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ABSTRACT This paper proposes an acoustic emission (AE) based automated crack characterization method
for reinforced concrete (RC) beams using a memory efficient lightweight convolutional neural network
named SqueezeNet. The proposed method also includes a signal-to-image technique, which is continuous
wavelet transformation (CWT) that decomposes the AE signals over time-frequency scales and extracts the
crack/fracture information in both the time and frequency domains. First, AE signals for two types of cracks
(minor and severe), along with the normal condition (no crack), are collected from the experimental test
bed. Second, the previously mentioned CWT based signal-to-image technique is applied to generate two-
dimensional time-frequency images that are then converted to gray scale images for faster computation.
These images are supplied to the SqueezeNet for classification of the concrete crack types. We extensively
modified the fire module of the SqueezeNet (SQN-MF) by introducing depth-wise convolutional kernels and
channel shuffling operations. Not only does the proposed method utilize deep learning-based techniques for
crack classification of concrete beams for the first time, but also the CWT-based imaging technique has not
yet been explored in this field either. Additionally, this method does not follow the typical AE burst feature
(features like AE counts, peak-amplitude, rise time, decay time, etc.) based methods, and as a result, we no
longer require extensive human intervention and expertise to get deep understanding of the crack types. SQN-
MF achieves AlexNet-level accuracy with fifty times fewer parameters and has an implementable memory
size for the field programmable gate array boards. Overall, the method achieves 100% accuracy. It is 20.8%
higher than the typical feature extraction and traditional machine learning based methods. We observed a 4%
accuracy increase for the proposed SQN-MF compared to the typical SqueezeNet with bypass connections.

INDEX TERMS Concrete crack characterization, continuous wavelet transformation, convolutional neural

network, SqueezeNet.

I. INTRODUCTION

Acoustic emission (AE) techniques have become popular
lately as a propitious way of monitoring concrete struc-
tures [1]-[8]. If any crack occurs in a concrete beam, mate-
rials associated with the crack releases energy. This results
in wave propagation that can be identified using mounted
AE sensors set on the surface of the concrete beam [2],
[9]-[14]. Recorded AE signals are used to determine the
latest condition of the beam. Crack detection, damage assess-
ment, and crack location identification are meticulously done
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through the rigorous analysis of the AE signals. AE tech-
niques allow us to listen to the sounds as they form due
to plastic deformation and micro-cracking in the materials.
AE signals show high sensitivity to crack occurrence and
microscopic processes [15]. This helps us greatly to iden-
tify stress waves caused due to structural anomalies. AE is
particularly distinguished from the other non-destructive
techniques since it has the unique ability to perform the
detection of debonding in materials and crack propagation
recognition. Additionally, AE signals extracted under a heav-
ily loaded concrete beam can facilitate us with efficacious
characterization and identification of cracks. As a result,
we have a rich set of literature where researchers have
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proposed many different methods based on the AE burst
features and traditional machine learning algorithms [1]-[3],
[51-18], [12]-[14], [16]-[22]. These methods propose robust
solutions for the characterization of the crack types associ-
ated with reinforced concrete (RC) beams, but the following
issues should be cautiously addressed to design and build an
automated, memory-efficient, and accurate method further:

« Existing methods highly depend on crucial AE burst
features like rise time, decay time, peak amplitude,
AE energy, counts, etc. These features show non-linear
and non-stationary behavior. It is very difficult to sort out
the features that have higher sensitivity to crack growth.
Certain features can be sensitive to latent cracks, while
some might show sensitivity to severe cracks (fractures)
at the peak hour of failure. It requires extensive domain
knowledge and human expertise to select features that
can be effective while performing classification tasks for
multiple crack types.

« Some of the works undertook feature selector algorithms
for selecting relevant features ([23], [24]). However,
we have to keep in mind that the computation complex-
ity is already high since we have to extract AE features
using multiple loops for huge chunks of data. Adding
a feature selector algorithm makes the whole system
expensive.

e Many of the machine learning based algorithms have
significantly failed to achieve precision in terms
of distinguishing micro-cracks from macro-cracks.
Addressing this problem is crucial since any kind of
misinterpretation of the macro-cracks as micro may lead
to a fatal catastrophe.

« One of the biggest problems of using machine learning
algorithms is that we never know if it is applicable
in real-time embedded systems. The existing literature
does not show any concern about the memory consump-
tion of their proposed methods.

To overcome the limitations mentioned above, it is nec-
essary to develop an automated method that will no longer
require any human intervention, get rid of feature selector
algorithms, and be memory efficient. Therefore, we propose a
deep learning-based algorithm that makes use of a signal-to-
image technique named continuous wavelet transformation
(CWT) [25] along with a recently developed convolutional
neural network (CNN): SqueezeNet [26]. The CWT-based
signal to imaging technique supplies SqueezeNet with ample
two-dimensional gray scale images, which is used to train
the network for corresponding crack type classification.
To further decrease the number of parameters and enhance
the learning ability, we designed a new fire module for
the SqueezeNet classifier that results in 100% classification
accuracy. We will address our proposed SqueezeNet with the
modified fire module as SQN-MF throughout the paper for
our convenience.

A wavelet can be defined as a wave-like oscillation with
a zero amplitude that increases and again decreases back
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to zero [27]. It can be used as a useful mathematical tool
to extract information from variant data types like signals,
images, etc. We can divide a function or continuous-time
signal into different scale components using a wavelet.
A wavelet transform is the representation of a function by
wavelets. CWT provides us with a representation of a sig-
nal by allowing the translation and scale parameters of the
wavelets to vary continuously [28]. CWT is a tool for signal
processing that has been widely used for fault diagnosis of
mechanical machines, composite materials, etc. Zheng et al.
proposed a new approach of gear fault diagnosis based on
CWT [29]. They argued that CWT can provide a finer scale
resolution than orthogonal wavelet transforms. That is why
CWT was more appropriate for them to extract mechanical
fault information. Kankar ef al. performed fault diagnosis for
rolling element bearings using CWT and two classification
techniques: an artificial neural network and a support vector
machine [30]. Bhattacharjee ef al. conducted a study aiming
at the estimation of the damping parameters of composite
beams formed with glass-fiber-reinforced epoxy, glass-fiber-
reinforced polyester, and carbon black filled epoxy [31].
CWT was used to investigate the system response analyti-
cally. Even though CWT has been successfully used for many
different cases in the field of fault diagnosis, it has not been
explored yet as a signal processing tool to determine crack
types for RC beams. In this study, we attempt to use CWT as
a tool for generating 2D images based on the time domain AE
signals to be considered further for crack type classification
by SqueezeNet.

Deep learning algorithms are capable of extracting
autonomous features from different domains. This allows to
eliminate hand-crafted feature extraction and implementation
of feature selection algorithms. Even though this state-of-
the-art method has often been used for fault classification
of bearings [32]-[37]), gearboxes ([38]-[41]), rail defects
([42], [43]) etc., we have not found any specific work that
focusses on concrete crack classification. According to the
best of our knowledge, the proposed work in this paper is
going to be the first one driving the trend of crack type
classification of RC beams towards deep learning. To prac-
tically implement any diagnostic framework for machinal
machines or composite materials, we need to build embedded
systems to be deployed in real-time. However, deep learning
algorithms like CNN are extremely memory consuming and
computation power hungry, which make it difficult for us
to adopt real-time implementation. Considering these issues,
we have chosen SqueezeNet, which has a model size of only
0.5 MB and can be implemented in field programmable gate
arrays (FPGA). Even though the architecture is so lightweight
and small, it can gain over 90% classification accuracy for
concrete crack type classification. Our aim is to classify
concrete cracks, which is a way too critical application in
which an accuracy of 90% is not enough, since any kind of
mistake may lead to catastrophe including the loss of human
lives. To increase the accuracy and reduce the number of
parameters, we modified the fire module of the SqueezeNet
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by changing the expand layer. Typical 3 x 3 filters are replaced
by 3 x 3 depth-wise convolution (DWConv) kernels and a
channel shuffle operation. This leads to 100% accuracy of the
model.

In our work, first time-domain acoustic emission signals
were collected from the test bed where concrete beams were
subjected to three-point bending tests. These signals are
next processed using CWT. The 2D images formed using
CWT contain the information related to the severity of the
concrete cracks over different time and frequency scales.
These images are further converted to gray-scale images
to lessen the computation overload of the SQN-MF classi-
fier. Finally, to identify crack types, the SQN-MF is imple-
mented, which makes use of the 2D grayscale images as
input and performs stringent classification of the crack types.
The main contribution of this research paper is summarized
as follows:

« A reliable signal processing technique, for the first time
in the literature of RC beam crack characterization, has
been proposed that can precisely capture fault informa-
tion for minor and severe cracks.

o Unlike most of the existing works, the proposed method
is based on deep learning that does not require any
hand-crafted AE features. This is important because
it helps to ameliorate systems without a high level of
human expertise and domain knowledge. Furthermore,
fluctuating, unpredictable, and non-linear behavior of
the AE features resulting in imprecise crack classifica-
tion and characterization can be avoided too.

« Since there are no direct feature extraction processes like
the methods proposed in [23], [24], no feature selection
algorithm is necessary. This helps to get rid of an added
layer of complexity.

o The proposed method opens up the horizon of imple-
menting CNN in real-time devices by incorporating
SQN-MF, which not only is extremely memory efficient,
but classifies crack types with 100 percent accuracy.
This kind of accuracy is much higher than traditional
classification methods.

The rest of the paper is arranged as follows. In Section II,
the works related to the proposed study are discussed in short.
Section III presents the technical details of the CWT and
SqueezeNet. Section IV describes the proposed methodology
elaborately, including the experimental test setup covering the
three-point bending tests performed on concrete beams for
gathering AE data, validation of the acquired dataset using
a state-of-the-art plastic deformation model, modification of
the typical SqueezeNet fire module to build a more robust
classifier (SQN-MF), and lastly, a step-by-step summary
of the crack type classification process via the SQN-MF.
The experimental results accompanied by analytical discus-
sion is presented in section V. The conclusion is drawn in
Section VL.
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Il. RELATED WORKS

Carpinteri et al. [13] used impact tests and pull out tests to
determine the mechanical parameters of a retro-filled con-
crete beam. Creep effects and micro-cracking were inves-
tigated using AE. Aggelis [4] conducted experiments on
concrete beams using bending tests with multiple concrete
beams. Collected AE signals from the bending tests showed
variant patterns at different stages of fracture occurrence. The
conducted study was able to differentiate well between micro
and macro-cracks. Tsangouri et al. [6] argued that observa-
tion of the mechanical properties alone cannot characterize
macro-cracks taking place in concrete beams. To understand
the damage process, they proposed an AE technique that
could sort out the damage initiation process by using the
cumulative AE hits observed while an increasing load was
applied. Load/calm ratios were calculated to comprehend the
damage severity. Chen et al. [8] performed experiments on
the impact of the loading rate on the behavior of the occurred
fractures. For on spot fracture monitoring, AE was used. The
study shows that AE hits and cumulative ringing count can
represent the point of commencement of the concrete bound-
ary effect over time. Also, they figured out that the width
of the cracks of the beams is covered accordingly with the
increase of the loading rate. Furthermore, as the loading rate
increased, the sample specimen’s ductility decreased. Lastly,
the quantity of shear cracks increased as the loading rate
was higher. Sengsiri ef al. conducted numerical investigations
into dynamic modal parameters of fiber-reinforced foamed
urethane (FFU) composite beams in railway switches and
crossings in [44]. However, they also proposed a method on
AE based damage detection in FFU composite railway bear-
ers [45]. AE was used identify the load-deflection curve of the
beams. Janeliukstis et al [46] proposed a novel method for AE
based condition monitoring of railway prestressed concrete
sleepers under flexural tests. Their proposed method enabled
preventive, predictive and condition-based track maintenance
for the railway industry.

Related works discussed so far do not provide any solu-
tions based on machine learning algorithms. Combining AE
features and traditional machine learning models, many of the
approaches have performed concrete crack characterization.
Das et al. [1] designed a framework for the automation of
probabilistic classification of the cracks on the basis of the
AE signals. They used hand crafted AE features like RA
values and average frequency. These waveform parameters
were clustered using an unsupervised clustering algorithm.
Created clusters intersected among themselves and were later
separated by a hyperplane generated using a support vector
machine. Based on the understanding of the labeled data,
unlabeled data was classified into different crack modes.
Yu et al. [2] presented a study to observe the slow dynam-
ics of the micro-cracks occurring in polymer concrete (PC)
samples. PC samples went through the three-point bend-
ing tests and the collected AE data was used to monitor
the damage process in real-time. Lastly, the AE data was
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FIGURE 1. Acoustic emission data collection system for concrete beams.

classified using principal component analysis and k-means
clustering. Sasmal et al [47] recorded AE signals at different
stages over time to identify crack commencement and pro-
gression. Acoustic parameters like energy and signal strength
are considered to observe their efficiency in determining
the crack commencement and propagation. Supervised and
unsupervised-pattern recognition algorithms were used for
the classification of the AE signals in different damage stages.
A great contribution of this work is the validation of the
support vector machine-based crack classification via the
experimentally observed damage pattern at different stages.
Bayer et al. [48] observed the crack pattern and propagation
in a concrete surface using an artificial intelligence-based
technique named vornoi diagrams. It is an image-based tech-
nique where a random photo of a concrete crack is used.
The crack is next divided into 12 segments for the estimation
of the machine learning algorithm’s efficiency to predict the
crack pattern including its direction. The proposed method in
the study was precise, quick, and cheap.

Observing the initial crack formation until the complete
failure of the RC beam throughout the time history is a crucial
task, which was completely ignored previously. Last year,
Kim et al. [23] proposed a degradation indicator (DI) based
on Mahalanobis-Taguchi system (MTS) that used AE features
like peak amplitude, rise time, decay time, etc. MTS was
used to fuse all the necessary features and build the DI. Noise
associated with the proposed DI was removed using Cheby-
shev’s inequality. The DI provides the ability to observe the
development of concrete degradation starting from the crack
initiation process until fatal failure. The DI did not require
any previous knowledge of the data associated with failure
for conducting assessment.

Tra et al. used a constant-false-alarm-rate algorithm to
detect impulses taking place in the AE signals. AE features
including counts, amplitude, rise time, energy, etc. were used
in the process. Based on their observation, increasing damage
resulted in the change of the properties of these features over
time. To classify crack types, they used the k-nearest neighbor
classifier.

Habib et al. [24] proposed a complete framework for crack
characterization of the RC beams that not only provided a
reliable crack assessment indicator (CAI), but also conducted
precise classification of the normal condition and micro and
macro-cracks. They also used a wrapper-based feature selec-
tion algorithm name Boruta that provided a robust solution
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for crucial feature selection. The proposed CAI could display
the time history of the crack occurrence starting from the
initial stage to the final failure stage. The CAI plot was
lastly passed through a k-NN classifier to classify the normal
condition, micro, and macro-cracks. The proposed solution
could stringently distinguish between the micro and macro-
cracks, which many other previous works failed to achieve.

IIl. TECHNICAL BACKGROUND

A. MONITORING RC STRUCTURES USING AE

Observing structural degradation is an effective way of AE
monitoring. If a crack occurs, a stress wave is produced that
acts as an AE source. Stimulus created due to the stress wave
acts upon the concrete material leading to local plastic defor-
mation [49]. The stress wave flows through the material from
the source to the surface area and gets recorded. AE sensors
play a crucial role in the process as it converts the stress
wave to an electrical signal [49]. If the sensor is nonintegral,
amplification of the signal is necessary before transmission.
Integral sensors are free of such processes since those have
embedded amplifiers. The wave gets transferred directly to
the instrument for the integral sensors. After that, the wave
is transmitted for data acquisition for the recording, storing,
and analyzing. Fig. 1 shows the basic view of the AE data
collection process for a reinforced concrete beam.

The attenuation effect causes difficulty for the AE moni-
toring of composite materials like RC beams. RC beams are
heterogeneous materials made of cement, coarse aggregates,
fine aggregates, and steel bars as reinforcement. Also, they
have flaws like air voids, pores, etc. Therefore, we have to
be careful while choosing the sensor and make sure that the
chosen one has a lower resonant frequency and a proper
frequency range.

B. ACOUSTIC EMISSION BURST FEATURES

There are some special parameters used to represent AE
events. Characterization of AE bursts for the collected AE
signals can be done using these parameters. Most of the
existing works have used the AE burst features like peak
amplitude, AE counts, rise time, decay time, etc. to develop
crack assessment indicators and crack classification methods
for the RC concrete beams. The aforementioned features are
highly related to the maintenance of the concrete health. A
pictorial view of these features is shown in Fig. 2. They are
also further defined as follows [49], [50]:

Peak amplitude: The voltage that is the highest in an AE
waveform is regarded as the peak amplitude.

AE counts: This is the number of times that the AE signal
crosses a certain preset threshold in a particular portion of the
test.

AE energy: This involves measuring a certain area that is
conducted within the rectified signal envelope.

Rise time and decay time: The time duration between the
first threshold crossing and the peak amplitude is defined as
the rise time. The decay time is the opposite of this. It is the
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FIGURE 3. Data in two different domains: (a) time and (b) frequency.

time when the peak value of the amplitude decreases while
within the threshold.

One of the prime goals of our work is to prove the superior-
ity of the proposed image-based method over the typical AE
burst feature-based methods. To do that we have implemented
an AE feature-oriented classification method and compared
the performance, adopting various parameters. That is why
the concepts of the AE burst features are discussed herein.

C. WAVELET ANALYSIS AND CONTINUOUS WAVELET
TARNSFORM

It is possible to Fourier transform time domain data and trans-
form it to the frequency domain. Time series data can give us
insight regarding exquisite resolution of where the signal lies
in time, but it is impossible to comprehend what frequencies
are occurring at that moment in time. Similarly, performing
a Fourier transform would give us exact information about
the frequency components of the data, but there will be no
information regarding when those frequencies occurred in
time. In Fig. 3(a), it is visible that we have absolutely no
way to gain insight about the frequencies that are occurring
at a particular time. Also, from Fig. 3(b), there is no way
we can gather any information about the time. This crisis
has led researchers to develop the spectrogram, where equal
weighting to time and frequency is ensured. In spectrograms,
we have less time resolution than our original time series and
less frequency resolution than our Fourier transform. From
spectrograms, we know when individual frequencies turn on
and off in time, as they can give us both time and frequency
information.

Wavelets have been proposed as a superior method for
the time frequency analysis [51]. Spectrograms have a fixed
window length. On the other hand, wavelets have longer
windows for lower frequencies and shorter windows for
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higher frequencies, making them evidently a better method
than spectrograms. In wavelet analysis, there is a hierarchical
grading of time and frequency information. Frequencies that
are very low tend to last for a long time and do not change
much over time. This allows us to have a bar at the lower
bottom of Fig. 4. This is basically the lowest frequency that
no one cares about when it occurs in time because it is usually
assumed that the frequency is on all the time, working as
a baseline frequency. Next, the wavelet diagram presented
in Fig. 4 would be split in half (colored in sky blue). This sec-
ond stage will provide us with less frequency resolution, but
we would have information if it were in the first half or second
half of our time series. In the next level, we are going to break
the rest of the diagram (colored in dark blue) into a higher
frequency resolution, because at higher frequencies changes
are faster in time, but we have less resolution about exactly
which of those frequencies are turning on. Different colors
have been used for the representation of different layers.
They do not carry any technical meaning related to wavelet
analysis.

A wavelet is a multiscale time-frequency decomposition.
Lower frequencies change more slowly in time, so we do not
need much temporal accuracy. For higher frequencies, more
temporal accuracy is needed, but we get correspondingly
more uncertainty in what exact frequency is turning on and
off in that frequency range. Fig.4 is a basic diagram for
wavelet analysis. In reality, we might have more than ten
levels instead of three for wavelet decomposition. Therefore,
wavelet decomposition can be referred to as a really good
spectrogram that is tailored to spend as much information
in the regions as necessary. For example, low frequencies
do not need much information whereas higher frequencies
need more temporal resolution, and so forth. For wavelet
transforms, we have to take some signal/ time series or spatial
data and project that on an orthogonal basis. The orthogonal
basis is not going to be just sines and cosines, rather it will
be a hierarchy of orthogonal functions that are going to get
smaller in time or in space in little windows.

In our proposed method, CWT has been used to process the
AE signals acquired from the concrete testbed. CWT utilizes
a family of wavelet functions for the purpose of decomposing
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the original signal into a spectrum of wavelet coefficients.
To obtain this, translation and scaling of the original signal
over different time and frequency levels should be performed.
As the crack takes place, multiple low to high frequencies
are produced into the original signal. Therefore, the energy
content differs over different frequency ranges. CWT can be
formally written as:

y(s,7) = /f (O, (1) dt, )

where * denotes complex conjugation. The values s and t
are the new dimensions named scale and translation after the
wavelet transform. This equation displays how a function f'(¢)
can be decomposed into a set of basis functions W . (¢), called
wavelets. The wavelets are generated from a single basic
wavelet W(¢), called the mother wavelet. It can be represented
using the following equation:

Vo (1) = %‘P(t —7/9). (2)

For our implementation, CWT is obtained using a Morse
wavelet[52]. The maximum level possible for decomposition
was found to be 10 for our case. However, a smaller value
is taken for decomposition, not the maximum allowed level.
We have chosen the decomposition level to be 6.

D. CONVOLUTIONAL NEURAL NETWORK

A general CNN consists of an input layer, convolutional
layers, pulling layers, fully connected layers, and an output
layer. Typically, the first layer of a CNN is an input layer,
after which a combination of multiple convolutional and
pooling layers is added. The last layer is the fully connected
layer. Finally, a SoftMax classifier can be used to classify 2D
images.

The input layer of a CNN can be used to preprocess the
data, and at the same time, it can take raw data as input to the
neural network. The preprocessing part may include image
conversion as a vector and normalization process to boost
the speed of the CNN during the training phase. The con-
volutional layer is a crucial part of the CNN and is intended
to produce a feature map by a convolutional operation of a
set of weighted filters. Actually, a convolutional operation
is nothing but a point-multiplication summation of two-pixel
matrices where one is the input data matrix and the other one
is the filter.

It is necessary to use an activation function, the main pur-
pose of which is to make the characteristic map of the output
have a nonlinear relationship. Sigmoid, tanh, ReLU [23], etc.
can be used as activation functions. ReLLU is widely used as
an activation function because of the speed of unsaturated
nonlinear functions. The function form of ReLU is as follows:

f(x>={0’ fr<0 3)

x, ifx>0,
where x is the input of the activation function.
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The pooling layer in the CNN is used to screen the features
in the perceptron domain to extract the most representative
features in that region. This can be very effective since the
output feature scale can be reduced resulting in a reduction
of the number of parameters needed for the model and the
maintenance of the translation variance. Max pooling [24] is
vastly used in most cases in the pooling layer.

The fully connected layer of a CNN summarizes the
learned features. Finally, a classifier is used to classify the
obtained features. If the length of the input vectors is M and
the output vector is N, the number of the parameters in the
fully connected layer can be obtained as follows:

Q=M xN+N. )

For two class classification, the training set has a label
sample: (x(D, yM) ... x®, y®))}. The value of the label
y can be either 0 or 1. The logistic regression function can be
represented as follows:

1

he (x) = 1—1—6—_9”’

%)
where 6 is the model parameter of the loss function. The loss
function J(6) can be presented using the following equation:

k
1 . . . .
J©) =133 oghy (x)+(1 = yPlog(1 = hy(V)).
i=1
©)

If our problem is a multistate classification problem, it is
assumed that we have n conditions and n corresponding
labels for the SoftMax classifier. In a training set, the label
is represented as y(i) e {1,2,3,...,n. Let us assume that a
training sample x is given that has n classes. If the occurrence
probability of a state i is p(y = i|x), the output of the SoftMax
regression can be represented using the following equation:

Py = 1lx;6) e
POy = 2lx; 0) 1 e

he (x) = == , (@

6 (x) Z};]exe_i @
p(y = nlx; 0) &0

where 61,6>,...,0, are the model parameters and

1/ Z;l:l ¢*%) plays the role of normalization. The loss func-
tion, therefore, can be written in the following manner:

1 k n . exej
'0) = —— 0 _—;
6 =~ [} 2 = os(sr >] ®)

In the training process of a CNN, forward propagation of
the input signal is performed, and output data can be acquired
after it passes through multiple layers. Next, output data and
expected labels are compared, and the generated error is
backpropagated layer by layer. The corresponding weights
are updated, and the expected error lessens as we increase
the number of iterations.
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E. SQUEEZENET
The focus of recent research works related to deep convo-
lutional neural networks is based on improving accuracy.
For a certain accuracy level, it is not much more difficult
to sort out multiple CNNs that can achieve that level. With
the same accuracy level, CNN models that are small can
facilitate us with three advantages. First, smaller CNNs would
require less communication across servers while conducting
distributed training. They can be trained faster since they
need less communication. This is a great advantage for an
image-based classification method like ours as communica-
tion among servers can be a limiting factor to the scalability
of distributed CNN training. Second, using smaller CNNs
would ease the process of exporting a new model from the
cloud to an autonomous embedded system. A smart way of
providing a concrete crack detection solution is deploying
an autonomous system that will itself download the required
CNN model from the cloud. A lightweight CNN model will
be helpful in this regard. Lastly and most importantly, smaller
CNN models are feasible for deployment on memory lim-
ited hardware like FPGAs. To acquire all these advantages,
we have chosen to use SqueezeNet for our proposed solution.
There are three main strategies that the developers of
SqueezeNet have adopted to obtain fewer parameters:

o Strategy 1: The first strategy adopted to design the archi-
tecture of SqueezeNet is the replacement of 3 x 3 filters
by 1 x 1 filters. The majority of the filters are 1 x 1 for
which the model has 9X fewer parameters.

o Strategy 2: The next strategy adopted to build the
SqueezeNet is to reduce the number of input channels
to 3 x 3 filters. To comprehend this, let us consider a
convolutional layer that is entirely formed of 3 x 3 filters.
The quantity of parameters in that very layer will be:

QP = Nic X Nf X (3 X 3), (9)

where Q,, stands for the quantity of parameters, N;. is the
number of input channels, and Ny represents the number
of filters. Therefore, not only do we need to reduce the
number of 3 x 3 filters as mentioned in the first strategy,
but also it is required to decrease the number of input
channels to 3 x 3 filters. To do this, SqueezeNet uses
squeeze layers that will be discussed next in this section.

o Strategy 3: The last strategy adopted to make sure that
the SqueezeNet has fewer parameters is to down sam-
ple late in the network. This is performed to acquire
convolution layers with large activation maps. For down
sampling, strides are set to greater than one in some of
the convolutional and pooling layers. Large activation
maps can lead to higher classification accuracy [53].
In short, the first two strategies relate to the reduction of
the quantity if parameters in a CNN and the last strategy
is regarding the maximization of accuracy on a limited
budget of parameters.
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FIGURE 5. The fire module.
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Apart from any other typical CNN architecture, the thing
that makes SqueezeNet special is the introduction of fire
modules. The fire module is described as follows:

o A fire module in a SqueezeNet consists of a squeeze
convolutional layer with a 1 x 1 filter only. It feeds into
an expand layer that consists of a mixture of 1 x 1 and
3 x 3 convolutional filters. Fig. 5 presents us with an
organization of convolutional filters in the fire module.
Using a 1 x 1 filter in fire modules is the part of the first
strategy discussed earlier.

o Three hyperparameters are exposed in a fire module: a)
S1x1: the number of filters in the squeeze layer (all the
1 x 1),b) e1x1: the number of 1 x 1 filters in the expand
layer, and c) e3x3: the number of 3 x 3 filters in the
expand layer.

e In the fire module, s;x; < (e1x1 + €3x3), which
helps to keep the number of input channels limited to
3 x 3filters according to the second strategy adopted for
SqueezeNet, as discussed before.

Fig. 6 represents the SqueezeNet architecture. It starts with
a convolution layer, which is named convl in the diagram.
After that, there are eight fire modules. Finally, it ends with
conv10, which is the last convolutional layer. Throughout the
network (beginning to end), the number of filters per fire
module is gradually increased. After convl, fire modules 4,8,
and conv10, max pooling is performed. The stride is kept to
2 as per strategy 3.

Fig. 6(a) is the typical SqueezeNet (SQN-1) architecture
with no bypass, Fig. 6(b) is the same architecture with simple
bypass (SQN-2), and Fig. 6(c) is the same architecture with
complex bypass (SQN-3). We have implemented all three of
these SqueezeNet architectures using our 2D image dataset
acquired using CWT from the AE signals. Comparative per-
formance analysis related to the three different types of archi-
tecture can be found in section V. For our convenience we
will address these networks as SQN-1, SQN-2, and SQN-3,
respectively.

IV. PROPOSED METHODLOGY

In this section of the paper, a description of the experimen-
tal test setup is presented first. This facilitates the readers
with the idea of our setup, sensor deployment and selection,
crack length measurement, etc. Next, we attempt to validate
our dataset using the fracture mechanics of the compos-
ite materials, like concrete, to make sure that the acquired
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FIGURE 6. SqueezeNet architecture: (a) no bypass, (b)simple bypass, and (c) complex bypass.

data is good enough for building a concrete crack detection A. EXPERIMENTAL TEST BED AND AE DATA COLLECTION

system. Furthermore, our modified SqueezeNet classifier,  Our testbed was developed at the Ulsan Industrial Artificial
named SQN-MEF, is presented in this section too, followed  Intelligence (UIAI) laboratory in Ulsan, Republic of Korea
by a step-by-step description of the entire crack detection for performing AE data acquisition. To assess the tensile
method. strength of RC beams, flexural tests are very common. This
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FIGURE 7. Schematic of the test setup: (a) sensor placement,
(b) experimental setup for three-point bending.

kind of test can be conducted to determine the capability
of the RC beams to tolerate cracks and fractures that take
place because of the bending process. As for the bending test,
we can go for four point-bending, three-point bending, or cen-
ter point bending, the choice of which is mainly dependent
on the length of the concrete beam we are using. The three-
point bending test can imply half of the total load applied at
every one third portion of the beam. On the contrary, the full
load is applied at the center point of the beam in center-point
bending. As per the standard set by the American society for
testing and materials (ASTM), we should choose the length
of the RC beam carefully so that it is at least three times
the depth [54]. The RC beams used in our test setup had a
depth of 300 mm. Conforming to the standard set by ASTM,
we have chosen the length of our beams to be 2,400 mm,
which is quite large. Considering this large size, we have
opted for three-point bending rather than center-point bend-
ing. This ensures wide distribution of cracks throughout the
entire beam.

Fig. 7 and Fig. 8 represent the experimental test bed for
AE data acquisition from the concrete test specimen. The
sensor placement and schematic diagram of the performed
three-point bending test can be viewed in Fig. 7. Fig. 8 shows
the real time setup built at the UIAI laboratory. As the length
of the beam was 2,400 mm and the depth was 300 mm,
the loads were applied at two different points in the beam,
800 mm apart from one another. The load was applied for a
certain amount of time for crack initiation. The load velocity
was 2mm/s.

Three different types of AE sensors were used to collect
AE data: R3I [55], R151 [56], and WD [57]. For each type of
sensor, the three-point bending test was performed three times
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FIGURE 8. Real time test setup: (a) the whole setup, (b) experimental
setup for three-point bending.

resulting in nine different tests in total. TABLE 1 describes
the specifications of the mentioned sensors.

For the reproducibility test, we have conducted all the
experiments with different sensors in the same environment.
To decide which sensor has the highest sensitivity, sensor
mounting was done. We used the pencil lead fracture (PLF)
test to imitate the acoustic wave on the surface specimen.
To do this, a magnetic pencil with a Teflon shoe was used.
Readers are requested to go through [54] if they are interested
in the details of this process. Fig. 9 presents us with a pictorial
view of the method regarding how to handle a magnetic pencil
on the concrete surface. An angle of 30° was used (angle
from the plane of the specimen surface). There are two ways
to decide if the sensors are significantly coupled, if PLF
generates a high amplitude of 99 dB or we have a sensitivity
within a 3 dB margin. Via this process, we choose our
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TABLE 1. Name of the sensors and their specifications.

TABLE 2. Experimental parameters and specifications.

Sensors

Specifications

Peak sensitivity: 120 dB
Operating frequency range: 10-40
kHz
Resonant frequency: 25 kHz
Temperature range: -35 to 75°C

Peak sensitivity: 109 dB
Operating frequency range: 50-
400 kHz
Resonant frequency: 75 kHz
Temperature range: -35 to 75°C

Peak sensitivity: 55 dB
Operating frequency range: 100-
900 kHz
Resonant frequency: 125 kHz
Temperature range: -65 to 175°C

WD

sensor concrete beam

30 degree

0.1" lead extension

FIGURE 9. Pencil lead fracture test to select the appropriate sensor.

required sensor to be R3I. The total number of sensors used
in each experiment was eight.

The RC beams we used had six dimensions. We tried
to cover all the surfaces using eight sensors. Glue gel and
mounting tape were used to attach the sensors in the sur-
face area. We put the sensors as distant as possible from
the loading point to avoid any kind of problem regarding
sensor placement that may occur while cracks are propagating
during flexural tests. The AE signal acquisition process was
undertaken for around 15 minutes at a 10 MHz sampling
rate. The R3I sensors used in the process had an integrated
preamplifier that has a gain of 40 dB. We did not set any kind
of AE threshold before conducting the experiments, rather an
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Specification Value
Number of sensors used (per 8
experiment)
Used sensors’ type

R3L, WD and R151 AE
sensors
Chosen sensor R3I

Final number of beams used 9

Duration of signal acquisition Around 15 minutes

24 MPa

Korean Standard Reinforced
Steel Bar, D16 (SD400)

1.03 kN, 111.46 kN

Concrete type

Reinforcement (Steel bars)

Load (Initial and final)

Load velocity 2 mm/second
Displacement In-plane
Measurement of the displacement Mid-span

adaptive threshold was used. This threshold was dependent
on the maximum amplitude of the acquired signals.

The acquired signals from the three-point bending test can
be divided into three types. The following figure (Fig. 10)
presents those signals for different conditions. Fig. 10(a)
is the plot representing the normal condition in the beam
(with no crack). Fig. 10(b) and Fig. 10(c) represent the AE
signals for micro and macro-cracks, respectively. In our study,
we often refer to macro-cracks as fractures. We used a linear
variable differential transformer (LVDT) to measure the in-
plane distance of the cracks at the mid span. The LVDT was
fixed under the concrete specimen. A concrete beam with
fractures can be viewed from Fig. 11. The fractures in the
beam took place after a gradually increasing load was applied
to the beam using a loading machine. A summary of the
experimental specifications is presented in TABLE 2.

B. DATASET VALIDATION

Before using a certain AE based data set, we need to make
sure the data has been collected properly and it follows some
of the inert properties of fracture mechanics.

One of the main sources of AE is plastic deformation.
Plastic deformation refers to the state of a material when it
cannot return back to its original shape when applied force
is removed. The starting point of the plasticity, specially at
or near the yield stress, results in the highest level of AE.
This can be observed on a curve of stress versus strain. Our
stress versus strain plot derived from the experimental setup
follows the standard one as described in [58]. Fig. 12 presents
us with a typical standard stress-strain curve where we can
particularly observe the changes in the curve at the yield
strength and the ultimate strength points. A similar type of
curve obtained from our dataset can be viewed in Fig. 13.

According to the model presented by Palmer et al. [59] that
makes use of linear elastic fracture mechanics for analysis,
the total AE count is proportional to the area of the elastic-to-
plastic boundary ahead of the crack. Therefore, AE is linked
with the discontinuity or applied stress at the fracture. Based
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FIGURE 10. AE signals of variant conditions: (a) No crack (normal condition) (b) micro-cracks, and (c) fractures/

macro-cracks.

FIGURE 11. Fractures occurring in the beam due to an increasing load in the three-point

bending test.

on the linear elastic fracture model, we can write:
N=D., (10)

where D is the proportionality constant, N is the total acoustic
emission count, and § is the plastic zone ahead of the crack.
D is dependent on strain rate, thickness of the concrete spec-
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imen, and temperature. The commencing crack length, and
the applied stress (o) vastly affect the plastic zone size. S can
be written as:

(11)
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FIGURE 13. Stress-strain curve derived from our dataset.

where C is half of the crack length and o is the character-
istic stress for the material. Since we are dealing with linear
fracture mechanics, the characteristic stress for the material
is equivalent to the yield stress. From (10) and (11), we can

write N as:
o
N =DC |:sec <—) — 1:| . (12)
20‘1

According to [60], the fracture stress oy can be formulated
as follows:

2 K 12C
of = —ojarcsec | exp 5
T 8o C

: (13)

where K7 is the stress intensity factor. If we combine (12) and
(13), we can obtain counts for failure Ny.

Nf = D.C mKic \ _ | (14)
= . X — .
f P 8012C

For small stress, (14) can be reduced as follows:
2
7K
8012

Ny =D (15)
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FIGURE 15. Acoustic emission counts vs. load graph derived from our
own dataset.

Fig. 14 presents an example graph from [59] that shows
us the acoustic emission count versus load obtained using
the formulations made in this section. The same formulations
have been used to create a similar type of plot using our
dataset in Fig. 15. Like Fig. 14, as the load was increased,
we found the AE counts increase as well.

C. MODIFIED SqueezeNet FOR BETTER ACCURACY

The classical version of SqueezeNet has a simple model that
is built upon a basic building block named the fire mod-
ule. As discussed in section III, convolution kernels small
in size have been used to decrease the parameter size and
memory demand in SqueezeNet while simultaneously main-
taining good accuracy. The 3 x 3 filters used in the fire
module produce a good number of parameters despite the fact
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FIGURE 16. Modified fire module.

that fire modules perform some basic functions. To decrease
the number of parameters and enhance the learning ability,
we designed a new fire module for our SqueezeNet classifier
(SQN-MF). Fig. 16 presents our modified fire module as
described in this section. The modified fire module contains
the typical structure of the original one with the 1 x 1 kernel
that gets trained alongside the original 3 x 3 filters, but a
change has been made in the expand layer. The typical 3 x 3
filters are replaced by a 3 x 3 DWConv kernel and a channel
shuffle operation. The reasons behind choosing the DWConv
and channel shuffling are:

o The depth-wise separable convolution is a divided con-
volution that divides a standard convolution into a
pointwise and depth-wise convolution of 1 x 1 kernel
size [61]. Using this, it is possible to decrease the com-
plex nature of the network, while at the same time we can
maintain fair precision by keeping a low number of train-
ing weight parameters. Furthermore, depth-wise separa-
ble convolution can facilitate us with separate channels
from the convolution region. Also, it can connect the
input and output feature maps one-to-one through a
convolution operation.

o The channel shuffle can address the fact that the out-
put channel is solely related to its corresponding input.
It allows information exchange among channels and
can facilitate with enhanced feature description. This
process of channel shuffling divides the channels in each
group into a couple of sub-groups and feeds every single
group with variant sub-groups in the next layer. This
kind of information exchange among groups of channels
can improve accuracy.

D. PROPSOED METHODLOGY FOR CRACK
CLASSIFICATION

The proposed methodology consists of building a 2D image
dataset based on the three different conditions (normal/
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micro-cracks/ macro-cracks) and precise crack type classi-
fication using our modified SqueezeNet classifier. It can be
described in the following steps:

1. AE signals are collected from the experimental setup
where the RC beams are subjected to three-point bend-
ing tests.

2. The acquired AE signals can be divided into three types
as described in Fig. 10. At this step, the CWT of the
respective AE signals representative of the normal con-
dition, micro-cracks and macro-cracks are obtained.

3. To reduce the computation overhead for our classifier,
2D color images are changed to gray-scale images.
A full-scale image dataset is built using 900 images in
total, each class containing 300 images.

4. Next, we implement our modified SqueezeNet classi-
fier for distinguishing three different conditions asso-
ciated with the RC beam under flexural tests.

Fig. 17 presents an elaborate pictorial view of the crack
classification process as described in the above steps.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed concrete crack detection framework (CWT +
SQN-MF) is applied on the AE data gathered from the three-
point bending test. In this study, AE signal acquisition is
performed from our self-designed testbed with a gradually
increasing load from the loading machine, increased up to
111.46 kN. Based on our visual inspection and time domain
feature analysis, we could divide the whole duration of the
test into three parts. The first one is the normal condition in
which no crack on the RC beam was observed. The second
division corresponds to the occurring micro-cracks in the RC
beam due to the gradually increasing load. Lastly, the third
one consists of signals representing macro-cracks/ fractures.
We have taken 300 samples from each type and built our
image dataset applying CWT. A well-balanced dataset has
been formed for our analysis. Fig. 18 represents the original
time-domain AE signals and their corresponding 2D images
derived using CWT. In the time-domain signals, we can see
that it is not only very difficult, but almost impossible to get
insights on three different conditions (normal, micro-cracks,
and macro-cracks) due to too much noise and fluctuating
points. However, the images obtained using CWT, have dis-
tinguishable patterns for the mentioned conditions.

To obtain the fault features visually, we applied CWT, but
still the 2D color images do not have significant meaning,
which is associated with the change of amplitude of the signal
along with the time. That is why we have taken the contour
plot of the CWT images acquired for different crack condi-
tions of the concrete specimen. Fig. 19 presents the contour
plot, which provides better visualization of the changes in pat-
tern for different conditions. From both Fig. 18 and 19, we can
realize that the acquired CWT images have distinguishable
patterns across different time-frequency scales for each crack
condition.
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FIGURE 17. Pictorial view of the proposed methodology.

The main goal of our study is to prove our proposed method
in three aspects. First, we would like to compare the proposed
method with two recently proposed AE feature based typical
ML algorithm-oriented crack detection methods [24], [62].
Second, we applied crack classification tasks with multiple
variants of SqueezeNet along with the typical one. To prove
the superiority of the proposed SQN-MF, we will present a
performance comparison of our method against these ver-
sions of SqueezeNet and two other popular deep learning
architectures. Lastly, we use the same SQN-MF classifier
with the 2D wavelet images acquired from three different
sensors so that we can prove that our method is robust enough
to acquire good accuracy even though the data gathered from
the R15I and WD sensors are not suitable enough.

A. COMPARISON OF THE PROPOSED METHOD WITH THE
TYPICAL AE FEATURE BASED ML ALGORITHMS

Until today, the existing literature regarding concrete crack
detection methods are ruled by the crucial AE feature extrac-
tion methods, and often researchers have associated conven-
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tional machine learning algorithms for crack identification.
The process is expensive and tedious for many reasons. Not
only do we have to extract a good number of AE features
(requires extensive amount of time and human expertise),
but also, if the number of the features are high, we never
know which features are truly useful. Alongside a machine
learning algorithm, we also need a feature selection algo-
rithm. Our first approach is to compare our study with the
mentioned method. Fig. 20 presents us with some of the
typical AE features described in section III(B). We used the
data obtained from the AE signals acquired from our testbed
(R3I sensor).

As we can see from the above figure, we need a significant
amount of human expertise to comprehend the inert meaning
of the features such as when the incipient crack is taking
place, when exactly the fracture is taking place, etc. Not only
this, but we also implied a wrapper based feature selection
algorithm named Boruta [63] to rank the features before pass-
ing them through a classifier, since bad features can end up
giving us poor accuracy. Fig. 21 presents the feature ranking
obtained using Boruta.
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FIGURE 18. Time domain acoustic emission signals and their
corresponding CWT images.

As we can see from Fig. 21, we have to put even more
effort towards choosing which features to use. This process
adds more complexity. In many cases, the k-nearest neighbor
algorithm (k-NN) has been used in the literature for crack
type detection. We have done the same for our acquired
AE data and compared the performance of our algorithm
with k-NN based fault detection models in terms of average
classification accuracy and F1-score. For the k-NN algorithm
used in [24], the data set consists of direct feature values
like AE counts, decay time, etc. The number of samples
for each class: normal, micro-cracks, and macro-cracks were
300 in number. The crack detection method (k-NN+CFAR)
proposed in [62] used 1,030 feature vectors representing
different conditions of the RC beam. However, to have a
balanced comparison we took 900 samples for this method
too. In both cases (k-NN-+AE features and k-NN+CFAR),
datasets consisted of 1D feature values processed from the
raw AE signals. On the other hand, we used the CWT image
dataset (total of 900 images, 300 for each class type) for
our proposed SQN-MF. For all three cases, the datasets were
divided into two parts: 70% of the data for training and the
remaining 30% for testing. Description of the datasets used
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FIGURE 19. Contour plots of the three types of beam condition:
(a) normal (b) micro-crack, and (c) macro-crack.

for the k-NN, and deep learning-based methods are presented
in TABLE 3 and 4. We used two parameters for performance
comparison: average classification accuracy and F1-score.
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F1-score can be calculated as follows:

Recall x Precision
F1 —score =2 x —, (16)
Recall + Precision

where precision is the ratio of correctly predicted positive
observations to the total predicted positive observations, and
recall is the ratio of correctly predicted positive observations
to all observations.

Fig. 22 presents us with the confusion matrices of the k-NN
based methods and our proposed method. The k-NN along
with the feature selection algorithm (Fig. 22(a)) performs
very poorly. Many of the samples corresponding to the normal
condition have been misclassified as micro-cracks. Micro-
cracks have been detected as macro-cracks as well, and vice
versa. The k-NN along with the CFAR algorithm (Fig. 22(b))
has misclassified macro-cracks too but performs better than
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TABLE 3. Dataset description of the methods implied in this study.

Total Number of Number of Data
Methods number samples for | samples for type
of training testing
samples
k-NN based 1D
methods 900 630 270 feature
vector
2D
Deep learning- 900 630 270 gray
based methods scale
images

TABLE 4. Number of samples for each class in different methods.

Number Class 1: Class 2: Class 3:
Methods of classes Normal Micro Micro
k-NN based
methods 3 300 300 300
Deep
learning- 3 300 300 300
based
methods

TABLE 5. Performance comparison (k-NN based methods vs. the
proposed method).

Methods Accuracy (%) F1-score
k-NN + selected AE 70.5 55.8
features
k-NN + CFAR 79.2 68.9
Proposed method 100 100

the previous method. The proposed method in this study
can classify the normal condition, micro-cracks, and macro-
cracks perfectly with 100 percent accuracy. From Fig. 22 (c),
it is visible that none of the samples have been misclassified.
TABLE 5 presents the performance comparison of the three
methods in terms of average classification accuracy and F1-
score. It can be clearly seen that the proposed method’s
accuracy and F1-score are way higher than the typical k-NN
based AE feature-oriented methods.

B. PERFORMANCE COMPARISON WITH THE OTHER
VARIANTS OF THE SqueezeNet

We have implemented SQN-1, SQN-2, and SQN-3 to clas-
sify our CWT images obtained for different fault conditions.
As stated in the main paper by the authors of SqueezeNet,
SQN-2 performs better than the typical one and SQN-3.
Therefore, we decided to compare our proposed SQN-MF
with the version of the typical SqueezeNet with simple bypass
connections, which is SQN-2. To have a comparative view
of the performance of these two methods, we have put the
accuracy and loss curves in Fig. 23. From Fig. 23(a) and (b),
we can see that the accuracy for SQN-2 is 96% and the
lowest amount of loss is 0.0566. The performance is quite
good, but considering our application, i.e., building a robust
crack characterization method, even such high accuracy is
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FIGURE 22. Confusion matrices: (a) k-NN + feature selection algorithm,
(b) k-NN + CIFAR, and (c) Modified SqueezeNet algorithm (SQN-MF).

not adequate as it involves huge financial aspects and human
lives.

Fig. 23(c) and (d) presents the loss and accuracy curve for
our proposed SQN-MF. We can see that it has 100% accuracy
and almost zero loss. It can be concluded that SQN-MF
performs better than SQN-2. The achieved 100% accuracy
is very robust and highly necessary for a critical application
like concrete crack detection.

C. EVALUATION OF THE PROPSED METHOD WITH THE
OTHER DATASETS

We used three different sensors (R31I, R151, and WD) for AE
data collection. Via a PLF test, we chose R3I sensors. This
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FIGURE 23. (a) accuracy curve for SqueezeNet with bypass connection,
(b) loss curve for SqueezeNet with bypass connection, (c) accuracy curve
for SqueezeNet with the modified fire modules, and (d) loss curve for
SqueezeNet with the modified fire modules.

particular sensor is usually chosen for structural health moni-
toring ranging from small to medium concrete and geological
structures. It can reject high background noise, and the dis-
tances between sensors can be relatively close. The proposed
method in our study has gained 100% accuracy using the
wavelet image dataset acquired from the AE signals collected
from this very sensor. However, we wanted to apply SQN-MF
to the dataset obtained from the other two sensors too. In a
similar way, we first took the CWT of the AE signals corre-
sponding to R15I and WD sensors and classified them with
the SQN-MF with modified fire modules. It was expected that
we would not get very good results, but the results were not
as bad as expected. For R15I and WD we achieved 87.2%
and 69.3% classification accuracy respectively, which are
still decent as these two sensors are not usually used for
structural health monitoring. R15I sensors are extensively
used in monitoring structures like pipelines, vessels, bridges,
and storage tanks. WD sensors are general-purpose sensors
that are useful where frequency analysis of the AE signal is
needed in determining the predominant frequency band of
AE sources for noise discrimination. Comparative analysis
of the results not only proves the effectiveness of the sen-
sor selection method we used (PLF test), but also it shows
the robustness of our proposed method since it gains a fair
amount of accuracy in poor data sets too. Fig. 24 presents us
with the confusion matrices of the applied method proposed
in our study for the three different sensors.

From Fig. 24, we can see that not a single sample is
misclassified by the proposed method when it uses the data
obtained from the R3I sensor. For the other two cases,
there are a good number of samples that were misclassified.
In some cases, the proposed method could not distinguish
between macro and micro-cracks when the data obtained
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FIGURE 24. Confusion matrices: (a) R31 sensor, (b) R151 sensor and
(c) WD sensor.

from the other two sensors was used. Still, for both cases,
the proposed method can gain at least 70% accuracy. The
comparison of the performance of the proposed method can
be better understood from the following table.
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TABLE 6. Performance comparison of the proposed method getting

applied for different sensor (R31, R151, and WD) data.

Used sensor Accuracy (%) F1-score
WD 69.3 53.9
R151 87.2 80.7
Proposed method 100 100

TABLE 7. Performance comparison of the proposed method getting

applied for different sensor (R31, R151, and WD) data.

Deep learning architecture Accuracy (%) F1-score
AlexNet 82.6 73.9
VGG16 91.1 86.7
Proposed method 100 100

D. COMPARISON OF THE PROPSED METHOD WITH
OTHER DEEP LEARNING ARCHITECTURES

We have considered other deep learning architectures to
compare our proposed method with. The main paper of
SqueezeNet has extensively claimed that they can reach
AlexNet [64] level accuracy with lesser parameters and only
with a model size of 0.5MB. We also wanted to compare
our proposed method with AlexNet to see if we could reach
the desired level of accuracy. We have used the same data
set built using the 2D wavelet images acquired from the
time domain signals and applied AlexNet. We have achieved
accuracy similar to [26] for AlexNet which is 82.6%. We have
used another deep learning architecture randomly which is
VGG16 [65]. It gained 91.1% accuracy. Fig. 25 presents the
confusion matrices derived for the three classes in our sys-
tem. TABLE 7 presents us with the performance comparison
among the proposed method, VGG16 and AlexNet.

E. DISCUSSION

k-NN based algorithms we have implemented are based on
1D feature vectors. Time domain AE signals were used to
extract crucial features. Even though we have tried our best to
collect the data as precisely as possible, feature plots of these
vectors had some outliers which were difficult to overcome.
This is the reason why it is not possible to get high accuracy
using the k-NN algorithms. Fig. 26 presents the plot of the
feature vectors for three different conditions. As we can see
that some feature points are not exactly in the coordinates that
they are supposed to be which has led to the misclassification
of some of the samples.

The 2D CWT images acquired using continuous wavelet
transform have been used for the deep learning architectures.
CWT images have distinguishable patterns across different
time-frequency scales for each type of condition: normal,
micro-cracks, and macro-cracks. For no crack, which is the
normal condition, we can see that energy of the AE signals
is slightly concentrated at the two-opposite end of the image.
For the images representing micro-cracks have deep energy
concentration at the two opposite ends, however the pattern
starts to fade as we move towards center. For the images
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FIGURE 26. 3D plot of the feature space associated with the k-nearest
neighbor algorithms.

associated with the macro-cracks, we have deep energy con-
centration and prominent pattern which almost forms a line at
the center of the image. Such distinguishable patterns are very
much feasible to be used for classification by deep learning
algorithms. Fig. 27 shows us the variant energy concentration
of the wavelet images vividly.
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FIGURE 28. Performance comparison of all the algorithms in one figure.

Two primary reasons behind SQN-MF (the proposed
method) getting such high are the introduction of the
depth-wise convolution and channel shuffle operation. The
depth-wise separable convolution is a divided convolution
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that divides a standard convolution into a pointwise and
depth-wise convolution of 1 x 1 kernel size [61]. Using this,
it was possible to decrease the complex nature of the network,
while at the same time we could maintain fair precision
by keeping a low number of training weight parameters.
Furthermore, depth-wise separable convolution facilitated us
with separate channels from the convolution region. Also,
it could connect the input and output feature maps one-to-
one through a convolution operation. The channel shuffle
can address the fact that the output channel is solely related
to its corresponding input. It allowed information exchange
among channels and could facilitate with enhanced feature
description. This process of channel shuffling was used to
divide the channels in each group into a couple of sub-
groups and fed every single group with variant sub-groups
in the next layer. This kind of information exchange among
groups of channels improved accuracy. Fig. 28 summarizes
the performance comparison of all the algorithms including
the proposed one in one figure. It can be observed that the
proposed method has vividly outsmarted the others.

VI. CONCLUSION

This paper introduced a continuous wavelet transform (CWT)
based imaging technique accompanied by SqueezeNet with
modified fire modules (SQN-MF) to monitor the crack for-
mation process in reinforced concrete (RC) beams. First,
acoustic emission (AE) signals were acquired from the
three-point bending test. After that, using CWT we built an
image-based dataset corresponding to the collected AE sig-
nals. The proposed lightweight SQN-MF contains our newly
designed fire module with a depth-wise convolutional kernel
and a channel shuffle operation that reduces the number
of parameters and increases the learning ability. It makes
use of the CWT based grayscale images representing three
different conditions: normal, micro-crack, and macro-crack,
with an overall 100% average classification accuracy. It is
20.8% higher than the traditional AE feature-based machine
learning models. The proposed SQN-MF outsmarts the typ-
ical SqueezeNet (SQN-1) and a variant of it with simple
bypass connections (SQN-2). Lastly, SQN-MF achieves a
fair amount of classification accuracy for the data collected
using R15I and WD sensors (87.2 and 69.3), even though
these sensors are not used for structural health monitoring
and are supposed to provide us with poor data points. The
proposed study is unique because it not only is the first
attempt to implement an advanced and sophisticated deep
learning algorithm, but also, we make use of the lightweight
architecture of the SqueezeNet (< 0.5 MB), which paves the
way for developing FPGA based systems that are impossible
to imagine for other deep learning architectures due to their
overwhelming size. The small size of the model will facilitate
us with less training time and communication overhead that
will result in easier distributed training. Additionally, the pro-
posed model will have significant advantages for any kind
of future autonomous embedded system designed to detect
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concrete cracks, since the size of the model will allow for
faster exporting from the cloud.
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