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Abstract: Pipeline leakage remains a challenge in various industries. Acoustic emission (AE) tech-
nology has recently shown great potential for leak diagnosis. Many AE features, such as root mean
square (RMS), peak value, standard deviation, mean value, and entropy, have been suggested to
detect leaks. However, background noise in AE signals makes these features ineffective. The present
paper proposes a pipeline leak detection technique based on acoustic emission event (AEE) features
and a Kolmogorov–Smirnov (KS) test. The AEE features, namely, peak amplitude, energy, rise-time,
decay time, and counts, are inherent properties of AE signals and therefore more suitable for recog-
nizing leak attributes. Surprisingly, the AEE features have received negligible attention. According
to the proposed technique, the AEE features are first extracted from the AE signals. For this purpose,
a sliding window was used with an adaptive threshold so that the properties of both burst- and
continuous-type emissions can be retained. The AEE features form distribution that change its shape
when the pipeline condition changes from normal to leakage. The AEE feature distributions for
leak and healthy conditions were discriminated using the two-sample KS test, and a pipeline leak
indicator (PLI) was obtained. The experimental results demonstrate that the developed PLI accurately
distinguishes the leak and no-leak conditions without any prior leak information and it performs
better than the traditional features such as mean, variance, RMS, and kurtosis.

Keywords: pipeline; leak detection; acoustic emission; Kolmogorov–Smirnov test

1. Introduction

Leaks in pipelines create fluid supply system malfunctions potentially leading to
discharge of hazardous materials into the environment, undue maintenance expenses, in-
creased repair costs, system downtime losses, and severe accidents. Therefore, a continuous
inspection of the pipeline condition is important to detect leaks. Over the past few decades,
numerous external and internal monitoring methods have been proposed for pipeline
leak detection, including negative pressure wave (NPW) techniques [1], accelerometer-
based techniques [2], acoustic emission (AE) technology [3], time-domain reflectometry [4],
distributed temperature sensing systems [5], ultrasonic technology [6], and magnetic
flux leakage techniques [7]. AE technologies have gained significant popularity because
of its rapid leak detection capability, high sensitivity, real-time response, and ease of
retrofitting [8]. A significant amount of research associated with AE expertise primarily
uses feature extraction and pattern recognition techniques to build the leak detection mod-
els [9–12]. Xiao et al. [13] employed wavelet features and a support vector machine (SVM)
for classifying the leak and non-leak states. Wang et al. [14] extracted frequency–width
features from the time-domain pipeline signals and used them to train a support vector
data description (SVDD) model to detect leaks. Zadkarami et al. [15] used a multi-layer
perceptron neural network (MLPNN) and Dempster–Shafer classifier fusion technique for
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learning the leak patterns represented by statistical and wavelet-based features. Li et al. [16]
suggested a leak detection approach based on kernel principal component analysis (KPCA)
and SVM; the KPCA was employed to extract optimal leak features and achieve better
SVM classification. Sun et al. [2] used envelope spectrum entropy features obtained by
local mean decomposition (LMD) of the AE signals to train SVM and recognize leaks.
Sun et al. [17] further applied LMD and WT to extract RMS entropy features that were
then used for building an SVM-leak detection model. Cui et al. [18] used empirical mode
decomposition (EMD) to process the non-stationary pipeline signals and detect leaks in
CO2 gas pipelines. Xu et al. [19] used the wavelet packet transform (WT) and time-domain
features, such as mean value, peak value, RMS value, standard deviation, peak index,
pulse index, waveform index, and root amplitude, in combination with Fuzzy SVM for
identifying leaks. Although these studies were appropriate for leak diagnosis, they suffered
from several shortcomings. First, failure data associated with a pipeline leak are required
to train the supervised learning techniques such as SVM and MLPNN.

In industrial applications, it is impractical to attain the leak data because the damaged
pipeline is immediately replaced to prevent any harmful repercussions. Second, the pattern
recognition methods require a large amount of data for training. Insufficient training
data produces inaccurate results when classifying the leak conditions from the normal
conditions. Third, the earlier feature extraction techniques may fail to represent the leak
signals accurately. AE signals are heavily affected by attenuation and surrounding noise,
causing unexpected changes in the AE waveform distribution. The time-domain features
are sensitive to such variations, creating a false impression of the pipeline condition. The
frequency domain features are corrupted by undesirable frequency components generated
because of external equipment such as pumps and motors. The time–frequency domain
techniques, such as WT, EMD, and LMD, are dependent on the selection of optimal wavelet
bases and frequency modes for extraction of reliable fault features. Additionally, the
time–frequency decomposition of large AE signals is time-consuming. To overcome these
shortcomings, this paper proposes a novel approach using AE-event features and a two-
sample Kolmogorov–Smirnov (KS) test for pipeline leak detection.

The commonly used AE-event (AEE) features are peak amplitude, energy, rise time,
decay time, and counts. The AE-event features primarily focus on the information in
the events or bursts formed in the AE signals because of faults. Consequently, they are
independent of the entire signal distribution and less sensitive to outliers. These features
have demonstrated excellent capabilities to address AE signals from different applications
such as concrete structures and composites [20–23]. Surprisingly, the AEE features have
been rarely used to detect leaks in pipelines. To address this research gap, the current paper
attempts to explore the potential of AEE features for recognizing pipeline leaks. Moreover,
the two-sample KS test was used to model the information in the AEE feature data and
recognize pipeline leaks. The two-sample KS test is a hypothesis testing technique used to
discriminate between the cumulative distribution functions of two data samples [24]. As
such, it can be used to distinguish between the AEE feature data distributions of normal
and leak states in order to reveal the pipeline condition. The two-sample KS-test was
used successfully for fault diagnosis of bearings, pumps, and gears [25–27]. The KS test
offers the advantage that it does not need any prior leak information or a large amount of
training data.

The rest of this paper is organized as follows. Section 2 describes the theoretical
background behind AEE features and the two-sample KS test. Section 3 provides the
outline of the proposed approach. The details of the experimental setup are given in
Section 4. Section 5 discusses the experimental results. Section 6 concludes the work.

2. Technical Background
2.1. Acoustic Emission Event (AEE) Features

Leaks in a pipelines create stress waves that are transmitted through the pipe walls
and recorded through AE sensors installed on the pipeline. These stress waves produce
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transients commonly referred to as AE events or hits. Figure 1 depicts an overview of AEE
and the extracted features. A threshold is set above the level of continuous background
noise to declare an event and avoid false triggers. The AEE features can be defined as
follows [20–23]:

Peak amplitude: Maximum amplitude of AEE;
Energy: Area under the AEE waveform;
Rise time: Time taken by AEE to reach the maximum value beginning from the moment

of the first threshold crossing;
Decay time: Time taken by the AEE to decay from the maximum value to the thresh-

old level;
Counts: Number of times AEE crosses the threshold.
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2.2. Two Sample KS Test

The two-sample KS test distinguishes between two datasets by comparing their
empirical cumulative distribution functions (ECDFs) [25–27]. If the two samples have
identical ECDFs, they are drawn from the same population; otherwise, they belong to
different populations. Mathematically, the hypothesis can be formulated as follows:

Null Hypothesis 0 (H0). F(x) = G(x).

Alternative Hypothesis 1 (H1). F(x) 6= G(x).

where F(x) and G(x) denote the ECDFs of two data distributions tested for similarity. The
ECDFs F(x) and G(x) are computed as follows:

F
(
X1) = P

(
X1

i ≤ x
)
= k1/N1 −∞ < x < ∞

G
(
X2) = P

(
X2

i ≤ x
)
= k2/N2

(1)

where X1 and X2 represent the observations from two datasets, P (Xi ≤ x) denotes the
probability of observations less than or equal to Xi, k1 and k2 are the number of observations
less than or equal to Xi

1 and Xi
2, respectively, and N1 and N2 are the total number of

observations in the two samples.
To validate the above null hypothesis, a distance measure, d-statistic (d-stat), is calcu-

lated. If the d-stat value exceeds the critical value ±dα at significance level α, then the null
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hypothesis is rejected. It is defined as the maximum of absolute difference between two
ECDFs, F(x) and G(x). Mathematically, d-stat can be expressed as:

d− stat = max
{∣∣∣F(X1

i

)
− G(X2

i )
∣∣∣} (2)

where the ECDFs, F(x) and G(x), are computed for observations Xi
1 and Xi

2, respectively.
It is feasible to exploit the d-stat as the pipeline health indicator. The current datasets

acquired from the pipeline can be tested for similarity with those taken from healthy
pipeline conditions. When the test and healthy datasets have similar ECDFs, a low value of
d-stat is obtained. As soon as a leak occurs, the ECDF of the test dataset becomes dissimilar
to that of the healthy dataset and an increase in the d-stat value is observed.

3. Proposed Approach

Figure 2 depicts the layout of the proposed approach. The proposed leak detection
procedure is implemented in the following steps:

1. The AE signals are acquired from the pipeline to be monitored;
2. The AEE features described in Section 2 (A) are extracted from AE signals. An AE

signal contains multiple events occurring because of leakage. These AEEs can be
either continuous or burst type, as shown in Figure 3. The burst-type AE events are
easily distinguishable from the background noise as compared with continuous AE
events. As such, proper setting of the threshold is essential to extract useful features
from both burst and continuous-type AEEs. Therefore, for preventing information
loss, a sliding window of arbitrary length ‘s’ is taken to possibly cover every event,
and the threshold is computed for each sliding window rather than setting a common
threshold for the entire AE signal. Thus, the AEE threshold adapts itself to the
attributes of a particular window. References [20–23] suggest that the peak value is
directly related to the AEE characteristics. Consequently, the adaptive threshold value
is taken equal to a certain percentage ‘p’ of the peak amplitude in a sliding window;

3. The values of the AEE features for different windows produce distributions that
change their shape and size as the pipeline state shifts from healthy to leakage. This
variation is detected by applying the two-sample KS test and computing the d-stat
value using Equation (2). Thus, the d-stat value is used as the pipeline leak indicator
(PLI). An increase in the d-stat value will possibly signify the commencement of a leak
in pipeline. For better interpretation of the analysis, the Equation (2) is rewritten as:

PLI = max
{∣∣∣F(XN

i

)
− G(XL

i )
∣∣∣} (3)

where Xi
N and Xi

L represent the observations corresponding to the normal and leak
conditions, respectively; F(Xi

1) and G(Xi
2) represent the ECDFs computed for observations

Xi
N and Xi

L, respectively.
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4. Experimental Setup

The pipeline AE signals used to validate the proposed technique are gathered from
the experimental set up shown in Figure 4a,b. For complete details on the experimental
setup, readers are advised to refer to our previous publication [28]. However, a brief
overview is given here for a quick reference to the readers. Figure 4a portrays the original
photographs of the test setup and Figure 4b depicts the corresponding schematic diagram.
The experimental arrangement primarily consists of a pipeline carrying water and necessary
data collection accessories such as sensors and a computer. A valve is installed on the
pipeline to simulate leaks. The location of the simulated leaks is depicted in Figure 4b. The
pipeline material is Stainless Steel 304. The outer diameter and thickness of the pipeline
are 114 and 6 mm, respectively. The AE sensors attached to the pipeline via glue gels and
mounting tapes are shown in Figure 4a. The AE sensor type is R15I-AST manufactured by
MISTRAS Group, Inc. A NI-9223 National Instruments Data Acquisition (NI-DAQ) system
along with a programmed computer are used to capture the pipeline condition data. The
sampling frequency was set to 1 MHz. Pencil lead break (PLB) tests were conducted to
confirm the responsiveness of the sensors to the applied load. Initially, the valve remains
closed and the pipeline runs under the normal condition. The pressure in the pipeline is
maintained at 7 bar and the data are collected for 2 min. Afterwards, a leak of size 0.3 mm
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was introduced to the pipeline by opening the valve, and the data were acquired for the
next 2 min. The valve was closed again and the flow in the pipeline was steadied. The
test was then repeated at 13 bar for the same leak size of 0.3 mm. In a similar manner, the
pipeline data were gathered for leaks sizes of 0.5 and 1 mm at 7 and 13 bar, respectively.
Thus, for each test, i.e., a particular leak size and pressure, 240 signal samples were collected.
Of these 240 samples, 60 samples from the normal condition, and 60 samples from the leak
condition were considered for further analysis.
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5. Results and Discussion

The experimental results of the proposed approach are discussed in this section.
Figure 5 shows a plot of the AEE features calculated from a signal sample acquired under
normal and leak conditions corresponding to a 0.3 mm leak size and 7 bar pressure. To
extract the AEE features, a 0.1 s signal of length equal to 100,000 data points was considered.
The length of the sliding window ‘s’ and adaptive threshold value ‘p’ are taken as 1000 data
points and 10%, respectively.
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Figure 6 shows a plot of the AEE features extracted from two different signal samples
collected under 7 bar pressure, one corresponding to the normal condition and another
corresponding to the leak size of 0.3 mm.
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Figure 6. AEE features calculated for signal samples corresponding to normal and a 0.3-mm size leak
under 7 bar pressure conditions.

Figure 7 shows the cumulative probability distribution plots corresponding to the AEE
features shown in Figure 6. The cumulative distribution of AEE features for the normal and
leak conditions have a noticeable difference. This is because of the fact that as the pipeline
condition changes from normal to leakage, the AE signal attributes also change due to
the generation of elastic waves by the leaks. This behavior was exploited to distinguish
between the normal and leak conditions by computing the PLI defined by Equation (3).
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Figure 7. ECDF plots for the different AEE features calculated for signal samples corresponding to a
normal and 0.3-mm leak size acquired under 7 bar pressure.

Figure 8 depicts the PLIs obtained for the experimental tests conducted for the leak
of size 0.3 mm under 7 bar pressure and obtained by substituting different AEE feature
distributions into the two-sample KS test. As shown in Figure 8, the PLIs clearly distinguish
between the normal and leak conditions. Moreover, the PLIs associated with each AEE
feature change by a different amount when the pipeline condition switches from normal
to leakage. As soon as the leak occurs, the PLIs show a significant jump indicating the
separation in ECDFs of AEE features associated with normal and leak signals. This may be
beneficial in making sure that the leak has occurred because the PLI should vary for each
of the AEE features.

When the PLI changes only for a single feature, outliers may be present rather than a
leakage. Similar positive analysis results were obtained for 0.5- and 1-mm size leak tests,
as shown in Figure 9a,b. Therefore, the PLIs are capable of detecting leaks of varying sizes
without prior leak data.

The proposed approach was again tested on the experimental tests conducted at 13 bar
pressure and the corresponding PLI plots are shown in Figure 10a–c. The PLIs successfully
identified the leak conditions by reporting a significant jump on the occurrence of leaks,
even if the pressure condition changed to 13 bar. In summary, the PLI derived using the
proposed approach exhibits good performance in detecting the leak conditions, irrespective
of the leak size and pressure conditions, and they do not require any preceding leak
information for their construction. In addition, the PLIs lie between 0 and 1, which is yet
another advantage because it helps in establishing definite thresholds for leak situations.
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leaks of sizes (a) 0.5 and (b) 1 mm.
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Figure 10. PLI plots corresponding to different AEE features for the experimental tests carried out at
13 bar pressure for leaks of sizes (a) 0.3, (b) 0.5, and (c) 1 mm.
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To further validate the effectiveness of the proposed approach, the derived PLIs were
compared with four commonly used features: mean, variance, RMS, and kurtosis. The
plots of these traditional features for 7 bar pressure and leak sizes of 0.3, 0.5, and 1 mm
are shown in Figure 11. The mean and kurtosis features fluctuate at nearly the same level
and fail to separate the normal and different leak conditions. The variance feature works
for 0.5- and 1-mm leaks; however, it was inaccurate for a smaller leak of 0.3 mm. Only the
RMS feature was successful in recognizing the leak conditions. However, the PLI features
shows a greater sensitivity towards the leak conditions than the RMS feature.
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To confirm this, a new index, the leak sensitivity, was defined, which is measured
as the average deviation in PLI values of the leak conditions with respect to the normal
condition. The leak sensitivity is calculated by Equation (4).

Leak senstivity =
∑T

1 (PLILEAK − PLINORMAL)

T
(4)

where PLILEAK and PLINORMAL denote the leak indicator values corresponding to the leak
and normal conditions, and T is the number of leak samples.

The leak sensitivity values calculated for the different PLIs corresponding to 7 bar
pressure and 0.3 mm leak are Peak amplitude: 0.88, Energy: 0.8, Rise time: 0.12, Decay time:
0.13, and Counts: 0.33, while that for the RMS feature is 0.0028. Therefore, the proposed
PLIs are more sensitive to the leaks than the RMS feature. Thus, it can be concluded that
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the proposed PLIs not only have good leak sensing capability but also perform better than
the previously used features, such as mean, variance, RMS, and kurtosis.

Overall, the proposed method can detect leaks without any prior leak information
and is easy to implement. These qualities make the proposed method attractive for leak
detection in the industries. In the future, the proposed method can be applied to AE signals
along with stochastic resonance [29,30].

6. Conclusions

This paper proposed a leak detection approach using an acoustic emission technology.
The proposed technique first extracts the AEE features from the AE signal. For this purpose,
a sliding window was used with an adaptive threshold so that the properties of both burst-
and continuous-type emissions can be retained. The proposed procedure uses the extracted
AE signal features and two-sample KS test for building a leak indicator. The advantage
of using AEE features is that they are an inherent property of the AE signals and help to
capture the leak information more accurately than traditional statistical features. These
individual AEE features form distributions that are different for the normal and leak
conditions. The tested AEE feature distributions are then distinguished from the normal
conditions by applying the two-sample KS test, which primarily measures the separation
between the respective ECDFs and yields the leak indicator. The two-sample KS test offers
an advantage that it is insensitive to extreme values in the distributions occurring because
of outliers. The proposed approach was tested on experimental datasets collected from an
industrial pipeline, and the results verified that the obtained PLIs remarkably predicted
the leak conditions. In addition, the advocated PLIs outperformed the traditional features,
mean, variance, RMS, and kurtosis in terms of leak recognition ability and leak sensitivity.
Future work will study other well-known statistical tests, such as the T-square test and
F-test, for condition monitoring of pipelines.
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