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Abstract—Hyperspectral images (HSI) feature rich spectral in-
formation in many narrow bands but at a cost of a relatively low spa-
tial resolution. As such, various methods have been developed for
enhancing the spatial resolution of the low-resolution HSI (Lr-HSI)
by fusing it with high-resolution multispectral images (Hr-MSI).
The difference in spectrum range and spatial dimensions between
the Lr-HSI and Hr-MSI has been fundamental but challenging
for multispectral/hyperspectral (MS/HS) fusion. In this article, a
multiscale spatial fusion and regularization induced auxiliary task
based convolutional neural network model is proposed for deep
super-resolution of HSI, where an Lr-HSI is fused with an Hr-MSI
to reconstruct a high-resolution HSI (Hr-HSI) counterpart. The
multiscale fusion is used to efficiently address the discrepancy in
spatial resolutions between the two inputs. Based on the general
assumption that the acquired Hr-MSI and the reconstructed Hr-
HSI share similar underlying characteristics, the auxiliary task
is proposed to learn a representation for improved generality of
the model and reduced overfitting. Experimental results on five
public datasets have validated the effectiveness of our approach in
comparison with several state-of-the-art methods.

Index Terms—Auxiliary task, convolutional neural networks
(CNN), hyperspectral image (HSI), super-resolution (SR),
multiscale spatial fusion.
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I. INTRODUCTION

HYPERSPECTRAL images (HSI) consist of contiguous
bands from across the electromagnetic spectrum, where

each pixel in the image scene is composed of a spectral vector
as its profile or signature. With the rich spectral characteris-
tics, HSI has been successfully applied in a wide range of
applications, such as precision agriculture [1]–[4], target de-
tection [5], image enhancement [6]–[8], land cover analysis [9],
as well as the measurement of chemical substances [10], and
change detection [11]. In fact, there is always the inevitable
tradeoff between the spatial and spectral resolutions in cap-
tured HSI, which means that images cannot be acquired with
both high spatial and high spectral resolutions at the same
time.

Recent developments in image super-resolution (SR) have
heightened the need for hyperspectral image super-resolution
(HSI-SR). Image SR aims to reconstruct a high-resolution
(HR) image from one or several low-resolution (LR) images.
Due to the high spectral dimension of HSI, the reconstructed
Hr-HSI only from Lr-HSIs usually contains spectral and/or
spatial distortion. Given the auxiliary information, such as the
panchromatic (PAN) image, Red, Green, and Blue (RGB) image,
or multispectral image (MSI), the fusion-based HSI-SR has
received increasing attention recently. Originated from image
pan-sharpening [12]–[14], HSI-SR is a combination of Lr-HSI
and Hr-MSI to create a single Hr-HSI.

Recently, various techniques have been proposed for MS/HS
fusion. Typically, the HSI SR approaches can be roughly cat-
egorized into three classes, i.e., dictionary-based sparse repre-
sentation, maximum a posteriori (MAP) based Bayesian, and
deep learning. In sparse representation approaches, the source
images are represented by a dictionary and the corresponding
sparse coefficients, where the matrix factorization and the tensor
factorization are most commonly used. The matrix factorization
can help to decompose high-dimensional data and fuse MS/HS
data [15], [16]. Dong et al. [17] proposed a nonnegative struc-
tured sparse representation (NSSR) method to jointly estimate
the dictionary and the sparse coefficients based on the prior
knowledge of the spatial-spectral sparsity in the source images.
As the observed Lr-HSIs and Hr-MSIs can capture the same
scene as the target Hr-HSIs, they are assumed to share the same
underlying spectral materials or endmembers. Lanaras et al.
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[18] proposed the coupled spectral unmixing method for the
fusion problem, where the Lr-HSI and Hr-MSI are alternatively
unmixed to estimate the spectral endmembers and abundances.

By extending the matrix factorization to higher order tensors,
tensor factorization can extract the underlying factors in high-
order dataset [19]–[21]. Dian et al. [19] proposed the nonlocal
sparse tensor factorization (NLSTF) to reconstruct HSI-SR in a
cube-by-cube manner, by assuming that each cube is formed by
a core coefficient tensor and dictionaries of width mode, height
mode, and spectral mode. In [19], the nonlocal spatial self-
similarity of Hr-MSI is exploited through a clustering method
to constrain the spatial correlation in the Hr-HSI. In [22], they
proposed a low-tensor train rank representation (LTTR) method
by considering the Hr-HSI as a four-dimensional tensor with
nonlocal LTTR prior from HR-HSI to regularize the fusion prob-
lem. Various tensor factorization-based approaches have been
used for the SR fusion problem, including the nonlocal patch
tensor sparse representation [23], and subspace-based low tensor
multirank regularization [24]. The issue of the factorization-
based methods is that there is not a single unique decomposition;
thus, it is difficult to determine the basic elements or factorization
rank. Some prior information of the HR-HSI is introduced to
regularize the SR problem in the previously mentioned work,
including priors of spectral unmixing [18], nonlocal spatial sim-
ilarities [17], sparse priors [19], and nonlocal LTTR prior [22].

As a different framework, Bayesian approaches typically
estimate the posterior distribution with the MAP based on the
prior knowledge and the observation model [25]–[29]. Since
the HSI-SR problem is usually ill-posed, the Bayesian methods
define an appropriate prior distribution for the scene of interest
to regulate the problem. Instead of incorporating simple Gaus-
sian prior, sparse representation is used as sparsity promoted
Gaussian to regulate the problem. Akhtar et al. [25] proposed
a Bayesian dictionary learning and sparse coding algorithm
for HSI-SR that has shown improved performance. In [26]
and [27], Wei et al. introduced subspace transformation and a
regularization to cope with the ill-posed inverse problem. Later,
a Sylvester equation-based explicit solution was integrated into
the Bayesian MS/HS fusion [28] to significantly decrease the
computational complexity. In [29], a method called Hysure was
proposed that use a form of vector total variation [30] for the
regularizer. The major drawback of the Bayesian methods is
that prior assumptions of distribution, which typically derive
from well-known distributions, may not observe in real-world
datasets.

Different from the conventional methods, deep learning-based
methods impose fewer assumptions on the prior knowledge
of to-be-estimated Hr-HSI and still achieve a good result for
MS/HS fusion. It has previously been used to solve the pan-
sharpening problems [12], [31], [32], and later developed for
MS/HS fusion in nonblind fusion with both supervised [14],
[33]–[35] and unsupervised [36], [37] ones or blind fusion [38].
Recent work has shown hybrid methods by combining the deep
learning with sparse representation [39], [40]. The drawback
of deep learning-based methods is a lack of specific designs
for MS/HS fusion, which often use a generic CNNs-based

framework being designed for other tasks or different types of
images, thus not effective. There is little attention to the charac-
teristics of HSI, for example, spectral low-rankness. Although
the low-rank property is not focused in our work, this implies
the possibility of introducing additional regularization to HSI
reconstruction.

In this article, we first propose a novel CNN architecture to
fuse the Lr-HSI and the Hr-MSI in a progressive manner. To
address the spatial difference between the Hr-MSI and the Lr-
HSI, recent CNN-based approaches [41], [42] have upsampled
images from the Lr-HSI to the image that has a size of Hr-HSI.
This strategy would increase computational demand without
compromising the SR performance. Second, the regularization
methods in a generic CNNs-based framework are insufficient
for specific tasks or image types; thus, additional constraints are,
therefore, needed to regulate the HSI-SR solution. The current
deep learning-based methods have considered only Hr-HSI as
the ground-truth for the supervised task while paying less at-
tention on unsupervised features of the Hr-MSI. As the Hr-MSI
and the Hr-HSI are both Hr images and capture the same scene,
we exploit representation from Hr-MSI through unsupervised
learning to improve the generality of our MS/HS fusion network.

The major contributions of the proposed multiscale spatial
fusion and auxiliary task (MSAT) are twofold

1) A multiscale spatial and spectral architecture is proposed,
which can efficiently and effectively exploit the spatial and
spectral features from both Hr-MSIs and Lr-HSIs.

2) An auxiliary unsupervised task is proposed, which acts
as an additional form of regularization to further improve the
generalization performance of the supervised task. This not only
significantly improve the performance of our proposed MSAT
model but also that of other CNN models when tested on five
publicly available datasets.

The remainder of this article is organized as follows. In
Section II, a review of the related MS/HS fusion methods is
given. Section III formulates the problem of the MS/HS fusion
and details our proposed MSAT model for MS/HS fusion. In
Section IV, experimental results on five public HSI datasets
and discussions are represented. Some concluding remarks and
future directions are given in Section V.

II. RELATED WORK

A. Joint Learning via Progressively Downsampling and
Upsampling Processes

A joint learning operation in a CNN-based model is to
combine features using the summation or concatenation of the
tensors, which normally requires tensors to have the same spa-
tial dimension. Since the observed Hr-MSI and Lr-HSI have
different spatial resolutions, two stages are employed for the
fusion framework, as detailed in the following. In the first stage,
the Hr-MSI is progressively downsampled into multiscales and
then fused with the LrHS images of the same spatial size. For
the second phase, there are three commonly used upsampling
techniques for image SR, i.e., preupsampling, postupsampling,
and progressive upsampling. When the upsampling factor is
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Fig. 1. Both the observed Hr-MSI and estimated Hr-HSI share some common
spatial representation.

large, the first two techniques increase either the parameters
of the network or the difficulty of training. The progressive
upsampling method, however, allows the training to gradually
shift its attention from the large-scale structure of image to finer-
scale details instead of having to learn all scales simultaneously.
Therefore, the architecture appears similar to the U-Net [43],
which not only significantly reduces the learning difficulty but
also improves the performance.

B. Multitask Learning

Multitask learning has improved the generalization perfor-
mance [44]. Apart from directly reconstructing Hr-HSI in a
supervised manner, we introduce an unsupervised auxiliary task,
aiming to reconstruct an Hr-MSI from the corrupted Hr-MSI.
Intuitively, the observed Hr-MSI and estimated Hr-HSI should
share similar spatial information, as shown in Fig. 1; otherwise,
the MS/HS fusion task becomes trivial.

This shared representation is essential for estimating both the
Hr-MSI and Hr-HSI, where this feature is the representative for
the Hr-MSI data and also crucial for estimating the Hr-HSI.
Directly estimating the Hr-HSI from any given Lr-HSI and
Hr-MSI is likely an under-constrained problem. This means
solutions can be found to well fit the data but often fail to
extract the underlying patterns in the data, resulting in poor
generalization. Introducing an auxiliary task for reconstructing
Hr-MSI will train the model to find the solution over a small area
of the intersection of two tasks rather than on a broader area of a
single task. Therefore, this can help the network to achieve faster
and better convergence. Moreover, the auxiliary task acts as a
regularizer by introducing a reductive bias, where the number
of possible solutions can be reduced.

Hard parameter sharing is the most commonly used approach
in multitask learning with neural networks, as shown in Fig. 2.
It is generally applied by sharing the hidden layers between all
tasks while keeping several task-specific output layers. When
training jointly, both Hr-MSI and Hr-HSI tasks can extract mutu-
ally important features to reduce the total error of reconstruction,
i.e., enabling the shared layer to capture the common features
of both. This is equivalent to the sparse representation-based
method, e.g., the NLSTF [14] method, that uses the nonlocal
self-similarity of Hr-MSI to impose the spatial constraints on
the estimated Hr-HSI.

Fig. 2. Hard parameter sharing for multitask learning in deep neural networks.

C. Denoising With the Autoencoders

Given Hr-MSIs as the high-resolution images, an autoencoder
can also be used as an auxiliary task for learning a compressed
representation of Hr-MSIs, which is then used to impose regu-
larization on the HSI SR. The convolutional autoencoder is an
unsupervised learning method, which first learns the represen-
tations by performing the convolution and downsampling on the
input. These representations are then decoded by upsampling
and convolutions to reconstruct the original image of input. The
denoising autoencoder (DAE) [45] is an extension to the classical
autoencoder, which reconstructs the input from a corrupted
version of it.

D. Fusion-Based HSI-SR

Borrowing spatial information from the high-resolution aux-
iliary image (e.g., RGB, PAN, MSI) is commonly used in the
MS/HS fusion-based HSI-SR methods. The estimated Hr-HSI
is assumed to share the spatial information with the auxiliary
image and also similar spectral information with the Lr-HSI.
The relationship between the Hr-HSI and Hr-MSI was analyzed
in [46], where the camera spectral sensitivity that generates the
Hr-MSI was exploited from the Hr-HSI before being applied to
improve the Hr-HSI reconstruction. To exploit correlations in
both the spectral and spatial domains, the sparse representation
methods are used to estimate the key elements of Hr-HSI in both
the source images. Although these approaches have achieved
competitive performance, the handcraft prior between the input
images and the target image is needed. Most recently, some deep
learning-based methods [33]–[40] have gradually become pop-
ular due to their superior performance and fewer assumptions in
this context.

III. PROPOSED APPROACH

For notational convenience, all Lr-HSI, Hr-MSI, and Hr-HSI
are denoted as two-dimensional matrices. Let the matrix rep-
resenting the Lr-HSI be Z ∈ RC×hw with C bands and spatial
dimension hw, and let us denote Y ∈ Rc×WH the obtained Hr-
MSI with c spectral bands and spatial dimension WH. The goal is
to estimate the Hr-HSI, present as X ∈RC×WH , with both high
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Fig. 3. Architecture of the proposed MSAT. The same yellow or green color boxes indicate shared variables between the supervised and unsupervised tasks.
(a) Baseline architecture without auxiliary task. (b) MSAT architecture.

spatial and spectral resolutions. In general, Hr-MSI has much
higher spatial resolution than Lr-HSI (HW � hw), and Lr-HSI
has a much higher spectral resolution than the Hr-MSI (C � c).

The Lr-HSI can be regarded as a spatially downsampled
version of the Hr-HSI

Z = XBS (1)

where B ∈ RWH×WH represents a convolution between the
point spread function of the sensor and the Hr-HSI band, and
S ∈ RWH×wh is a downsampling matrix.

Similarly, the Hr-MSI, e.g., a RGB/PAN image, can be taken
as a spectrally downsampled version of the Hr-HSI

Y = RX (2)

where R∈Rc×C is the corresponding camera spectral response
function.

The problem of HSI-SR can be solved by learning the map-
ping between X and the coupled Y, Z in the following in a fully
convolutional fashion using the gradient descent. The proposed
multitask objective is represented as

argmin
θ,ψ

‖ f(X|θ,Y,Z)−X ‖22

+ γ ‖ g(Y|ψ, Ỹ)−Y ‖22 +ηR(X) (3)

where f(X|θ,Y,Z) and g(Y|ψ, Ỹ) are the outputs of the
proposed network; θ and ψ are trainable parameters of two
subnetworks; and γ and η denote two predefined tradeoff pa-
rameters. During the multitask learning, a part of θ and ψ is
shared, as illustrated in Fig. 2. The first and second terms are
the pixelwise L2 distance between the network outputs and the
corresponding ground-truth X and Y, respectively. The final term
refers to the L2 regulation.

There are two major objectives for designing our fusion
network. One is to reduce the spatial discrepancy between the
two observed data. The other is to improve the generalization
of representation by sharing the main supervised task with an
unsupervised auxiliary task. These representations are not only
useful to support the decision for the supervised task but also
work as a regularizer for more effective HSI SR [47].

We detail our MS/HS fusion network in Fig. 3, in which (a) il-
lustrates the baseline architecture and (b) a baseline architecture
extended with the proposed auxiliary task. The construction of
our model involves a top–down pathway, a bottom–up pathway,
an auxiliary task, and some lateral connections, as introduced in
the following.

Top–down pathway (MSI branch): In this pathway, the given
training Hr-MSI is progressively downsampled with a scaling
factor of 2 into five hierarchical spatial levels, starting from an
image size of 96 × 96 × 3 to 3 × 3 × 31. Often, there are
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many layers that produce output maps of the same size, which
are defined in the same network stage or level. Let Y (s−1) and
Y (s) denote the input and output feature maps of the sth level
in the MSI branch, and the relation between Y (s−1) and Y (s) is
formulated by

Y (s−1) = Resblock(Downsample(Y (s))) (4)

where Resblock(·) and Downsample(·) denote, respectively, the
ResNet block and a downsample operation using a convolution
layer with strike= 2. The highest level (s= 5) is the feature maps
extracted from the observed Hr-MSI without downsampling.

An auxiliary task (Denoising branch): In the proposed model
[see Fig. 3(b)], a light DAE is introduced as an auxiliary task,
which is trained to reconstruct the original observation Y from
its corrupted version Ỹ by minimizing the error between the
input Y and its reconstruction g(Y|ψ, Ỹ) from the corrupted
Ỹ. With the presence of noise, the DAE is forced to learn the
representation of the data, later which is able to reconstruct the
original input. The corrupted Ỹ = Y +N (μ, σ2) is used to
train the DAE with the clean version Y fed into the Encoder to
extract the underlying representation for both tasks. Formally,
the representation of Hr-MSI at multiple levels Ȳs, Ȳs−1, . . . , Ȳ0

is extracted as follows:

Ŷs, Ŷs−1, . . . , Ŷ0 = Encoder(Ỹ ) (5)

Ẏs, Ẏs−1, . . . , Ẏ0 = Decoder(Ŷs, Ŷs−1, . . . , Ŷ0) (6)

Ȳs, Ȳs−1, . . . , Ȳ0 = Encoder(Y ). (7)

We then use features Ȳs, Ȳs−1, . . . , Ȳ0 that come after the ReLU
activation for a supervised task, and our model is trained in an
end-to-end manner.

Lateral connections between the main task and the auxiliary
task: The DAE relies on a certain number of training (noisy) ex-
amples to learn the representations/patterns before transferring
them to the main task. Our main task should, therefore, to decide
when to use such information and when to forget irrelevant
ones. The simple mechanism is to use a 1×1 convolution layer.
However, one problem with this is that the main task may neglect
shared representations by setting the kernel parameters to zeros.
The total loss is then minimized by decreasing each supervised
and unsupervised loss separately. The representations learned
by the DAE, thus, are of no use to the main task. To avoid this
unwanted effect, we introduce a compression mechanism by
taking advantage of a 1×1 convolution layer. Concretely, the
feature maps extracted from Hr-MSI in both the denoising task
and the main task are concatenated and sent to a 1×1 convolution
layer. This layer performs dimensionality reduction and forces
the main task to utilize the information from the denoising task.

Y
(l)

fused = Conv1x1(Concatenate(Y (l), Ȳ (l))). (8)

Bottom–up pathway (HSI branch): The bottom–up pathway
hallucinates higher resolution features by upsampling the spatial
feature maps from lower levels of the Lr-HSI

X(s−1) = Upsample(Resblock(X(s−2))) (9)

where Resblock(·) denotes ResNet block and Upsample(·) is an
upsample operation using a transposed convolution layer. The
upsampled map is then merged with the corresponding top–
down map by elementwise addition

X̂(s−1) = X(s−1) + Y
(s−1)

fused . (10)

The top–down pathway is rich in spatial information, while
the bottom–up pathway contains a high level of spectral infor-
mation. To build a deep network without changing the network
topology, the parameters α and β control the depth of the
network. Only one residual block (α = 1, β = 1) is used at a
certain spatial levels unless stated otherwise. Our residual block
is derived from the MobileNetV1 [48], in which the conventional
3 × 3 convolution is replaced by a 3 × 3 depthwise separable
convolution. The downsampling and upsampling blocks refer to
one-step convolution with stride = 2 and a transpose convolu-
tion, respectively.

IV. EXPERIMENTAL DETAILS

A. Experimental Database

For performance evaluation, we conduct experiments on
five public benchmark datasets: CAVE [49], Harvard [50],
ICVL [51], Chikusei [52], and a space-borne images of Roman
Colosseum acquired by World View-2. The CAVE dataset [49]
comprises 32 indoor HSIs captured under controlled illumina-
tion. The images have 31 spectral bands with a spatial dimension
of 512×512 pixels, and a spectral sampling gap of 10 nm from
400 to 700 nm. The Harvard dataset [50] has 50 indoor and
outdoor images, recorded under daylight illumination, where
27 images were under artificial or mixed illumination. With
a spatial size of 1392×1040 pixels, each HSI has 31 spectral
bands, with a 10-nm spectral sampling gap within [420, 720] nm.
The ICVL dataset [51] contains 201 HSIs of real-world indoor
and outdoor scenes and has 31 spectral bands each ranging
from 400 to 700 nm at a 10 nm increment. We use only the
top left 1024×1024 pixels for the convenience of the spatial
downsampling. The Chikusei scene [52] is an airborne HS image
taken over Chikusei, Ibaraki, Japan. The image has a spatial
dimension of 2517 × 2335 pixels, comprising 128 bands in
the spectral range from 363 to 1018 nm. We select a 500 ×
2210 pixel-size image from the top area of the original data
for training. Besides, we extract 16 nonoverlapped 448 × 448
images as the testing set. The sample images of the Roman
Colosseum contain an Hr-MSI (RGB image) of size 1676 ×
2632 × 3 and an Lr-HSI image of size 419 × 658 × 8. We
select 208 × 658 and 836 × 2632 pixels image from Lr-HSI and
Hr-MSI for training and the remaining for testing data. Since the
ground-truth is not available, we follow Wald’s training strategy
for simulated experiments. The original images are filtered by a
9 × 9 Gaussian smoothing kernel and downsampled by a factor
of 4. The Lr-HSI, therefore, can be treated as the ground-truth
Hr-MSI. The original HSIs from the four other databases are
used as the ground-truth images. We downsample the Hr-HSIs
by averaging the 32×32 disjoint spatial blocks to generate
the Lr-HSIs. The Hr-MSI (RGB image) of the same scene is
stimulated by downsampling X with a spectral model using a
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spectral dowmsampling matrix derived from the response of a
Nikon D700 camera. The CAVE, Harvard, and ICVL datasets
are split into a training set of 20, 30, and 75 images and a test
set of 12, 20, and 25 images, respectively.

To prepare the training samples, we extract 96×96 overlapped
patches from the training images as reference Hr-HSI images.
The Hr-HSI, Hr-MSI, and Lr-HSI images are sized of 96×96×S,
96×96×3, and 3×3×S, respectively, where S refers to the
number of spectral bands in each experimental dataset. We use
a fixed weighting factor γ within [1e-3, 1e-2] to balance the
supervised loss and the unsupervised loss. When γ is too small,
i.e., 1e-4, the problem (3) reduces to solving one single-task
learning problem. On the other hand, when γ is too large,
i.e., 1e-1, the auxiliary task can prevent the primary task from
reconstructing the details.

B. Quantitative Metrics

Four quantitative picture quality indices are utilized for per-
formance evaluation, which include the root-mean-square error
(RMSE), structural similarity (SSIM) [53], spectral angle map-
ping (SAM) [54], and the relative dimensionless global error in
synthesis (ERGAS) [55].

The RMSE between the reconstructed and the original HSIs
is defined as the average RMSE of all bands, e.g.,

RMSE(X, X̂) =
1

S

S∑
i=1

RMSE(Xi, X̂i) (11)

whereXi and X̂i denote the ith band images of the ground-truth
X ∈ RNW×NH×S and the estimated Hr-HSI X̂ ∈ RNW×NH×S ,

respectively, and RMSE(Xi, X̂i) =

√∑N
j=1‖Xi

j−X̂i
j‖2

N , where
N = NH ×NW . The RMSE is commonly used to compare the
difference between two images by computing the variation in
pixel values. The reconstructed image is close to the reference
image when the RMSE value is near zero.

The structure similarity index measure is defined as the aver-
age value of all bands, i.e.,

SSIM(X, X̂) =
1

S

S∑
i=1

SSIM(Xi, X̂i) (12)

where SSIM(x, y) =
(2μxμy+C1)(2σxy+C2)

(μ2
x+μ

2
y+C1)(σ2

x+σ
2
y+C2)

, μ and σ are the

mean intensity and the standard deviation, respectively, and C1,
C2 are two constants. The SSIM is used to compare the local
patterns of pixel intensities between the two compared images
and its values are range between 0 and 1. The value 1 indicates
that the reference and reconstructed images are identical.

The SAM is defined as an angle between the estimated pixel
x̂j and the ground truth pixel xj over the whole image

SAM(X, X̂) =
1

N

N∑
j=1

arcos
x̂Tj xj

‖ x̂j ‖2‖ xj ‖2 . (13)

The SAM is performed on a pixel-by-pixel base. A value of
SAM equal to zero indicates no spectral distortion.

TABLE I
AVERAGE QUANTITATIVE RESULTS OF THE COMPARED METHODS USING 12

TESTING IMAGES ON THE CAVE DATASET

Finally, the ERGAS is defined as

ERGAS(X, X̂) =
100

d

√
1

S

∑S

i=1

MSE(X̂i, Xi)

μ2
X̂i

(14)

whereμX̂i is the mean of X̂i, MSE(X̂i, Xi) is the mean-squared
error between X̂i andXi, and d is a spatial downsampling factor.
The ERGAS is used to determine the image’s quality in terms of
the normalized average error of each band. Increased ERGAS
indicates that the reconstructed image is distorted, whereas
decreased ERGAS means that the reconstructed image is more
similar to the reference image.

C. Training Details

For hardware and software settings, all experiments are im-
plemented on the TensorFlow with CUDA 9.0 and cuDNN
back-ends with a GPU of NVIDIA GeForce GT 1030. We trained
the model with 40 000 iterations with a batch size of 16. The
ADAM optimization [56] algorithm was used with an initial
learning rate of 0.00035, which reduces by 30% after every
10 000 iterations. Only the flipping was used to augment the
data. Additional Gaussian noise added to the original inputs is
zero-mean with a variance within [0.05, 0.2].

D. Experimental Results

We set up our MSAT with α= 0 and β = 1 for small training
dataset of CAVE and Harvard, and α = 0 and β = 2 for ICVL.
Since our method needs training, we compare the performance
on the testing set instead of the full dataset. The comparison
methods include NLSTF1 [19], NSSR2 [17], and LTTR3 [22]
methods, which represent the state-of-the-art sparse representa-
tion based approaches; the hyperspectral super-resolution net-
work (HSRnet)4 [41] and the model-guided deep convolutional
network (MoG-DCN)5 [42] represent the state-of-the-art deep
learning-based SR methods. Table I lists the average results of
the compared methods on the CAVE testing set, where the best
results are highlighted in bold for clarity. As seen, the proposed
method achieves a better performance than all others in terms
of ERGAS, SAM, and SSIM, although the RMSE is not the

1[Online]. Available: https://github.com/renweidian/NLSTF
2[Online]. Available: https://see.xidian.edu.cn/faculty/wsdong/HSI_SR_

Project.htm
3[Online]. Available: https://github.com/renweidian/LTTR
4[Online]. Available: https://github.com/liangjiandeng/HSRnet
5[Online]. Available: https://github.com/chengerr/Model-Guided-Deep-

Hyperspectral-Image-Super-resolution

https://github.com/renweidian/NLSTF
https://see.xidian.edu.cn/faculty/wsdong/HSI_SR_Project.htm
https://see.xidian.edu.cn/faculty/wsdong/HSI_SR_Project.htm
https://github.com/renweidian/LTTR
https://github.com/liangjiandeng/HSRnet
https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-Super-resolution
https://github.com/chengerr/Model-Guided-Deep-Hyperspectral-Image-Super-resolution


HA et al.: MULTISCALE SPATIAL FUSION AND REGULARIZATION INDUCED UNSUPERVISED AUXILIARY TASK CNN MODEL FOR DEEP SR OF HSI 4589

Fig. 4. First and second rows: the reconstructed images and the corresponding error images of the compared methods for Harvard at 460 nm band. Third row
and Fourth row: reconstructed images and corresponding error images of the compared methods for Harvard at 620 nm band. (a) NLSTF method [19] (RMSE =
3.33, ERGAS = 0.19, SAM = 2.34, SSIM = 0.96). (b) NSSR method [17] (RMSE = 3.36, ERGAS = 0.20, SAM = 2.51, SSIM = 0.96). (c) LTTR method [22]
(RMSE = 1.87, ERGAS = 0.161, SAM = 2.27, SSIM = 0.972). (d) HSRnet method [41] (RMSE = 3.12, ERGAS = 0.193, SAM = 2.59, SSIM = 0.963).
(e) MoG-DCN method [42] (RMSE = 2.62, ERGAS = 0.189, SAM = 2.41, SSIM = 0.972). (f) Proposed MSAT (RMSE = 2.37, ERGAS = 0.173, SAM = 2.38,
SSIM = 0.972). (g) Ground-truth.

TABLE II
AVERAGE QUANTITATIVE RESULTS OF THE COMPARED METHODS OVER 20

TESTING IMAGES ON THE HARVARD DATASET

least. With just a few samples used for training suggests that
our model has the potential to further improve the RMSE scores
when more training images are available.

The quantitative averages on the Harvard database are com-
pared in Table II. Although none of these methods can con-
sistently outperform others, the LTTR [22] seems to perform
better on the Harvard dataset. The proposed approach achieves
the competitive results in terms of RMSE and SSIM, where
the ERGAS and SAM are slightly worse than others. Fig. 4
shows a reconstructed image from the Harvard test dataset. As
the NLSTF [19] method is actually a variation of the NSSR [17]
algorithm, visual inspection validates that the former one closely
resembled the patterns in the latter. The reconstructed images

from three deep learning-based methods also follow the closely
mirrored patterns. Among them, the LTTR [22] and the proposed
MSAT recover more spatial details of the HSI.

Obviously, deep learning-based methods require sufficient
features by a grant from a larger amount of training data or
properties of the datasets. As a result, small training dataset,
as well as the high training/test split ratio from CAVE (20
images/12 images ≈ 62.5/37.5%) or Harvard (30 images/20
images≈ 60/40%), will cause high variance in training of model
or overfitting. Another issue is unrepresentative training dataset,
which means that the data available during training are insuf-
ficient to capture the model, relative to the validation dataset.
Without increasing the model complexity, we randomly choose
100 images from the ICVL dataset, where 75 images are used for
training and remaining 25 for testing. The performance of our
method now consistently outperforms the compared methods
significantly with a more considerable margin, as shown in
Fig. 5 and Table III. As seen from Table III, the proposed
MSAT method significantly outperforms the compared models
of NLSTF [19], NSSR [17], LTTR [22], HSRnet [41], and
MoG-DCN [42] in terms of all the four quantitative metrics.
Furthermore, our model produced consistently lower variance
around the average score than all others. In Figs. 6 and 7, we
also show the reconstructed images and the error images, where
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Fig. 5. Comparison of our proposed CNN-based method versus five approaches on the testing set of 25 images from the ICVL dataset.

TABLE III
AVERAGE RESULTS OF THE COMPARED METHODS (25 TESTING IMAGES, 75

TRAINING IMAGES)

the test results are for an outdoor image BGU_0403-1419-1 and
an indoor image objects_0924-1629 from the ICVL dataset. The
NLSTF [19] and NSSR [17] again perform worse as shown
in the changed brightness, while the LTTR [22] and the pro-
posed MSAT approaches perform better regarding the well pre-
served spatial and spectral structures. The HSRnet [41] and the
MoG-DCN [42] are still unable to surpass the LTTR [22] in
ICVL dataset.

Table IV compares the quantitative average of all compared
methods using 16 testing images on the Chikusei dataset. As the
training and test samples are cropped from the same image, they
have common features and do not suffer from overfitting and
unrepresentative training dataset. Fig. 8 shows the composition
of test samples with bands of 70, 100, and 36 as a false-color

TABLE IV
AVERAGE RESULTS OF THE COMPARED METHODS OVER 16 TESTING SAMPLES

IN THE CHIKUSEI DATASET

image with the error image given in all three channels. As
seen, the three sparse representation-based approaches perform
worse compare to deep learning-based methods. The proposed
method significantly outperforms three sparse representation-
based methods with a large margin while still performing better
than the HSRnet [41] and the MoG-DCN [42]. The composi-
tion image obtain from the proposed method is closest to the
ground-truth, while other methods show obvious unsatisfactory
reconstruction.

The fusion result on real space-borne HS dataset is shown
in Fig. 9. As the ground-truth Hr-HSIs are unavailable, we
follow the procedure of training and measure the performance
by comparing the resulting image with the upsampled image of
Lr-HSI. As seen, the resulting image obtained from our proposed
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Fig. 6. Reconstructed images and corresponding error images of the compared methods for ICVL at 460 nm band (first two rows) and at 620 nm (the last two
rows). (a) NLSTF method [19] (RMSE = 1.96, ERGAS = 0.13, SAM = 1.17, SSIM = 0.99). (b) NSSR method [17] (RMSE = 1.93, ERGAS = 0.13, SAM =
1.07, SSIM = 0.99). (c) LTTR method [22] (RMSE = 1.15, ERGAS = 0.085, SAM = 1.06, SSIM = 0.994). (d) HSRnet method [41] (RMSE = 1.36, ERGAS =
0.091, SAM = 1.07, SSIM = 0.994). (e) MoG-DCN method [42] (RMSE = 1.13, ERGAS = 0.067, SAM = 0.098, SSIM = 0.995). (f) Proposed MSAT (RMSE
= 0.96, ERGAS = 0.05, SAM = 0.90, SSIM = 0.996). (g) Ground-truth.

Fig. 7. Reconstructed images and corresponding error images of the compared methods for ICVL at 540 nm band (first two rows) and at 620 nm (the last two
rows). (a) NLSTF method [19] (RMSE = 1.75, ERGAS = 0.07, SAM = 0.64, SSIM = 0.98). (b) NSSR method [17] (RMSE = 1.69, ERGAS = 0.07, SAM =
0.60, SSIM = 0.99). (c) LTTR method [22] (RMSE = 1.26, ERGAS = 0.548, SAM = 0.69, SSIM = 0.992). (d) HSRnet method [41] (RMSE = 1.48, ERGAS =
0.067, SAM = 0.62, SSIM = 0.990). (e) MoG-DCN method [42] (RMSE = 1.22, ERGAS = 0.534, SAM = 0.68, SSIM = 0.993). (f) Proposed MSAT (RMSE
= 1.19, ERGAS = 0.04, SAM = 0.64, SSIM = 0.993). (g) Ground-truth.
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Fig. 8. HSI-SR results on the Chikusei dataset of all competing methods. First and Fourth row: the false-color image with bands (70, 100, 36). Second and Fifth
rows: the corresponding error images compared to the ground-truth.

Fig. 9. Hr-MSI (RGB) and Lr-HSI images are of the left bottom area of Roman Colosseum acquired by World View-2. The composite image of the HS image
with bands 5-3-2 as R-G-B is displayed.
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Fig. 10. Comparison of the proposed MSAT to two deep learning-based
methods (HSRnet [41] and MoG-DCN [42]) over the validation set in the Roman
Colosseum dataset.

method is much closer to Lr-HSI and Hr-MSI. Furthermore,
Fig. 10 compares the performance of three deep learning-based
HS/MS fusion methods over the validation set. The HSR-
net [41] performs worst among the three methods, while the
MoG-DCN [42] cannot outperform our smaller size baseline
model. An introduced auxiliary task provides a consistent gain
in generality and achieves the best performance.

E. Effectiveness of Multiscale Image Decomposition and
Auxiliary Task

We performed an ablation study to verify the effect of Hr-MSI
decomposition and the proposed auxiliary task used in training
on the CAVE dataset, where the L2 regularization is turned
OFFfor a fair comparison in these evaluations. We denote w/o
3×3 as the case without Hr-MSI decomposition to the spatial
size of 3×3 while keeping other settings the same. We observed
that the more scales of the Hr-MSI is decomposed, the better
performance it delivers. As shown in Fig. 11, the lowest recon-
struction loss in both the training and validation is achieved when
the Hr-MSI is decomposed into the maximum scales of five, of
which the final scale has a spatial size equal to that of the Lr-HSI.
Reducing one level of decomposition may result in performance
degradation. Each smaller scale of the image contains features
to approximate the original image, and the early applying of the
joint-training can help to refine information in a coarse-to-fine
manner. Although the Lr-HSI does not decompose further from
the size of 3×3, the results shown in Fig. 11 suggest that joint
learning from smallest levels would reduce the reconstruction
error. Finally, the combination of both five-level decompositions
and an unsupervised loss induced by the auxiliary task has
significantly outperformed all others after about only ten epochs
during the training or about five epochs during the validation.
The turbulences at 8 and 15 epochs indicate the outlier of the
unsupervised features from the auxiliary task. Although they do
not degrade the final performance, reducing the noise level in
the auxiliary task or global learning rate can avoid these spikes.

TABLE V
AVERAGE PERFORMANCE OF THE BASELINE NETWORK (WITHOUT THE

PROPOSED AUXILIARY TASK) AND MSAT (WITH THE AUXILIARY TASK) OVER

TESTING IMAGES OF THE ICVL DATASET

TABLE VI
QUANTITATIVE RESULTS ON CAVE DATASET

Our baseline indicate that our model do not include auxiliary task.

Table V lists the testing results with and without the auxil-
iary task on the ICVL dataset. As seen, the introduced auxil-
iary task does improve the overall performance in both shal-
low and deeper networks. The accuracy, however, does not
improve further while increasing the number of the resid-
ual blocks. One possible reason here is that our lightweight
model can sufficiently fit with the 75 training images; thus,
increasing the depth of the model cannot produce further
improvement.

To further demonstrate the effectiveness of multiscale re-
construction, we include comparisons with other CNN-based
methods, such as SRCNN [57] and VDSR [58], where preup-
sampling is used. The SRCNN [57] model has only three simple
convolutional layers while the VDSR [58] contains 20 convolu-
tional layers. In addition, we reconduct experiments with a more
powerful architecture based on the ResNet, namely HSI-ResNet,
with the same configurations as the ResNet, including the num-
ber of blocks, optimization method of network training, epoch
number, training and testing samples, etc. The HSI-ResNet does
not fuse Lr-HSI and Hr-MSI at multistages as we have done in
the proposed MSAT model. As shown in Fig. 12, the Lr-HSI
is spatially upsampled before concatenated with the Hr-MSI.
The CNN network consists of five residual blocks, which has a
similar depth as our model. Table VI illustrates that progressive
fusion at multiple stages obviously has the advantage over a
single-stage fusion.

F. Tuning the Noise Level in DAE

We trained several DAEs with different noise levels to un-
derstand the qualitative effect of the noise through different
datasets. The variation of RMSE, ERGAS, SAM, and SSIM
values when varying the noise levels from 0.0 to 0.3 for CAVE,
Harvard, ICVL, Chikusei, and Roman Colosseum datasets is
shown in Fig. 13. As can be seen from the figure, as the value of
noise increases, the performance metric also begins to improve,
then plateau, and then degrade for all datasets. The appropriate
noise levels were discovered to be dependent on the quality of
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Fig. 11. The training and validation loss of model with different levels of decomposition and with/without unsupervised loss. (a) Training loss. (b) Validation
loss.

Fig. 12. HSI ResNet model.

collected images as well as the number of training samples.
Adding a large amount of noise to noisy images could degrade
the performance. The images in the CAVE dataset, for example,
are clean and contain fewer noises than those in the Harvard and
the ICVL datasets. Therefore, applying a large noise level (σ =
0.2) leads to improve performance for the CAVE dataset while
increasing errors for the Harvard and the ICVL. As the training
set for the Chikusei and Roman Colosseum datasets is limited,
only the top part of an image is used; the smaller noise level of
0.05 is the most appropriate.

G. Robustness to Noise

In practice, noise from various aspects can corrupt Lr-HSIs
and Hr-MSIs even during image acquisition, transmission, and
compression. To test the noise robustness of all compared meth-
ods, we add the Gaussian noise to the Lr-HSI and Hr-MSI inputs
and then fuse them to produce an HR-HSI. The SNRs of the noisy
Lr-HSI and Hr-MSI are set to 20 and 25 dB, respectively. The
quality metric values in the noisy case are given in Table VII
and visually compared with those noise-free ones (as referred
to Table I) in Fig. 14. As seen, the performance of NLSTF [19],
NSSR [17], and LTTR [22] methods drops faster than three
deep learning-based methods in all four metrics and degenerates
sharply in the SAM measure. The RMSE of the LTTR [22]
increases from 2.640± 1.590 to 4.064± 1.913 by 53.9% ±

TABLE VII
QUANTITATIVE RESULTS OF A NOISY CASE ON THE CAVE DATASET

20.3%, while our proposed approach is more robust, increasing
only from 3.245± 1.610 to 4.282± 1.712 or by 31.9%± 6.1%.
The architecture of the MoG-DCN contains autoencoders that
are robust to noise. The RMSE of the MoG-DCN [42] increases
from 3.330± 1.676 to 4.390± 788 by 31.9%±6.6%.

H. Feature Map

Differing from RGB images, HSIs have the characteristics of
high spectral resolution across many narrow bands. Therefore, it
is not straightforward to interpret the meaningful feature maps at
lower layers, which typically display features in a spatial manner.
To visualize the features learn from our CNN-based network,
we select one testing image from the CAVE dataset, running on
a forward path to show the learnt feature maps from the fifth
(top) block in Fig. 15. It is worth noting that the transposed
convolutions are used when upsampling the input feature map
at each stage. This is a well-known operation that may introduce
severe checkerboard artifacts and tend to be most prominent with
a higher upsampling scale factor [59]. The checkerboard pattern
can be observed in the feature maps of Fig. 11(b) and (c), where
they have shown that the feature maps extracted from the model
without the unsupervised loss will suffer more from horizontal
and vertical stripes in the final prediction. By contrast, the feature
maps from the model with the proposed additional unsupervised
loss can successfully suppress such artifacts.
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Fig. 13. Variation of RMSE, ERGAS, SAM, and SSIM with the noise levels σ in our DAE for five datasets. (a) CAVE. (b) Harvard. (c) ICVL. (d) Chikusei.
(e) Roman Colosseum. We select σ = 0.2 for the CAVE dataset, σ = 0.1 for both Harvard and the ICVL datasets, σ = 0.05 for both Chikusei and the Roman
Colosseum, respectively.

Fig. 14. Quantitative result of noisy cases on CAVE testing set.
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Fig. 15. Visualization of feature maps learned by the fifth block of our reconstruction network. (a) Three channels of the observed RGB image (An example
of RGB image bgu-0403-1523 from the ICVL dataset.). (b) Without using the proposed unsupervised auxiliary loss (Feature maps from 32 channels learned by
fifth block without unsupervised loss. Each channel has the size of 96 ×96 pixels. Feature maps at (row, column) (1, 2), (1, 7), and (4, 4) still suffer checkerboard
artifacts.). (c) With the unsupervised auxiliary loss (Feature maps from 32 channels learned by fifth block with unsupervised loss. Each channel has the size of 96×
96 pixels. Only feature map at (row, column) (4, 5) has a checkerboard artifact.).

V. CONCLUSION

In this article, we have presented an effective CNN-based
method for fusing the observed Lr-HSIs and Hr-MSIs to recon-
struct the HSI-SR. By decomposing the Hr-MSIs into multiple
spatial scales, the discrepancy between the observed Lr-HSI and
Hr-MSI is facilitated, which allows our model to be able to
gradually learn the high-resolution features from Lr-HSIs and

spatial-reduced feature from Hr-MSIs. In addition, integrating
with a proposed auxiliary task in the training procedure can help
to improve the generalization capability of the CNN models. The
proposed auxiliary task does not only regulate the model from
overfitting but also redirect the main task to learn representations
with sped-up and better model convergence. Furthermore, the
auxiliary task deriving from the DAE is more resistant to noise
than all compared methods. Our testing results on five public
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datasets have demonstrated that the proposed method can pro-
vide improvements over the state-of-the-art methods in terms
of both objective assessment and subjective visual quality. In
future research, we plan to study an adaptive balance between the
primary task and the proposed auxiliary task through training.
In addition, a natural progression of this work is to investigate
other auxiliary tasks for improving the performance of primary
task.
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