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Abstract. Good communication is critical to good healthcare. Clinical dialogue
is a conversation between health practitioners and their patients, with the explicit
goal of obtaining and sharing medical information. This information contributes
to medical decision-making regarding the patient and plays a crucial role in their
healthcare journey. The reliance on note taking and manual scribing processes
are extremely inefficient and leads to manual transcription errors when digitizing
notes. Automatic Speech Recognition (ASR) plays a significant role in speech-to-
text applications, and can be directly used as a text generator in conversational ap-
plications. However, recording clinical dialogue presents a number of general and
domain-specific challenges. In this paper, we present a seq2seq learning approach
for ASR transcription error correction of clinical dialogues. We introduce a new
Gastrointestinal Clinical Dialogue (GCD) Dataset which was gathered by health-
care professionals from a NHS Inflammatory Bowel Disease clinic and use this in
a comparative study with four commercial ASR systems. Using self-supervision
strategies, we fine-tune a seq2seq model on a mask-filling task using a domain-
specific PubMed dataset which we have shared publicly for future research. The
BART model fine-tuned for mask-filling was able to correct transcription errors
and achieve lower word error rates for three out of four commercial ASR outputs.

Keywords: Clinical Dialogue Transcription · Automatic Speech Recognition ·
Error Correction

1 Introduction

Traditional approaches to record keeping in a health service setting have relied on pen
to paper for all clinical professionals who ask the same questions of the same patient.
Drawbacks to this approach include the time burden of record keeping of clinical com-
munications, the potential for error and most importantly means the patient more often
than not is required to repeat and share the same detail asked in a different way. The
absence of accurate clinical dialogue capture is a contributory factor to poor commu-
nication in medical practice [18]. To a patient this promotes mistrust and a feeling of
fragmented care in a system that seems not to be linked up.
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Clinical documentation is time consuming and is associated with clinician burnout,
increased cognitive load, information loss, and distractions [19]. One of the most promis-
ing avenues of automating clinical documentation with digital scribes is to use an Au-
tomatic Speech Recognition (ASR) [21] system; whereby in a process called digital
transcription, audio data received as input is converted to textual data as output. Recent
advances in Natural Language Processing (NLP) and adoption of cloud-based technolo-
gies have created a significant market for ASR systems. Due to the critical nature of the
domain, ASR for clinical applications are expected to demonstrate high levels of perfor-
mance. However variations in language, speech and environmental contexts have made
it hard to achieve an acceptable levels of transcription accuracy [6]. Thus, it is important
to examine strategies to mitigate or reduce the likelihood of error in a transcription.

There are two approaches to correcting ASR errors: redesign and retrain the core
ASR architecture; or alternatively perform a post-ASR error correction on the tran-
scribed ASR output. In this paper we focus on the second approach and use a seq2seq
fine-tuned neural model to map an ASR transcribed piece of text to its error corrected
form. We select T5 [22] and BART [14] as our seq2seq models due to their dominant
performance across domains. A self-supervised training strategy with fine-tuning tasks
is used with a novel domain-specific dataset scraped from PubMed 1 abstracts. We iden-
tified a lack of specific clinical dialogue datasets in related literature and address this
deficit by introducing a novel clinical dialogue dataset which is used to test the effec-
tiveness of our error correction models. Results from a comparative study of seq2seq
models show that our proposed approach can reduce transcription errors that are intro-
duced by several commercial ASR systems. Accordingly, our contributions are:

– We demonstrate clinical dialogue error correction using the Gastrointestinal Clini-
cal Dialogue (GCD) Dataset which we gathered in partnership with National Health
Service (NHS) Scotland;

– A self-supervision methodology to fine-tune language models for clinical dialogue
error corrections using a novel PubMed dataset; and

– A comparative evaluation of fine-tuned language models for clinical dialogue tran-
scription error correction.

The rest of the paper is organised as follows. Section 2 presents related literature in
ASR error correction methods. The Gastrointestinal Clinical Dialogue (GCD) dataset
is presented in Section 3 followed by Section 4 which presents the language models
considered for error correction and our approach to fine-tuning language models using
the self-supervised PubMed datasets. Section 5 presents the comparative evaluation of
language models and fine-tuned models for error correction using the GCD dataset.
In Section 6 we further investigate the performance improvements we observed in the
previous section to draw insights for future work. Finally we present our conclusions in
Section 7.

1 https://www.ncbi.nlm.nih.gov/pubmed/



Clinical Dialogue Transcription Error Correction using Seq2Seq Models 3

2 Related Work

ASR techniques are used to capture real-time speech in audio format and convert them
into textual outputs. In clinical settings, ASR can be used as the initial step to gather the
conversational data and to produce meaningful insights from the generated ASR tran-
scriptions. However, ASR performance is mainly dependent on three factors: speaker
variabilities (changes in voice due to ageing, illness, emotions and tiredness); spoken
language variabilities (variants in speech due to accents and dialects); and other mis-
match factors (communication channels and the devices) [6]. Moreover, these factors
affect the performance of the ASR systems, and will generate erroneous results, from
which it is challenging to extract meaningful insights. The types of errors found in
speech recognition are threefold: insertion, deletion, and substitution [6]. Word Error
Rate (WER) is the common evaluation metric used to evaluate the performance of ASR
outputs considering the three errors as mentioned above [6, 7].

There are two alternative approaches for the ASR error correction: implement er-
ror correction algorithm within the ASR model; or as a post-processing step where the
ASR outputs will be analysed for error correction. Hidden Markov Models [8, 11] and
more recently deep neural architectures [9] have been explored for ASR models that
include error correction. The alternative (and increasingly more common) approach in-
volving post-ASR error corrections have in the past adopted unsupervised approaches.
Early methods include lexical co-occurrence analysis on large ASR transcription cor-
pora [23] and using statistical error correction methods [3]. FastCorrect is a more recent
transformer based architecture which integrates the edit distance metric within a deep
neural architecture to guide error correction [13]. Alternatively, transformer based ar-
chitectures has been fine-tuned for error correction using part of the domain specific
dataset (a train set) [17]. Increasingly, for post-ASR error correction there is potential
to exploit recent advances in language modelling. Accordingly, in this study, we will
also focus on post-ASR error correction using a transformer based architectures. How-
ever, instead of implementing a customised architecture [13] or fine-tuning with clinical
dialogue data (of which there is only a very limited amount of data) [17], we explore
how to effectively fine-tune a pre-trained model using publicly available clinical domain
data.

3 Clinical Dialogue Transcription

Clinical dialogue is a conversation, typically between a clinician and a patient, with the
explicit goal of obtaining medical information regarding the patient. This information
contributes to medical decision-making regarding the patient and plays a crucial role
in their healthcare journey. The clinician will ask questions about the patient’s medical
state, including: personal details, medical history, symptoms, prescribed medicines and
clinical tests. Recording these conversations often relies on the clinician maintaining
paper-based notes, which in turn requires effort and time when converting to patient
Electronic Health Records (EHRs). Once created, EHRs are maintained by a centralised
system and can be shared among all of the different medical specialists which may take
part in a patient’s care journey. To clarify, consider the following fictitious example. A
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patient creates an appointment with their local general practice due to complaints of a
stomach ache. The general practice clinician then uses the information in the patient’s
EHR to check for allergies before prescribing new medication. Information regarding
the prescription is then appended to the patient’s EHR and is visible during a follow-on
appointment with a gastrointestinal specialist and allows them to try a new treatment
without repetition. Accurate and timely EHRs are therefore crucial to the success of
patient treatment. Accordingly, there is a demand for algorithms that efficiently create
accurate electronic health records from clinical dialogues.

Manual note-taking is comparatively an inefficient process compared to digitisa-
tion of clinical dialogues. Clinicians lose valuable time on administrative tasks which
could be put to better use elsewhere. Furthermore, there is the possibility of error or
misunderstandings being introduced at the note-taking and digitization stages. Speech-
to-text transformation presents an opportunity to create (or update) EHRs from clinical
dialogues. However, speech-to-text conversion in a clinical setting presents a number
of challenges, both general (i.e. accurate transcription in the presence of background
noise, different speaker accents and dialects, interruptions and repetitions) and domain-
specific (i.e. recognising expert vocabulary, non-overlapping expertise between conver-
sation participants). Once corrected, the goal is to extract clinical data and insights to
formulate summaries of conversations that can then be captured as part of the an elec-
tronic patient health record.

To understand the performance of speech-to-text transcription of clinical dialogues
we require data specifically in the form of audio and its reference transcript. To the best
of our knowledge, there is no available clinical conversational dataset in the English
language. Here we describe an applied machine learning task using the Gastrointesti-
nal Clinical Dialogue (GCD) dataset which has been collected working in partnership
with the National Health Service (NHS) Scotland. In this work we limit our scope to
gastrointestinal disease related clinical conversations, which mainly took place in the
Inflammatory Bowel Disease (IBD) clinic.

3.1 Gastrointestinal Clinical Dialogue Dataset

The clinical conversations in the GCD dataset were generated using role-playing con-
versations initiated in the NHS IBD Clinic. These conversations contain clinical dia-
logues that often take place between an IBD clinicians and a patient. The data collection
included 7 participants with Scottish accents. The accent can be viewed as a form of
noise in addition to common noise factors such as background noise, interruptions and
repetitions. Overall, we collected 7 audio files each with 4 ∼ 5 minutes of conversation.
Each audio file contains a mean number of 47 utterances where two persons engaged in
a clinical conversation. A summary of audio data statistics are presented in Table 1.

The GCD dataset consist of 329 (∼47*7) data instances where each data instance
has three components; audio file, reference transcript (i.e. gold standard) and multi-
ple ASR transcripts. The reference transcript is created by listening to the audio and
manually transcribing it. To create the ASR transcriptions, we used four commercially
available ASR systems. These include AWS Transcribe, Microsoft speech-to-text, IBM
Watson and Google speech-to-text. These ASR services were selected from a large
number of ASR services both commercial and open source based on their support for
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Table 1: Summary of the GCD Dataset
Feature Value
No. of audio files 7
Mean length of an audio file 4 mins 49 secs
Mean no. of utterances in a file 47
Mean no. of words in an utterance 93

Table 2: Examples from the GCD Dataset
Gold Reference AWS Transcribe Output

So do you have any ideas as to what might be
the cause of your symptoms at the moment?

So do you have any ideas as to what might be
the cause of your symptoms at the moment?

Have you noticed any changes in your weight? Do you noticed any changes in your wit?

Okay have you noticed any mucus in your
bowel motions?

Okay have you noticed any mucus in your bible
Moshe?

British English accent and popularity. Table 2 presents some examples of reference
transcriptions and their ASR Transcribe outputs (AWS Transcribe in the example) from
the GCD dataset.

In Figure 1 we plot the transcription error rate measured by Word Error Rate (WER)
for each ASR system. WER scores are calculated against the reference transcript of each
audio file and the transcribed output from each ASR system. Accordingly, we find that
Microsoft speech-to-text service generates the most accurate transcriptions from the
GCD Dataset and Google speech-to-text service generates the least accurate. Although
these are commercial ASR systems, the lack of knowledge on the medical domain terms
and background noise may contribute to the performance differences seen in Figure 1.
In the next section we present our post-error correction approach using seq2seq models.

4 Methods

We view error correction as a seq2seq task performed using an Encoder-Decoder (ED)
architecture based language models. Here the text generated by the ASR forms the input
to the encoder-part of the ED architecture, and the decoder-part is trained to generate
the reference text. As illustrated in Figure 2, a pre-trained language model needs also
to be fine-tuned. The reasons for this are two fold: the ED models are general-purpose
and not fine-tuned for terminology in the medical domain (i.e. vocabulary gap); and
they are not fine-tuned to perform error-correction (i.e. objective gap). Essentially we
need to integrate the domain vocabulary (e.g. gastrointestinal terminology) into the pre-
trained language model that we want to use for error correction.

As discussed in Section 3 there is only a limited amount of data available for our
clinical dialogue error correction task. Accordingly, it is challenging to use this dataset
for both training (fine-tuning) and testing as we would in traditional machine learning.

Gayani Nanayakkara

Gayani Nanayakkara
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Fig. 1: Comparison of ASR Performance

Instead we curate a dataset of Gastrointestinal text extracted from PubMed to fine-
tune the general purpose language models on three distinct self-supervision tasks which
are closer in nature to the error correction task. In this manner we aim to address the
challenges posed by the gap in vocabulary and the difference in training objectives
respectively.

4.1 General Purpose Base Language Models

Seq2seq learning has been performed using ED architectures created based on Recur-
rence [1, 2] and Transformers [14, 22]. Transformer based ED architectures are the
state-of-the art and there exist different variants trained for different language mod-
elling tasks. In this paper we consider the Bidirectional and Auto-Regressive Trans-
former (BART [14]) and seq2seq Transfer Transformer (T5 [22]) models, both of which
have been pre-trained using large language corpora.

T5 Model T5 is a transformer-based architecture that is pre-trained on a mixture of
seq2seq tasks [22]. T5 architecture resembles the original transformer architecture [24]
with 12 transformer blocks in both the encoder and the decoder. The T5 model is trained
on the Colossal Clean Crawled Corpus (C4) dataset, a collection of clean and natural
English text from the internet in April 2019 (750GB in size). Multiple T5 model variants
based on the number of attention blocks have been introduced [22]. In this work, we
fine-tune the T5-small, T5-base and T5-large models with 6, 12 and 24 attention blocks
respectively.

BART The Bi-directional Auto-Regressive Transformer (BART) also uses the standard
transformer architecture pre-trained for multiple seq2seq tasks. BART can be simplified
as a transformer based architecture where the encoder is a generalised BERT (i.e. bidi-
rectional encoder) [5], and the decoder is a GPT (i.e. left-to-right decoder) [20]. The
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Fig. 2: Clinical Dialogue Transcription Error Correction using Seq2seq Model

BART model is trained on data from a combination of books and Wikipedia data, con-
sisting of news, books, stories, and web text (160GB in size). The model is trained
by adding noise to text using an arbitrary noising function and learning the model to
reconstruct the original text.

4.2 PubMed Gastrointestinal Dataset

PubMed is a collection of ∼33 million citations of biomedical literature collated from
sources such as MEDLINE, life science journals and online books created by the US
National Library for Medicine. It provides a search and retrieval engine for the public
to extract biomedical articles. These articles either contains full-text and abstract text
and are annotated by unique record identifiers called PMID. PubMed has been used as
a resource for content classification [4], biomedical question and answering [10] and
biomedical entity recognition [12].

We also extract data from PubMed to create the PubMed Gastrointestinal Dataset.
The main goal of extracting data from PubMed is to create a dataset introducing medical
terminology to base language models. When choosing a dataset, there are differences
between written and spoken English within specialist domains. The lack of availability
of a larger spoken corpus has led us to use the written corpus, which is currently the
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Table 3: Summary of the PubMed Dataset
Feature Value
Number of title, abstract pairs 11,772
Mean no. of words in title 102
Mean no. of words in abstract 1,533

most viable alternative. To this end, we adopted the following protocol to extract data
from PubMed:

1. crawl PubMed to extract paper titles and abstracts. In this work we limit the search
to articles related to gastrointestinal research. Accordingly the search terms are
gastrointestinal symptoms, diagnosis, clinical, examination, and patient;

2. clean titles by removing the Unicode characters; and
3. clean abstracts by removing the different Unicode characters, equations, figures,

tables and URLs.

After pre-processing we obtain a dataset with title and abstract pairs (see Table 3 for
corpus statistics). The methods presented in this paper can be generalised to any medical
domain by using the domain-specific search queries in the PubMed database search
engine.

4.3 Fine-tune using Self-supervision

The approach of using the same unsupervised data to create multiple training objectives
is known as self-supervision. When fine-tuning the base language models we need to
create self-supervisions tasks that have the general structure of an input-output text
pair (i.e. seq-to-seq). When creating self-supervised datasets from PubMed data we are
keen to empirically identify which fine-tuning task is best suited to introducing medical
terminology as well as performing error-correction once fine-tuned. We created three
variants of the PubMed dataset with a view to performing three different fine-tuning
tasks on the base language models 2. In Table 4 we present an example for each fine-
tune task.

Summarisation task generates a summary for a given text input. In the PubMed dataset,
the abstract is considered as the input and the title is considered as the gold standard
for the expected summary. No changes are required to the original PubMed dataset
described in the previous section. Table 4 first row presents an example of abstract
and title pair for summarisation from the PubMed dataset.

Paraphrasing task generates a re-phrased text for a given text input. The goal of para-
phrasing is to represent the meaning of a given text using different or re-arranged
words. From the PubMed dataset, we used titles as the input to a T5 model fine-
tuned for paraphrasing using the Google PAWS Dataset [25] to generate a para-
phrased versions of the titles. The resulting dataset has title and paraphrased title

2 Accessible from the Hugging Face dataset repositories https://huggingface.co/gayanin
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Table 4: Examples from the PubMed Gastrointestinal Dataset
Task Input Output

Summarisation Helicobacter pylori is a worldwide infection. It is esti-
mated that approximately 50% of the general popula-
tion is affected, but this percentage varies considerably
between countries. . . . This study confirms relatively
high prevalence of H. pylori seropositivity among Ital-
ian healthy adults and points to sex, age, BMI and so-
ciocultural class as persisting determinant features of H.
pylori infection.

Determinants of
Helicobacter pylori
seroprevalence among
Italian blood donors.

Paraphrasing Determinants of seroprevalence of Helicobacter pylori
among Italian blood donors

Mask-filling Determinants < mask > < mask > pylori <
mask > among Italian blood donors.

pairs as shown in the example Table 4 second row. For fine-tuning using this dataset,
we use the paraphrased title as the input and the title as the reference text.

Mask-filling is the task of predicting matching text for masked tokens in a text. To
prepare the PubMed dataset for mask-filling we augment titles such that 25% of
the words in the title are replaced with the word < mask >. The resulting dataset
has title and masked title pairs as shown in example in Table 4 third row. For the
mask-filling fine tuning, we use the masked title as the input and the title as the
reference text.

5 Evaluation

The aim of this evaluation is two-fold. Firstly we measure the efficacy of base language
models to perform error correction on clinical dialogue in Section 5.1. Secondly, we
identify which fine-tuning task is best for the clinical dialogue error correction task in
Section 5.2.

Performance Metric The metric selected to measure error correction is Word Error
Rate (WER). WER is derived from the Levenshtein distance which measures the dif-
ferences between two strings. WER has been used as a performance metric in ASR
systems [6] and in post-ASR error correction [16, 13]. Given a language model output
and a reference text, WER is calculated using Equation 1. Here S, D and I refer to the
number of substitutions, deletions, and insertions operations needed to transform the
reference text to the language model output. C refers to words that are equal in both
reference and the output and N refers to the number of words in the reference text and
N = S +D + C. Lower WER scores are desirable.

WER =
S +D + I

N
=

S +D + I

S +D + C
(1)
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Table 5: Comparison of Base Language Models
Model WER (%)

Name Version AWS Transcribe Microsoft IBM Watson Google

T5
T5-Small 55.41 54.87 61.74 64.20
T5-Base 214.08 205.56 209.84 162.63
T5-Large 163.96 163.54 153.64 137.19

BART
BART-Base 38.29 30.95 42.63 44.47
BART-Large 66.95 55.40 61.50 55.12

5.1 Comparison of Base Language Models

We compare the base language models detailed in Section 4.1 for the task of clini-
cal dialogue error correction. These models were pre-trained using large public domain
language corpora for multiple language modelling tasks (i.e. Wikipedia [14], Book Cor-
pus [14] and web extracted text [22]). However they are not fine-tuned to the medical
domain or error-correction task. We implement these models using the Python Hugging
Face 3 and PyTorch 4 libraries while maintaining all default hyper-parameters. Models
are evaluated using the four ASR outputs in the GCD datasets from Section 3 on which
mean WER is reported as a percentage.

Results Table 5 represents the WER scores for T5 and BART model variants evalu-
ated on each ASR output. Overall, smaller models (i.e. less transformer blocks) achieve
lower WER compared to larger models consistently across all four datasets. In T5 mod-
els, both base and large model variants have a WER score of more than 100%. Models
with a higher number of transformer blocks tend to generate longer sentences. Accord-
ingly the number of insert operations (see Equation 1) are higher when the output sen-
tence is longer which results in a WER score higher than 100%. Similar performance is
observed with the two BART variants where larger model is producing higher WER due
to output length. Between T5 and BART, the winner is BART-Base, although both fail
to surpass the ASR WER scores (see Figure 1). Accordingly, we will study the impact
of fine-tuning just the T5-Small and BART-Base models.

Table 7 presents outputs generated for a sample input using T5 and BART base
model variants. The sample input and its references text is randomly selected from
the AWS Transcribe outputs and reference texts in the GCD dataset. The outputs from
the T5 and BART models with increased number of transformer layers have evidently
generated longer outputs which contributed to higher WER scores. Also, none of the
models were able to correct the medical term present in the sample input.

5.2 Comparison of Fine-tuned Language Models

In this section, we compare the fine-tuned language models detailed in section 4.3 for
the task of clinical dialogue error correction. These models are fine-tuned using the three

3 https://huggingface.co/
4 https://pytorch.org/
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Table 6: Comparison of Fine-tuned Language Models
Model WER (%)

Name Fine-tune Task AWS Transcribe Microsoft IBM Watson Google

T5-Small
Summarisation 63.39 66.89 69.44 73.80
Paraphrasing 48.87 47.24 54.52 57.97
Mask-filling 38.83 35.86 45.16 46.87

BART-base
Summarisation 76.61 77.03 78.10 75.56
Paraphrasing 43.31 37.46 47.51 49.48
Mask-filling 32.38 26.38 38.92 40.43

self-supervising PubMed datasets we presented in Section 4.3. The hyper-parameters
used in the fine-tuning were: optimiser is AdamW [15]; loss is cross-entropy; learning
rate is 2e−5; and batch size is 16. For each fine-tuning task, the dataset was split 90/10
for training and evaluation. For each model the number of fine-tuning epochs varied
between 10 and 40 as the fine-tuning was stopped when minimal evaluation loss was
observed. For the summarisation task, the encoder input and decoder output sequence
lengths were set to 1024 and 128 respectively; for paraphrasing and mask-filling tasks
both encoder input and decoder sequence lengths were set to 512. Models are tested
for error correction using the four ASR outputs on the GCD dataset from Section 3 to
report mean WER as a percentage.

Results Table 6 represents the WER scores for the fine-tuned model variants for the
tasks summarisation, paraphrasing and mask-filling for each ASR system output. Over-
all, mask-filling is the best performing fine-tuning task for both BART and T5 models
across all four datasets. Summarisation task resulted in the highest WER scores, which
makes it is an unsuitable fine-tuning task for error correction. High WER is caused
by the difference between the input and output sequence lengths used in summarisa-
tion, whereby error correction expects similar lengths for both input and output. From
paraphrasing and mask-filling tasks where the input and output sequences match, mask-
filling has achieved the best performance. In addition to generating an output of the ex-
pected size, the model has learned to correct errors when fine-tuned for mask-filling. In
fact, intuitively, mask-filling is most similar to error-correction of the three fine-tuning
tasks where it is teaching the model to find missing words. Importantly, mask-filling
has improved the BART models to outperform ASR performance (see Figure 1) with
the Microsoft, IBM Watson and Google datasets and to perform comparably with the
AWS Transcribe dataset.

Table 7 presents outputs generated for a sample input using fine-tuned models.
The models fine-tuned for summarisation generate shorter text which resulted in in-
creased WER scores. In comparison, models fine-tuned for paraphrasing and mask-
filling are generating text that are comparable to the input in length. Moreover, we
observe several improvements to the output text such as T5-paraphrasing replacing the
word “fortnightly” with “two-weekly” and BART Mask-filling accurately improving
“Andi I know” to “And I know”. However, even after fine-tuning for medical terminol-
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Table 7: Examples from Language Model Variants
Output

Reference Text And I know that youve been on fortnightly Adalimumab

Input Andi I know that youve been on fortnightly Adelaida map?

Baseline Models

T5-Small Andi I know that youve been on the fortnightly Adelaida map

T5-Base been on fortnightly Adelaida map. Andi I know that youve been tagged
as andi Im sure thats where youre on, but im not sure if its just me or
am I right?

T5-Large youve been on the fortnightly Adelaida map been on fortnightly Ade-
laida map. Andi I know that youve been tagged as andi Im sure thats
where youre on, but im not sure if its just me or am I right?

BART-Base Andi I know that youve been on fortnightly Adelaida maps

BART-Large AndAll of the time.Andi I know that youve been on fortnightly

Fine-Tuned Models

T5-Summarisation I know that youve been on fortnightly Adelaida map

T5-Paraphrase Andi I know that youve been on the two-weekly Adelaida map.

T5-Mask-filling Andi I know that youve been on fortnightly Adelaida map.

BART-Summarisation Adelaida map on fortnightly basis.

BART-Paraphrase I know youve been on the fortnightly Adelaida map.

BART-Mask-filling And I know that youve been on fortnightly Adelaida map

ogy, the models struggle to find the phonetic similarity between the ASR output and
medical terminology. For example models fail to correct “Adelaida map” to “Adali-
mumab” which will be a focus area for us to improve in future work.

6 Discussion

The aim of this exploratory evaluation is to find out the type of utterances that con-
tributed to the performance improvements with BART fine-tuned for mask-filling. To
this end, first we split each ASR output in the GCD dataset in to data instances that ASR
correctly transcribed (ASR output equal to reference text) and incorrectly transcribed.
Then we evaluate each subset of data using the best performing models we found in
Section 5.2 which are T5 and BART models fine-tuned for mask-filling. In Table 8 we
present the results in which we opt to present the number of utterances instead of WER
for easy interpretation.

In the ASR row we present the baselines where Equal row refers to the number of
utterances correctly transcribed by ASR and Different row refers to the number of utter-
ances incorrectly transcribed by ASR. For example, Google speech-to-text ASR system
only transcribed one utterance correctly and 224 utterances had some differences when
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Table 8: Comparison of ASR and Language Model Outputs for Error Correction

Model Data Number of Instances
AWS Transcribe Microsoft IBM Watson Google

ASR
Equal 30 27 7 1
Different 269 273 277 224

T5 for Mask-filling
Equal 7 6 2 1
Different 292 294 282 224

BART for Mask-filling
Equal 1 1 0 1
Different 298 299 284 224

compared to the reference text. There is a difference between the total number of audio
utterances of 329 (from Table 3) and Google ASR outputs. For given audio file, ASR
system is generating a different number of utterances compared to the reference text.
This is because, the ASR system is skipping some audio content that it cannot transcribe
with a level of confidence. Evidently, ASR systems with higher error have less number
of total utterances in Table 8.

At first glance, we find that the number of equal utterances are reduced with T5
and BART models and the number of different utterances are increased. But a close
examination reveals that the performance improvements we observed in Section 5.2
over ASR system is due to making less errors within utterances that are different. This
is clearly seen when comparing the number of utterances for Google where the numbers
are not different from ASR yet achieved a performance improvement of 9.35% (49.78
- 40.43) and 2.91% (49.78 - 46.87) with the BART and T5 models. However we find
that our models are introducing errors to utterances that ASR systems have correctly
transcribed. A methodology to mitigate this will be explored in future work.

7 Conclusion

In this paper, we presented a seq2seq learning approach for clinical dialogue transcrip-
tion error correction. Given the lack of clinical dialogue data, we presented an approach
which uses public medical domain data to fine-tune a language model to introduce do-
main specific clinical terms. We found out that PubMed data from a specific domain
can be used in self-supervised manner to create data to fine-tune a general purpose
seq2seq model. Importantly our results suggest that the choice of fine-tuning task has a
significant impact on the post-ASR error correction task. Specifically we found that the
mask-filling was closely aligned to the target transcription error correction task com-
pared to alternative fine-tuning tasks such as summarisation or paraphrasing. With this
method, we were able to surpass the performance of three out of four commercial ASR
systems on a comparative study with fine-tuned T5 and BART seq2seq models. In future
work, we plan to introduce new fine-tune tasks with more self-supervised data to im-
prove model knowledge of phonetic relationships between medical and regular phrases
and improve error correction performance.
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