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ABSTRACT Centrifugal pumps are the most vital part of any process industry. A fault in centrifugal
pump can affect imperative industrial processes. To ensure reliable operation of the centrifugal pump, this
paper proposes a novel automated health state diagnosis framework for centrifugal pump that combines
a signal to time-frequency imaging technique and an Adaptive Deep Convolution Neural Network model
(ADCNN). First, the vibration signals corresponding to different health conditions of the centrifugal pump
are acquired. Vibration signals obtained from the centrifugal pump carry a great deal of information and
generally, statistical features are extracted from the vibration signals to retain meaningful fault information.
However, these features are either insensitive to weak incipient faults or unsuitable for tracking severe faults,
thus, decreasing the fault classification accuracy. To tackle this problem, a signal to time-frequency imaging
technique is applied to the pump vibration signals. For this purpose, Continuous Wavelet Transform (CWT)
is applied to decompose the vibration signals over different time-frequency scales and extract the pump fault
information in both the time and frequency domains. The CWT scales form two-dimensional time-frequency
images commonly referred to as scalograms. The CWT scalograms are then converted into grayscale images
(SGI). Over the past few decades, CNN models have been established as an effective practice to process
images for classification and pattern recognition. Consequently, the extracted CWTSGIs are finally provided
as inputs to the proposed ADCNN architecture to achieve feature extraction and classification for centrifugal
pump faults. The performance of the proposed diagnostic framework (CWTSGI + ADCNN) is validated
with a vibration dataset collected from a testbed specifically designed for centrifugal pump diagnosis. The
experimental results suggest that the proposed technique based on CWTSGI and ADCNN outperformed
existing methods with an average performance improvement of 4.7 – 15.6%.

INDEX TERMS Centrifugal pump, continuous wavelet transformations, scalogram, gray images, convolu-
tional neural network.

I. INTRODUCTION
Centrifugal pumps play a crucial role in many important
engineering industries such as oil refineries, mining, and
electric power plants, etc. [1]. The failure of centrifugal
pumps causes an increase in process downtime, interrup-
tions in operations, and hazardous accidents. This results in
financial losses and sometimes leads to severe consequences
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such as bankruptcy and devaluation of a company’s stock
price [2]. Considering the failure consequences of centrifugal
pumps, centrifugal pump fault diagnosis is of utmost concern.
Faulty bearings, mechanical seal related faults, and impeller
defects are the primary reasons for catastrophic failure of
centrifugal pumps [2]. Numerous studies have been con-
ducted to identify bearing defects [3]–[6]. However, very few
research studies are available on the diagnosis of mechanical
seal and impeller defects. Therefore, a diagnosis framework
considering the defects of mechanical seals and impellers is
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required to enhance the reliability and safety of centrifugal
pumps [7].

Generally, centrifugal pumps under an aberrant state are
characterized by changes in their overall vibration level.
Recently, vibration signals became very popular for devel-
oping diagnostic techniques for rotating machines, includ-
ing centrifugal pumps [8]–[10]. The vibration signals have
the intrinsic merit of revealing the failures in rotating
machines [1]. Several research studies have been published
that deal with the identification of fault characteristics
in centrifugal pumps by analyzing the vibration signals.
Sakthivel et al. [9] proposed a diagnosis technique for iden-
tifying the fault states of a mono-block centrifugal pump by
combining statistical feature analysis with several Machine
Learning (ML) approaches, i.e., k-Nearest Neighbor (k-NN),
Decision Tree (DT), and Naïve Bayes. Unsworth et al. [11]
utilized Fast Fourier Transformation (FFT) based analysis
to identify centrifugal pump defects. Farokhzad et al. [12]
suggested a DT-based intelligent approach to identify health
features and used linear classification for final diagnosis.
Muralidharan and Sugumaran [7] developed a DT based
approach by utilizing the time-frequency domain method,
DiscreteWavelet Transformation (DWT). However, with DT,
such types of time-frequency analysis come at a high com-
putational cost. Sun et al. [13] performed cyclic spectral
analysis of the vibration signals for identifying centrifugal
pump faults. Zheng and Xin [14] utilized geometry mode
decomposition with power spectral entropy for fault feature
extraction from hydraulic pumps. Yang et al. [15] proposed
a framework based on refined composite multivariate multi-
scale symbolic dynamic entropy for centrifugal pump fault
classification. Qiu et al. [16] proposed a Fisher discriminant
ratio based fault feature selection technique in combination
with a Support Vector Machine (SVM) to classify the health
conditions of a centrifugal pump. Farokhzad et al. [17] devel-
oped a diagnostic technique for mechanical pumps by utiliz-
ing the FFT and a back propagation neural network. Wang
and Chen [18] proposed a Wavelet Packet Transform based
analysis with a Partially-Linear Neural Network (PLNN) for
automatic health state classification of centrifugal pumps.
Altobi et al. [19] utilized a hybrid of genetic algorithm, BP,
and SVM for centrifugal pump fault diagnosis. For prepro-
cessing of the signals, the one–dimensional (1-D) Continuous
Wavelet Transform (CWT) method was considered. These
diagnosis methods primarily extract statistical indicators or
features from the time, frequency, or time-frequency domains
of the vibration signals and use them to train classical ML
algorithms for fault diagnosis purposes. These features may
fail to recognize incipient faults and respond differently to
different fault types. Therefore, feature extraction and feature
selection largely affect the diagnosis performances of such
methods. An improper choice of features can lower diagnos-
tic accuracy and produce unreliable results. Moreover, a huge
amount of domain expertise is required to implement the
feature extraction techniques and not all of them can capture
the nonlinear and non-stationary behavior of the centrifugal

pump vibration signals collected under various health
conditions. Therefore, to overcome these shortcomings, deep
learning-based approaches have been proposed.

Deep learning algorithms perform autonomous feature
extraction from different domains and minimize the depen-
dency upon extraction or selection of appropriate features.
Deep learning is a recent research direction in fault diagnosis
of rotating machines. Li et al. [20] developed a diagnosis
method based on multisensory data fusion and a Convolu-
tional Neural Network (CNN) for the health state classifi-
cation of centrifugal pump faults. Zhao et al. [2] proposed
an automated diagnosis system by using deep learning and
soft max regression analysis. However, these studies used the
sensor data directly which contain significant noise and lead
to poor generalization of deep learning algorithms, especially
for real world datasets. The research work [21] proposed a
similar technique for sensor fault diagnosis, wherein, a com-
puter software was used for the generation of faulty sensor
data and after generating the faulty data, the signal recog-
nition problem was transformed into an image recognition
problem using CWT. The fault in the sensor was identified
by using CNN with an accuracy of 99.6%. Despite the good
accuracy, the nature of sensor faults is very different from
that of the vibration response of centrifugal pumpmechanical
faults. Faults in the sensor affect the output of the sensor.
Based on nature of the sensor output, these faults are cat-
egorized into drift fault, hard-over fault, erratic fault, spike
fault, and stuck fault. Generally, the signal exhibits differ-
ent behavior under different sensor fault conditions. In one
case, the signal is composed of repeated individual spikes.
In another case, the sensor faults cause an increase in vari-
ance of the successive signal samples. In yet another case,
the sensor signals provide a constant value above the normal
condition level, over a period. Depending upon the type of
sensor fault, the signal either remains stationary or becomes
non-stationary in nature [22].

On the contrary, in the case of centrifugal pumps,
the mechanical faults produce shocks or impulses (of short
duration) resulting in variation of the vibration signal ampli-
tude and distribution. These mechanical faults induce a range
of high to low frequencies into the signal which include
system resonance frequencies, characteristic fault frequen-
cies, rotor frequencies and their harmonics. These variations
in the vibration signal change the stationary signal into a
strictly non-stationary signal. Furthermore, the amplitude of
these impulses is often overwhelmed by unnecessary macro-
structural vibration of the centrifugal pump [23]. To over-
come the non-stationary behavior of the vibration signal
and unnecessary macro-structural vibration time-frequency
domain techniques such as CWT can be used to extract
discriminant features for CP fault diagnosis. Research avail-
able on centrifugal pump fault diagnosis using deep learning
techniques is scarce and its full potential for the same is yet
to be explored.

Mechanical faults in the centrifugal pump can be catego-
rized into hard faults and soft faults. Hard faults are easy
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to identify, however, soft faults are difficult to identify [24].
These soft faults in the centrifugal pump due to mechanical
seal hole, mechanical seal scratch, and impeller defect will
lead not only to performance degradation but also to potential
safety hazards [25]. Majority of the existing studies [3] ori-
ented themselves to diagnosis of bearing defects and limited
attention was given to soft faults diagnosis. For mechanical
soft faults, the fault frequencies are often vanished by the
noise due to their soft nature. For this reason, an automated
fault diagnosis [26] is needed which primarily focuses on the
early identification of soft faults due to mechanical seal hole,
mechanical seal scratch, and impeller defects. To address
the above-mentioned problem, in this paper, a new hybrid
approach based on signal to time-frequency image conversion
and deep learning is introduced to identify the health states of
centrifugal pumps under soft fault conditions. Deep learning
algorithms are quite effective in detecting image features
automatically [27]. First, the time domain vibration signals
acquired from the centrifugal pumps are processed with
continuous wavelet transform to form scalograms (CWTS).
The scalograms capture the fault information contained in
vibration signals over different time and frequency scales.
The CWTS are further converted into gray-scale images to
provide computational benefits to the deep learning classi-
fiers. Afterwards, an improved version of convolution neural
network called as Adaptive CNN (ADCNN) is proposed to
process the scalograms and identify the pump conditions.
The main contribution of this research paper is highlighted
as follows:
1. The potential of continuouswavelet transform scalogram

(CWTS) images in centrifugal pump fault diagnosis is
validated through experimental signals acquired from
a real-world centrifugal pump test bed. A new signal
to time-frequency imaging technique is proposed that
extracts CWTS images from 1D vibration signals and
converts them into 2D grayscale images (CWTSGI) for
further analysis. To the best of the author’s knowledge,
CWTS images have rarely been applied to centrifugal
pump fault diagnosis.

2. ADCNN architecture is utilized to automate the feature
extraction and classification processes. The use of an
ADCNN eliminates the need to extract separate features
and choose the best ones from among them. An adaptive
learning rate is considered in the training phase of the
ADCNN for avoiding convergence to a local minimum,
which in turn is essential for maximizing its diagnostic
performance.

3. Soft faults in centrifugal pumps such as mechanical seal
defects and impeller defects have been considered for
analysis.

The rest of this paper is organized as follows: Section 2
provides the background information for the CWTS and
the CNN network. The details of the proposed centrifu-
gal pump test bed and diagnosis procedure are provided
in Section 3. Section 4 discusses the experimental results.
Finally, the research paper is concluded in Section 5.

II. TECHNICAL BACKGROUND
This section describes the theoretical background of the
CWTS and the CNN.

A. CONTINUOUS WAVELET TRANSFORM SCALOGRAM
Time-domain and frequency-domain analysis are commonly
exploited to diagnose the faults in rotating machines such
as centrifugal pumps. However, both fail to depict the sig-
nal variations in time and frequency scales simultaneously.
In practical cases, the signals acquired from centrifugal
pumps are non-stationary and non-linear in nature [4], [28].
Therefore, time-frequency analysis serves as an effective
approach to extract the fault information hidden in the
centrifugal pump signals in the form of images [29]. The
time-frequency domain method decomposes the signals
over different time and frequency scales, which are then
represented as a two-dimensional image. The image con-
tains the local (specific regions of the image) and global
(entire image) characteristics of the signal. Furthermore,
such two-dimensional images act as competent input features
for deep learning algorithms and improve their diagnostic
accuracy. Hence, it is of great significance to consider the
time-frequency approach for analyzing the centrifugal pump
vibration signals.

In this paper, the CWT has been adopted to process the
pump signals. CWT utilizes a family of mother wavelet func-
tions to transform the input signal into a spectrum of wavelet
coefficients. This is achieved by translating and scaling the
original signal over different time and frequency levels. The
occurrence of faults produces multiple low to high frequen-
cies in the original signal and hence, the energy content varies
over different frequency ranges. Through CWT, the energy
of the original signal gets distributed over the decomposed
signals which in turn helps to identify the time-frequency
scales with substantial energy content. As such, the wavelet
coefficients can be used to provide an insight into the health
conditions of mechanical components [30], [31]. The details
of CWT can be expressed by the following mathematical
expressions:

γp,q (t) = |p|−
1
2 γ

(
t − q
p

)
where p, q ∈ R, and p 6= 0

(1)

T (p, q) = Cp (k) =
∫
x (t)γ p,q (t) dt (2)

where γp,q (t) is the mother wavelet function, the shape and
displacement of the wavelet function are ascertained by the
scale parameter p and the translation or location parameter q,
x (t) is the original signal, the wavelet coefficients at the pth

scale is Cp where p = 1, 2, 3, ...., l, γ p,q (t) is the complex
conjugate of γp,q (t) at scale p and location q, and finally
T (p, q) denotes the CWT of the signal. When the wavelet
correlates well with signal x (t) at a given p and q, then a
large magnitude of T (p, q) is obtained [26]. In the CWT
approach, among all the wavelet families, the Morlet wavelet
is preferred [32]. To represent these wavelet coefficients at
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different (p,q) scales, the scalogram of the CWT is pro-
posed [31]. A scalogram depicts the CWT coefficient of a
signal in two-dimensional time-frequency plot. The x-axis
of a scalogram denotes the translation or time parameter
whereas the y-axis reflects the scale parameter that holds a
reciprocal relationship with the frequency of signal. The color
intensity of a pixel in the scalogram plot is proportional to the
absolute value of the wavelet coefficient. Thus, the scalogram
implies how energy in the original signal is distributed in
the time-frequency plane [33]. Thus, CWT assists in captur-
ing the localized energy variations over different regions of
the two-dimensional time-frequency image. Therefore, intu-
itively, CWT scalograms (CWTS) can discriminate different
health conditions of the centrifugal pump by interpreting the
wavelet coefficients as time-frequency image features.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
The CNN architecture is usually formed with one input layer,
a few convolution layers and pooling layers, several fully con-
nected layers, and one final output layer to automate the fea-
ture extraction process [34]. The CNN successfully captures
the spatial and temporal dependencies of an image through
its different layers and preserves the features important for
classification in a computationally powerful manner [35].
Additionally, incorporation of several optimization tech-
niques in the recent few years that include Batch
Normalization (BN), Dropout (DL), and Rectified Linear
Units (ReLU) has improved the performance of CNNs
[36]–[39]. The training process for a CNN is implemented
in two stages, forward propagation stage and backward prop-
agation stage. In the forward propagation stage, the CNN
architecture extracts the spatial information from the input
image throughout the designed layers [29]. In the backward
propagation step, the network tries to update the internal
parameters in order to optimize the given objective func-
tion [40]. From the previous literature available on CNN, it is
obvious that there is no rule of thumb for selecting the best
number of layers in a CNN and the selection process for the
total number of layers is a train-test based approach and is
dependent on the nature of the input data. The forward and
backward propagation are further explained as follows:

1) FORWARD PROPAGATION
a: CONVOLUTION LAYER
In this step, the Convolution Layers (CLs) learn the abstract
features from the input image data to retain the relation-
ship between pixels of the input while learning image
attributes [29]. To achieve an enhancement of these convo-
luted features, an activation function with added weights and
biases is applied [40]. This whole process can be expressed
by the following relation:

xmn = f

∑
i∈Kn

xm−1i ∗ wmin + b
m
n

 (3)

where xmn is themth component of layer n,Kn is the nth convo-
lution region of them−1 layer feature map, wmin is the weight

matrix, and bmn is the added bias. After calculating the sum-
mation of the total operation as described into Eq. (3), a non-
linear activation function f , called Leaky RELU, is applied
on it. This function can be written as:

f (x) = max (0.1x, x) (4)

b: POOLING LAYER
Immediately after the CLs, a Pooling Layer (PLs) is added
to decrease the redundancy of the extracted features from
the previous layer. In this study, max pooling is used as the
pooling layer [41], which can achieve the maximum value of
the convolutional output xmn as follows:

xmn = f
(
wmn ∗max(xm−1n )+ bmn

)
(5)

where, the output xmn of the convolution layer is down sam-
pled, wmn , and bmn represents the weight and bias matrix,
respectively. The max(xm−1n ) denotes the max pooling func-
tion used to lessen the dimensions of the attained convoluted
feature maps.

c: FULLY CONNECTED LAYER
To increase the depth of the network architecture, several
CLs and PLs are stacked together. Usually, several Fully
Connected Layers (FCLs) are arranged layer by layer till the
final one is reached, which alters the resultant filter matrix
to a column or row [42]. Thus, at the end, the output feature
can be obtained by the final fully connected layer which is
given as:

yz = f
(
wzxz−1 + bz

)
(6)

where z represents the continuous order of the network archi-
tecture and yz is the output of the final fully connected layer, f
is the activation function to give the probabilistic output from
the input. In this research paper, SoftMax [42] is considered
as the final activation function.

2) BACKWARD PROPAGATION
After completion of the forward propagation, the objective
function ( commonly known as, loss function ) is calculated
to acquire the target data in accordance with the input data.
Once the loss function is calculated, the parameters (i.e.,
weights, and biases) of the network architectures are updated
in a reverse manner. This is achieved by propagating the
loss function error in the backward direction. In this study,
the cross-entropy loss function [40] can be expressed as
follows:

E (w) =
1
n

n∑
z=1

[yz ln yz + (1− yz) ln (1− yz)] (7)

where yz and yz are the actual target and the predicted value
of the zth sample, respectively.
During the training process, the stochastic gradient descent

method is utilized to minimize the loss function and update
the network weights and biases.While training the neural net-
work, the entire input dataset is divided into several smaller

VOLUME 9, 2021 58055



M. J. Hasan et al.: Fault Diagnosis Framework for Centrifugal Pumps by Scalogram-Based Imaging and Deep Learning

groups called batches, and multiple batches are supplied to
train the CNN [43]. Thus, to minimize the loss function and
avoid overfitting or underfitting problems, the entire training
process is realized over several epochs [39], [43].

III. PROPOSED METHODOLOGY
As discussed before, it has been proposed to utilize CWTS
and ADCNN to diagnose the health states of pumps. Figure 1
shows the workflow diagram of the proposed approach. The
proposed approach consists of three main steps, (1) Data
collection, (2) Data Preprocessing, and (3) Diagnosis. These
steps have been described in detail in the following sections:

A. DATA COLLECTION TROUGH A TESTBED
DESIGNED FOR A CENTRIFUGAL PUMP
A test setup is developed to collect the vibration signals
from different pump health conditions for diagnosis purposes.
Figure 2 shows the schematic details of the test setup. The
test setup consists of a main tank and a buffer tank intercon-
nected with each other. The main tank supplies water to the
buffer tank. A mechanical pump of model PMT-4008 [44]
is linked to the buffer tank through a valve and a strainer.
The valve is attached to the buffer tank for adjusting the
intake flow rate. The pump speed (RPM), intake flowrate,
temperature, and pressure conditions are controlled through-
out the entire experiment. The vibration data is measured
with two accelerometer sensors mounted at suitable locations
on the centrifugal pump, as shown in Figure 2(a) and 2(b).
A Data Acquisition System (DAQ) developed by National
Instruments (model NI 9234) [45] is connected to the vibra-
tion sensors through cables and is utilized to record the
vibration signals. Data is acquired with a sampling frequency

of 25.6 kHz at a constant speed of 1733 RPM. The vibra-
tion dataset is gathered under two different pressure con-
ditions (3.0 bar, and 4.0 bar). For each pressure condition,
four types of health states were considered, namely, healthy
(normal), impeller crack, mechanical seal hole, and mechan-
ical seal scratch. For each health condition, 1,000 signals
were recorded. The faults were introduced artificially into the
corresponding components of the centrifugal pump. Figure 3
presents an original view of the artificially seeded defects.
Further, the detailed description of the collected vibration
datasets is provided in Table 1. As can be seen from Table 1,
two complete datasets under different pressure conditions
and four health conditions, denoted as Normal Condition
(NC), Impeller Crack (IC), Mechanical Seal Hole (MSH),
and Mechanical Seal Scratch (MSS) have been utilized for
validating the performance of the proposed diagnostic frame-
work.

B. DATA PROCESSING BY CWT-SCALOGRAM
BASED GRAY SCALE IMAGING (SGI)
Preprocessing of vibration signal plays a vital role,
particularly in neural network-based fault diagnosis tech-
niques [46]–[48]. In this step, the CWT Scalogram-based
Gray Scale Imaging (CWTSGI) approach is applied for pre-
processing of the collected vibration signals. The CWTSGI
framework is executed into two steps, (i) The acquired
time-domain vibration signals are decomposed via the CWT
and two-dimensional CWTS images are obtained. The
CWTS retains the information about the energy distribution
across the time-frequency plane for different health condi-
tions [32], [49], [50], and (ii) the resulting CWTS images
are converted into gray-scale images using a weighted sum
of the red, green, and blue intensity pixels [51]. This adds

FIGURE 1. The workflow diagram of the proposed fault diagnosis method.
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FIGURE 2. (a) The schematic diagram of the experimental testbed, (b) specifics of the sensor location of the pump.

TABLE 1. Specifics of the datasets.

computational benefits for the neural network-based analysis.
For simplicity, these images have been referred to as SGI in
the paper. In order to meet the size restraints of the developed
ADCNN architecture, the SGI’s are constricted [29]. There-
fore, each SGI is compressed into 256×256×1 dimensions.
The SGI helps to visualize the different health states of the
mechanical pump possessing distinct CWTS patterns.

C. DIAGNOSIS THROUGH ADAPTIVE DEEP
CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE (ADCNN)
In this step, the SGI’s are provided as an input to the proposed
ADCNN for centrifugal pump health state identification and
classification. The ADCNN consists of a CNN structure illus-
trated in Figure 4.
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FIGURE 3. Specifications of different faults, i.e., (a) impeller crack, (b) mechanical seal hole, and
(c) mechanical seal scratch.

FIGURE 4. Architecture of the proposed neural network (ADCNN).

The proposed ADCNN architecture can be explained as
follows: the ADCNN has a total of ten layers which starts
with the input layer followed by a total of two CLs. After CLs,
the architecture has two PLs, two DLs, two FCLs and finally
one output layer. The size of the input layer is determined
according to SGI’s (256× 256× 1). To reduce the number of
parameters and to enhance the training efficiency the kernel
size is determined to be 5 × 5. The CL1 and CL2 consist
of 64 and 32 filters. The CL1 size is down sampled by the
PL2. The FCL1 merges all the feature maps of the CL2 into
a 1-D form. The FCL2 facilitates the final layer to classify
the input data into its respective classes. The valid convo-
lution method utilized in this neural architecture accepts the
size of the feature maps to remain unchanged. Furthermore,
the two dropout layers allow the network to generalize data
to reduce over-fitting problems [36], [38]. As mentioned
earlier, the training process of the neural network is conducted
through the Backward Propagation Stage (BPS). The main
goal of training the network is to minimize the objective

function error by updating the weights and biases through
the BPS. In the training stage, a deep learning rate is consid-
ered to provide the DCNN structure. This deep learning can
optimize the performance of the neural network and avoids
the convergence of the objective function to a local mini-
mum. Furthermore, for updating the weights into the DCNN,
an adaptive moment estimation method (Adam) is consid-
ered [52]. Adam combines the advantages of deep gradient
algorithms (AdaGrad) to deal with the sparse gradients and a
root-mean-square propagation (RMSProp) algorithm capable
of performing at non-stationary settings. Adam preserves the
exponential moving averages (EMA) of the gradient and its
square in every update, which are related as follows:

w = w− α
Bmt1√
Bmt2 + ε

(8)

where,

Bmt1 = β1Bmt1−1 + (1− β1)
∂

∂w
cos t (w) here β1 ≈ 1

(9)
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Bmt2 = β1Bmt2−1 + (1− β2)
∂2

∂w2 cos t (w) here β2 ≈ 1

(10)

where w is the weight parameter and α is the positive scalar
step size. Here, Bmt1 and Bmt2 are the first and secondmoment
bias correction respectively and β1, β2 are the decay rates.
From Eqs. (9) - (10), it is observable that the step size α
and decay rates β1, β2 are small. Thus, the weight update
process described into Eq. (8) offers a nearly optimal learning
rate selection [52]. Therefore, the final structure combining
the CNN, the deep learning rate, and Adam is referred to
as ADCNN in this paper. Finally, to tune the hyperparam-
eters (i.e., dropout rate, learning rate, momentum, number
of epochs, and number of batch size) of the proposed archi-
tectures a grid search based 5-fold Cross Validation (5-CV)
is used. The details of the proposed ADCNN with layer
specifications are given into Table 2.

D. FOR THE DIAGNOSTIC PERFORMANCE ASSESSMENT
The performance of the proposed fault diagnosis framework
can be validated by considering several performance criteria,

which are as follows: (1) precision (P) [53], (2) recall (R) [54],
(3) F1 score (F1) [53], (4) final accuracy (FA), (5) confu-
sion matrices [55], (6) graphs of the objective (loss) func-
tion, and (7) feature space obtained by t-stochastic Neighbor
Embedding (t-SNE) for the output layer of the CNN, which
demonstrates class separability [56]. P, R, F1, and FA can be
obtained by the following equations:

P =
TP

TP+ FP
(11)

R =
TP

TP+ FN
(12)

F =
2TP

2TP+ FN + FP
(13)

FA =
TP+ TN

TP+ TN + FN + FP
(14)

In Eqs. (11) - (14), the terms TP, TN, FN, and FP represents
true positive, true negative, false negative, and false positive,
respectively. While measuring the diagnostic output of the
proposed ADCNN, the confusion matrix demonstrates the
real overview of the actual vs. predicted output and shows
the clarity of the performances.

TABLE 2. The proposed ADCNN structure Table 1.
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IV. EXPERIMENTAL VERIFICATION—RESULTS
AND DISCUSSIONS
The proposed diagnostic framework (CWTSGI + ADCNN)
is applied on the vibration data collected from the centrifugal
pump testbed. In this study, the vibration signals are col-
lected from the self-designed experimental testbed for two
different pressure conditions (pressure 3.0 bar and pressure
4.0 bar). For each pressure condition, a total of 4,000 sam-
ples were collected from each health types with a sampling
rate of 25.6khz. Out of these 4,000 samples, 1,000 samples
of 1 second were collected under normal operating condition,
denoted as NC. Similarly, from each of the other health
conditions (i.e., Impeller Crack (IC), Mechanical Seal Hole
(MSH), and Mechanical Seal Scratch (MSS)), 1,000 samples
of 1 second are collected. Thus, a balance dataset has been
formed for final analysis. The details of this dataset config-
uration have already been described into Table 1. Moreover,
Figure 5 depicts the original time-domain signals for different
health conditions under two different pressure conditions.
From this time-domain signal, it is very difficult to visualize
the differences between the time-domain vibration signals for
different health conditions. Further, the time-domain vibra-
tion signals may contain noise or randomfluctuations that can
mask the fault information contained in the vibration signals.

To retain the fault features visually, the CWTS is applied to
the vibration signals. Figure 6 portrays the CWTS of vibration
signals acquired under different health conditions at pressures
of 3.0 bar and 4.0 bar, respectively. From this Figure 6,
no significant meaning can be captured related to the change
of amplitude of the signal along with the time. Therefore,
Figure 7 presents the contour plots of the corresponding
CWTS images to provide a better visualization of the alter-
ations in CWTS patterns for different health conditions. It can
be realized from Figure 6 and 7 that the CWTS images

have distinctive patterns across various time-frequency scales
for each of the health conditions. For dataset 1 (pressure
3.0 bar), it can be observed that the CWT coefficients possess
large magnitudes at lower frequency scales and the energy
of vibration signal is mainly concentrated around the lower
frequency regions, when the vibration signal is in healthy
condition. For the MSH and MSS types fault, the in-plane
torsional vibrations and out-plane lateral vibrations produce
additional frequency modes into the vibration signals [57].
Thus, the energy of the vibration signal spreads across the
different frequency scales in the CWTS plots, ranging from
low to high.

The IC fault increases the vibration signal amplitude
at higher harmonics of the pump rotational speed. Hence,
the energy content is found to be larger in some of the higher
frequency scales. Hence, the CWTS patterns for NC, MSH,
MSS, and IC are clearly distinguishable from each other for
pump vibration dataset 1 acquired under a pressure of 3 bar.
In the case of dataset 2 (pressure 4.0 bar), the energy fluc-
tuations across the different frequency modes are relatively
smaller under different health conditions as compared to that
of dataset 1. However, the CWTS manages to capture the
minor variations along the frequency scales, which is almost
impossible with the use of traditional feature extraction meth-
ods. In addition, the variation along the timescales is clearly
separable between the CWTS plots for different fault types.
The energy is more concentrated across the timescales for
faulty conditions as compared to the healthy state. The CWTS
images are converted to SGI format (CWTSGI) and supplied
to the ADCNN network for diagnosis of pump faults.

Finally, two experiments were conducted for datasets 1 and
2 mentioned into Table 1 for evaluating the diagnostic per-
formance of the proposed approach. For experiment 1, 60%
of dataset 1 from each health class is used for learning the

FIGURE 5. Time domain vibration signals of different health types, i.e., (a) normal condition (NC), (b) mechanical seal hole (MSH),
(c) mechanical seal scratch (MSS), and (d) impeller crack (IC).
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FIGURE 6. The CWTS for vibration signals of different health states, (a) normal condition (NC), (b) mechanical seal hole (MSH), (c) mechanical seal
scratch (MSS), and (d) impeller crack (IC).

FIGURE 7. Contour plots of the CWTS of different health types, i.e., (a) normal condition (NC), (b) mechanical seal hole (MSH), (c) mechanical seal
scratch (MSS), and (d) impeller crack (IC).

CWTS patterns and the other 40% is used for testing the
network. The network again divides 60% of the learning data
into 80% for training and 20% for validation. For experi-
ment 2, dataset 2 is utilized, which is again divided in a similar
manner as dataset 1. The details of the training, testing, and
validation datasets are provided in Table 3.

For each set of the experiments, an appropriate learn-
ing rate is an essential constraint for optimization of the
training process to achieve better generalization and per-
formance. Figure 8 compares the convergence rates of a

DCNN architecture and a 5-layered straight forward basic
CNN model [27] assuming a fixed learning rate of 0.05 for
both of them. It can be observed that the DCNN nearly
converges to zero while the traditional CNN does not. Such
a behavior is expected in a network with better classifica-
tion accuracy. However, in this paper, the learning rate has
been allowed to adapt itself during the training process for
further improvement. Therefore, by considering the ADCNN
architecture for final diagnosis purpose, the performance of
the proposed approach is validated with experiments 1 and 2.
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FIGURE 8. Cost function (loss) convergence rate of the DCNN, and 5 layered CNN for the training data at a learning rate of 0.05 for
(a) experiment 1 – dataset 1, and (b) experiment 2 – dataset.

FIGURE 9. Behavior of the loss functions while training the ADCNN for two experiments, (a) experiment 1 – dataset 1, and
(b) experiment 2 – dataset 2.

TABLE 3. Data division.

For this purpose, the parameters discussed into Section 3.4 are
utilized. Moreover, to select the best Dropout rate, learning
rate and momentum, grid search approach is considered.
Table 4 provides the details of the diagnostic performance.
It can be realized from Table 4 that the proposed approach
achieved 100% classification accuracies in the corresponding
health states or classes for both the experiments. Therefore,
it is proved that the proposed approach based on CWTSGI
and ADCNN can distinguish among different health classes
for centrifugal. While training the network, the behavior of
the loss function is observed for 3000 epochs to ensure the
bias-variance trade-off between the training and validation
data. Figure 9 shows the behavior of the loss functions for

both sets of experiments. The validation curves tend to zero
which indicates that the proposed DCNN tackled the over-
fitting and underfitting of the training data. Furthermore,
at the end of the training, the class separability is verified by
applying the t-SNE algorithm at the output layer. The t-SNE
based feature space is depicted in Figure 10. Additionally,
to revalidate the test performances, the confusion matrices
are computed as shown into Figure 12. From all these per-
formance analyses, it can be concluded that the proposed
approach performed effectively on the centrifugal pump
vibration datasets and can be utilized for better diagnosis of
centrifugal pump faults.

The proposed approach is composed of time-frequency
based imaging technique called CWTS and an auto-
matic adaptive classifier, proposed as ADCNN. Therefore,
to establish the robustness of the proposed approach,
two points need to be validated, i.e., (i) the choice of
time-frequency based technique over time-domain analysis
and frequency-domain analysis, and (ii) the selection of auto-
matic neural network-based classifier over traditional feature
analysis based diagnostic methods. Therefore, the following
methods are considered in this study for comparisons:
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TABLE 4. Details of the diagnostic performance.

FIGURE 10. Observation of the t-SNE feature space of the output layer while training, (a) experiment 1 – dataset 1, and
(b) experiment 2 – dataset.

FIGURE 11. Evaluation of the proposed method against the reference methods, (a) experiment 1 – dataset 1, and
(b) experiment 2 – dataset 2.

1) RAW + CNN: In this approach, the original raw 1D
pump vibration signals are directly fed to the CNN
network for fault diagnosis. This comparison validates
the choice of time-frequency based analysis over the
time-domain based analysis.

2) FFT (fast Fourier transform) + CNN: In this approach,
the FFTs of the pump vibration signals are supplied
to the CNN for fault diagnosis [58]. This comparison
validates the choice of time-frequency based analysis
over the frequency-domain based analysis.

3) FE + k-NN (Feature extraction + k-nearest neighbor):
In this approach, the traditional statistical features from
the time and frequency domains are used as inputs to
k-NN for fault classification [5]. This comparison estab-
lishes the necessity of developing an automatic neural
network-based classifier ADCNN over the traditional
feature analysis based diagnostic methods.

Table 5 shows the comparison results along with the per-
centage improvement of the proposed method over the
above-mentioned methods. The experimental dataset was
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TABLE 5. Diagnostic performance comparison.

FIGURE 12. Observation of the confusion matrices for the test datasets,
(a) experiment 1 – dataset 1, and (b) experiment 2–dataset 2.

kept identical for each of these comparison tests. The RAW+
CNN approach achieved 93.9%, and 93.5% FA, for the
experiment 1 and 2, respectively. Meanwhile, the frequency
domain based FFT + CNN [58] approach performed bet-
ter than the time-domain based analysis. For experiment 1,
and 2, it achieved 94.9%, and 95.3% FA, respectively.
However, the classical feature-based approach FE + k-NN
performed very poorly for the considered dataset. It achieved
84.4%, and 84.6% FA, for experiment 1, and 2, respec-
tively. Figure 11 shows the average error rate, micro pre-
cision, and micro recall of the proposed method against
the reference methods. All these evaluation matrices were
calculated using the formulas from [59]. The average error

rate, micro recall, and micro recall for classification of the
proposed method is 0%, 100%, and 100% consecutively
for dataset-1 as compared to RAW + CNN which is 11%,
93.2%, and 93.1%, FFT + CNN which is 4.8%,97.4%, and
97.4%, and FE + K-NN which is 22.1%, 83.5%, 83.5%.
similarly, for dataset-2 The average error rate, micro recall,
and micro recall for classification of the proposed method is
0%, 100%, and 100% consecutively as compared to RAW +
CNN which is 11.39%, 93.26%, and 93.12%, FFT + CNN
which is 6.43%,96.44%, and 96.4%, and FE + K-NN
which is 22.08%, 83.50%, 83.50%. All These results indi-
cate that the developed framework clearly outperformed the
three state-of-art methods, yielding average improvements
of 5.1 – 15.6% and 4.7 – 15.4% for experiments 1 and 2,
respectively. The comparison results for the RAW + CNN
and FFT + CNN [58] confirm the necessity of the vibration
data preprocessing using the proposed CWTS-SGI technique.
On the other hand, the comparison results for FE+ k-NN [5]
highlights the necessity of deep learning-based approaches
such as ADCNN used in the present case.

V. CONCLUSION
This paper introduced a continuous wavelet transform (CWT)
scalogram based imaging technique combined with an
adaptive deep convolutional neural network (ADCNN) archi-
tecture for monitoring the health conditions of mechani-
cal pumps. By incorporating the CWT scalogram based
gray-imaging (SGI) with the proposed ADCNN architec-
ture, the proposed approach makes full use of the abili-
ties of the CWT to process the non-stationary, non-linear
vibration signals and enables an end-to-end diagnosis frame-
work without handcrafted feature analysis. Data collected
from a self-designed centrifugal pump testbed are used
to validate the performance of the proposed diagnostic
framework. Experimental results suggest that the proposed
framework can meaningfully enhance the diagnostic perfor-
mance for pump faults. Furthermore, the proposed approach
(SGI+ADCNN) provided better performance than the three
state-of-art methods discussed above, namely RAW + CNN,
FFT+CNN and FE+ k-NN. The current framework belongs
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to the application of neural network algorithms for work-
ing conditions, i.e., the health states from different pressure
conditions are not invariant in nature with respect to the
applied load and speed. Consequently, invariant fault diag-
nosis frameworks with transfer learning algorithms can be a
fascinating direction for future studies. Moreover, this pro-
posed algorithmmakes use of CWTS grey image with a fixed
resolution, which could be substituted with the scalogram
image of adaptive resolution to better address the issues faced
during the fault diagnosis of different mechanical faults due
to the inconsistent working conditions of a centrifugal pump.
Further, the proposed diagnostic framework can be extended
to other relevant applications such as spherical tank, boiler
tube, and pipeline fault diagnosis.
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