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Abstract. The Scottish Government is tasked with reporting on the environ-

mental status of Scottish marine waters, an enormous area of water extending 

from the shoreline to deep oceanic waters. As one of the most important varia-

bles, chlorophyll concentration (Chl) plays an important role in seawater quality 

monitoring as an indicator of eutrophication. Currently, Chl observations are 

mostly done by expensive ship-based surveys that have very limited spatio-tem-

poral coverage. Satellite based ocean colour remote sensing has the potential to 

significantly enhance monitoring capabilities but this opportunity has not been 

widely adopted by statutory reporting bodies across Europe due to concerns over 

satellite data quality. To break through this bottleneck, in this paper we explore 

implementation of advanced machine learning techniques to automatically esti-

mate Chl via the historic time series of ocean colour remote sensing data from 

July 2002 to September 2019.  

Keywords: Environment monitoring, Scottish marine waters, Chlorophyll, 

Multispectral remote sensing. 

1 Introduction 

Scotland is a maritime nation with territorial waters that have a combined areal ex-

tent six times greater than the land area. This massive area ranges from the seashore to 

deep abyssal ocean depths, and supports a diverse range of industries including energy 

production, oil and gas, fisheries and aquaculture and tourism, bringing contributions 

of tens of billions of pounds to the Scottish economy annually. These waters are pro-

tected under various pieces of legislation including the EU Marine Strategy Framework 

directive [1], the Water Framework Directive [2] and other international obligations 

such as the OSPAR convention. Marine Scotland Science (MSS) is the Scottish Gov-

ernment Directorate with responsibility to report the water quality regularly. However, 

such a vast area of ocean can only be sampled at relatively sparse spatial and temporal 

resolution using traditional in situ sampling approaches. For example, the Scottish 



Coastal Observatory consists of only 11 monitoring sites, from which conditions around 

Scotland are extrapolated [3]. Chlorophyll concentration (Chl) is commonly used as an 

indicator for observing primary productivity (PP), formation of harmful algal blooms 

(HABs) and monitoring the occurrence of eutrophication events (EE) [4]. It can be re-

trieved from satellite-based ocean colour remote sensing data with daily, global resolu-

tion (subject to cloud cover and daylight restrictions) [5]. Unfortunately, uncertainty 

and variability of data quality has proved to be a major hurdle hindering widespread 

uptake of ocean colour data by MSS and other public environmental monitoring bodies. 

In this paper, we will use existing machine learning techniques to estimate Chl from 

satellite ocean colour reflectance signals. This will inform evaluation of the historic 

ocean colour time series, with Marine Scotland Science’s existing database of in situ 

Chl data for testing Chl algorithms’ performance. 

The outline of this paper is as follows: Section 2 introduces the data and methods 

used in this work. Section 3 presents some preliminary experimental results. Finally, 

some concluding remarks and future work are summarized in Section 4. 

2 Methods 

2.1 Data source 

The North Sea area near Scottish coastal is used as a case study in this paper. The 

in situ Chl data was sourced from Marine Scotland and then matched up against remote 

sensing optical data (15 spectral bands of remote sensing reflectance – CMES_PML 

processing) obtained from CMEMS (Copernicus Marine Environmental Monitoring 

Service) [6]. There are 16609 cloud-free matchup samples between in situ and remotely 

sensed data in total covering the period from July 2002 to September 2019. In situ Chl 

data are measured at different depth (0-30m). An illustration of the dataset is shown in 

 

Fig. 1. Illustration of Chl (mg m-3) v.s. Depth 



Fig. 1. In this work, all Chl data are categorized into three classes, i.e. Chl-30, Chl-20 

and Chl-10, which represents averaged Chl data that are available between 0 to 30, 20 

and 10 meters, respectively. For example, when the in situ measurement depth is less 

than 10 meter, Chl-10, Chl-20 and Chl-30 have the same value. While the in situ meas-

urement depth is higher than 10 meters, the Chl-10 will be zero and the Chl-20 will 

equal to Chl-30. To this end, each spectral sample has three associated Chl values. 

2.2 Statistical analysis 

In this work, four machine learning (ML) models i.e. Lasso regression,  Ridge re-

gression [7], Support Vector Machine (SVM) [8, 9] and Random Forest (RF) [10, 11] 

are used to evaluate the prediction performance of chlorophyll concentration. In the 

process of model training, the data set is randomly divided into a training set and testing 

set at a ratio of 8:2, resulting 13287 training samples and 3322 testing samples. The 

training set is used for model training and fitting, and the testing set is used to evaluate 

the accuracy of the model. 

To simplify the computation and facilitate the convergence speed and accuracy of 

the training models, all data X in this work is normalized through the zero-mean nor-

malization processing (Eq.(1)).  

𝑋𝑛𝑜𝑟 =
𝑋 −mean(𝑋)

std(𝑋)
 (1) 

During the test, Mean absolute error (MAE), and R-square (𝑅2) score are used as the 

evaluation criterion [12] (Eq.(2-3)). The definition of R2 score is shown below. It re-

flects the proportion of the total variation of the dependent variable that can be ex-

plained by the independent variable through the regression relationship. The numerator 

is the mean square error, and the denominator is the variance.  

𝑀𝐴𝐸 = 10^(
∑ (|𝑙𝑜𝑔10(𝑦𝑖) − 𝑙𝑜𝑔10(𝑦𝑖

′)|)𝑛
𝑖=1

𝑛
) (2) 

𝑅2 = 1 −
∑ (𝑙𝑜𝑔10(𝑦𝑖) − 𝑙𝑜𝑔10(𝑦𝑖

′))
2𝑁

𝑖=1

∑ (𝑙𝑜𝑔10(𝑦𝑖) − 𝑦𝑖
′′)2𝑁

𝑖=1

 (3) 

where 𝑦𝑖 and 𝑦𝑖
′ represent the actual value and predicted value of the ith Sample, respec-

tively; 𝑦𝑖
′′ is the mean of all 𝑙𝑜𝑔10(𝑦𝑖) values. 

3 Results and discussion 

In this section, we present statistical results for inter-comparison of machine learning 

methods in Table 1 and log-transformed Chl estimation results for specific matchups in 

Fig. 2, respectively. It can be seen that two linear regression methods (i.e. Lasso regres-

sion and Ridge regression) have very fast computation speed but yield relatively poor 

estimation accuracy. As seen their 𝑅2 value are all negative, which means the regres-

sion model cannot be fitted on the data very well. SVM has better prediction accuracy 

than linear regression methods, but it has the highest computation cost. Among these 

ML models, random forest yields the highest 𝑅2 score and lowest MAE, and has much 



reduced computation cost than SVM. Fig. 2 shows the predicted Chl results in the range 

from 0.01 to 10 mg m-3 as most in-situ Chl values were lower than 10 mg m-3 (Fig. 1). 

As seen in Fig. 2, linear regression cannot predict the Chl very well as the blue dots are 

far from red 1:1 line which means most predicted results different against actual value. 

SVM has some good prediction results when the Chl is between 1 mg m-3 to 2 mg m-3. 

However, when the Chl is larger (i.e. >2 mg m-3), the blue dots and the red line have a 

great distance, which indicates poor prediction performance. Random forest has the 

lowest prediction bias when the Chl is lower than 4 mg m-3, but uncertainties increase 

for higher values of Chl. The main reason is that there is an imbalance problem in the 

data, as most matchup samples have low Chl values (<5 mg m-3). Therefore, Chl in the 

range from 0 to 5 mg m-3 will have better prediction accuracy. There are very few data 

available for Chl values greater than 5 mg m-3 which means that the machine learning 

models cannot be well trained, resulting in poor prediction accuracy and low R2 values. 

Overall, Random forest produces the worst prediction performance on Chl-30 data in 

terms of higher MAE and lower 𝑅2. In this case, Chl-20 data and Chl-10 data are rec-

ommended to use. Chl-10 data has the best prediction results in our study because it 

usually works well in open ocean waters. On the different note, using Chl-20 data can 

avoid freshwater inputs from land to make the satellite fail. 

4 Conclusions 

This research examines the performance of four common learning machines in the 

task of estimating chlorophyll levels from ocean colour remote sensing. Some outcomes 

are summarized as follows from the preliminary experimental results: 

1) Random forest yields the best prediction accuracy on the existing data 

Table 1. Performance evaluation of chlorophyll estimation on 3322 testing matchups  

Regressors Lasso Ridge SVM 
Random 

forest 

Parameters Alpha=0.1 Alpha=0.1 

Kernel=’rbf’, 

cost=8, 

gamma=0.5 

No. tree = 40 

Max 

depth=20 

Time(s) 0.043 0.012 9.74 3.64 

MAE 

Chl-30 3.7795 3.4262 2.8781 1.6587 

Chl-20 3.9619 3.5744 2.8960 1.6408 

Chl-10 4.0457 3.7228 2.8661 1.5813 

𝑅2 

Chl-30 -0.3451  -0.1617 0.1051 0.6832 

Chl-20 -0.3635 -0.1716 0.1224 0.6923 

Chl-10 -0.3478 -0.1864 0.1878 0.7178 

 



2) Better prediction accuracy can be achieved by ML methods when Chl is in the 

range from 0 to 4 mg m-3. 

3) Current performance levels are constrained by imbalanced data in training and 

limited amount of training data for Chl concentrations > 5 mg m-3. 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

Fig. 2. Visualized testing results of Chl estimation using (a) Lasso regression, (b) Ridge re-

gression, (c) SVM, (d) Random Forest. Data were log10 transformed for display. 



4) Given current data limitations, better feature extraction techniques may im-

prove the prediction accuracy. 

For the future work, we will work to collect more high-quality spectral data and in-

situ data. Once an expanded training data set is available, we will test novel band se-

lection methods [13] and feature extraction methods [9] to extract the most useful in-

formation and help to get more accurate prediction results. Some chlorophyll algo-

rithms such as [14] and [15] will be also useful for the data from specific ocean color 

sensors such as sentinel-3 and NASA, etc. Super resolution model [16] will be also 

beneficial to the spatial-level Chl estimation. Additional options to improve prediction 

performance include use of novel deep learning frameworks such as multi-scale feature 

framework [17] and optimization framework [18]. 
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