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ABSTRACT Inspection of rice seeds is a crucial task for plant nurseries and farmers since it ensures
seed quality when growing seedlings. Conventionally, this process is performed by expert inspectors who
manually screen large samples of rice seeds to identify their species and assess the cleanness of the
batch. In the quest to automate the screening process through machine vision, a variety of approaches utilise
appearance-based features extracted from RGB images while others utilise the spectral information acquired
using Hyperspectral Imaging (HSI) systems. Most of the literature on this topic benchmarks the performance
of new discrimination models using only a small number of species. Hence, it is unclear whether or not
model performance variance confirms the effectiveness of proposed algorithms and features, or if it can be
simply attributed to the inter-class/intra-class variations of the dataset itself. In this paper, a novel method to
automatically screen and classify rice seed samples is proposed using a combination of spatial and spectral
features, extracted from high resolution RGB and hyperspectral images. The proposed system is evaluated
using a large dataset of 8,640 rice seeds sampled from a variety of 90 different species. The dataset is made
publicly available to facilitate robust comparison and benchmarking of other existing and newly proposed
techniques going forward. The proposed algorithm is evaluated on this large dataset and the experimental
results show the effectiveness of the algorithm to eliminate impure species by combining spatial features

extracted from high spatial resolution images and spectral features from hyperspectral data cubes.

INDEX TERMS Hyperspectral imaging, rice seed variety, spatio-temporal feature fusion.

I. INTRODUCTION

Inspecting rice (Oryza sativa) seed variety is a critical pro-
cedure for quality assessment in the arable sector [1]-[3].
Ensuring that all seeds in a batch belong to one variety is a
significant challenge for professional inspectors and farmers
in seedling propagation stations. Varietal contamination can
affect rice seed yields by introducing weeds and off-types
into the crop while making it susceptible to disease. In turn,
both factors contribute to the grade and price of produce, all
of which has a high impact on large rice exporting nations
such as Thailand, Vietnam and China. In a biotechnology
context, where new species are engineered, the price and
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quality of product is affected by its originality and the cer-
tification and authorisation process is the responsibility of
Rice Seed Authenticating Centres. Therefore, these centres
have strict and challenging requirements to identify and
confirm/authorise new rice accessions while also protecting
existing rice varieties with high confidence. To fulfil such
strict requirements, seedling propagation stations and plant
protection centres, often utilise conventional methods that
rely on extracting a sample of rice seeds from a batch and
using human visual inspectors to perform manual screening.
In this analysis, inspectors accept or reject grains based on
their appearance by analysing features such as: shape, length,
width and colour. This is a tedious, laborious, time consuming
task and requires trained and experienced personnel. Automa-
tion of the inspection process would not only permit increased
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TABLE 1. A survey on current publications.

Ref. Number of | Extracted Features Sensing | Classifier Performance Dataset | Year
Varieties modality Public
Huang et al. [4] 3 Shape-based RGB Back-Propagation 95.56% No 2017
Neural Network
(BPNN)
Hong et al. [6] 6 Morphological, colour, RGB Random Forrest (RF), 90.54% No 2015
texture, Gist Features, Support Vector
Scale-Invariant Feature Machines (SVM)
Transform (SIFT)
Luietal. [7] 6 Colour, Morphological RGB Neural network 84.33% No 2005
Peralta et al. [8] 754 Shape-based RGB Residual error and 44.8679 and No 2016
Average Point distance | 44.84528%
Kong et al. [9] 4 Spectral HSI Partial Least Squares 80% - 100% No 2013
Discriminant Analysis
(PLS-DA), K-Nearest
Neighbor (K-NN),
SVM, RF
Wang et al. [3] 3 Spectral and Morphological | HSI Principal Component 89.18% - 94.45% | No 2014
Analysis (PCA), BPNN
Vu et al. [2] 6 Spectral and Morphological | HSI RF, SVM 84% No 2016
Kuo etal. [11] 30 Morphological, Colour, RGB Sparse coding 89.1% No 2016
Texture
On Yang et al. 5 Colour RGB BPNN 93.66% No 2010
[12]
Aznan et al. [13] 5 Morphological RGB Discriminant function 96% No 2016
analysis
Pazoki et al. [14] 5 Colour, Morphological, RGB Multi-layer perceptron, | 98.40% - 99.73% | No 2014
Shape neuro-fuzzy neural
networks
Sun et al. [15] 4 Spectral, texture and HSI SVM 91.67% No 2015
Morphological
Singh et al. [16] 4 Colour, Texture, Wavelet RGB BPNN 96.25 - 100% No 2016

workforce productivity, by redeployment of personnel to
more crucial tasks, but also has the potential to increase the
consistency of inspections while allowing a larger number of
batches/seeds to be screened with confidence.

In the literature, a wide range of computer vision
approaches have been proposed to automate the non-
destructive inspection of rice seeds [4] that commonly rely
on conventional RGB cameras [5]-[8]. These approaches
extract appearance-based features from the seeds such as
shape descriptors, texture or colours and train models using
techniques from machine learning to discriminate between
species. The advent of Hyperspectral Imaging (HSI) provides
an alternative sensing modality with improved discrimina-
tion performance [9] and more recent approaches combine
appearance and spectral features [3], [10], [2] to increase
model robustness even further.

Unlike conventional RGB imaging which measures
reflectance in 3 spectral regions (Red, Green, Blue), hyper-
spectral imaging offers increased spectral resolution in hun-
dreds or thousands of spectral bands. However, compared to
RGB cameras, HSI hardware, typically offer reduced pixel
density (~150 DPI) mainly due to spatial binning and to
improve the robustness of acquired data. The reduced resolu-
tion leads to reduce fidelity in the appearance-based features
especially when discriminating small objects such as rice
seeds. This observation motivates the proposed approach,
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to build a system that combines both high spatial resolution
(RGB) and high spectral resolution (HSI), sensing modalities
combined with intelligent data processing techniques to per-
form rice seed screening automatically.

Table 1 lists a number of existing techniques that have
been proposed in the literature in recent years. The table
allows a quick comparison of existing techniques based on
factors including: the number of species considered in the
studies, the features extracted, the sensing modalities utilised,
the algorithmic approaches taken to process the data, and,
their reported performance. It can be noted that the majority
of the techniques presented are applied to RGB images and
almost all methods are evaluated using only asmall number
of different rice seed species with varying degrees of accu-
racy. From the review in Table 1, it is not clear whether
the differences in performance between existing techniques
is caused by superior algorithms and the effectiveness of
feature descriptors used, or, if this is simply due to differences
in the inter-class or intra-class variation of species used in
each study. That said, Kue ef al. [11] and Peralta et al. [8]
used relatively large number of species in their study having
evaluated their method using 30 and 754 species and reported
accuracy of up to 89.1% and 44.87% respectively. Their
reported performance is not as strong as some of the other
methods listed in the table, and this supports the hypoth-
esis that other techniques do not necessarily utilise better
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algorithms or feature descriptors. Instead, it is possible that
these techniques are evaluated in less challenging datasets
with a smaller number of species which exhibit favourable
intra-class and inter-class variation. However, this hypothesis
is difficult to confirm or reject as the datasets used in each
paper are not publicly available.

The contributions of this paper are as follows:

1. A novel rice seed inspection system that combines a
conventional RGB and hyper-spectral imaging system
is proposed.

2. An innovative framework to fuse spatial and spectral
data is developed and it is shown that the combined fea-
tures improve discrimination ability and classification
performance.

3. The performance of the proposed algorithm and system
is evaluated in a large, diverse dataset of 90 rice seed
varieties with 96 seeds per variety. Experiments show
that varying the number of rice seeds species in the
datasets can impact the classification performance and
recommends that the similarity of rice seeds varieties
be assessed.

4. The large dataset evaluated in this paper is made pub-
licly available' to the community to assist in the bench-
marking of proposed algorithms and features.

The remainder of this paper is organised as follows:
Section II describes in detail, the related work. A descrip-
tion of the: system setup; datasets; data processing; feature
extraction; classification; and species discriminant analysis
technique adopted are presented in Section III. Section IV
presents the experimental results and evaluates the perfor-
mance of the proposed techniques on the collected dataset.
Finally, Section V concludes the work and suggests future
research directions.

Il. RELATED WORK

Machine vision systems have been proposed for a range of
food quality assessment tasks [10], [17]-[19]. Research has
focused on combining image analysis and machine learn-
ing techniques to create new methods to perform automatic
inspection and qualification. Relevant to the study presented
here are rice seeds (polished) quality control or cultivar
classification tasks which are specifically explored in [1].
In [1], Y. Ogawa comprehensively surveys computer vision
techniques, physical property measurements, compound con-
tent and distributions of rice grains for seed quality control.
Related work which specifically address non-destructive vari-
ety classification are listed in Table 1.

Rice seed classification using an automatic machine-
vision system usually consists of several key stages. The
most important of which include image data collection, fea-
ture extraction (such as shape, size, colour, and orientation
etc.) and feature representations via models using pattern
recognition algorithms or multivariate analysis techniques.

1vu, Hai, et al. (2019). RGB and VIS/NIR Hyperspectral Imaging Data
for 90 Rice Seed Varieties, DOI: 10.5281/zenodo.3241922
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The appearance-based approaches often utilise morpholog-
ical, colour, and textural traits, or a combination of them.
As early as 1986, Lai et al. [20] proposed the use of image
analysis to determine the physical dimensions of and manu-
ally classify cereal grains. Similarly, Sakai et al. [21] demon-
strate the use of two-dimensional image analysis to extract
dimensions and shape factors of 4 varieties of polished
rice grains and manually classify them. More recent work
[6], [7] and [12] focuses on rice seed variety classification
tasks. Commonly, shape descriptors of the seed samples are
extracted and classifiers such as Random Forests [6], Neural
Networks [7] or Cubic B-Splines shape model [8] are trained.

Huang et al. [4] proposed a detailed analysis of shape
descriptors that goes beyond features that are more com-
monly used in the literature, such as chaff tip (width, height)
and depth of concavities of rice kernels. Their work shows
promising results in separating visually similar species but
their evaluation is limited to only 3 varieties. Kuo et al. [11]
utilise multi-focus image fusion to study 30 varieties of rice
seed using sparse representation classification and obtain
accuracy of 89.1% with a standard derivation of 7.0%.
Although, the authors briefly recognise that the majority of
the literature uses a limited number of species, they do not
illustrate the effect that this may have in discrimination abil-
ity. Their approach focuses on detailed Region-Of-Interest
(e.g., sterile lemmas) on the grains.

Recently, HSI techniques have been used in food and
agriculture engineering. Wang er al. [3] used VIS/NIR
(400-1000 nm) spectral information to discriminate 3 rice
varieties. The authors used a combination of: degree of chalk-
iness; shape features; and spectral features which are all
extracted from the acquired HSI images. The dimensionality
of the spectral features was reduced using Principal Compo-
nent Analysis (PCA) and the resulting principal components
were used to train an Artificial Neural Network, with classi-
fication accuracy of 94.45% achieved.

In [22], the authors discovered that a combination of the
Least squares support vector machine (LS-SVM) regression
method and VIS/NIR spectroscopy at range 325-1075 nm
provides a realisable technique to monitor the nitrogen sta-
tus in rice. More recently, an HSI system has been used
in [9] for identifying four rice seed cultivars. By utilizing
the full spectral range of their system 1,039-1,612 nm, the
authors, [9], achieved results of up to 100% accuracy with
a Random Forest (RF) classifier. However, four cultivars
in [9] were hybridized from other species, therefore, it is
unclear how the inter/intra class varies among them. Recently,
work in [2] and [15] explored different feature combination
schemes: spectral and texture features; morphological, tex-
ture and spectral features; and morphological and texture
features while seeking the optimal feature combination. The
highest accuracy in [15] was obtained when using combined
spectral, morphological and texture features (91.67%, with
four polished rice species). A classification accuracy of 84%
was achieved in [2] utilising a combination of spectral and
spatial features on a dataset of six rice seed species.
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When comparing the existing techniques in the literature,
one can see some shortcomings. Firstly, the performance of
related techniques as listed in Table 1 varies significantly and
there are no benchmark evaluations or common datasets to
compare these works together. Secondly, although the results
of these studies have been promising, most researchers have
evaluated their methods on a relatively limited number of
different rice seed species. In practical applications, an auto-
mated system faces challenges of various rice seeds. For
instance, the authors in [8] also noted a very large number of
rice accessions (120,0004 accessions) which are available in
the TT Chang Genetic Resources Centre at the International
Rice Research Institute (IRRI), Philippines. They argue that
characterising shapes of the cultivated rice accessions greatly
helps in authenticating new rice seeds. Kuo et al. [11] also
note that rice grains of hundreds of varieties are cultivated and
hence the demand for robust non-destructive authentication
approaches of large number of grain seed varieties must be
addressed to make solution feasible for the rice seed industry.
In this study, the dataset consists of ninety rice seed vari-
eties and is made publicly available. Both the high spatial
resolution and full-band wavelengths of spectral information
are fundamental resources to develop and deploy robust clas-
sifiers for performing variety classification of different rice
seed species and other relevant tasks in rice seed quality
inspections.

HSI RGB
Camera |{ Camera

Stage with
Rice Seeds

FIGURE 1. A schematic diagram of the HSI and CCD cameras setup for
data acquisition.

lll. METHODS

A. SYSTEM SETUP

A schematic diagram of the system used for acquiring
images of rice seed samples is shown in Fig. 1. It is com-
prised of a high resolution RGB camera and a hyperspectral
imaging system. The digital camera used was a Fujifilm
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X-M1 with a 35mm/F2.0 lens to collect RGB images at
4,896 x 3,264 pixels. For gathering HSI data, a Visible -
Near Infrared (VIS/NIR) range HSI system was used which
consisted of a Specim V1OE Imaging Spectrograph and
Hamamatsu ORCA-05G CCD camera. The HSI system was
configured to capture hyperspectral image data cubes in
which each pixel contains a spectrum of reflected light at
256 discrete wavelengths ranging from ~ (385 — 1000) nm.
Two halogen bulbs were used for illumination and these were
accurately positioned to provide balanced lighting across the
scene. To ensure stability, the halogen bulbs were switched on
and allowed to reach constant operating temperature before
the data were acquired in a dark room to minimise any other
sources of illumination variance.

The Fujifilm RGB digital camera was set to operate in
manual mode with an ISO of 400 and a shutter speed of 16 ms.
The acquired images were saved in JPEG format and no
automatic adjustment (e.g., white balance) was applied.

The HSI system is a push-broom system and hence
captures HSI data in a line scan fashion. For this rea-
son, a motorised translational stage was positioned directly
beneath the imager to allow scanning. To accurately and
consistently collect the data in a repeatable way, three key
parameters of the HSI system needed to be adjusted and were
selected as follows:

e The exposure time of the camera (e.g. 500 ms) versus
the speed of movement of the translational stage (5 mm/s),
which was calibrated in order to avoid spatial distortions;

o A trade-off between the exposure time and the aperture
of camera (f=18) to ensure a suitable light intensity;

e The height between the lens and the stage which was
set so that camera field of view captures the entire area
containing all seeds in each data cube.

Prior to imaging rice seeds, images of a flat checkerboard
patterns were collected for calibrating planar and lens dis-
tortion effects for the RGB and HSI sensors using the tra-
ditional camera calibration approach described in [23]. This
procedure was performed once and the camera calibration
parameters; i.e. rotation and transformation parameters, were
stored in a XML file for aligning and registering the images
acquired from both systems.

B. DATASET DESCRIPTION AND PROCESSING
Ninety known rice seed varieties were provided for this study
by the National Center of Protection of New Varieties and
Goods of Plants (NCPNVGGP) in Vietnam. These rice seed
varieties were chosen since they are frequently planted in
Vietnam to cultivate rice for consumption and exportation.
The selected samples were manually screened in the tradi-
tional way by experienced technical staff at NCPNVGGP
to ensure that each sample population contained only seeds
which belong to the 90 species to be analysed. A single kernel
from each of the 90 varieties is shown in Fig. 2.

For each of the 90 species considered in this work, 96 indi-
vidual rice seeds were provided. The kernels from each of
the 90 species were divided to 2 batches each containing
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FIGURE 2. Photos of rice seed samples of 90 species. The short name of each species is given beneath each kernel.

48 individual rice seed samples. Each set of 48 seeds was
then positioned on a white sheet of paper in a (6 x 8) matrix
structure and imaged using the HSI system and the digital
RGB camera. Thus, each of the 90 species of rice seeds were
captured in 2 hyperspectral data cubes and 2 high resolution
RGB images each containing 48 different seeds. In total,
the dataset consists of fully registered RGB and HSI images
~(385 — 1000) nm of 8640 seeds (90 varieties x 96 seeds).
In this study the seeds were manually positioned on the
white sheet to avoid overlaps or touching boundaries between
them. In practice, one can conceive a conveyor belt arrange-
ment where seeds are mechanically spread individually under
appropriate and consistent illumination for imaging.

RGB Raw Data HSI Raw Data
o R g
55 =< | s
S E 2 £ g
E2 5= | 2
s Z 5
A7 oy | E
w S @ = o
£ 5 8 3 z
= & = A
A 4
RGB Calibrated HSI Normalised
Data Data
Seed ,
y Masks
RGB Seeds HSI Seeds
Segmented Segmented

y

Spatial Features Spectral Features

FIGURE 3. A block diagram showing the stages of the data processing
task.

The data processing steps to extract spatial and spectral
features is illustrated in Fig. 3. Initially, both image modalities
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are calibrated for lens and planar effects using the rotation
and transformation matrix obtained from the checkerboard
pattern as described in Section III-A. Then, the HSI data
cube is normalised as described in Section III-D. After this,
the processing paths diverge slightly. The RGB data are
segmented using the process described in Section III-C and
binary masks for each rice seed in the RGB image are used
to extract the high resolution spatial features as described
in Section III-D.

The masks obtained from the RGB segmentation are then
transformed to the HSI space (using the calibration matrix
obtained from imaging the checkboard pattern) to segment
the rice seeds in the HSI data. The segmented seeds are
subsequently used to extract the spectral features as described
in Section III-E.

C. CALIBRATION PROCEDURES AND RICE

SEED SEGMENTATION

The rice seed segmentation is performed on the high spatial
resolution RGB images to ensure that the complete kernel is
captured. The proposed procedure consists of the following
steps. First, the R-channel of the RGB image is extracted; the
R-Channel is chosen because it offers the highest contrast to
the background. A top-hat transform [24] of the R-channel is
then computed and thresholded to obtain the binary images.

D. SPATIAL FEATURE EXTRACTION
Trained personnel screen rice seeds by manually analysing
their spatial features. In this work, spatial features of the
separated seeds are extracted from RGB image masks to
encapsulate the expert knowledge. The features extracted are
selected due to their effectiveness for discriminating among
species, as shown in recent work, [6] and [7]. The morpholog-
ical feature vector f for a single kernel contains the following
six attributes:

f1: Area; the number of pixels inside a seed kernel

2, f3: Major Axis Length and Minor Axis Length; specify
the length (in pixels) of the major and minor axis of the ellipse
that has the same normalised second central moment at the
region of the sample seed

fa: Aspect Ratio; the ratio of Minor Axis Length over the
Major Axis length (-j’:—;)
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f5: Perimeter over Area Ratio; Perimter . here Perimeter is

number of pixels along the seed boundary; and Area is the f
feature.

fo: Eccentricity; FociDistance/MajorAxisLength (i.e. the
eccentricity of the ellipse with the same second moments as
the seed kernel region) is the distance between two foci of the
ellipse, and the major axis length of the ellipse (i.e. feature).

g
a

[0.34,094]
[031,095]

037,093

(033,094

163,089

FIGURE 4. Results of the spatial feature extraction. The ID number of
each seed is shown to its right. For illustration purposes, only features
f4 and f6 are shown below each kernel. The MajorAxisLength f2 and
MinorAxisLength f3 are marked with a red and a blue line, respectively.

Fig. 4 illustrates output of the spatial feature extraction for
a sample image that contains 48 seeds. It is noted that because
the spatial features are extracted using the high spatial resolu-
tion images, they are expected to be more accurate than those
reported in [2], [15] where the spatial features are extracted
from the HSI system which has lower spatial resolution.

E. SPECTRAL FEATURE EXTRACTION

Extracting the spectral information consists of two main
phases: data correction, and feature extraction. These are
illustrated in Fig. 3. Firstly, to reduce the variation in the
acquired reflectance values among measurements, the col-
lected data are corrected following the approach laid out
in [25]. Let y denote a data cube consisting of reflectance
values as a two-parameter set:

yax), xeX, AeA (1)

where A represents a wavelength belonging to A, that is a set
of the wavelengths at VIS/NIR range ~ (385 — 1000) nm and
x represents a pixel in X where X is 2-D coordinate by row
m and column n. For each specific wavelength, the array of
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reflectance values can be regarded as an image where spa-
tial relationships between the pixel reflectance values have
meanings. At each x, the raw reflectance value could vary
due to different lighting conditions. To reduce the variation
in the acquired reflectance values due to illumination varia-
tions or unique pixel response, the data were scaled relative
to known max reflectance value; the raw data are normalised
using:

A (X) 1= Yraw» A(X) — b(n, )\)’ LeA )

w(n, L) — b(n, A)

where b(n, A) and w(n, A) are the reflectance values of refer-
ence dark and white images. The dark reference is acquired
by covering the lens-cap and the white reference is a 100%
reflective spectralon tile which is a highly reflective Lam-
bertian scatter commonly used to calibrate HSI systems. For
each A, b(n) and w(n) are averaged on reflectance values
at column n along the white tile’s height dimension. After
normalizing the spectral data, the rice seed masks obtained
from the above description of the rice seeds segmentation
procedure are transformed to the HSI plane using a transfor-
mation matrix including rotation and translation operators to
segment the seed samples on the spectral images, as shown
in Fig. 3. Fig. 5 clearly illustrates the advantages of the
proposed segmentation method compared to the conventional
work (e.g., in [2], [15]) where the seed segments are extracted
directly from the low spatial resolution images collected by
HSI system. When the seeds are segmented using only the
HSI data, in many cases, the segments include some pixels at
boundary regions of the shadow rather than the pure spectra
of the seeds themselves. Subsequently, any measurements of
the morphological features made using only spectral image
segmentation could become inaccurate and spectra of non-
rice-seed pixels will be included in the analysis. Hence, in this
work the seeds are segmented from the high resolution RGB
image to ensure that the spatial and spectral features are
correctly included in the analysis.

Based on the segmented seed samples on a hyperspectral
data cube, spectral information from every pixel of the seed
regions is extracted. The mean spectrum of all pixels in each
seed is then computed and used to determine the spectral
features for that seed. As denoted in (2), a raw spectral feature
vector of a rice seed sample is a set of y, in which A is one of
the 256 bands belonging to a range A ~ (385 — 1000) nm for
our VIS/NIR system.

F. DIMENSIONALITY REDUCTION

Originally collected spectra are high dimensional feature sets.
LDA is a statistical tool that can be used to reduce the dimen-
sionality of data [26]. For this application, LDA is used to
select features that account for the highest degree of variation
among the 90 species in the dataset and select variables for
classification or discriminant analysis of the rice seed species.
In LDA, features are ranked based on the amount of variation
they account for in the data. LDA is a supervised algorithm
and so uses the labels provided in the dataset. In this work,
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FIGURE 5. Comparing segmentation results of rice seeds on HSI image. (a) Using RGB image for reference (b) A Zoom-in version of two
segmentation results (Red and white points are the results from (a) and (c) respectively) (c) Without using RGB image.

LDA was adopted because it maximizes the separability of
the different rice seed species. LDA can be used to reduce the
dimensionality of the spectral features (originally 256) in the
dataset by maximizing the separation among the 90 species
of rice seeds. The transform achieves this by maximizing
the distance between the means of 90 species (interclass
variance) and minimizing the variation within each category
(intra-class variance) itself [27]. In section IV, the spatial
features are combined with varying number of LDA features
to determine the best feature combination scheme for per-
forming rice seed classification using our dataset.

G. RICE SEED VARIETY CLASSIFIER
The aim of variety classification is to detect seeds within a
batch which are not of the species that the batch is claimed to
represent. Models which are trained to perform this task could
directly utilize the full-band wavelengths or only selected
components (for spectral features) from the output of feature
extraction or dimensionality reduction techniques adopted,
and/or spatial context. Therefore, the features extracted are
utilized in four different schemes: (1) spatial features only,
(2) spectral features only, (3) a combination of all 256 spectral
features and extracted spatial features; (4) a combination of
LDA components extracted from the spectral data fused with
the spatial features. For the task of rice seed variety classi-
fication, a Random Forest (RF), which has produced better
classification results than many other classifiers including
support vector machines and K-Nearest Neighbor in many
related work [6], [9], [2], is trained for rice seed classification.
Random forests contain many decision trees which are
grown from a bootstrap sample of the response variable. Trees
are allowed to grow to a maximum extent without pruning
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after selection of the best split from a random subset of
features at each of the decision trees’ nodes. Accumulating
the results of each decision tree forms the basis on which ran-
dom forests make predictions on new data. Random forests
are able to process large datasets in a fast, effective way
while achieving high classification accuracy. The number of
decision trees and the ratio of the training to test samples
that gave the best classification results during preliminary
analysis are 500 and 4:1 respectively, and so are adopted for
this work.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the performance of our RF classifier and
the effectiveness of the approaches proposed in this work,
three performance metrics are used. They are Precision, P,
Recall, R, and F'; Score.

p=_" 3)
b +fp

R=_" “)
Iy +f

where 1, is the number of true positives, f, is the number of
false positives, #, is the number of true negatives and f; is the
number of false negatives. The F score is the harmonic mean
of the precision and recall,

P xR

P+R
Based on the collected datasets of ninety species, and in
line with the objectives of this work, results and analysis
are presented in this section under three different scenarios.
The first and second scenarios aim to show the effectiveness
of using spatial and spectral features extracted from a high

Fyiscore =2 *

&)
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resolution RGB image fused with HSI data for rice seed clas-
sification. In the first scenario, the RF classifier was trained
using all 90 species. Since we are also interested in exploring
how the number of species in the dataset affects classifier
performance, we considered a second scenario where 6 dif-
ferent subsets of the datasets were used to train the classifier
separately and evaluate performance. Each of the 6 subsets
of the data consists of 6 species (more than or similar to
the typical number used in related work — see Section I,
Table 1) drawn randomly from the 90 available. In the third
scenario, we select a different 6 subsets of the data and vary
the number of species in each subset from 6 — 90 to explore
how increasing the number of species in the dataset affects
classifier performance. For each sub-dataset, the performance
of the random forest is reported and analysed.

TABLE 2. Classification results with and without dimensionality
reduction.

Feature Schemes

S <lz=
E 5 | 38
SIS} & = on o,
<z 0z S =
<73 23| 23
(5] [75]
& <
spatial 16.33 16.57 | 15.96
spectral 34.93 35.86 | 34.46
Spatial + spectral on full 51.66 5149 | 5051
bands

Spatial + 85 LDA

Components from Spectral 79.64 7880 | 7827

A. ANALYSING PERFORMANCE ON ALL 90 SPECIES

In this experiment, we trained 4 different RF models using
different combinations of the data we gathered for training
and testing. The classification results presented in Table 2,
illustrate that the average precision, average recall and aver-
age F| score were lowest when using only spatial features
to train our RF. The average precision, average recall and
average F; score improved when only spectral features were
used. As expected, higher average precision, average recall
and average F; scores were achieved when the spatial and
spectral features were combined and analysed together. Next,
we used LDA to reduce the dimensionality of the spectral
features (originally 256) in the dataset. The outputs of the
LDA were separately combined with the spatial features
extracted from our dataset of 90 species. These data were
used to train the RF classifier. The classification results
obtained when using this approach to differentiate between
all 90 species. While we have discussed the average preci-
sion, recall and F; score here, we also show the individual
scores for each of the 90 species in Table 3. Interestingly,
the Fp scores vary between 80-100%, and 90-100% for
45 and 22 varieties respectively. These results showed very
high F; scores and are comparable with those reported
in Table 1. These results are pointers to the potential of our
new imaging modality (combining spatial features from RGB
images and spectral features from hyperspectral images) for
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rice seed discrimination even with a fairly large number of
species. However, we also note that this technique, when used
on the entire dataset of 90 species, performs better for some
species than others as illustrated in Table 3. Further analysis
carried out to find out what could be responsible for this is
presented in section IV-C.

B. ANALYSING SELECTED SUBSETS OF 6 SPECIES

In this scenario, we selected 6 subsets from our dataset in
order to compare our algorithm with state-of-the-art tech-
niques which (as shown in Table 1) tend to be evaluated on
a small variety of species; typically, 5-6 with the exception
of [11] (30 species) and [8] (754 species). 5 of the 6 subsets
selected, each consisted of 6 randomly selected species while
the 6™ subset consists of species that exhibited the worst
discrimination performance in Table 3. All the subsets are
summarized in Table 4. We used LDA to extract features from
the spectral data of each subset and combined the outputs with
corresponding spatial features using the best feature combi-
nation scheme selected. The 6 subsets were used separately
to train the RF classifier and the classification results are
presented in Table 5. We also note that the computation time
(segmentation and classification) is 0.53 s on a commodity
hardware; Intel Core i7. The computation time is insignificant
for practical application of screening rice seeds compared
to a manual human screening which takes minutes. For the
first 5 subsets studied, we observed that the average preci-
sion and average recall were significantly improved when
compared to the performance of the 90 species classification
results. Our novel approach produced very high average F
scores and outperformed equivalent scores reported for the
state-of-the-art techniques listed in Table 1 except for those
in [9], [14] and [16]. This experiment shows that, in line
with state-of-the-art techniques for rice seed classification,
very good results and elimination of impure species from rice
seed samples can be achieved by taking advantage of spatial
features from high spatial resolution images and combining
them with spectral features from hyperspectral data cube. For
the last subset of species, the average F1 score when employ-
ing the first classifier trained on 90 varieties is 45.54%.
In contrast, when the RF classifier is trained specifically on
the 6 species selected, the F1 score rises to 61.29%. This
improvement comes as a result of the smaller dataset and
suggests that when the species are known a-priori, a targeted
classifier would be more appropriate.

C. ANALYSING THE SUBSETS WITH VARYING

SPECIES SIZES

From the results presented in Sections B and C, it is clear
that the size of the dataset and variety of species consid-
ered in each experiment directly affects our RF classifier’s
performance. To explore this further, we selected a further
6 subsets of data from our set of 90 species. This time,
we varied the number of species in each subset of data to
include 6, 20, 40, 60, 80 and 90 different species to allow
us explore exactly how varying number of species in a study
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TABLE 3. Classification results with the best feature scheme, spatial + 85 LDA features, and 90 species.

Labels Labels Labels

g ) g ) 5 )

Z = S Z = S Z = S

8 8 Z 8 8 Z 8 8 2z

A~ ~ 29 ~ ~ 29 ~ =4 o
GS55R 100.00 100.00 | 100.00 | 1 TH35 89.47 | 80.95 85.00 | KN5 62.50 90.91 74.07
TC10 100.00 100.00 | 100.00 | PD211 82.61 | 8636 | 84.44 | TV2 78.57 68.75 73.33
NVI 100.00 100.00 | 100.00 | LT183 75.00 | 95.45 | 84.00 | DTHI55 | 81.25 65.00 72.22
KL25 100.00 100.00 | 100.00 | PC10 81.82 | 85.71 83.72 | ND9 68.18 75.00 71.43
N97 100.00 100.00 | 100.00 | HQI5 73.91 94.44 | 82.93 | KB6 73.33 68.75 70.97
NPQ 96.00 100.00 | 97.96 | KDI8 8750 | 77.78 | 82.35 | NTBH 77.27 65.38 70.83
NT16 95.24 100.00 | 97.56 | TB14 9412 | 72.73 | 82.05 | GL301 60.87 82.35 70.00
BT6 100.00 94.74 [ 9730 | NTP 7273 | 94.12 | 82.05 | NH92 66.67 71.43 68.97
HS1 100.00 94.12 | 96.97 | NTHY 7647 | 86.67 | 81.25 | DMV58 66.67 71.43 68.97
TXHQ 93.75 100.00 | 96.77 | NDSLH 7647 | 86.67 | 81.25 | NBP 75.00 62.50 68.18
NCT 100.00 92.86 | 9630 | VS6 7895 | 8333 | 81.08 | NM142 66.67 66.67 66.67
N54 9231 100.00 | 96.00 | DAl 80.00 | 80.00 | 80.00 | LDAS 55.17 84.21 66.67
CS6 93.33 9333 | 9333 | NC7 87.50 | 73.68 | 80.00 | NC2 54.17 81.25 65.00
NPT3 93.33 9333 | 9333 | MHSS 73.68 | 87.50 | 80.00 | HDI 60.00 70.59 64.86
CL61 89.47 9444 | 91.89 | NN4B 79.17 | 79.17 | 79.17 | VP1 66.67 62.50 64.52
DT66 85.00 100.00 | 91.89 | AH1000 70.83 | 89.47 | 79.07 | vsI 51.61 84.21 64.00
VT8 100.00 84.21 91.43 | SVNI 81.82 | 75.00 | 78.26 | DTS 57.89 68.75 62.86
SHPTI 95.45 87.50 | 9130 | AI28 8421 | 7273 | 78.05 | H229 69.23 56.25 62.07
VHS 95.24 86.96 | 90.91 | CT286 80.00 | 76.19 | 78.05 | TXI 100.00 44.44 61.54
N9 95.00 86.36 | 90.48 | CHI2 76.19 | 80.00 | 78.05 | HP28 71.43 52.63 60.61
NHN 95.00 8636 | 9048 | TQl4 7273 | 8421 78.05 | MTI151 100.00 42.86 60.00
R068 91.67 88.00 | 89.80 | KB27 73.68 | 8235 | 77.78 | BCIS 56.25 64.29 60.00
NDC1 95.45 84.00 | 89.36 | 91RH 100.00 | 62.50 | 76.92 | CNC12 100.00 211 59.26
BQI10 95.45 84.00 | 89.36 | CTX30 8333 | 7143 | 7692 | KCll11 7273 50.00 59.26
DTL2 87.50 91.30 | 89.36 | R998KBL 66.67 | 90.00 | 76.60 | NBK 69.23 4737 56.25
HN39 84.21 94.12 | 88.89 | HTIS 8125 | 7222 | 7647 | DT52 64.29 50.00 56.25
HL 85.71 90.00 | 87.80 | TCII2 81.25 | 7222 | 76.47 | NBTI1 50.00 50.00 50.00
DV108 30.00 94.12 | 86.49 | BTS7 66.67 | 88.89 | 76.19 | NPTI1 40.00 40.00 40.00
9d 86.36 8636 | 86.36 | TQ36 64.00 | 9412 | 76.19 | TB13 42.86 35.29 38.71
NKB19 82.14 88.46 | 85.19 | VS5 7619 | 76.19 | 76.19 | KB16 3333 30.77 32.00

TABLE 4. Species contained in each sub-dataset.

Subset Species

1 HS1, CH12, AH1000, SVN1, 91RH, DT8
2 TB14, N54, NKB19, HQ15, BT6, NC7

3 KB6, AH1000, HQ15, TQ14, KL25, NHN
4 TC10, DTL2, KB16, BT6, KB27, CNC12
5 CL61,NKB19, VH8, TX1, MT15, HL

6 NBK, DT52, NBT1, NPT1, TB13, KB16

TABLE 5. Classification results using the output of LDA and randomly
drawn 6 species.

can influence our classifier’s performance. Having prepared
the data, we applied LDA to extract features from the spectral
data of each of our data subsets of increasing size and we
combined the outputs with corresponding spatial features.
We then trained the RF classifier using the output of LDA
(starting from 1 LDA component up to S-1, where S is the
number of species in the dataset) combined with spatial fea-
tures in order to determine the number of features that gives
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1 96.03 96.46 96.18 89.66-

100
2 96.23 96.31 96.21 89.47-
100
3 98.59 98.33 98.42 97.30-
100
4 98.55 97.93 98.17 95.45-
100
5 96.39 96.73 96.52 92.86-
100
6 61.99 61.12 61.29 35.71 -
85.71

the best performance. For each subset of the data considered,
we obtained a plot of average F1 score against the number
of LDA features used in the classification. The results of
this are shown in Fig. 7. We also obtained the maximum
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FIGURE 6. Classification result using the outputs of LDA and 90 species.
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FIGURE 7. Plots of average F1 scores against number of features for
sub-datasets with species sizes of 6, 20, 40, 80, and 90.

average F1 score from each of the plots in Fig. 7 and used
this information to plot the maximum average F1 score as
a function of the number of species considered as shown
in Fig. 8. From Fig. 8, we observed that the performance of
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FIGURE 8. A plot of maximum average F1 score against number of
species.
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FIGURE 9. Average spectral profiles of some species with good
classification results in Table 3.

the RF classifier appears to be impacted by the number of
species used in the study. The average F1 scores significantly
dropped from 98.17% for 6 species to 78.27% for 90 species.
One reason for this drop in classifier performance could be
due to an increase in the level of similarity among the rice
seeds species as the number of varieties also increases.

As a result, the need to investigate the influence of sim-
ilarities among species of rice seeds on the classifiers’ per-
formance becomes imperative. Furthermore, we reported
in the previous subsection that the approaches utilized
in [9], [14], and [16] attained better results than ours.
Similarity assessment of rice seeds species will also help
to clarify whether the higher performances reported in
these papers is due to the use of better feature combina-
tion schemes, better algorithms or inter/intra class variation
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FIGURE 10. Average spectral profiles of some species with good
classification results in Table 3.
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FIGURE 11. Average spectral profiles of some species with poor
classification results in Table 3.

among species themselves. While in general the algorithm
presented in this papers performs very well, our technique
does have some limitations. This is clear by analysing situa-
tions where the method does not perform well. For example,
some of the species which have poor classification such
as species TB13, KB16, NBK and NPT1 all have virtually
identical spectral profiles. This is clear with reference to
Figures 9 - 12 and results in the misclassification of some
seeds by the proposed method. Future work will be focused
on the proposition of techniques to assess how similar these
species of rice seeds are and to mitigate degrading effects
on the classifiers’ performance due to the level of similari-
ties. While it is believed that misclassifications occur due to
species exhibiting similar properties, it should be noted that
that the observed drop in performance could also be due to the
limited number of rice seeds/kernels available versus what
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FIGURE 12. Average spectral profiles of some species with poor
classification results in Table 3.

is required to cover the large feature space. Going forward,
the effects of varying and, in particular, increasing the number
of rice seeds per class will be explored.

V. CONCLUSION

This paper presents a new RGB and HSI system for rice
seed variety classification. RGB images and hyperspectral
image data cubes which offer high spatial and spectral reso-
lution respectively were acquired using the proposed system.
A large number of rice seed species (90 specifically) were
selected and the spatial and spectral features extracted from
the acquired images and data cube constitute the dataset
which was used for this work and is made publicly avail-
able. Experimental results show that very good classification
results and elimination of impure species from rice seed sam-
ples can be achieved by taking advantage of spatial features
from high spatial resolution images and fusing them with
spectral features from hyperspectral data cubes. Suboptimal
performance reported for some categories was linked to the
use of samples with large number of species and similari-
ties among species. Future work will focus on assessing the
similarities among species of rice seeds and exploring ways
in which the degrading effects on classifiers’ performance
due to seed similarty can be mitigated. We will also aim
to explore how increasing the number of seeds per class
during training can improve the results. Finally, we intend to
evaluate the performance of the proposed techniques using
an NIR spectral data (1000-1700nm). In this work, our novel
approach was applied on a large set of 90 rice seeds provided
by the National Center of Protection of New Varieties and
Goods of Plants (NCPNVGGP) in Vietnam. This approach
can be extended to datasets with larger number of species
which are available at other agricultural institutes.
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