampled data, scenarios using different sensor combinations are evaluated, which 

have also validated the robustness of using the employment of the multi-sensors. Another by-product contribution is 

the collected datasets, on which the SVM classifier has produced the best overall performance than the three other 

classifiers, including K-means, Random Forest and ANN, benefitting the hardware implementation as SVM is less 

heavy-load than deep learning models. 

However, the proposed technique still has some limitation that need to be tackled. First, as a result of the sensor 

calibration, precise readings of gas concentration, temperature and relative humidity data as well as improved 

repeatability of the gas sensors are crucial for reducing the impacts of sensitivity noise. Second, for optimal 

performance of the system, an alternative sensor with a wider measuring range and higher specifications e.g. sampling 

frequency and the MCU will be beneficial in the future work. Also, we will build a tidy prototype, with the N-channel 

metal–oxide–semiconductor field-effect transistor (MOSFET) used as a switch to better maintain the humidity and 

temperature readings. In addition, following the EN54 standard, more comprehensive experiments on numerous fire 

sources will also be carried out to investigate the sensitivity of the detector in different and typical aerosol spectrum 

to build a large dataset, whilst integrating the sensor array for suppressing the uncertainty of using the sole sensor for 

each measurement. Finally, with the increased data volume, the system can be further expanded with the organisational 

memory model that utilises interpretive and semantic knowledge for improving the system reliability. The long-term 

target will be an online recommendation system for providing better adaptiveness to individual users, in which the 

evaluation of data quality using the international standard e.g. ISO/IEC 25012 is also desirable.  

Appendix 

Table 7: Nomenclature used in this paper. 
Symbol Meaning Symbol Meaning 

C RBF cost parameter 𝑄𝑄𝑃𝑃 Quantity of positively 
classified instances 

𝛾𝛾 RBF degree of dependency 
parameter 

Rs Sensor resistance during 
measurement 

k Number of cluster centroids R0 Sensor resistance in clean air 
𝑄𝑄𝑁𝑁 Quantity of negatively 

classified instances 
  

Abbreviation Meaning Abbreviation Meaning 
ANN Artificial Neural Network MOSFET metal–oxide–semiconductor 

field-effect transistor 
AR Accuracy Rate PNN Probabilistic Neural Network 

CNN Convolutional Neural 
Network 

ppm parts-per-million 

CO Carbon Monoxide RAM Random-Access Memory 
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CO2 Carbon Dioxide PR Precision Rate 
CPU Central Processing Unit RF Random Forest 
CV Coefficient of Variation RH Relative Humidity 

DNN Deep Neural Network RR Recall Rate 
F1 F1 score SCG Scaled Conjugate Gradient 
FN False Negative SMTP Simple Mail Transfer 

Protocol 
FP False Positive SVM Support Vector Machine 

FPA Fire Protection Association TCP Transmission Control 
Protocol 

GSM Global System for Mobile 
Communications 

TF Test Fire 

IoT Internet of things TN True Negative 
LED light-emitting diode TNE Test Normal Environment 
MCU Microcontroller Unit TP True Positive 
ML Machine Learning TPNN Trend Predictive Neural 

Network 
MOS Metal Oxide Semiconductor TS Test Stimuli 
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