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Abstract. By grouping pixels with visual coherence, superpixel algorithms provide an 

alternative representation of regular pixel grid for precise and efficient image segmen-

tation. In this paper, a multi-stage model is used for sea ice segmentation from the high-

resolution optical imagery, including the pre-processing to enhance the image contrast 

and suppress the noise, superpixel generation and classification, and post-processing to 

refine the segmented results. Four superpixel algorithms are evaluated within the frame-

work, i.e. SLIC, BASS, TS-SLIC and WP, where the high-resolution imagery of the 

Chukchi sea is used for validation. Overall, the model yields a segmentation accuracy 

of 98.19% on average and adhere the ice edges well. We also present quantitative eval-

uation in terms of the segmentation quality and floe size distribution, and visual com-

parison with several selected regions of interest. It is found that TS-SLIC performs the 

best within the group. 

Keywords: sea ice segmentation; superpixel; satellite remote sensing. 

1 Introduction 

With the trend of global warming, the global climate changes in the last few decades 

significantly affect the Arctic Ocean area [1], leading to the decline of the Arctic sea 

ice extent. According to the Arctic amplification phenomenon, the trends of tempera-

ture variation are more obvious in the Arctic region than that of the northern hemisphere 

or the globe as a whole [2]. To understand the ongoing sea ice changes, it is valuable 

to investigate the dimension of the marginal ice zone (MIZ). MIZ is defined as the 

transitional region between the open sea and dense drift ice, and it is closely correlated 

to the representation of sea ice in the climate and weather models [3]. Nevertheless, 

MIZ is vulnerable to open ocean processes such as waves and wind [4], which makes 

its size unpredictable and hard to be detected correctly.  

High-resolution optical (HRO) imagery, the satellite image with a relative high spa-

tial resolution, offers the potential for precisely identifying the location of the boundary 

between sea ice and open water, i.e. so called ice edges [5], and accurately determining 

the floe size distribution (FSD). Recent years, as the HRO images have become more 

accessible, various approaches have been developed for sea ice segmentation, including 
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the combination of the maximum cross-correlation techniques and multi-sensor HRO 

images [6], the combination of the watershed transformation and random forest classi-

fication [7], and the texture-sensitive superpixel based segmentation [8]. To tackle the 

high computation complexity of the HRO imagery, superpixel algorithms provide an 

alternative representation of regular pixel grid by grouping the similar pixels into over-

segmented small regions. The generated superpixels can accordingly reduce the com-

plexity for subsequent processing whilst adhering well to the boundaries of ice floes 

and open water. For instance, the simple linear iterative clustering (SLIC) superpixel is 

combined with the minimum spanning tree in [9], and the random forest is used for 

grouping the superpixels produced by the SLIC algorithm in [10]. 

Motivated by the aforementioned challenges and inspired by some existing works, 

this paper therefore, aims at evaluating the performance of different superpixel algo-

rithms for sea ice segmentation from HRO imagery within a multi-stage model frame-

work, which includes contrast enhancement and noise removal, superpixel generation 

and grouping, followed by a morphological opening process as post-processing. To 

evaluate the model, the selection of the superpixel number is investigated. The proposed 

modal is also compared against two state-of-the-art image segmentation methods quan-

titatively and qualitatively. 

2 Superpixel Based Sea Ice Segmentation 

2.1 The Framework 

The framework of the multi-stage model is presented in Fig. 1, which includes three 

main stages. Firstly, the image is pre-processed via the Top-Hat and Bottom-Hat trans-

forms, the widely used detail enhancing approach in medical image processing [11], 

which allows the segmentation of the small ice floes from the ice-water mixed regions 

with low contrast. The bilateral filter [12] is then employed for noise removal whilst 

preserving the edge information. By adding the Top-Hat and subtracting the Bottom-

Hat on the original image, the processed image shows enhanced foreground and sup-

pressed background, which is beneficial for the following-on segmentation process. 

 
Fig. 1 Workflow of the multi-stage segmentation model 
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Next, superpixel segmentation is generated. In this study, we have employed four 

algorithms for comparison, including the SLIC [13], Texture Sensitive SLIC (TS-

SLIC) [8], Water Pixel (WP) [14], and Bayesian Adaptive Superpixel Segmentation 

(BASS) [15]. Next, k-means is applied to split the superpixels into two classes, namely 

water and ice, based on the mean intensity and standard deviation of each individual 

superpixel. Then the classified superpixels are merged to form the segmented result. 

Finally, the segmented result is refined by morphological opening as post-processed to 

smooth the ice shapes and also separate the connected floes. Regarding the morpholog-

ical operations, depending on the size of structuring element (SE), the result may vary 

a lot. In this study, disk shape SE was chosen as most objects of interest have arcuate 

boundaries, where the radius is set to 𝑅 = 5 in the pre-processing stage for better noise 

removal whilst preserving enough texture information, and 𝑅 = 3  in the post-pro-

cessing stage for refining the segmented result whilst retaining the small floes.  

 

2.2 Superpixel Algorithms and Implementation 

As one of the most popular superpixel algorithms, SLIC groups the pixels with the local 

k-means clustering that searches the pixels in a limited region centered at each cluster 

center based on the distance, 𝐷, that considering both the colour and spatial Euclidean 

distances, namely 𝑑𝑐 and 𝑑𝑠, as defined below: 

 𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)2 + (𝑎𝑗 − 𝑎𝑖)
2 + (𝑏𝑗 − 𝑏𝑖)

2 (2.1) 

 𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)2 (2.2) 

where the vector (𝑙, 𝑎, 𝑏) denotes the values of three colour components in the CIELAB 

colour space, and (𝑥, 𝑦) is the spatial coordinate of each pixel. Let 𝑁 be the total num-

ber of pixels in the input image, and 𝐾 is the superpixel number, the sampling interval, 

𝑆, accordingly can be derived, 𝑆 = √𝑁 𝐾⁄  [13]. By further introducing the compact-

ness coefficient, 𝑚, the final distance can be determined as: 

 𝐷 = √(𝑑𝑐)2 + ( 
𝑑𝑠

𝑆
𝑚)2 (2.3) 

The distance in TS-SLIC contains a texture descriptor 𝑑𝑡, and a local directional 

zigzag pattern (LDZP [16]). As a result, the generated superpixel become more sensi-

tive to the texture information, where the 𝑑𝑡 is given by:  

 𝑑𝑡 = √∑ (𝐿𝐷𝑍𝑃𝑖,𝑛 − 𝐿𝐷𝑍𝑃𝑗,𝑛)2𝑁𝑟
𝑛=1  (2.4) 

where 𝑁𝑟 is the number of neighbouring pixels in a selected local window (i.e. 𝑁𝑟 = 8 

for a 3 by 3 window).  

Similarly, the compactness refined distance, 𝐷′, can be derived as: 
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 𝐷′ = √(𝑑𝑐)2 + ( 
𝑑𝑠

𝑆
)2𝑚2 + 𝑑𝑡 (2.5) 

The Water Pixel algorithm first converts the original image to a gradient image and 

generates the initial seeds. This is achieved by defining a regular hexagonal grid ac-

cording to the predefined grid step, 𝜎, then investigating the regions with minimum 

gradient values inside the individual cells. Next, the image is distance transformed 

based on the seed regions and added to the gradient image with multiplying a regulari-

sation parameter, 𝑘𝑤𝑝, enforcing the compactness of the latter superpixels generation. 

Consequently, the superpixels are determined by performing the watershed transforms 

on the regularised gradient image.  

The BASS algorithm is a refinement of the Direchlet-Process Gaussian Mixture 

Model (DPGMM), which is a Bayesian Non-Parametric (BNP) mixture model. By in-

troducing the Potts term to the Bayesian estimation of the spatial covariances, the re-

sulting superpixels respect more spatial coherence than the DPGMM. Moreover, BASS 

can produce size-adaptive superpixels without predefining the superpixel number by 

iteratively evaluating the split and merged supeprixel proposals through the Hastings 

ratios, encouraging the superpixels to retain only the connected regions. 

For implementation, the parameters need to be specified. In this study, we adopted 

the compactness coefficient 𝑚 = 10 for both SLIC and TS-SLIC, and the regularisa-

tion parameter 𝑘𝑤𝑝  is set to 8 for WP. The gradient image used for WP is produced by 

performing a basic morphological gradient using the SE with the radius 𝑅 = 3. Addi-

tionally, since BASS does not allow manual parameter setting, we directly take the 

published results for comparison. Regarding the superpixel number, we analyse its ef-

fect on the segmentation results in Section 3.3. 

3 Experiments and Discussions 

3.1 Source Data and Ground Truth (GT) 

The studied area is centered at around 69°56′𝑁/170°00′𝑊 in the Chukchi Sea. The 

source data [17] is provided by the U.S. Geological Survey (USGS), which is available 

in the Global Fiducials Library, a long-term archive of the images from U.S. National 

Imagery Systems. The image is in grayscale where the acquired date was 31 May 2013. 

In this study, the GT data is generated via the methodology proposed in study [18], 

where the interested region was firstly cropped out and downsized, then the environ-

ment for visualizing images (ENVI) software was used to produce automated segmen-

tation result, followed by manual correction by domain experts. In addition, since the 

algorithms (i.e. SLIC), require RGB imagery as the input, the grayscale HRO image is 

duplicated into the three colour bands for meeting the need. 

3.2 Evaluation Metrics 

To subjectively evaluate the segmentation results, several popularly used metrics are 

selected, including pixel accuracy (ACC), Matthews correlation coefficient (MCC), 
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and conformity coefficient (CC) [19-21]. In addition, to evaluate the FSD, the seg-

mented floes with 8 connectivity are quantified into nine categories according to the 

size ranged in [10𝑖−1, 10𝑖] pixels, where 𝑖 = [1,9]. The occurrence frequencies of the 

floes in nine categories can be seen as a vector. Then, the person correlation coefficient 

(PCC) is used for measuring the linear correlation between vectors 𝐴 and 𝐵, the vectors 

of normalised floe occurrence frequencies from the GT and the segmented results, re-

spectively. The definitions of these metrics are summarised as follows: 

 𝐴𝐶𝐶 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (3.1) 

 𝑀𝐶𝐶 =
𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∙(𝑇𝑃+𝐹𝑁)∙(𝑇𝑁+𝐹𝑃)∙(𝑇𝑁+𝐹𝑁)
 (3.2) 

 𝐶𝐶 = 1 − (𝐹𝑃 + 𝐹𝑁)/𝑇𝑃 (3.3) 

 𝑃𝐶𝐶(𝐴, 𝐵) =
∑(𝐴𝑖−�̅�)(𝐵𝑖−�̅�)

√∑(𝐴𝑖−�̅�)2 ∑(𝐵𝑖−�̅�)2
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = [1,9] (3.4) 

 

where TP, TN, FP, FN are respectively the pixel level true positive, true negative, false 

positive, and false negative from the confusion matrix. �̅� and �̅� are the mean values of 

vectors 𝐴 and 𝐵. 

3.3 Evaluation of the number of superpixels 

To evaluate the effect of different numbers of superpixels to the three superpixel num-

ber adjustable algorithms, we change the 𝐾 from 1 × 104 to 10 × 104 with an incre-

ment of 1 × 104 for SLIC and TS-SLIC algorithms, and adjust the grid step, 𝜎, in the 

WP algorithm to change the superpixel number with an increment of around 1 × 104. 

Worth noting that WP only support uint16 format as the output, resulting in the super-

pixel number being limited. The results are presented in Fig. 2. 

Fig. 2 (a) MCC and (b) PCC scores versus the superpixel number 
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As seen in Fig. 2(a) and (b), the TS-SLIC algorithm shows a better invariance against 

the superpixel number variation than the others in both segmentation quality and FSD, 

and the algorithm can be seen achieves higher MCC when superpixel number is low. 

The MCC scores of SLIC and WP by contrast firstly increase rapidly as the superpixel 

number increases and become stable after certain values. The PCC scores of WP simi-

larly firstly shows a growing trend and maintains a high level. The highest PCC scores 

are achieved when the superpixel number is  𝐾 = 7 × 104 for both SLIC and TS-SLIC, 

and 𝜎 = 20 (corresponding 𝐾 = 47212) for WP. Hence, in the following experiments, 

we adopt 𝐾 = 7 × 104 for SLIC and TS-SLIC, and 𝜎 = 20 for WP for simplicity. 

3.4 Results and Analysis 

Fig. 3 presents the visual comparison of three cropped regions of interest (ROIs). In the 

green bounding box, the floes are concentrated with poor boundary, where SLIC and 

TS-SLIC outperform the other two approaches in terms of relatively successfully sep-

arated connected floes whilst adhering well the boundary. In the low contrast water-ice 

mixed region, as highlighted in the blue bounding box, TS-SLIC shows a superior per-

formance in identifying these small floes. However, as seen in the yellow bounding-

box, BASS has a better performance in adhering the boundaries of melt ponds inside 

the floes even than the GT.  

Fig. 3 ROI visual comparison  

Fig. 4 Quantitative results of four superpixel algorithms 
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Fig. 4 shows the detailed performance of the model when integrating different algo-

rithms. Although all algorithms have yielded overall good performance, the TS-SLIC 

can be seen to slightly outperform the competitors in terms of the accuracy, MCC and 

CC, which is therefore the best method in terms of segmentation quality. However, it 

is somewhat surprising that TS-SLIC has the lowest floe size distribution similarity to 

the ground truth. To investigate the reason, the relative distribution histogram is derived 

and shown in Fig. 5, where TS-SLIC tends to extract more small floes within the size 

ranging from 10 to 100 pixels than the other three algorithms. This can also be obtained 

directly from the blue bounding box in Fig. 3. This, however, may not be accounted as 

the drawback of this algorithm as extracting small floes are extremely valuable for FSD.  

Fig. 5 Histogram comparison of the FSDs. 

To further evaluate the segmentation quality and model efficiency, the segmentation 

result is compared with the Open Source Sea-ice Processing (OSSP) method [7] and 

the algorithm [22] based on the hidden Markov random field (HMRF) model and its 

expectation-maximization (EM) with the iteration number set to 10. All the experiments 

were executed on a computer with 4.1 GHz CPU and 16 GB RAM. The results are 

given in Table 1, where the SLIC result slightly outperforms the others, which validates 

the efficacy of the model. Our model, however, takes around 46 seconds longer than 

OSSP, in which the bilateral filtering takes around 42 seconds. The efficiency thus 

needs to be further improved in the future work. Additionally, the running time will be 

extended when using the BASS algorithm to generate superpixels due to the algorithm 

complexity, which is considered as a drawback in the HRO image processing. 
Table 1 Quantitative comparison to other segmentation methods using the SLIC result. 

Method Platform ACC MCC CC PCC Time (s) 

OSSP Python 98.26 90.94 98.04 98.45 41 

HMRF-EM MATLAB 93.47 76.26 92.07 95.22 359 

Our model MATLAB 98.30 91.27 98.07 99.14 87 

4. Conclusions 

This paper presents the sea ice segmentation from HRO imagery using a superpixel 

based multi-stage model, where the effect of the superpixel number and the perfor-

mance of four superpixel algorithms are evaluated. Consequently, the algorithms 

showed an overall good performance, among which the TS-SLIC outperforms three 

others slightly in terms of the segmentation quality and extraction of small floes. The 

BASS performs the best in adhering the boundary of the melting ponds, however, it is 

computationally extensive has limited its application in HRO imagery processing. In 
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the future work, we plan to apply the superpixel based method to the HRO images even 

with a low contrast and complex environmental issues (i.e. cloudy), which are the main 

issues that the optical images usually have. To accurately investigate ice regions in such 

images, the superpixel, as a compact intermediate image representation, can be com-

bined with the supervised models such as the deep learning methods to further improve 

the performance whilst speeding up the computation. 
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