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Semisupervised Hypergraph Discriminant Learning
for Dimensionality Reduction of Hyperspectral Image

Fulin Luo , Member, IEEE, Tan Guo , Zhiping Lin , Senior Member, IEEE,
Jinchang Ren , Senior Member, IEEE, and Xiaocheng Zhou

Abstract—Semisupervised learning is an effective technique to
represent the intrinsic features of a hyperspectral image (HSI),
which can reduce the cost to obtain the labeled information of sam-
ples. However, traditional semisupervised learning methods fail to
consider multiple properties of an HSI, which has restricted the
discriminant performance of feature representation. In this article,
we introduce the hypergraph into semisupervised learning to reveal
the complex multistructures of an HSI, and construct a semisu-
pervised discriminant hypergraph learning (SSDHL) method by
designing an intraclass hypergraph and an interclass graph with the
labeled samples. SSDHL constructs an unsupervised hypergraph
with the unlabeled samples. In addition, a total scatter matrix is
used to measure the distribution of the labeled and unlabeled sam-
ples. Then, a low-dimensional projection function is constructed
to compact the properties of the intraclass hypergraph and the
unsupervised hypergraph, and simultaneously separate the charac-
teristics of the interclass graph and the total scatter matrix. Finally,
according to the objective function, we can obtain the projection
matrix and the low-dimensional features. Experiments on three
HSI data sets (Botswana, KSC, and PaviaU) show that the proposed
method can achieve better classification results compared with a
few state-of-the-art methods. The result indicates that SSDHL can
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simultaneously utilize the labeled and unlabeled samples to repre-
sent the homogeneous properties and restrain the heterogeneous
characteristics of an HSI.

Index Terms—Dimensionality reduction (DR), graph learning,
hyperspectral image (HSI) classification, locality-constrained
linear coding, neighborhood margin.

I. INTRODUCTION

AHYPERSPECTRAL image (HSI) is composed of tens or
hundreds of consecutive narrow electromagnetic bands

covering the visible-to-infrared spectrums [1], [2]. Due to the
abundant spectral and spatial information of an HSI, it can
be used to discriminate different types of land covers [3], [4].
Generally, an HSI covers a large region. Machine learning is
an effective way to automatically discriminant the land cover
types of HSI [5], [6]. For the high-dimensional structure of
HSI data, traditional recognition methods face the challenge of
the Hughes phenomenon [7], [8]. To address this challenge, the
dimensionality reduction (DR) of HSI data becomes crucial.

In the past decades, DR has been widely used to process
high-dimensional data, which reduces the dimensionality of data
via transforming high-dimensional data into a low-dimensional
space while preserving the useful information as much as
possible [9], [10]. The classic DR methods include principal
component analysis (PCA) and its variations [11], [12], linear
discriminant analysis (LDA) [13], and maximum noise fraction
(MNF) [14]. These methods utilize the variance property of the
data to construct a DR model. Specifically, PCA maximizes the
variance of the orthogonal projection of data, LDA considers
the within-class and between-class variance, and MNF utilizes
the noise variance to construct the projection model. However,
these methods only consider the statistical properties, which
neglect the intrinsic structures of the data. To better analyze
the intrinsic properties of the data, manifold learning has been
developed to reveal the geometry structures of the data [15],
[16]. Some representative algorithms include isometric mapping
(Isomap) [17], locally linear embedding (LLE) [18], and Lapla-
cian eigenmaps (LE) [19]. These methods consider a certain
local properties to describe the intrinsic manifold of the high-
dimensional data in a low-dimensional space while the three
methods belong to nonlinear projection that cannot obtain spe-
cific projection matrix to map the out-of-sample into the corre-
sponding low-dimensional space. To address this out-of-sample
extension problem, LLE and LE are linearized to neighborhood
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preserving embedding (NPE) [20] and locality preserving pro-
jections (LPP) [21], respectively. To generalize these methods,
a unified graph framework was developed to represent these
DR models [22]. This framework considers a certain statistic or
geometry properties to construct a graph model. Thus, according
to different statistic or geometry characteristics, different graph
learning algorithms can be designed with various construction
manners of similarity matrix and constraint matrix. Based on the
view of graph framework, many advanced methods have been
developed to better reveal the intrinsic properties of the data,
such as marginal Fisher analysis (MFA) [22], local Fisher dis-
criminant analysis (LFDA) [23], regularized local discriminant
embedding (RLDE) [24], and local geometric structure Fisher
analysis (LGSFA) [25].

The above-mentioned methods are unsupervised or super-
vised models. For these unsupervised methods, they do not
use any prior information to construct the low-dimensional
feature learning models. For these supervised methods, they
need to know the label information of the training samples to
design the DR models. In real-world applications, an unsuper-
vised technique cannot achieve desired performance in general,
whereas supervised algorithms usually require a high cost to
obtain the labeled information for the training samples [26].
To enhance the discriminant performance or reduce the cost
of labeling samples, semisupervised learning was proposed to
simultaneously utilize the labeled and unlabeled samples to con-
struct the DR models [27], [28]. Based on the margin criterion,
a semisupervised maximum margin criterion (SSMMC) [29]
was proposed to improve the margin discriminant power of
different classes. According to the theory of graph learning,
semisupervised graph learning (SEGL) [30] was designed to
build a semisupervised graph with the labeled and unlabeled
samples. Meanwhile, LDA was used to develop semisupervised
discriminant analysis (SDA) [31] and semisupervised local
discriminant analysis (SELD) [32]. In addition, two semisu-
pervised methods, i.e., semisupervised submanifold preserving
embedding (S3MPE) [33] and semisupervised sparse manifold
discriminative analysis (S3MDA) [34], consider the manifold
structures of the data to enhance the representation of intrinsic
characteristics.

These traditional graph learning methods only consider the
binary relationship between the sample points; hence, they show
relatively unrealistic performance on an HSI due to the complex
multiple structures it contains. Generally, the traditional graph
is difficult to represent the intrinsic high-order relationships
of HSIs. To reveal multiple properties of the data, hypergraph
was introduced into the field of machine learning [35]–[37]. In
hypergraph, each hyperedge contains more than two vertices,
whereas the traditional graph just has two vertices on each
edge [38], [39]. Subsequently, a series of hypergraph learning
methods have been developed for DR of the data. Accord-
ing to LPP, a binary hypergraph (BH) [40] was proposed to
extract the features of an HSI. In addition, a supervised hy-
pergraph learning method was proposed to improve the rep-
resentation performance of low-dimensional features, termed
discriminant hyper-Laplacian projection (DHLP) [41]. For an
HSI, the spatial-spectral information was used to construct
different spatial-spectral hypergraph models, including spatial

hypergraph (SH) [40], hypergraph embedding based spatial-
spectral joint features (SSHG) [42], and spatial-spectral hyper-
graph discriminant analysis (SSHGDA) [43]. However, these
hypergraph methods cannot utilize the labeled and unlabeled
samples to construct effective DR models, simultaneously.

In this article, we proposed a semisupervised discriminant
hypergraph learning (SSDHL) method to obtain the effective
low-dimensional features for HSI classification. In SSDHL, we
construct an unsupervised hypergraph model with the K nearest
neighbors (NNs) in the unlabeled samples and also design an
intraclass hypergraph model with intraclass neighbors with the
labeled samples. On the other hand, we utilize the interclass
neighbors of the labeled samples to construct an interclass graph,
which can enhance the separability of different classes. In order
to represent the global structure, we develop a total scatter matrix
for all the labeled and unlabeled samples. In the low-dimensional
space, we also compact the similarity properties of the unsuper-
vised hypergraph and the intraclass hypergraph while we should
separate the different characteristics of the interclass graph and
the total matrix as much as possible. According to this criterion,
a DR model is designed to obtain the low-dimensional projec-
tion matrix. To demonstrate the effectiveness of the proposed
method, we select three HSI data sets (i.e. the Botswana, KSC,
and PaviaU data sets) to conduct several compared experiments
with a few state-of-the-art methods.

The rest of this article is organized as follows. Section II
briefly reviews some related works including graph embedding
and hypergraph embedding. Section III details our proposed
method. Experimental results are presented in Section IV to
demonstrate the effectiveness of the proposed SSDHL method.
Finally, Section V provides some concluding remarks and sug-
gestions for future works.

II. RELATED WORKS

For an HSI data set, the labeled samples are denoted as
Xl = [xl,1,xl,2, . . . ,xl,nl

] ∈ RB×nl and the unlabeled sam-
ples are denoted as Xu = [xu,1,xu,2, . . . ,xu,nu

] ∈ RB×nu ,
where B is the number of bands and nl and nu are the num-
bers of labeled and unlabeled samples, respectively. �(xl,i) ∈
{1, 2, . . . , c} is the class label of xl,i, where c is the num-
ber of classes. X = [Xl,Xu] ∈ RB×n denotes the whole
data set, where n = nl + nu is the total number of sam-
ples. The low-dimensional features are represented as Y =
[yl,1,yl,2, . . . ,yl,nl

,yu,1,yu,2, . . . ,yu,nu
] ∈ Rd×n, where d is

the embedding dimension. X can be transformed as Y = VTX
with a projection matrix V ∈ RB×d.

A. Graph Embedding

Graph has been widely used to reveal the relationships be-
tween different samples. For an undirected graph G, it can be
denoted as G = {X,E,W}, where X is the vertex set, E is the
edge set, and W = [wij ]

n
i,j=1 is the weight matrix of edges. To

construct a graph, some similarity measure methods are adopted
to define the connection of edges between two vertices and its
corresponding weight. If vertices i and j are similar, an edge
should be connected between vertices i and j, and a similarity
weight of the edge should be defined at the same time.
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Fig. 1. Graph and hypergraph structures.

In a low-dimensional space, the structure of the graph should
be preserved and similar samples should be as compact as
possible. Therefore, the objective function can be represented
as the following:

min
Y

1

2

∑
i �=j

‖yi − yj‖2wij = min
Y

tr(YLYT )

s.t. tr(YHYT ) = h (1)

where h is a constant, H is a constraint matrix being
used to avoid a trivial solution of the objective function,
L = D−W is the Laplacian matrix of the graph G, and
D = diag([

∑n
j=1 w1j ,

∑n
j=1 w2j , . . . ,

∑n
j=1 wnj ]) is a diago-

nal matrix. In general, H is set to an identity matrix for scale
normalization or a Laplacian matrix of penalty graph that is
used to suppress some of the unwanted properties of data.

B. Hypergraph Embedding

The main difference between the hypergraph and graph is the
number of vertices for each edge. In a graph, each edge only
has two vertices, whereas each edge can contain more than two
vertices in a hypergraph as shown in Fig. 1.

For a hypergraph, it is defined as GH = {X,EH ,WH},
where X is the vertex set, EH is the hyperedge set, WH

is the weight matrix of the hyperedges, and each hyperedge
ei ∈ EH has a weight we

i . An incidence matrix H = [hve
ij ]i,j ∈

�|VH |×|EH | is used to represent the relationship between the
vertex vi and the hyperedge ej , and hve

ij is defined as follows:

hve
ij =

{
1, if vi ∈ ej
0, otherwise.

(2)

To reveal the properties of the hypergraph, the degree of vertex
vi is the summation of the weights of the hyperedges via vertex
vi, and the degree of hyperedge ei is the number of vertices
on the hyperedge ei. Therefore, the degrees of vertex vi and
hyperedge ej are defined as follows:

dvi =

n∑
j=1

we
jh

ve
ij (3)

dej = |ej | =
n∑

i=1

hve
ij (4)

In a low-dimensional space, the samples from the same hyper-
edge should be compact as close as possible, and the objective

Fig. 2. Procedure of the proposed SSDHL method.

function can be represented as the following:

min
Y

1
2

∑
ei∈EH

we
i

de
i

∑
(xj ,xk)∈ei

∣∣∣∣
∣∣∣∣ yj√

dv
j

− yk√
dv
k

∣∣∣∣
∣∣∣∣
2

= tr(YLHYT )

s.t. tr( 1nYYT ) = 1
(5)

where LH = I− (Dv)−1/2HWH(De)−1(H)T (Dv)−1/2 is
the hyper-Laplacian matrix. WH = diag([we

1, w
e
2, . . . , w

e
n]) is

the weight matrix. De = diag([de1, d
e
2, . . . , d

e
n]) and Dv =

diag([dv1, d
v
2, . . . , d

v
n]) are the diagonal matrices of the vertex

and hyperedge degrees.

III. SEMISUPERVISED DISCRIMINANT HYPERGRAPH

LEARNING (SSDHL)

In this section, we propose a semisupervised hypergraph
learning model to extract the low-dimensional features of an
HSI with both the labeled and unlabeled samples. This model
is termed as SSDHL. First, an unsupervised hypergraph is con-
structed to reveal the similarity of the unlabeled samples, and an
intraclass hypergraph is designed to represent the relationships
of the labeled samples from the same class. To enhance the
discriminant performance of different classes, we also construct
an interclass graph to separate the samples from different classes
as much as possible. In addition, a total scatter matrix is used
to disperse the distribution of all the labeled and unlabeled
samples. A semisupervised DR model is constructed to compact
the similar properties of the unsupervised hypergraph and the
intraclass hypergraph and separate the difference characteristics
of the interclass graph and the total scatter matrix. The workflow
of the proposed SSDHL method is shown in Fig. 2.
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A. Unsupervised Hypergraph

For the unlabeled samples, an unsupervised hypergraph
GH

u = {Xu,E
H
u ,WH

u } is constructed to represent the multiple
relationships of the unlabeled samples, where Xu is the vertex
set of the unlabeled samples, EH

u is the unsupervised hyperedge
set, and WH

u is the unsupervised weight matrix of unsupervised
hyperedges. Ku NNs are selected by the Euclidean distance to
construct an unsupervised incidence matrix Hu = [hu

ij ]i,j

hu
ij =

{
1, if xu,j ∈ NKu

(xu,i)
0, otherwise

(6)

where NKu
(xu,i) denotes the Ku NNs of xu,i in the unlabeled

set. An unsupervised hyeredge eui ∈ EH
u possesses Ku vertices

that are Ku NNs of xu,i from the unlabeled samples.
For an unsupervised hyperedge eui , the weight is used to

represent the similarity of these vertices on this hyperedge as
defined in the following:

wu
i =

∑
xu,j∈NKu (xu,i)

exp

(
−||xu,j − xu,i||2

2(tui )
2

)
(7)

where tui = (1/Ku)
∑

xu,j∈NKu (xu,i)
||xu,j − xu,i|| is the ker-

nel parameter, and WH
u = diag([wu

1 , w
u
2 , . . . , w

u
nu

]) is the un-
supervised hyperedge weight matrix.

According to the unsupervised incidence matrix and the unsu-
pervised weight matrix, the degrees of vertexxu,i and hyperedge
eui are defined to reveal the intrinsic properties of unlabeled
samples as the following:

duv,i =

nu∑
j=1

wu
j h

u
ij (8)

due,j =

nu∑
i=1

hu
ij . (9)

In a low-dimensional space, we should preserve the structures
of the unsupervised hypergraph and compact the similar samples
as much as possible. Therefore, the objective function can be
defined as follows:

min
V

1

2

∑
eui ∈EH

u

wu
i

due,i

∑
(xu,j ,xu,k)∈eui

∣∣∣∣∣∣
∣∣∣∣∣∣
VTxu,j√

duv,j
− VTxu,k√

duv,k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

(10)
With some mathematical operations, we can simplify the

objection function (10) with the following procedure in
(11) shown at the bottom of this page, where LH

u = I−
(Du

v )
−1/2HuWH

u (Du
e )

−1(Hu)T (Du
v )

−1/2 is the unsupervised
hyper-Laplacian matrix, andDu

e = diag([due,1, d
u
e,2, . . . , d

u
e,nu

])

1

2

∑
eui ∈EH

u

wu
i

due,i

∑
(xu,j ,xu,k)∈eui

∣∣∣∣∣∣
∣∣∣∣∣∣
VTxu,j√

duv,j
− VTxu,k√

duv,k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
∑

eui ∈EH
u

wu
i

due,i

∑
(xu,j ,xu,k)∈eui

tr

⎛
⎝VTxu,jx

T
u,jV

duv,j
− VTxu,jx

T
u,kV√

duv,jd
u
v,k

⎞
⎠

=
∑

eui ∈EH
u

wu
i

due,i

∑
xu,j ,xu,k∈Xu

hu
ijh

u
iktr

⎛
⎝VTxu,jx

T
u,jV

duv,j
− VTxu,jx

T
u,kV√

duv,jd
u
v,k

⎞
⎠

=
∑

eui ∈EH
u

∑
xu,j ,xu,k∈Xu

⎛
⎝ hu

ik

due,i
× wu

i h
u
ijtr(V

Txu,jx
T
u,jV)

duv,j
− tr(VTxu,jh

u
ijw

u
i h

u
ikx

T
u,kV)

due,i

√
duv,jd

u
v,k

⎞
⎠

=
∑

xu,j∈Xu

⎛
⎜⎝tr(VTxu,jx

T
u,jV)

1

duv,j

∑
eui ∈EH

u

⎛
⎜⎝wu

i h
u
ij

∑
xu,k∈Xu

hu
ik

due,i

⎞
⎟⎠
⎞
⎟⎠

−
∑

eui ∈EH
u

∑
xu,j ,xu,k∈Xu

tr

⎛
⎝VTxu,j

1√
duv,j

hu
ijw

u
i

1

due,i
hu
ik

1√
duv,k

xT
u,kV

⎞
⎠

= tr(VTXuX
T
uV)

− tr
(
VTXu(D

u
v )

−1/2HuWH
u (Du

e )
−1(Hu)T (Du

v )
−1/2XT

uV
)

= tr
{
VTXu

[
I− (Du

v )
−1/2HuWH

u (Du
e )

−1(Hu)T (Du
v )

−1/2
]
XT

uV
}

= tr
(
VTXuL

H
u XT

uV
)
. (11)
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and Du
v = diag([duv,1, d

u
v,2, . . . , d

u
v,nu

]) are the degree matrices
of the unsupervised hyperedges and the vertices.

According to the transformation procedure of (17), for the
unlabeled samples, the low-dimension embedding function can
be denoted by

min
V

tr
(
VTXuL

H
u XT

uV
)
. (12)

B. Intraclass Hypergraph

To reveal the multiple properties of the samples from the
same class, we construct an intraclass hypergraph GH

w =
{Xl,E

H
w ,WH

w }, where Xl is the vertex set of the labeled
samples, EH

w is the intraclass hyperedge set, and WH
w is the

intraclass weight matrix of intraclass hyperedges. An intraclass
incidence matrix can be defined as Hw = [hw

ij ]i,j via selecting
Kw NNs from the same class with the Euclidean distance in the
labeled set

hw
ij =

{
1, if xl,j ∈ NKw

(xl,i) and �(xl,i) = �(xl,j)
0, otherwise

(13)

where NKw
(xl,i) denotes the Kw NNs of xl,i from the same

class.
For an intraclass hyperedge ewi , the hyperedge weight, which

reflects the similarity of the vertices on the hyperedge ewi , is set
as the following:

ww
i =

∑
xl,j∈NKw (xl,i)

exp

(
−||xl,j − xl,i||2

2(twi )
2

)
(14)

where twi = (1/Kw)
∑

xl,j∈NKw (xl,i)
||xl,j − xl,i|| is the kernel

parameter, and WH
w = diag([ww

1 , w
w
2 , . . . , w

w
nl
]) is the intra-

class hyperedge weight matrix.
According to the intraclass incidence matrix, we can obtain

the degrees of intraclass hyperedge ewi and vertex xl,i to repre-
sent the intrinsic properties of hypergraph, i.e.,

dwv,i =

nl∑
j=1

ww
j h

w
ij (15)

dwe,j =

nl∑
i=1

hw
ij . (16)

In a low-dimensional space, the intraclass hypergraph struc-
ture is preserved to reveal the intrinsic properties of the labeled
samples and the intraclass similar samples are compacted as
much as possible. With the derived hw

ij , dwv,i, w
w
i , and dwe,j , we

can obtain hwr
ij , dwr

v,i , w
wr
i , and dwr

e,j of the rth class, and the
low-dimensional projection function can be determined by

min
V

1

2

c∑
r=1

∑
ewr
i ∈EH

w

wwr
i

dwr
e,i

∑
(xr,j ,xr,k)∈ewr

i

∣∣∣∣∣∣
∣∣∣∣∣∣
VTxr,j√

dwr
v,j

− VTxr,k√
dwr
v,k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(17)
where ewr

i is the ith hyperedge in the rth class, xr,j is the jth
sample in the rth class, dwr

e,i is the degree of intraclass hyperedge
ewr
i , and dwr

v,j is the degree of vertex xr,j .

With the same transformation procedure of (11), the low-
dimensional embedding function of (17) can be simplified as

min
V

c∑
r=1

tr
(
VTXrL

H
wrX

T
r V
)
= min

V
tr
(
VTXlL

H
wXT

l V
)

(18)
where Xr = [xr,j ]j is the rth class samples, Xl = [Xr]

c
r=1,

LH
wr = I− (Dwr

v )−1/2HwrWH
wr(D

wr
e )−1(Hwr)T (Dwr

v )−1/2

is the intraclass hyper-Laplacian matrix of the rth
class, Dwr

e = diag([dwr
e,1, d

wr
e,2, . . . , d

wr
e,nr

]) and Dwr
v =

diag([dwr
v,1, d

wr
v,2, . . . , d

wr
v,nr

]) are the degree matrices of the
intraclass hyperedges and the vertices of the rth class,
Hwr = [hwr

ij ]nr
i,j=1 is the incidence matrix of the rth class,

nr is the number of the rth class, and LH
w = diag([LH

wr]
c
r=1) is

the intraclass hyper-Laplacian matrix.

C. Interclass Graph

To further enhance the difference of the samples from different
classes, we construct a graph Gb = {Xl,Eb,Wb} to reveal
the relationships of interclass samples that should be restrained
in low-dimensional space. In a graph Gb, Xl is the vertex set
consisting of the labeled samples,Eb denotes the interclass edge
set, and Wb is the interclass weight matrix of the interclass
edges. To construct the graph Gb, we adopt the Euclidean
distance to select Kb interclass NNs and connect each neighbor
with an edge. For each edge, we set a weight wb

ij to reveal the
similarity of vertices i and j. If two vertices are unconnected,
the weight is set to zero. Therefore, the weight can be defined
as follows:

wb
ij =

⎧⎪⎨
⎪⎩

exp(−||xl,j−xl,i||2
2(tbi )

2 ), if xl,j ∈ NKb
(xl,i)

and �(xl,i) �= �(xl,j)
0, otherwise

(19)

where tbi = (1/Kb)
∑

xl,j∈NKb
(xl,i)

||xl,j − xl,i|| is the kernel

parameter. NKb
(xl,i) denotes the Kb NNs of xl,i from different

classes. Wb = [wb
ij ]

nl
i,j=1 is the interclass weight matrix. Since

the graph is undirected, the weight matrix should be symmetric
and it should be symmetrized to Wb = max(Wb,W

T
b ).

The degree of vertex xl,i is denoted as

dbv,i =

nl∑
j=1

wb
i,j . (20)

In a low-dimensional space, the relationships of Gb should
be separated as much as possible to restrain the similarity of the
interclass NNs. According to wb

ij and dbv,i, we can obtain dbpv,i of

the pth class and wbpq
i between the pth class and the qth class,

and an objective function can be defined as follows:

max
V

1

2

c∑
p=1

c∑
q=1,q �=p

np∑
i=1

nq∑
j=1

wbpq
ij

∥∥∥∥∥∥
VTxp,i√

dbpv,i

− VTxq,j√
dbqv,j

∥∥∥∥∥∥
2

(21)

where xp,i is the ith sample from the pth class and dbpv,i is the
degree of vertex xp,i.
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For (21), we can transform it into another form with the total
labeled samples by

max
V

1

2

nl∑
i=1

nl∑
j=1

wb
ij

∥∥∥∥∥∥
VTxl,i√

dbv,i

− VTxl,j√
dbv,j

∥∥∥∥∥∥
2

. (22)

With some mathematical operations, (22) can be transformed
as a matrix operation as follows:

1

2

nl∑
i=1

nl∑
j=1

wb
ij

∥∥∥∥∥∥
VTxl,i√

dbv,i

− VTxl,j√
dbv,j

∥∥∥∥∥∥
2

=

nl∑
i=1

nl∑
j=1

tr

⎛
⎝VTxl,i

wb
ij

dbv,i
xT
l,iV −VTxl,i

wb
ij√

dbv,id
b
v,j

xT
l,jV

⎞
⎠

= tr

⎛
⎝VT

⎧⎨
⎩

nl∑
i=1

[
xl,i

(∑nl

j=1 w
b
ij

dbv,i

)
xT
l,i

]

−
nl∑

i,j=1

⎛
⎝xl,i

wb
ij√

dbv,id
b
v,j

xT
l,i

⎞
⎠
⎫⎬
⎭V

⎞
⎠

= tr

(
VT

[
nl∑
i=1

(xl,ix
T
l,i)

−
nl∑

i,j=1

(
xl,i(d

b
v,i)

−1/2
wb

ij(d
b
v,j)

−1/2
xT
l,i

)⎤⎦V
⎞
⎠

= tr(VTXl[I− (Db
v)

−1/2
Wb(D

b
v)

−1/2
]XT

l V)

= tr(VTXlLbX
T
l V) (23)

where Lb = I− (Db
v)

−1/2
Wb(D

b
v)

−1/2
denotes the interclass

Laplacian matrix, and Db
v = diag(dbv,1, d

b
v,2, . . . , d

b
v,nl

) is the
diagonal matrix of the vertex degree.

According to (23), the interclass graph embedding function
can be simplified as

max
V

tr
(
VTXlLbX

T
l V
)
. (24)

D. Total Scatter

To better combine the labeled and unlabeled samples, we
construct a total scatter matrix to control the distribution of all
the samples. The total scatter matrix is defined as the following:

St =

n∑
i=1

(xi − X̄)(xi − X̄)
T

(25)

where X̄ = 1
n

∑n
i=1 xi is the mean of X.

In the low-dimensional space, the total scatter should be dis-
persed as much as possible to better discriminate these samples
from different classes. Therefore, the objective function can be
defined as follows:

max
V

tr(VTStV). (26)

E. Feature Embedding

To reduce the heterogeneity of samples from the same class
and enhance the difference of samples from different classes,
the intraclass samples should be compacted and the interclass
samples should be separated as much as possible in the low-
dimensional space. According to the intraclass hypergraph, the
interclass graph, the unsupervised hypergraph, and the total
scatter matrix, we design a combined projection function to
obtain the low-dimensional discriminant features and reveal the
complex intrinsic properties of an HSI. The projection matrix
can be computed by the following optimization problem:

min
V

tr[VT (βXlL
H
wXT

l +XuL
H
u XT

u )V]

tr[VT (XlLbXT
l + St)V]

= min
V

tr(VTPlV)

tr(VTPgV)
(27)

where β > 1 is a label weight parameter to enhance the contri-
bution of the labeled samples. Pl = βXlL

H
wXT

l +XuL
H
u XT

u

is the local related matrix and Pg = XlLbX
T
l + St denotes the

global related matrix. The local related matrix reveals the homo-
geneity of the similar samples that may be from the same class,
whereas the global related matrix represents the heterogeneity
of the differential samples that may be from different classes.

According to the principle of the generalized Rayleigh quo-
tient, the optimization function of (27) is equal to the following
problem:

min
V

VTPlV

s.t. VTPgV = I. (28)

To solve the optimization problem (28), we use the method
of Lagrangian multipliers [44], [45] to obtain the optimal pro-
jection matrix, and the Lagrangian function can be defined as
follows:

L(V, λ) = VTPlV − λ(VTPgV − I) (29)

where λ is the Lagrangian multiplier.
To obtain the optimal projection, we set the derivative of

L(V, λ) to zero, and the optimization problem can be trans-
formed to a generalized eigenvalue problem

Plvi = λiP
gvi (30)

whereλi is an eigenvalue and its corresponding eigenvector isvi.
The optimization solution is composed of the d largest eigenval-
ues corresponding eigenvectors, and the projection matrix can
be denoted as the following:

V = [v1,v2, . . . ,vd] ∈ �B×d. (31)

According to the projection matrix, we can derive the low-
dimensional embedding features of xi as

yi = VTxi. (32)

F. Illustration of SSDHL

In summary, the proposed SSDHL method constructs an
intraclass hypergraph and an interclass graph with the labeled
samples to represent the intrinsic properties of the data. SS-
DHL also generates an unsupervised hypergraph to reveal the
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Fig. 3. Botswana HSI. (a) False-color image. (b) Ground truth. (Note that the
number of samples for each class is shown in brackets.)

similarity of the unlabeled samples. In addition, a total scatter
matrix is designed to control the distribution of all the samples,
which can better combine the labeled and unlabeled samples. For
SSDHL, the local information is represented with the intraclass
and unsupervised hypergraphs, whereas the global information
is described with the interclass graph and the total scatter matrix.
The proposed method can use a few labeled samples and a large
number of unlabeled samples to effectively reveal the intrinsic
structures of the HSI data, and it can better extract the low-
dimensional embedding features to improve the discriminant
performance of an HSI. The detailed procedure of SSDHL is
shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed SSDHL, we
conduct comprehensive experiments on three publicly available
HSI data sets and benchmarked with a few state-of-the-art
methods for comparison and performance evaluation.

A. Data Sets

1) Botswana Data Set: This data set was captured by the
NASA Earth Observing-1 satellite over the Okavango Delta,
Botswana on May 31, 2001. The spatial resolution is 30 m with
a size of 1476 × 256 pixels. This image contains 242 bands with
the electromagnetic spectrums in the range of 400–2500 nm. Af-
ter removing noise and water absorption bands, the retained 145
bands were used for scientific research. This data set contains
3428 labeled samples in 14 types of land cover. The false-colored
image and the ground truth are shown in Fig. 3.

2) KSC Data Set: This data set was acquired by the NASA
Airborne Visible Infrared Imaging Spectrometer sensor over the
Kennedy Space Center (KSC) on March 23, 1996. The image has
a spatial resolution of 18 m with 224 electromagnetic spectrum
bands. Due to the influence of water absorption and low signal-
to-noise ratio, only 176 bands were retained for experimental
analysis. This data set has a size of 512× 614 pixels and a total of
5211 pixels were labeled in 13 types of land cover. Fig. 4 displays
the false color image and its corresponding ground truth.

3) PaviaU Data Set: This image was captured by the Reflec-
tive Optics System Imaging Spectrometer sensor in 2001. The

Fig. 4. KSC HSI. (a) False-color image. (b) Ground truth. (Note that the
number of samples for each class is shown in brackets.)

Algorithm 1: SSDHL.
Input: Labeled samples
Xl = [xl,1,xl,2, . . . ,xl,nl

] ∈ RB×nl and their
corresponding class labels
{�(xl,1), �(xl,2), . . . , �(xl,nl

)} ∈ {1, 2, . . . , c}, unlabeled
samples Xu = [xu,1,xu,2, . . . ,xu,nu

] ∈ RB×nu ,
X = [Xl,Xu] ∈ RB×n, embedding dimension d (d < B),
neighbor size Ku, Kw, Kb, and weight parameter β > 1.

Output: Low-dimensional embedding features
Y = [y1,y2, . . . ,yn] ∈ �d×n.
1: Construct the intraclass hypergraph GH

w with the Kw

nearest neighbors from the same class according to
Euclidean distances in the labeled samples.

2: Compute the intraclass hyper-Laplacian matrix of the
rth class:

3: LH
wr = I− (Dwr

v )−1/2HwrWH
wr(D

wr
e )−1

(Hwr)T (Dwr
v )−1/2

4: Achieve the intraclass hyper-Laplacian matrix:
5: LH

w = diag([LH
wr]

c
r=1)

6: Construct the unsupervised hypergraph GH
u with the

Ku nearest neighbors according to Euclidean
distances in the unlabeled samples.

7: Compute the unsupervised hyper-Laplacian matrix:
8: LH

u = I− (Du
v )

−1/2HuWH
u (Du

e )
−1

(Hu)T (Du
v )

−1/2

9: Construct the interclass graph Gb with the Kb nearest
neighbors from different classes according to
Euclidean distances in the labeled samples.

10: Lb = I− (Db
v)

−1/2
Wb(D

b
v)

−1/2

11: Construct the total scatter matrix with all the samples
as:

12: St =
∑n

i=1 (xi − X̄)(xi − X̄)
T

13: Compute the local related matrix:
14: Pl = βXlL

H
wXT

l +XuL
H
u XT

u

15: Compute the global related matrix:
16: Pg = XlLbX

T
l + St

17: Solve the generalized eigenvalue problem:
18: Plvi = λiP

gvi

19: Obtain the projection matrix with d largest eigenvalues
corresponding eigenvectors:

20: V = [v1,v2, . . . ,vd] ∈ �B×d

21: Calculate the low-dimensional embedding features:
22: yi = VTxi
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Fig. 5. PaviaU HSI. (a) False color image. (b) Ground truth. (Note that the
number of samples for each class is shown in brackets.)

image scene covers the University of Pavia (PaviaU) with a size
of 610 × 340 pixels. Since 12 bands are influenced by noise and
water absorption, the remaining 103 bands are used for scientific
research. This data set has 9 land cover types and 42776 labeled
samples. The false color image and its ground truth are shown
in Fig. 5.

B. Experimental Setup

In the experiments, we randomly selected a few samples from
a data set as the labeled set and a large number of samples from
the remaining samples as the unlabeled set. The training set
consists of the labeled and unlabeled sets, and the other samples
are composed of the test set. First, we use the training set to train
each DR model, where the unsupervised and semisupervised
methods use all the labeled and unlabeled samples for training
and the supervised methods just use the labeled samples for
training. Then, we can obtain the low-dimensional embedding
features of all the samples with these DR models. Finally, a
classifier is used to discriminate the class type of each test
sample; meanwhile, we apply the classification accuracy of each
class, the average accuracy of all the classes (AA), the overall
classification accuracy (OA), and the kappa coefficient (KC) to
quantitatively evaluate the classification results of each method.

As we proposed a semisupervised DR method in this article,
some similar DR methods are used for comparison. To demon-
strate the efficacy of the proposed method, we selected several
semisupervised methods for comparison, i.e., SDA, SSMMC,
S3MPE, and S3MDA. In addition, we compared two hypergraph
learning methods, termed BH and DHLP. After extracting the
embedding features, three nonparameter classifiers were used
for classification, including the NN classifier, the spectral angle
mapping (SAM) classifier, and the sparse representation clas-
sifier (SRC) [46]. Meanwhile, we also took the classification
results of the raw spectral feature with NN, SAM, and SRC as
the baseline (BL) for comparison.

In the experiments, to compare the classification result of each
method, we randomly selected 20 labeled samples from each
class and 1000 unlabeled samples from the remaining samples
to form the training set. All other samples were used as the test
set. For the neighbor size Kw, Ku, and Kb, for convenience, we
set Ku = Kw and Kb = αKw. This is because Kw and Ku are
both used to reveal the similar relationship of the homogeneous
samples, whereas Kb is used to represent the heterogeneous

structure of the interclass samples; generally, Kb is larger than
Kw. Therefore, for the neighbor size, we just need to set the
values of Kw and α in the experiments, and Kw and α are set to
7 and 5 for the Botswana data set, 9 and 9 for the KSC data set,
and 9 and 5 for the PaviaU data set. For the weight parameter β,
we set it to 3 for the Botswana data set and 5 for the KSC and
PaviaU data sets. For all the methods, the embedding dimension
is set to 30. To robustly analyze each algorithm, we repeated each
experiment ten times in each condition and obtained the average
OAs with standard deviations (STDs) and the average KCs. All
the experiments were conducted on a personal computer with
E5-2620 v3 central processing unit, 16-GB memory, and 64-b
Windows 10 using MATLAB 2017b.

C. Performance Comparison

To compare the classification results of each method, we used
the training set containing 20 labeled samples from each class
and 1000 unlabeled samples to learn the projection model of each
method. For the supervised methods, only the labeled samples
were used for training. According to the training models, we can
obtain the low-dimensional features of each method. Then, we
adopted the NN classifier to discriminate the labels of the test
set. The classification results on the three data sets are shown in
Tables I –III, where the bold font denotes the best result in each
row.

According to Tables I–III, the proposed method obtains better
results than the other semisupervised methods (i.e., SDA, SS-
MMC, S3MPE, and S3MDA) in most classes and generates the
best AA, OA, and KC, which indicates that the proposed method
can more effectively reveal the complex intrinsic properties of
the HSI and enhance the compactness of the homogeneous
samples and the separability of the heterogeneous samples.
Compared with two hypergraph learning methods (i.e., BH and
DHLP), the proposed SSDHL method achieves better classifi-
cation results, because SSDHL can simultaneously utilize the
labeled and unlabeled samples to train the projection model,
whereas DHLP just uses the labeled samples and BH does not
apply the label information, which, both, cannot obtain good
discriminant features to improve the classification performance
of an HSI.

To visualize the classification results, Figs. 6 –8 display the
classification maps of the Botswana, KSC, and PaviaU data sets.
In the figures, SSDHL achieves more homogeneous areas than
the other methods on three data sets, especially in the regions of
Water, Hippo Grass, Floodplain Grasses 1, Floodplain Grasses
2, Reeds 1, Riparian, Island Interior, Acacia Woodlands, Aca-
cia Shrublands, and Short Mopane for the Botswana data set,
Cabbage Palm Hammock, Slash Pine, Oak/Broadleaf Hammock,
Graminoid Marsh, and Salt Marsh for the KSC data set, and
Meadows and Gravel for the PaviaU data set. The reason is that
SSDHL constructs an intraclass hypergraph and an interclass
graph to enhance the discrimination of labeled samples and a
total scatter matrix to maximize the variance distribution of the
labeled and unlabeled samples. The results indicate that the pro-
posed SSDHL method can learn a good semisupervised model
with the labeled and unlabeled samples to reveal the intrinsic
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TABLE I
CLASSIFICATION RESULTS OF EACH CLASS ON THE BOTSWANA DATA SET

TABLE II
CLASSIFICATION RESULTS OF EACH CLASS ON THE KSC DATA SET

TABLE III
CLASSIFICATION RESULTS OF EACH CLASS ON THE PAVIAU DATA SET

multiple properties of an HSI and improve the discriminant
power of low-dimensional features.

D. Labeled Samples Analysis

To analyze the classification accuracies with respect to dif-
ferent numbers of labeled samples, we selected 5–40 (with

an interval of 5) labeled samples from each class and 1000
unlabeled samples from the remaining samples of each data set,
and the other samples were used for testing. After obtaining the
embedding features, we adopt the NN classifier to discriminate
the labels of the test samples. Fig. 9 shows the classification
results with different numbers of labeled samples on the three
data sets.
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Fig. 6. Classification maps of each method on the Botswana data set. (a) BL. (b) BH. (c) DHLP. (d) SDA. (e) SSMMC. (f) S3MPE. (g) S3MDA. (h) SSDHL.

Fig. 7. Classification maps of each method on the KSC data set. (a) BL. (b) BH. (c) DHLP. (d) SDA. (e) SSMMC. (f) S3MPE. (g) S3MDA. (h) SSDHL.

According to Fig. 9, we can obtain the same conclusion about
the change in the number of labeled samples on the three data
sets. With the increase in the number of labeled samples, the
classification results first increase and then reach to a peak value.
The reason is that the more priori information can be used to im-
prove the classification accuracies with the increased number of
labeled samples. When the number of labeled samples exceeds
a certain value, there is adequate information to represent the
intrinsic properties of an HSI, which will make the classification
accuracy maintain a stable value, hence no further improvement
from increasing the number of labeled samples.

E. Unlabeled Samples Analysis

To analyze the classification results with different numbers of
unlabeled samples, we fixed the number of labeled samples to
20 in each class, and we set the number of unlabeled samples

to{50, 100, 300, 500, 1000, 1500, and 2000}. The classification
results with the NN classifier with different numbers of unla-
beled samples are shown in Fig. 10.

As shown in Fig. 10, with the increasing number of unla-
beled samples, the OAs and KCs improve and then reach to
a stable value, because a large number of unlabeled samples
can reduce the influence of outlier samples and provide more
available information. The results indicate that the unlabeled
samples are beneficial to promote the extraction of the intrinsic
structures of the HSI and enhance the representation power of
the embedding features.

F. Dimensionality Analysis

For DR, the embedding dimension will influence the classifi-
cation result. Thus, we conduct further experiments to analyze
the OAs with respect to the embedding dimension. The results
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Fig. 8. Classification maps of each method on the PaviaU data sets. (a) BL. (b) BH. (c) DHLP. (d) SDA. (e) SSMMC. (f) S3MPE. (g) S3MDA. (h) SSDHL.

Fig. 9. Classification results with different numbers of labeled samples on (a) Botswana, (b) KSC, and (c) PaviaU data sets.

Fig. 10. Classification results with different numbers of unlabeled samples on (a) Botswana, (b) KSC, and (c) PaviaU data sets.



LUO et al.: SEMISUPERVISED HYPERGRAPH DISCRIMINANT LEARNING FOR DIMENSIONALITY REDUCTION OF HYPERSPECTRAL IMAGE 4253

Fig. 11. Classification results with different embedding dimensions on (a) Botswana, (b) KSC, and (c) PaviaU data sets.

TABLE IV
CLASSIFICATION RESULTS WITH DIFFERENT CLASSIFIERS ON THE BOTSWANA DATA SET

TABLE V
CLASSIFICATION RESULTS WITH DIFFERENT CLASSIFIERS ON THE KSC DATA SET

with the NN classifier under different embedding dimensions
are shown in Fig. 11.

In Fig. 11, the OAs improve with the increase in the embed-
ding dimension and then reach a peak value for each method, be-
cause a large embedding dimension contains more information
to enhance the discriminant power of low-dimensional features.
Most methods generate better OAs than BL on the three data
sets, which indicates that the classification results will improve
after using the process of DR. This is because these DR methods
reduce the redundant information and enhance the discriminat-
ing power of features. The proposed method achieves the best
classification accuracies than the other methods under different
embedding dimensions on the Botswana, KSC, and PaviaU data
sets. The reason is that the proposed method can reveal the
multiple structures of an HSI and enhance the compactness of the
intraclass samples and the separability of the interclass samples.
To obtain better classification accuracy, we set the embedding
dimension to 30 for all the methods on the three data sets.

G. Results on Different Classifiers

To demonstrate the effectiveness of the proposed method
for different classifiers, we selected NN, SAM, and SRC to
discriminate the labels of test samples after extracting the

low-dimensional features. In this experiments, again 20 labeled
samples from each class and 1000 unlabeled samples were used
to train the DR models and the classification results with the
three classifiers are given in Tables IV–VI.

According to Tables IV–VI, SSDHL achieves the best clas-
sification accuracies in terms of OA and KC than the other
methods on the three data sets, because the proposed method
considers the multiple structures to represent the homogenous
properties of an HSI, the binary relationships to reveal the
heterogeneous information of the HSI, and the total scatter to
control the distribution of the labeled and unlabeled samples
in the HSI. SSDHL can compact the homogenous samples and
separate the heterogeneous samples to improve the discriminant
performance of low-dimensional features with the labeled and
unlabeled samples.

H. Parameter Analysis

In the proposed method, it has two neighbor size parameters
Kw andα, and a label weight parameterβ. Thus, we conduct two
experiments to analyze the neighbor size and the label weight
for the influence of classification accuracy.

1) Neighbor Size: For the neighbor size parameters Kw and
α, we randomly selected 20 labeled samples from each class
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TABLE VI
CLASSIFICATION RESULTS WITH DIFFERENT CLASSIFIERS ON THE PAVIAU DATA SET

Fig. 12. Classification results with respect to the intraclass neighbor Kw and the interclass neighbor Kb = αKw on (a) Botswana, (b) KSC, and (c) PaviaU data
sets.

Fig. 13. Classification results with respect to the label weight β on (a) Botswana, (b) KSC, and (c) PaviaU data sets.

and 1000 unlabeled samples to conduct this experiment, and
then we used the NN classifier to discriminate the labels of the
other samples. Fig. 12 shows the average classification results
about the change of Kw and α with ten repeated experiments.

According to Fig. 12, the classification accuracy is fluctuating
under different Kw and α on the three data sets, and the fluctu-
ation is very small in an appropriate range. For the Botswana
data set, the results with small Kw and α are better than those
with large values, where Kw and α are set to 7 and 5. For the
KSC data set, the parameters Kw and α have a small influence
in terms of the classification accuracy, and we set them to 9 and
9. For the PaviaU data set, the OAs improve with the increase
in Kw and α and then decrease when Kw and α exceed a value,
thus we set Kw and α to 9 and 5.

2) Label Weight: To enhance the contribution of the labeled
samples, we analyzed the classification accuracy with respect to
the label weight β and used the training set including 20 labeled
samples from each class and 1000 unlabeled samples. Fig. 13

displays the classification results with different β on the three
data sets.

In Fig. 13, the OAs first increase and then decrease with the
increase in β. The reason is that a large weight will enhance
the contribution of the labeled samples to better represent the
intrinsic properties of the HSI. When β exceeds a certain value
and continues to increase, it will degrade the contribution of the
unlabeled samples, which cannot effectively reflect the distribu-
tion of the HSI. Therefore, we set β to 5 for the Botswana, KSC,
and PaviaU data sets.

V. CONCLUSION AND DISCUSSION

In this article, we proposed an SSDHL method for DR in
an HSI. In SSDHL, we utilize the labeled samples to construct
an intraclass hypergraph and an interclass graph; meanwhile, we
use the unlabeled samples to design an unsupervised hypergraph.
In addition, a total scatter matrix is adopted to control the
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distribution of the labeled and unlabeled samples. Then, we
construct an objective function to obtain the projection matrix,
which can compact the intraclass hypergraph and the unsuper-
vised hypergraph and separate the interclass graph and the total
scatter matrix as much as possible. Finally, we use three data sets
(Botswana, KSC, and PaviaU) to demonstrate the effectiveness
of the proposed method. The proposed method achieves better
classification accuracy compared with a few state-of-the-art
algorithms. SSDHL can compact the homogenous information
in the intraclass hypergraph and the unsupervised hypergraph to
represent the intrinsic properties of the samples from the same
class while it can also separate the heterogeneous information
in the interclass graph and the total scatter matrix to enhance the
discriminant performance of the samples from different classes.

In the classification maps, there still exist salt and pepper noise
in the homogeneous areas for these methods does not consider
the spatial relationship of HSIs. However, the spatial distribution
is very important in HSI. Therefore, we can apply the spatial
information to develop spatial-spectral semisupervised method
in the future.

In addition, the proposed method needs to set two important
neighbor parameters, which is very difficult to select a proper
value; because the neighbor structures may be different for each
class land cover in an HSI. If using the stable neighbor sizes
to represent different land-cover types, we may not achieve
satisfactory classification results for an HSI. Thus, in the future,
self-adaption semisupervised learning can be designed based on
SSDHL to represent the intrinsic information of an HSI.
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