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Abstract: In this paper, discrete orthonormal Stockwell transform (DOST)-based vibration imaging is
proposed as a preprocessing step for supporting load and rotational speed invariant scenarios for
signals of various health conditions. For any health condition, features can easily be extracted from
its generated health pattern. To automate the feature selection process, a convolutional neural
network (CNN)-based transfer learning (TL) approach for diagnosis has also been introduced.
Transfer learning allows an established model to use feature knowledge obtained under one set
of working conditions through hidden layers to diagnose faults that occur under other working
conditions. The network learns from the massive source dataset, and that knowledge is applied
to the target data to identify faults. Using the bearing dataset of Case Western Reserve University,
the proposed approach yields an average 99.8% classification accuracy and, specifically, 99.99% for
healthy condition (HC), 99.95% for inner race fault (IRF), 99.96% for ball fault (BF), 99.68% for outer
race fault for 12 o’clock sensor position (ORF@12), 99.93% for outer race fault for 3 o’clock sensor
position (ORF@3), and 99.89% for outer race fault for 6 o’clock sensor position (ORF@6). In this
paper, the proposed approach is compared with conventional artificial neural networks (ANNs),
support vector machines (SVMs), hierarchical CNNs, and deep autoencoders. The proposed approach
outperforms these conventional methods in the accuracy under all working conditions.

Keywords: Stockwell transform; vibration imaging; fault diagnosis; transfer learning; neural network;
vibration signals

1. Introduction

In electromechanical engineering, motion is usually determined by mechanical device structures
(e.g., rotating machines or induction motors), which leads to satisfactory records of nearly 70% of the
gross energy ingestion in modern manufacturing economics [1,2]. Rotating machineries with induction
motors use bearings to moderate friction, which preserves otherwise wasted energy and increases the
useful life of a machine. Nevertheless, inimical operating environments and cyclic stuffing can lead to
substantial wear in bearings, exhibiting in the form of exterior cracks [3]. If these surface cracks go
undetected, it can lead to unexpected shutdowns, resulting in financial inefficiency, as well as human
injuries [4–7].

Bearings play an important role in condition monitoring because, in more than 50% of the cases
involving induction motor failures, they are the root cause of the failure [2,8]. Health state diagnosis
under variable operating conditions can be employed to improve smooth operability of the machines.
In real time, bearing fault diagnosis is performed through the collected data (i.e., vibration acceleration
signals, acoustic emission signals, and motor currents), which has been an important area of study over
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the last few decades [6,9–11]. These fault diagnosis studies have shown that diagnosis of bearing wear
can reduce maintenance expenses and enhance machine reliability [6,12–16]. Bearing fault diagnosis
studies have extensively investigated vibration signals and motor current analysis [17,18]. Multiple
signature analysis of vibrations and motor currents has also been researched to improve reliability [19].

Primarily, bearing faults occur due to localized imperfections, i.e., cracks or spalls. These flaws
create shocks and stimulate high-occurrence reverberations of the bearings and machine assembly
due to the recurring effect on spinning parts [17]. Time—frequency signal analysis approaches have
been employed to solve these issues, such as fast Fourier transform (FFT) and short-term-Fourier
transform (STFT), which convert time-domain signals into frequency-domain signals for further
analysis [20]. However, inappropriate time-window adjustments downgrade the performance of
these methods. Another powerful signal processing approach that has been considered is wavelet
analysis [21]. However, wavelet analysis creates good time but poor frequency resolutions at high
frequencies, and good frequency but poor time resolutions at low frequencies. Adjusting the window
size is often a solution to gather important information from vibration signals [22]. Enveloping with
energy kurtosis [23] is another approach. However, detecting the envelopes of real signals does not
always rely on analytic signals [24]. Existing signal processing techniques have employed feature
analysis approaches to detect statistical features for further classification employing classical machine
learning algorithms, such as SVM (support vector machine) and PSVM (proximal support vector
machine) [25,26]. In addition to these classical approaches, several deep learning techniques have
also been explored to extract automated features through the hidden layer architecture for bearing
fault classification. Examples include deep autoencoders [27,28], ANNs (artificial neural networks),
and hierarchical convolution network [29]. These methods established several dimensions for fault
classification without considering the handcrafted features. Due to the limitation of experimental data,
however, these methods are not compatible with dynamic invariant scenarios.

In the present work, the feature extraction process is automated by using deep neural network
techniques. In contrast to existing methods, this study focuses on a signal processing technique to
create an invariant scenario under different load and rpm levels to extract automated features by
employing an advanced neural network mechanism. To address this issue, the Stockwell transform
(S-transform) is employed in this paper [30]. The S-transform is a time-window Fourier transform that
has the advantages of both the STFT and the wavelet transform. Moreover, the problem of selecting
window sizes, i.e., selecting a long window for low-frequency components and a short window for
high-frequency components, is balanced when using the S-transform by an adjustable window size
with a tunable parameter that can yield good frequency and time localization for each signal. Discrete
orthonormal Stockwell transform (DOST)-based signal stacking is proposed for pattern generation for
each fault type of a bearing.

In short, this study presents a new approach for bearings diagnosis under variable speed and
load conditions that employs vibration signals to address two key limitations of existing methods:
(1) under different operational speeds, proper feature selection requires domain-level expertise, and
(2) automating optimal feature selection requires special dynamic algorithms. Instead of selecting
optimal features directly from the one-dimensional (1D) signals, two-dimensional (2D) vibration
images are generated by employing discrete orthonormal Stockwell transform (DOST)-based stacking
to explore the patterns of different bearing states. The proposed 2D vibration imaging creates identical
patterns for the same type of health, where variable operating speeds do not affect the patterns for
certain health states. From these 2D images, the feature selection process is automated by employing
a transfer learning (TL)-based convolutional neural network (CNN). Conventional, straightforward
neural networks make the feature selection process much easier through their convoluted encoding
layers compared to traditional methods [17,31,32]. In [33], Zheng et al. introduced a TL-based
artificial neural network (ANN) for a bearing’s raw vibration signals. However, for a raw signal,
this approach cannot discover the critical features needed to transfer to the knowledge domain for
further classification under different loads and speeds. Inadequate raw signal data extracted from
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mechanical sensors leads us to incomplete observation of critical patterns for the neural networks. To
create invariant patterns, pre-processing steps are necessary since our data are limited. Due to white
noise in signals, it is difficult to find out the exact information from additional properties mixed with
domain data. These learnings are passed through another working condition later through transfer
learning, which is how the network can learn from both working conditions and be fine-tuned by
adjusting weights along with previous learning. In this study, after creating an invariance scenario
with 2D DOST-based vibration imaging, a TL-based approach is executed to resolve these challenges.
Details about the TL are discussed in the Methodology section along with a description of the proposed
CNN architecture. Therefore, the main contributions of the current work are: (1) identical health
pattern formations for different health types employing discrete orthonormal Stockwell transform
(DOST)-based vibration imaging to create load-invariant and rpm-invariant scenarios, and (2) a transfer
learning-based convolutional neural network approach to automate the feature extraction process
from those identical health patterns in a short amount of training time.

The rest of this paper is organized as follows. Section 2 describes the proposed methodology.
Section 3 describes the dataset and discusses the experimental results analysis, including comparisons
to establish the robustness of the proposed method. Finally, Section 4 concludes this paper.

2. Methodology

The proposed methodology mainly comprises three major tasks: (a) the source task, (b) the
element transfer, and (c) the target task. The source and target tasks each have three common steps to
use the convoluted layers of the proposed neural network architectures: (a) data input, (b) vibration
imaging, and (c) using the convolutional neural network (CNN). Vibration imaging works as the
preprocessing step for the input data to generate identical patterns, and the CNN is used to save and
transfer knowledge between the source and target tasks to achieve the classification for the bearing
fault diagnosis. Figure 1 illustrates the overall proposed mechanism.

Figure 1. Detailed process of the proposed method.
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2.1. Vibration Imaging Using Discrete Orthonormal Stockwell Transform (DOST)

In the transfer learning (TL), first, the network is trained with a working condition (source
task) and then those learnings are passed to another working condition (target task). Processing the
substantial amount of 1D vibrational data from sensors requires massive computational cost and time.
Therefore, an adjustable sliding window frame [33] mechanism is adopted with the goal of (a) creating
a massive amount of source data to train the network efficiently, and (b) handling the large amount of
data for further processing to fit it to the proposed network.

If the total length of the acquired vibration signal is Lt, then the total number of the samples nt is:

nt =

( Lt − L f

Ls

)
+ 1 (1)

In Equation (1), L f is the length of a single frame, which is selected based on the experimental
requirements. The step size is Ls. The length of the vibration signal Lt is fixed in this study. The overall
process of adjusting the sliding window frame is shown in Figure 2.

Figure 2. Adjustable sliding window technique.

With a 1D signal, it is very difficult to observe identical patterns for different health types.
Moreover, in recent studies [33,34], preprocessing-free transfer learning is claimed. Even with the
limited amount of data for mechanical machines, network learning for a transferring scenario remains
questionable. Huge chunks of data having a lot of variations can help a network gather some
intrinsic information. This kind of information can help to classify other mechanical sensors further.
In this scenario, TL is used to resolve the issue of reducing time along with boosting performance.
However, TL cannot resolve the challenges of raw signals alone since the open source data are
incommensurate. Also, for additional white noise, the time-domain information is not always accurate.
Rather, preprocessing can result in more robust performance if it uses the TL-based approach instead of
classical deep learning because a limited portion of data facilitated with some additional information
can help us adjust the network weights to learn more accurate intrinsic feature information for
classification. Current study focuses mainly on this idea. A 1D raw signal suffers from the inability
to create invariant identical scenarios. Two-dimensional imaging is developed to achieve ascendable
feature engineering that processes heterogeneous data from systems with invariant working principles.
In this study, discrete orthonormal Stockwell transform (DOST)-based stacking for vibration imaging
is employed as a preprocessing step in the proposed approach.

The Stockwell transform (ST) was first proposed by R. G. Stockwell [30]. Using local spectral
phase properties, it can represent time and frequency. The ST can distinctively combine a frequency-
dependent resolution of the time–frequency space with unequivocally referenced local phase
information. In other words, the ST is like a fusion between the Gabor transform and the wavelet
transform. In practice, this time–frequency decomposition tool overcomes some of the drawbacks
(i.e., provides better time–frequency resolution) of the short time Fourier transform (STFT). In [30],
R. G. Stockwell described a method to decompose a signal on a discrete orthogonal basis for the ST
(DOST basis). In this study, the DOST basis is considered to form 2D images with identical patterns.
To perform the orthogonal transform, this method uses the discrete Fourier transform (DFT) [3].
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First, the method performs a fast Fourier transform on each segmented windowed sample. Then,
it segments the processed signal via frequency partitioning for the DOST, that is, changing dyadic
negative to positive. Next, on each bandwidth partition, it calculates the inverse Fourier transformation.
Finally, it combines all these partitions together to form the final DOST output. Figure 3 shows the
process of this DOST basis method.

Figure 3. Discrete orthonormal Stockwell transform (DOST) basis construction process, where FFT
stands for fast Fourier transform.

If a 1D function of time t for a constant frequency f is represented as Vs(τ, f ), then the
continuous [30,35] ST of a function h(t) is:

Vs(τ, f ) =

∞∫
−∞

h(t)
| f |√
2π

e−(τ−t)2 f 2
2 e−i2π f tdt (2)

Equation (2) demonstrates the change of the amplitude and phase for this frequency over time.
In the discrete case, there are computational advantages to using the equivalent frequency domain
definition of the ST. However, as R. G. Stockwell pointed out, standard ST is computationally expensive
(O
(

N2)) [27].
In [36], U. Battisti et al. demonstrated that the DOST basis is not suited to a standard Gaussian

window. Later, in [37], Y. Wang et al. proposed a fast algorithm for the ST with a time complexity of
O(N log N). U. Battisti et al., in [36], extended that work and provided an adapted basis to decompose
the ST with a general admissible window. Let us consider a signal f with finite energy, where f ∈ L2(R).
If w is the window in L2(R), then the S-transform Sw f is:

(Sw f )(b, ξ) = (2π)−
1
2

∫
R

e−2πtξ f (t)|ξ|w(ξ(t− b))dt (3)
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where b, ξ ∈ R. In [32], U. Battisti et al. assumed that one could find such a basis Ew
p of L2([0,1]), where

w will be dependent on choice. Then, Sw f can be expressed as:

(Sw f )(b, ξ) = ∑
p

cw
p (SwEw

p )(b, ξ) (4)

where f = ∑
j

cw
p Ew

p .

They proved that an orthonormal basis of L2([0, 1]) can satisfy the condition that ST is local in
time and frequency and has a fast computation algorithm of O(N log N) time complexity to compute
the coefficients.

To form the identical patterns, the considered DOST basis output of the segmented signals of
all the types are stacked together. These stacks of the preprocessed signals form identical patterns
for each health type. When stacking a huge number of segmented signals, these images are large.
To address this issue, heights of the stacked signal are fixed for generating identical images in the
experiment. If the total number of segmented signals is M and each segment has length Q, then the
size of the image is M × Q (height × width). This height is very large as well as challenging to feed
to the proposed network. To generate small images, m samples from the M segmented samples (where
m ∈ M, m < M and M > 8) are considered. Then, all the resized images are bunched together and
fed into the network. In this study, m = 8 can generate good resolution. This m can be larger but note
that increasing m reduces the total number of samples.

2.2. Transfer Learning with Convolutional Neural Network (CNN)

The prime goal of transfer learning (TL) is to improve the performance of a target task by using the
knowledge from a source task. The source and target tasks may be similar or different. In this study, the
source and target domains preserve similar types of feature spaces because the data types are similar
except for the revolution speed of the bearings. In this study, transfer learning is employed to reduce
the overhead of the training network. In practice, TL creates a robust fault diagnosis process [38].
Figure 4 illustrates the TL concept.

Figure 4. The left side shows the conventional learning process, while the right side shows the concept
of transfer learning (TL).

TL methods depend on machine-learning algorithms for learning the task. In this study,
inductive learning is used. In inductive learning, TL is considered as a classifier along with one
of the interference algorithms to solve classical classification problem (i.e., neural networks). These
interference algorithms, that is, the deep neural networks, can automate the feature selection process
through the hidden layers and then classify. In addition, they can preserve the knowledge of their
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learning and use it for further tasks. Convolutional neural networks (CNNs) have been considered as
one of the most effective feed-forward supervised machine-learning networks. One more reason for
considering CNN as the deep neural network for this study is that a large-scale CNN has the potential
to be the most effective of the deep learning and classical methods. Moreover, using the transferred
knowledge obtained from TL, with only a small set of training data, the large-scale CNN can achieve
excellent performance in the considered scenarios [33,34,38].

A CNN is used to automate the detailed feature selection process for a given set of data, as well as
to save the source knowledge for further usage in the target domain. A CNN has a hierarchical
construction and collects from several convolutional, subsampling, and fully connected layers.
This network makes optimal use of the indigenous connections (instead of fully-connected layers),
weight distribution, and spatial or progressive subsampling to achieve invariance of shifting, scaling,
and distortion in their inputs [39,40]. In this study, as TL and CNN are designed together, the learning
of the well-trained u layers are passed to the v layers of the target network, where u < v, v = u + 1,
and layer number u + 1 denotes the output layer or last layer. Thus, the last layer of the target network
is trained, providing an accuracy of output based on the learning from the source network [34].

For a mathematical, intuitive overview of the CNN, let P and Q be the input and output vectors,
respectively, for the network. The model has three layers—input, hidden and output layers—where
the hidden vector is H. The feed forward method is as follows:

H = σ(w1P + b1) (5)

Q = σ(w2H + b2) (6)

σ(x) =
1

1 + e−x (7)

where w1 is the weight matrix between the input and hidden layers, w2 is the weight matrix between
the hidden and output layers, b1 and b2 represent the bias vector of the hidden and output layers,
respectively, and σ(.) is the sigmoid activation function. The loss function is as follows:

FL =
1
n

n

∑
i=1
||mi. ln Qi + (1 + mi). ln(1 − Qi)||

1

(8)

where mi represents the target vector and n denotes the number of training samples. The aim of the
CNN is to minimize the loss function FL through back propagation and gradient descent [33]. In this
study, the architecture of the neural network contains nine layers along with one output layer (see
Figure 5). From the convolution layer output, the max-pooling layer does the subsampling of data.
A dropout layer is added to the network to avoid over-fitting. In this study, Adam optimizer is used
for fine tuning the network and SoftMax classifier to improve the classification performance.

Figure 5. Proposed architecture of the 2D CNN.
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In the TL, the learning of these hidden layers is then passed to the target task to boost the learning
of the target task. For the neural network, these learnings are stored in the form of weights. The layers
that are transferred to the target network are listed in Table 1.

Table 1. Proposed architecture of the CNN for transfer specification for target network.

Stage Stage Specification Layer No. Layer Name in Network Transfer

1 Training stage
01 Convolutional Yes
02 Maxpooling Yes
03 Dropout Yes

2 Training stage
04 Convolutional Yes
05 Maxpooling Yes
06 Fully connected Yes

3 Training stage 07 Dropout Yes
08 Fully connected Yes

4 Output stage 09 Fully connected No

3. Result Analysis

3.1. Dataset and Experimental Working Conditions

To evaluate the proposed method, the publicly available seeded fault bearing dataset by Case
Western Reserve University (CWRU) Bearing Data Center [41] is used. The data were accumulated
by using a 2-horsepower (hp) Reliance Electric motor with a torque transducer and a dynamometer
to apply different loads, ranging from 0 hp to 3 hp. Rotation velocities of the motor also varied from
1797 rpm to 1730 rpm. Drive end bearings were seeded with defects on the inner raceways, outer
raceways, and rolling elements with the assistance of an electro-discharge machine, shown in Figure 6.
The dataset consists of ratings of healthy condition (HC), inner raceway fault (IRF), ball fault (BF),
and outer raceway fault (ORF) signals under the considered working conditions. The ORF has three
variants: ORF at the center, ORF at the orthogonal, and ORF at the opposite positions. In this study,
the variable length vibration acceleration signals were recorded at 12,000 samples/second (Hz) for the
drive-end bearings.

Figure 6. An overview of the experimental setup.

To segment the signals by an adjustable sliding window, the proposed method considers 1024 data
points for every frame. After that, the invariant conditions are established through vibration imagining
via DOST-based stacking. As discussed earlier, after stacking, the dimension of an individual sample
becomes 8 × 1024. To evaluate the performance of this speed-invariant experiment, four different
working conditions are considered. Under each set of working conditions, six different health types
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are included. Table 2 presents the details of the working conditions. In total, 300 fine-tuned epochs are
revolved around the network for performance assessment.

Table 2. Details of the considered working conditions with the same health types.

Fs = 12 kHZ Health Type Motor Load Motor Speed
Crack Size

Diameter (Inches)

Working
Condition 1

Healthy Condition (HC) 0 1797 Rounds/min Nil

Inner Race Fault (IRF) 0 1797 Rounds/ min 0.007

Ball Fault (BF) 0 1797 Rounds/min 0.007

Outer Race Fault at center
(ORF@12) 0 1797 Rounds/min 0.007

Outer Race Fault at
orthogonal (ORF@3) 0 1797 Rounds/min 0.007

Outer Race Fault at opposite
(ORF@6) 0 1797 Rounds/min 0.007

Working
Condition 2

Healthy Condition (HC) 1 1772 Rounds/min Nil

Inner Race Fault (IRF) 1 1772 Rounds/min 0.007

Ball Fault (BF) 1 1772 Rounds/min 0.007

Outer Race Fault at center
(ORF@12) 1 1772 Rounds/min 0.007

Outer Race Fault at
orthogonal (ORF@3) 1 1772 Rounds/min 0.007

Outer Race Fault at opposite
(ORF@6) 1 1772 Rounds/min 0.007

Working
Condition 3

Healthy Condition (HC) 2 1750 Rounds/min Nil

Inner Race Fault (IRF) 2 1750 Rounds/min 0.007

Ball Fault (BF) 2 1750 Rounds/min 0.007

Outer Race Fault at center
(ORF@12) 2 1750 Rounds/min 0.007

Outer Race Fault at
orthogonal (ORF@3) 2 1750 Rounds/min 0.007

Outer Race Fault at opposite
(ORF@6) 2 1750 Rounds/min 0.007

Working
Condition 4

Healthy Condition (HC) 3 1730 Rounds/min Nil

Inner Race Fault (IRF) 3 1730 Rounds/min 0.007

Ball Fault (BF) 3 1730 Rounds/min 0.007

Outer Race Fault at center
(ORF@12) 3 1730 Rounds/min 0.007

Outer Race Fault at
orthogonal (ORF@3) 3 1730 Rounds/min 0.007

Outer Race Fault at opposite
(ORF@6) 3 1730 Rounds/min 0.007

3.2. Analysis of 2D Vibration Imaging

As described earlier, the reasons to employ 2D vibration imaging are as follows. One reason
is to create an invariant scenario for different loads and rpms. For each health type (HC, IRF, BF,
ORF at center, ORF at orthogonal and ORF at opposite), the 2D imaging exhibits identical patterns
across working conditions. Another reason is to provide the CNN with the full advantages of the
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2D structure with visibility of identical patterns. A further reason is be able to visually distinguish
between the source and target domains to reduce negative transfer learning. Figure 7a–f shows the
output of vibration imaging for each health type under different working conditions. Using the
S-transform, the frequency domain is divided into several bandwidths, providing micropatterns based
on bandwidth. From close observation, the rpm and load do not affect the identical patterns of the
signals under different working conditions. Across different rpm and load levels, the pattern for each
health condition does not vary, which demonstrates the similarity among all the working conditions
for different health types.

Figure 7. Vibration images based on DOST for different health conditions. (a) HC (Healthy Condition),
(b) IRF (Inner Race Fault), (c) BF (Ball Fault), (d) ORF (Outer Race Fault), and (f) ORF at opposite position.

3.3. Diagnostic Performance of the Proposed TL-Based Method

To validate the performance of the proposed TL-based method, the available data are divided
into four different working conditions (WC), denoted WC 1, 2, 3, and 4 (described in Table 2). These
datasets contain different speeds and loads, but the same type of health condition. The rpm invariance
of this approach is validated by examining four separate scenarios. In the first scenario, WC 1 is used
for training the network and saves the knowledge, and WC 2, 3, and 4 use that learning to perform the
classification tests. From WC 2, 3, and 4, 10% of the data are used for adjusting the network to use
the prior knowledge. In the second scenario, WC 2 is used for gathering the knowledge, and WC 2, 3,
and 4 are used for TL-based testing. In the same manner, in Scenario 3, WC 3 is used for knowledge
gathering, and in Scenario 4, WC 4 is used. The corresponding other working conditions are used for
testing and classification. In each scenario, one dataset is known to the network, and the TL makes the
later learning faster and more efficient, and achieves better accuracy. These tests validate the proposed
approach. Table 3 lists the details of the diagnostic performance of the proposed approach.
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Table 3. Diagnostic performance of the proposed model under different scenarios.

Scenario Source
Dataset

Target
Dataset

Classification Accuracy (%) Average Classification
Accuracy (%)

Overall Classification
Accuracy (%)HC IRF BF ORF@12 ORF@3 ORF@6

1 WC 1
WC 2 100 100 100 100 100 100 100

99.99WC 3 100 100 100 100 100 100 100
WC 4 100 99.88 100 100 100 100 99.98

2 WC 2
WC 1 100 100 100 100 100 100 100

99.98WC 3 100 100 100 100 100 100 100
WC 4 100 100 100 99.69 100 100 99.95

3 WC 3
WC 1 100 100 100 100 100 100 100

99.90WC 2 100 100 100 98.44 100 100 99.74
WC 4 100 99.83 100 100 100 100 99.97

4 WC 4
WC 1 99.94 98.68 99.47 100 99.92 99.29 99.55

99.54WC 2 99.96 99.73 100 99.63 99.68 99.57 99.76
WC 3 99.98 98.22 100 98.37 99.53 99.79 99.32

Average Accuracy (%) 99.99 99.95 99.96 99.68 99.93 99.89 99.86 99.85

To evaluate the performance of the proposed approach, the same experiment is also conducted
with different amounts of training data. In this study, 80% of the training data are considered from
the source dataset for each scenario (Table 2). With different percentages of training data, the overall
classification accuracy varies as provided in Table 4. Table 4 clearly shows that the best performance is
achieved when using 80% of the training data from the target dataset for the different scenarios.

Table 4. Classification results for different sizes of training data.

Scenario
Overall Classification Accuracy (%)

Training Data 80% Training Data 60% Training Data 40% Training Data 20%

1 99.99 96.44 86.22 79.18
2 99.98 96.23 86.45 77.43
3 99.90 95.82 85.32 77.92
4 99.54 95.59 83.96 67.11

In the Methodology section, Table 1 describes the proposed neural network architecture for TL.
The table also shows which layers or stages are transferred to the target dataset for different scenarios
to evaluate the performance. There are four stages in the network (Table 1), and the first three are
transferred to perform TL. To evaluate the network’s performance, the number of stages is varied for
transfer. In this study, 80% of data are used for training and the number of learning stages is only
changed to evaluate the performance. Table 5 gives the overall performance results. As shown in
Table 5, the proposed approach performs the best when Stages 1 to 3 (see Table 1) from the network
are transferred to the target task.

Table 5. Impact on overall classification accuracy of different numbers of stages for TL.

Scenario
Overall Classification Accuracy with Transfer Learning (TL) (%)

Transfer Stages 1–3 Transfer Stages 1–2 Transfer Stage 1

1 99.99 93.44 79.61
2 99.98 93.31 79.22
3 99.90 93.49 78.13
4 99.54 92.61 77.29

3.4. Comparison Analysis

To evaluate the performance of the proposed approach, several experiments are performed with
and without TL. In the experiment, WC 1 is considered as the source task and WC 2 as the target
and the performance of WC 2 with transfer learning (WTL) and without transfer learning (NTL) is
evaluated. The NTL scenario meant training the network from scratch (training:testing = 60:40) without
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transferring any knowledge from the source task. As shown in Table 6, the accuracy performance did
not improve much for WTL versus NTL. For normal health type (HC), the accuracy is the same, and
for the inner fault (IRF), the accuracy without TL is higher (2.2%). For the other health types, WTL
performed better than NTL. On average, WTL provided 1.04% additional accuracy over NTL in this
experimental scenario.

However, training time with TL is shorter than that without TL. As shown in Figure 8, the network
provides the highest training accuracy (100%) with TL after almost 80 epochs (in t1 time), whereas NTL
requires almost 160 epochs (in t2 time) to provide the same performance. These results demonstrate
that transfer learning greatly reduces the training time while maintaining the overall performance.

To validate the performance of the proposed method, some recent deep learning approaches,
including raw signal-based TL approach [33], hierarchical CNN-based approach [29], and ensemble
deep autoencoders approach [27], are compared with the proposed method. In addition, the proposed
TL-based network approach is compared with some of the classical machine learning approaches (e.g.,
SVM and ANN). These network architectures are analyzed with the same test scenarios to validate the
performance improvement using the proposed TL-based CNN approach, as shown in Table 2. Table 7
shows the comparison results in detail for each scenario of the experiment, and our proposed approach
outperforms conventional methods.

Table 6. Comparison analysis of the classification accuracies of transfer learning-based model (WTL)
vs. without transfer learning (NTL).

Health Types WTL (%) NTL (%) Improvements (%)

HC 100 100 0
IRF 95.72 97.92 −2.2
BF 96.22 95.2 1.02

ORF@12 96.79 93.41 3.38
ORF@3 97.21 94.90 2.31
ORF@6 93.11 91.39 1.72
Overall 96.51 95.47 1.04

Table 7. Comparison of classification accuracy (proposed vs. existing methods).

Scenario Method
Classification Accuracy (%) Average

Accuracy (%)
Improvement (%)

[Proposed Method]HC IRF BF ORF@12 ORF@3 ORF@6

1

ANN 70.29 68.22 67.45 64.92 65.79 67.39 67.34 32.65
SVM 82.43 80.33 83.22 85.29 81.22 80.19 82.11 17.88
[29] 93.44 93.2 93.79 93.72 92.69 92.44 93.21 6.78
[27] 97.22 97.39 98.2 97.93 97.51 97.63 97.65 2.34
[33] 100 93.2 96.45 94.2 94 93.55 95.23 4.76

Proposed 100 99.96 100 100 100 100 99.99 -

2

ANN 70.11 69.9 67.96 64.11 64.7 67.49 67.38 32.60
SVM 81.9 82.3 82.57 85.39 81.83 81.29 82.55 17.43
[29] 93.39 93.86 93.5 93.29 92.98 92.95 93.33 6.65
[27] 97.86 97.19 97.49 97.3 97.59 97.77 97.53 2.45
[33] 100 93.2 96.45 94.2 94 93.55 95.28 4.7

Proposed 100 99.96 100 100 100 100 99.98 -

3

ANN 69.3 67.22 67.1 64.92 64.6 66.13 66.55 32.31
SVM 82.72 82.9 83.17 86.22 83.2 82.57 83.46 16.39
[29] 92.63 93.12 92.86 92.77 92.09 92.13 92.6 7.25
[27] 97.1 96.33 97.78 97.5 97.61 97.21 97.26 2.6
[33] 100 93.2 96.45 94.2 94 93.55 95.26 4.59

Proposed 100 99.96 100 100 100 100 99.85 -

4

ANN 67.2 66.9 65.3 63.82 64.9 63.92 65.34 34.2
SVM 80.1 81.95 82.3 84.29 81.22 79.49 81.56 17.98
[29] 93.87 92.91 92.94 92.7 91.19 91.73 92.56 6.98
[27] 97.89 97.94 98.92 97.61 97.49 97.89 97.96 1.58
[33] 100 93.2 96.45 94.2 94 93.55 94.45 5.09

Proposed 100 99.96 100 100 100 100 99.54 -
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Figure 8. Training accuracy comparison with and without transfer learning.

4. Conclusions

In this paper, a convolutional neural network–based transfer learning approach was proposed for
automated feature extraction to improve the performance of bearing fault classification. To make the
automated feature extraction more reliable and accurate, the discrete orthonormal Stockwell transform
(DOST) was proposed as a preprocessing step for creating a load- and rpm-invariant scenario for
considering signals of multiple health types. The theoretical and experimental analysis of this study
demonstrated that TL boosts the performance of the network under invariant working conditions
and brings the learning mechanism under one network architecture. The experimental analysis also
established that DOST-based vibration imaging can help a two-dimensional CNN to learn features
faster and with greater accuracy. Experimental results showed that the proposed method achieves an
average of 99.8% classification accuracy for all health types (i.e., healthy condition, inner race fault,
ball fault, and outer race fault for 1, 2, 3, and 6 o’clock sensor positions). In addition, the proposed
method outperformed other state-of-the-art algorithms (i.e., ANN, SVM, hierarchical CNN, and deep
autoencoders), showing 32.3%, 16.39%, 6.78% and 1.58% improvements in accuracy, respectively.
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