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Abstract 

Premature ventricular contraction (PVC) is the type of 

ectopic heartbeat, commonly found in the healthy 

population and is often considered benign. However, they 

are reported to adversely affect the accuracy of R-R 

variability based electrocardiographic (ECG) algorithms. 

This study proposes a Principal Component Analysis 

(PCA) based algorithmic approach to detect the PVCs 

based on their morphology. The eigenvectors were derived 

from signal window around the R-peak, where signal 

window for the PVC (wPVC) and that of NSR (wNSR) were 

set to 0.55 seconds and 0.16 seconds respectively. We used 

24 ECG recordings from MIT BIH arrhythmia database as 

training dataset and the remaining 24 ECG recordings as 

testing dataset.  

Using the derived eigenvectors and the Linear 

regression (LR) analysis; complexes corresponding to the 

wNSR and wPVC were estimated from training and testing 

datasets. Four different classification methods were 

employed to differentiate between wPVS and wNSR, 

namely, Root mean squared error (RMSE), Pearson 

product-moment correlation coefficient comparision, 

Histogram probability distribution and k-Nearest 

Neighbour (KNN). All four methods were implemented 

individually to classify the wPVC and wNSR. 

The performance of each of the classification approach 

was evaluated by computing sensitivity and specificity. 

With the sensitivity of 93.45% and specificity of 93.14%, 

KNN based classification method has shown the best 

performance. The method proposed in this study allows for 

an effective differentiation between NSR beats and PVC 

beats.  

1. Introduction

 Premature ventricular contractions (PVCs) are early 

heartbeats that originate in the ventricles and are initiated 

by ectopic foci instead of sinoatrial node [1]. Automaticity 

in non-nodular tissues leads to the ventricular 

depolarisation at ectopic foci, resulting in PVCs [2]. 

     PVCs are often considered benign and can be found in 

up to 4% of the general population. PVCs can be found in 

up to 70% of the healthy population, on 24-48 hour Holter 

recordings [3]. PVC incidents increase with age. Based on 

occurrence frequency (>1000 PVC/day) and width of the 

QRS complex of PVC beats (>0.16 sec), PVCs are 

associated with left ventricular dysfunction and other heart 

diseases [4]. Additionally, PVCs can lead to unpleasant 

and in some cases incapacitating symptoms such as 

palpitations, chest pain, presyncope, syncope, and heart 

failure [2]. Furthermore, PVCs are also associated with 

compromising the performance of arrhythmia detection 

algorithms in ambulatory ECG monitoring applications 

[5]. 

      In this study, we investigate the development of an 

algorithm, which will allow the identification of PVCs. 

The algorithm is based on ECG complex characterisation 

using principal component analysis (PCA) and data 

analysis approaches. 

2. Method

2.1.     Database 

 The MIT-BIH arrhythmia database was employed in 

this study [6]. This dataset consists of 48 ECG recordings 

each of which is 30 minutes’ in duration. For this study, 

the data was limited to include only QRS complexes that 

reflected normal sinus rhythm (NSRs) and PVCs. These 

complexes were identified based on existing annotations 

provided along with the database. The database was 

divided into two equal datasets, namely a training dataset 

and testing dataset, each comprising of 24 ECG recordings. 

The proposed algorithm was trained using the training 

dataset, and its performance was measured on the testing 

dataset. 

2.2. Proposed algorithm 

As shown in Figure 1, the algorithmic approach used in 

this work was divided into five functional blocks. 

 ECG signal pre-processing.

 Extraction of differently shaped ECG waveforms

(PVCs and NSRs).

 Principal component analysis (PCA) on



differently shaped ECG waveforms. 

 Waveform estimation using derived Principal

components (PCs) and Linear regression analysis.

 Comparison between actual and estimated

waveforms, and classification based on the

results.

*Principal component analysis

Figure.1 Block diagram PVC detection algorithm 

2.2.1 ECG pre-processing 

      In the first functional block, a fourth order Butterworth 

bandpass filter with poles at 0.5 and 40 Hz is used to 

remove powerline interference along with other low-

frequency noise components. The PVCs and the NSRs are 

then extracted from each ECG recording based on the 

provided annotations in the database. Based on the 

literature review, and our observations, the signal windows 

of the PVC beats (wPVC) and that of the NSR beats 

(wNSR) were extracted around the R-peak. The width of 

wPVC and wNSR was set to 0.55 seconds and 0.16 

seconds in duration respectively.  However, at the later 

stage of the research work, wPVC with width 0.16 seconds 

and wNSR with width 0.55 seconds were also used for the 

binary classifications. 

2.2.2 Differently shaped waveform 

extraction 

     To reflect the possible variations in PVC waveform 

morphology and to avoid the biasing due to over 

representation of any specific PVC shape, a method to 

differentiate the PVC shapes based on Pearson’s 

correlation coefficient (PCC) value comparison was 

implemented on each ECG recording of the training 

dataset. Similarly, variation in the NSR waveform 

morphology is extracted using the same approach. 

Different wPVC morphologies were derived in the 

following three steps: (1) Linear correlation between the 

first wPVC of each ECG recording is measured with all the 

wPVC using PCC. (2) All the wPVC with the PCC values 

above 0.70 are averaged and stored as differently shaped 

wPVC in an array dwPVC. (3) wPVC above 0.70 PCC 

value are then discarded, and the step 1 and step 2 is 

performed with the remaining wPVC until all the different 

wPVC morphologies are derived and stored in the dwPVC. 

Similarly, different wNSR morphologies were derived 

using the same approach, same steps and stored in an array 

named dwNSR. Using this method, we have extracted and 

stored 88 and 40 different morphologies in dwPVC and 

dwNSR respectively. 

2.2.3 Principal component analysis on 

dwPVC and dwNSR 

    Principal component analysis (PCA) is a statistical 

method that can be used to reduce the dimensionality of a 

data set containing correlated variables while retaining the 

maximum variance in the dataset [7]. Data is transformed 

into a new set of axes, by an orthogonal linear 

transformation which are mutually uncorrelated.  These 

new axes are known as Principal components (PCs) or 

eigenvectors [8]. Each eigenvector contains some new 

information about the dataset in terms of its variance. 

However, in most cases, only the first few of these 

eigenvectors contribute to the maximum variance of the 

original dataset.  

     In this work, using PCA, we have computed the 

eigenvectors and corresponding eigenvalues from dwPVC 

and dwNSR. Based on the eigenvalues we were able to 

establish that the first four eigenvectors contributed to 84% 

of the variance in dwPVC data and 98% of the variance in 

dwNSR data. 

2.2.4 Estimation of wPVC and wNSR 

waveforms 

     Using multiple linear regression and the derived 

eigenvectors we estimated the waveforms of wPVCs and 

wNSRs from the training dataset. The actual and the 

estimated waveforms of wPVCs and wNSRs are 

collectively represented as QRSa and QRSe respectively.  

QRSe=βt(0)+ ∑ (βt(i)Pc(i))
4

i=1
 

     Equation 1 is the mathematical representation of 

waveform estimation, where independent predictor 

variable Pc(i) represent the eigenvector corresponding to 

the maximum variance, the Regression coefficients are 
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represented by βt(i), and β(0) is the error term [10]. βt(i) 

and βt(0) are derived by projecting Pc(i) on the QRSa using 

ordinary least squares regression as per equation 2 

βt=(XTX)
-1

XTQRSa

where, X = {ones |i|, Pc|i,4|}, i = length of QRSa 

2.2.5 Discrimination between estimated and 

actual waveforms. 

     Four methods were employed to differentiate the QRSa 

belonging to either the NSR or the PVC groups. A 

threshold based classification approach was used in the 

two methods, where, Root Mean Squared Error (RMSE) 

and Pearson- product-moment correlation was calculated 

between QRSe and QRSa. The other two methods used 

cluster based classification approaches, where Histogram 

Probability Distribution (HPD) and K-Nearest Neighbour 

(KNN) were computed to differentiate the NSR and PVC 

based on the distribution of βtr(1) against βtr(2). 

Root mean squared error: 

     RMSE is the commonly used method to measure the 

difference between the actual values and the values which 

are predicted using some mathematical model [9]. In this 

research work, we calculated RMSE between QRSe and 

QRSa as per the equation 3. 

RMSE= √
(QRSa-QRSe)2

n

     Where n = number of samples in QRSa = number of 

samples in QRSe. RMSE represents the sample standard 

deviation between QRSa and QRSe. 

Correlation coefficient comparison: 

      The correlation coefficient is the measure of linear 

dependence between variables, its value ranges between -

1 to 1, where negative value represents the negative linear 

correlation, and the positive value represents the positive 

linear correlation between the variables [10].  

CORR=
Cov(QRSa,QRSe)

σQRSa σQRSe

Linear dependency between QRSa and QRSe is measured 

in this section. Equation 4 is the mathematical 

representation of the computed correlation coefficient, 

CORR. Where, CORR is represented as the ratio of 

covariance of QRSa and QRSe to the product of standard 

deviations of QRSa, σQRSa, and QRSe, σQRSe. 

Histogram probability distribution (HPD) of regression 

coefficients: 

     Distribution of coefficients of regression based on 

probability density is used as one of the methods to 

differentiate between PVCs and NSRs. Regression 

coefficients were derived using the equation 2 however, 

unlike in the previous two methods, training dataset was 

used to derive regression coefficients βtr(1) and βtr(2). 

These coefficients were separated into two groups, namely, 

PVC_coeff contains the βtr belonging to the PVCs and 

NSR_coeff contains the βtr belonging to the NSRs. The 

probability density functions, Pr_PVC for PVC_coeff, and 

Pr_NSR for NSR_coeff were calculated based on a 

bivariate histogram with uniform axis lengths, the number 

of bins, and the bin size. The x and y-axis represent the 

distribution of βtr(1) with respect to βtr(2), and z-axis 

represents the number of PVCs and NSRs in an individual 

histogram bin. The βt is used to estimate the probability of 

a QRSa to be a PVC or an NSR and store them in Pr_PVCe 

and Pr_NSRe as per equation 5 and 6 respectively. 

Pr_PVCe=f(Pr_PVC,βt(1),βt(2)) 

Pr_NSRe =f(Pr_NSR,βt(1),βt(2)) 

     Comparing the values of Pr_PVCe and Pr_NSRe 

values, the QRSa is determined to be a PVC if the 

estimated probability Pr_PVCe is higher than Pr_NSRe 

and vice versa. 

k- Nearest Neighbour classification:

K-Nearest Neighbour (KNN) classification method was

implemented to classify the QRSa to be a PVC or an NSR. 

From the training dataset, we have 46,500 observation 

pairs (βtr(i), Yi) with the response variable Y∈{0=NSR, 1= 

PVC} and the predictor vector βtr(i) where I =1,2. Based 

on 6 fold cross validation using the training dataset, the 

value of the number of neighbour k was set to 5, and the 

Euclidian distance was used as the distance metric [11].  

3. Results

The performance of the proposed method is measured 

using QRSa from the testing dataset. The performance is 

measured as the correctness of each of the four individual 

approaches mentioned in section 2.2.5, to identify PVC 

instances from QRSa. Hence, Sensitivity (Sn); the measure 

of the algorithm to correctly detect a PVC from all the 

QRSa corresponding to the PVC in testing dataset, and 

Specificity (Sp); the measure of the algorithm to correctly 

detect an NSR from all the QRSa corresponding to the 

NSRs in testing dataset, were calculated. Table 1 shows the 

derived Sn and Sp values for all the approaches.  
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  (6) 

  (5) 

  (3) 

  (2) 



Table 1. PVC classification performance 

Method     Sensitivity (%) Specificity (%) 

RMSE        42.78    68.51 

CORR        70.58    70.20 

HPD        75.40    80.75 

KNN        93.45    93.14 

For the RMSE and the correlation coefficient based 

classification methods, the receiver operator curve (ROC) 

was plotted by varying the threshold RMSE and CORR 

values; the optimal threshold value was selected by 

computing the Youden’s index. The sensitivity and 

specificity of the HPD and KNN classification model were 

computed based on the performance of the classification 

models on the testing dataset. Out of all the four 

approaches, the KNN classification model has shown the 

best performance with the 93.45% sensitivity and the 

93.14% specificity.    

4. Discussion and conclusion

  While comparing the performance of each method, one 

can say that RMSE has negligible adequacy to differentiate 

between PVCs and NSRs among the proposed morphology 

analysis methods. Also, differentiation based on 

correlation coefficient, and probability density values have 

shown comparatively better performance individually. 

However, of all the methods used, KNN classification 

method has shown the best performance to distinguish the 

PVCs from NSRs. 

  This study provides the information about the 

performance of individual methods mentioned in section 

2.2.5 to distinguish between PVCs and NSRs based on 

morphological parameters. However, so far, an approach 

combining these methods has not been administered, 

further studies can be carried out to measure the 

performance to differentiate PVCs and NSRs based on the 

combination of different methods 
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