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Abstract 

Incipient fault diagnosis of a bearing requires robust feature representation for an accurate condition-based 

monitoring system. Existing fault diagnosis schemes are mostly confined to manual features and traditional 

machine learning approaches such as artificial neural networks (ANN) and support vector machines (SVM). 

These handcrafted features require substantial human expertise and domain knowledge. Further, these feature 

characteristics vary with the bearing’s rotational speed. Hence, such methods do not yield the best results 

under variable speed conditions. Therefore, this paper presents a reliable fault diagnosis scheme based on 

acoustic spectral imaging (ASI) of acoustic emission (AE) signals as a precise health state. These health states 

were further utilized with transfer learning, which is a machine learning technique, which shares knowledge 

with deep convolutional neural networks (DCNN) for accurate diagnosis under variable operating conditions. 

In ASI, the amplitude of the spectral components of the windowed time-domain acoustic emission signal are 

transformed into spectrum imaging. ASI provides a visual representation of acoustic emission spectral 

features in images. This ensures enhanced spectral images for transfer learning (TL) testing and training, and 

thus provides a robust classifier technique with high diagnostic accuracy. 

Keywords:  
Acoustic emission signal; acoustic spectral imaging; feature extraction and classification; fault diagnosis; 

convolution neural network; transfer learning. 

  



1. Introduction 
Electromechanical motors such as induction motors have widespread applications in wind turbines, pumps, 

and generators where they are accountable for almost 70% of the gross energy consumption[1, 2]. Bearings 

are used to minimize friction in motors which undergo rotation. Moderation of friction preserves energy along 

with supporting a propitious machine lifetime. However, bearings may exhibit surface spall or cracks due to 

coarse operating environments and cyclic stuffing [3]. Bearings are the most frequent failed components in 

rotating machines and account for more than 50% of failures[1, 4]. If these faults in bearings are not detected 

in the early stage, they can lead to unexpected shutdowns, which are unfavorable in terms of cost and 

production[5-8]. 

Bearing fault diagnosis is performed by collecting data (i.e., vibration acceleration signals, acoustic 

emission signals, and motor currents), which has been an important aspect of studies conducted over the last 

few decades[7, 9-11]. These fault diagnosis studies prove that diagnosis of the bearing can reduce 

maintenance expenses by enhancing the reliability of machinery[7, 10, 12-15]. In the field of bearing fault 

diagnosis, vibration signals[1, 7, 16] and motor current analysis[17, 18] have been widely exploited. Multiple 

signature analyses of vibrations and motor currents have also been considered in research to guarantee the 

highest reliability[19]. These analyses mainly established high reliability in fault diagnosis for high-speed 

bearings. For low-speed bearings, capturing intrinsic information from vibration signals and the motor current 

is difficult. Acoustic emission (AE) signals can capture intrinsic information from low-energy signals[20-

24], which makes AE signals more significant for data-driven diagnosis approaches. This study employs an 

AE-based fault diagnosis approach for low-speed bearings. 

Fault diagnosis of low-speed bearings under variable speed conditions (e.g., revolutions per minutes 

(RPM)) is still a challenge. Traditional data-driven fault diagnosis approaches have main processes, for 

example, handcraft feature extraction by a signal processing technique and identification of fault types using 

extracted features. Acoustic signal-based diagnosis methods mostly consider an envelope analysis-based 

approach by analyzing the peaks at the character frequencies associated with each defect type in the power 

spectrum of the envelope signal[25-27]. Because of the relationship with the defect frequency and rotational 

speed of the bearing[25-27], these approaches are inefficient under variable rotational speeds. Similarly, 

conventional feature extraction-based methods cannot resolve the earlier mentioned issues as well, which 

results in ineffective diagnosis performances for variable speed conditions. Moreover, it is necessary to have 

proper domain expertise to select pertinent features[28-30]. 

This study presents a new approach for the diagnosis of low-speed bearings. Two major limitations of 

existing approaches are addressed in this work: a) the requirement of domain level expertise for feature 

extraction and selection under different operational speeds and b) the requirement of special dynamic 

algorithms for automation of the feature extraction process. Two-dimensional (2D) acoustic spectral images 

(ASI) were used instead of one-dimensional (1D) signals in this work. The 2D ASI employed to observe the 

pattern for different health states to make the feature selection process easier for speed invariance conditions. 

The proposed 2D ASI creates identical patterns for the same type of health, where variable operating speeds 



do not affect identical patterns for certain types of the health state. Feature selection process automation is 

performed by applying a transfer learning (TL)-based Convolutional Neural Network (CNN) based on these 

2D spectral images. Although the CNN makes the feature extraction and selection process easier due to its 

convoluted encoding layers, it is difficult to deal with a large amount of data[31, 32]. However, since these 

straightforward neural networks struggle to deal with massive amounts of data, to make the learning faster 

and effective, a transfer learning-based neural network is proposed here. We propose a transfer learning-based 

neural network that was first introduced by Zheng et al.[33] to deal with similar issues to make the learning 

faster and effective for 1D raw signal. However, with the raw AE signal of low-speed bearings, this approach 

cannot uncover the critical features of transferring the knowledge domain for further classification. In this 

study, after creating the invariance scenario with 2D ASI, a TL-based approach was carried out to resolve 

these challenges. The details of the TL and proposed CNN architecture are discussed in the methodology 

section. 

The main contributions of this work can be summarized as follows. 

1) A novel identical 2D acoustic spectral imaging (ASI)-based pattern formation method for different 

health types is developed to explore the potential information of AE signals.  

2) This 2D ASI is further utilized with a deep convolution neural network (DCNN) to automate the 

feature extraction and selection process. 

3) DCNN-aided transfer learning (TL) is proposed for fault diagnosis for low-speed bearings with 

variations of the shaft speed (e.g., RPMs). The proposed method, including ASI for the RPM 

independent pattern and DCNN-aided TL for fault diagnosis under variable RPMs, was suitably 

validated with extensive experiments and simulations, which justifies the potential of the proposed 

methodology over existing approaches in terms of achieving satisfactory theoretical results compared 

to experiments. 

The remaining part of the paper is organized as follows. Section 2 provides details of the methodology, 

including the AE data acquisition system, acoustic spectral (ASI)-based bearing health state visualization, 

and transfer learning (TL)-based bearing classification. The experimental results are provided in Section 3. 

Finally, the paper is concluded in Section 4. 

2. Methodology 
In this study, our target was to classify machine faults under variable speed conditions (i.e., RPM) in a transfer 

learning manner. There are three major steps in the proposed methodology: the source task, transfer, and target 

task. In the source task, we first apply a new preprocessing technique for the collected acoustic emission (AE) 

data to transform the 1D signal into a 2D image, which is referred to as acoustic spectral imaging (ASI). This 

allows us to visualize the bearing health condition, and the 2D images are fed to the convolutional neural 

network (CNN) for model parameter optimization. The transfer block mainly passes the knowledge gathered 

from the source task network to the target network to complete the transfer learning (TL). In the target task, we 

test the model for classifying faults for variable RPMs. Figure 1 provides a clear illustration of the entire process. 



 
Figure 1: Overall approach for the proposed methodology. 

2.1. Experimental testbed and data acquisition 
An experiment was conducted on a self-designed test rig to collect acoustic emissions (AE) signals, as shown 

in Figure 2. As the main purpose of this study is to diagnose faults for variable RPMs, the test rig was driven at 

three different motor speeds of 250, 300, and 350 RPMs. This setup has two shafts, namely a drive end shaft 

(DES) and a non-drive end shaft (NDES). A three-phase induction motor is positioned in the DES at three 

different speeds (i.e., 250, 300, and 350 revolutions per minutes (rpm)) and the bearing house is connected to 

the motor shaft through a gearbox with a reduction ratio of 1.52:1. At the NDES, a WSα AE sensor is positioned 

over the bearing house in the shaft. To quantify the functioning speed, a displacement transducer is installed on 

the NDES. Figure 2(a) shows the test rig and the PCI-2 based data acquisition system is shown in Figure 2(b). 

Bearings with three defect conditions of an inner raceway crack (IRC), outer raceway crack (ORC), and roller 

raceway crack (RRC) as well as one normal condition (NC) bearing were used to simulate faults for each RPM. 

The test bearings with a fault size of 6 mm are shown in Figure 3. Bearing AE signals were collected at a 

sampling rate of 25,000 Hz. Additional studies involving the experiment test rig and data acquisition system 

can be found elsewhere[34, 35]. 

2.2. Acoustic Spectral Imaging (ASI) for Bearing Health State Visualization 

 As explained in Section 1, bearing characteristic frequencies are not observable in raw AE signals. Therefore, 

it is essential to define an appropriate visualization tool that reveals a unique pattern regarding the health state 

of a bearing. Consequently, we developed a 2D ASI tool that generates an identical health pattern even with 

various RPMs for each fault type (e.g., NC, IRC, ORC, and RRC). It is important to provide the full advantages 

of the 2D structure to the deep neural network with these identical patterns. To carry out the ASI, several steps 

must be performed. The steps of the proposed ASI are shown in Figure 4 and the detailed process is given below. 



 
Figure 2: (a) Experimental testbed and (b) data acquisition system. 

 
Figure 3: Examples of ORC, IRC, and RRC bearing defects. 

 

Figure 4: Flowchart of the acoustic spectral imaging (ASI) for visualization of the bearing health condition. 

The performance of the ASI analysis can be improved if the variations between the flanks and peaks of the 

spectral energy, which mainly originate from noise from various sources, are minimized. Therefore, we applied 

a denoising technique known as pre-whitening before ASI[36]. In this paper, the pre-whitening technique is 

used to reduce the spectral energy variations in the incoming AE fault signal, as can be seen in Figure 4. To 

obtain the pre-whitened signal, an autoregressive (AR) model, ( )x n , is utilized, which is defined as follows.  
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Here, ( )y n is the incoming bearing signal, ia  are the AR coefficients, k  denotes the order of the AR model, 

and ( )e n is the residual signal representing a spectrum close to the white noise spectrum. 

Processing this lengthy 1D data necessitates an enormous computational time. To handle these issues, an 

adjustable skimming window mechanism is proposed[33]. This technique aims to achieve (a) efficient training 

of the network by cutting down repetitive AE signals into small segments, which will eventually yield a good 

amount of source data for training, (b) handling the issue of fitting the lengthy amount of data to the network as 

input through segmentation, and (c) stacking segmented AE signals together. This can be useful to further 

process and generate some identical patterns via imagining, which can be fed to the proposed neural network 

for classification. If the total length of the AE signal is ALt , then the total number of the samples ANt  

is as follows. 
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Here, ALf denotes the length of a single frame, f ( ,...........,,a b nf f f f= ) and the step size is ALs . The complete 

process of the adjustable skimming window technique is illustrated in Figure 5. 

 

Figure 5: Adjustable sliding window technique. 

We applied the Fast Fourier Transformation (FFT) to each segmented signal. If NS  is the number of total 

samples, then FFT will perform log( )N Ns S× operations. The reasons behind using this FFT are gathering better 

analysis of the denoised signals based on the frequency domain and creating identical images from stacked 

signals. For each health type, conversion of denoised signals into frequency domain results in identical visual 

patterns. In our experiment, it was demonstrated that frequency resolution could provide identical patterns. FFT 

of each sample is based on the Nyquist theorem and half of the data points in the frequency spectrum are 

considered. 

Then, the stack of the preprocessed signals forms identical patterns for each health type. The images are 

larger when stacking many segmented signals. To handle this issue, in this study, the height of the stacked 

signals for generating identical images was fixed based on experiments. If the total number of segmented signals 

is Z and each segment has a length of W , then the size of the image is Z W× ( Height Width× ). This height is very 

large as well as challenging to feed to the proposed network. Therefore, to generate small sized images, a number 

of samples z is considered from the Z segmented samples (where ,z Z z Z∈ < and 80Z > ) and then z W× sized 



images are bunched together to be fed to the network. In this study, 80z = can generate better resolution for ASI 

from the denoised frequency resolution. 

2.3. Transfer Learning with CNN for fault classification under variable RPMs 

    The proposed classification approach with transfer learning was developed on convolutional neural networks. 

A convolutional neural network (CNN) may lead to a better performance itself, but to achieve substantial 

performance, a significant amount of training parameters are required to optimize. The performance of the CNN 

can generally be improved by increasing the number of layers. More layers will add more trainable parameters. 

However, training this vast number of parameters requires a substantial number of valid training samples. 

Compared to natural language processing or image classification, the amount of data is not sufficient in the field 

of bearing fault classification. It is irrational to gather physical data from each health condition and especially 

severity since the severity level is continuous and there are an infinite number of possible health profiles. In this 

study, for a different speed, the health profiles vary as well. With the preprocessing step, the health profile can 

get an invariant overview, yet the minor details of the patterns are also significant while measuring the network 

performance. This issue is well balanced by the CNN with TL. From one working condition, the gathered 

knowledge for the source network is passed to the target network and by using that knowledge with a small 

amount of data, the deeper architecture of the network can learn well. Moreover, the minor details of the health 

patterns also remain under consideration because the learnings are transferred, and the fine-tuned and trained 

parameters help the target task parameters to be fine-tuned in a balanced way. The usage of TL with the CNN 

brings robustness to the network performance for this speed invariance situation. In this section, the essential 

formulation of our proposed CNN architecture and transfer learning is discussed to portray a clear overview. 

CNN has a feedforward network structure composed of several convolutional, subsampling, and fully 

connected layers. In practice, without the input and output layers, the other layers are considered as a hidden 

layer, which makes the best usage of the indigenous connections and weight distributions to achieve consistency 

for shifting, scaling, and distortion of the inputs[37]. These hidden layers make the feature selection process 

automated through backpropagation. An intuitive mathematical overview of a three-layer CNN (i.e., input, 

hidden, and output layers) is considered, where SS and N are the input and output vectors, respectively. The 

hidden vector is symbolized as vecH . The feedforward method is shown below. 

                                                       1 1( )vec ac SH Sσ ω β= +  
(3) 

                                                       2 2( )ac vecN Hσ ω β= +  
(4) 
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Here, 1ω is the weight matrix between the input and hidden layer, and 2ω the weight matrix between the hidden 

and output layer. The bias vectors of the hidden and output layers are denoted as 1β  and 2β , respectively. ( ).acσ

is the sigmoid activation function. The loss function is shown below, 
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where im represents the target vector and n denotes the number of training samples. The target of this network 

is to minimize the loss function LSF  through backpropagation and gradient descent (GD)[33]. In this study, the 

proposed network has a depth of nine layers (one is the output layer). As in practice, the pooling layer does the 

subsampling of data from the convolution layer to reduce the spatial size of the representation where the dropout 

layer assists the network to avoid over-fitting[38]. Stochastic gradient descent (SGD) is applied for tuning the 

network. The classifier used for the network setup is SoftMax. Figure 6 illustrates the full network model. After 

completion of the training with the source data, the final output Sω  can be obtained as follows. 

                                                         ( ),S s S Sf Sω θ=  
         (7) 

Here, Sθ denotes the cost function for the source sample and sf is the mapping function.  

 

 

Figure 6: The detailed architecture of the proposed 2D CNN. 

Now, if the proposed network is trained with target data, similar to equation (7) for the target data, the final 

output Tω  is obtained in a similar manner, where TS  is the input, Tθ denotes the cost function for source sample, 

and Tf is the mapping function. 

                                                          ( ),T T T Tf Sω θ=  
(8) 

In transfer learning, TL discovers the related properties in the source task and obtains the mapping function Sf  

in the source domain. Then it transfers Sf  to the target task and learns the task Tf . Therefore, the goal of TL is 

to expand the learning performance of a target domain by using the knowledge of the source domain[37]. Figure 

7 demonstrates the main concept of TL.  

 

In the TL approach, the first well-trained d layers of the source network are transferred to the target network 

which contains e  number of layers ( e d> ). At the initial condition, the last ( e d− ) layers of the target network 

remain untrained. They begin training with the target data by utilizing the knowledge acquired through the 

transfer of the d layers, which finally gives the fine-tuned output Tω  of the target task. The dimensions of the 

proposed CNN architecture with the details of transferrable layers are shown in Table 1. 



 

Figure 7: On the left-hand side, the conventional learning process is described. On the right-hand side, the 

concept of transfer learning is illustrated. 

Table 1. The dimensions of the proposed Convolutional Neural Network with the transfer specification for the 

target network. 

Layers Parameters Remarks Height Width Depth Parameters 
Trainable Transfer 

Input  Preprocessed 
Signals 80 512 1   

Conv. 1 

Kernel Size Filter 3 3  

Yes Yes 
Padding Same    

Depth Filter number   32 

Output  80 512 32 

Pool 1 

Kernel Size Filter 3 3  

No Yes Padding Same    

Output  27 171 32 

Dropout Output  27 171 32 No Yes 

Conv. 2 

Kernel Size Filter 3 3  

Yes 
 Yes 

Padding Same    

Depth Filter number   64 

Output  27 171 64 

Pool 2 

Kernel Size Filter 3 3  

No Yes Padding Same    

Output  9 57 64 

Dropout Output  9 57 64 No Yes 

FC Nodes Flatten into 1D 128   Yes No 

SoftMax Nodes Flatten into 1D 4   Classify No 
 
Therefore, once the 2D ASI of the AE signal is obtained, the proposed 2D CNN architecture is used for 

multi-fault classification by utilizing transfer learning. As mentioned at the beginning, the deeper layers of the 

neural network will add more trainable parameters, which requires a lot of training data. As a result, TL helps 

to resolve this issue. In addition, the slight variance in the obtained health patterns are also under consideration 

as the mapping function of source task Sf  is passed to the target task to fine-tune the final weights of the target 

task to generate final output Tω .  



3. Results and Discussion 

3.1. Dataset description 

For investigation of the appropriateness of the proposed fault diagnosis scheme including ASI-based RPM 

invariant bearing health state visualization and transfer learning RPM invariant bearing fault classification, 

extensive simulation and experimental analyses are presented in this section. The benchmark AE dataset of 

bearing faults was used to conduct the experiments. We used three different RPMs (250, 300, and 350) and 

recorded 110 signals for each fault type (e.g., NC, IRC, ORC, and RRC) at each RPM. The details of the dataset 

are given in Table 2. 

Table 2.  Details of the considered working conditions with the same health types. 

 Health Type Shaft Speed 
(rpm) 

Number of Singles, 
with 

Sampling Frequency 
(250K Hz) and 

Signal Length (1 sec) 

Crack Size 

Length 
(mm) 

Dataset 1 

Normal Condition (NC) 250 

110 

6 

Inner Race Fault Condition (IRC) 250 6 
Outer Race Fault Condition 

(ORC) 250 6 

Roller Raceway Fault Condition 
(RRC) 250 6 

Dataset 2 

Normal Condition (NC) 300 6 

Inner Race Fault Condition (IRC) 300 6 
Outer Race Fault Condition 

(ORC) 300 6 

Roller Raceway Fault Condition 
(RRC) 300 6 

Dataset 3 

Normal Condition (NC) 350 6 

Inner Race Fault Condition (IRC) 350 6 
Outer Race Fault Condition 

(ORC) 350 6 

Roller Raceway Fault Condition 
(RRC) 350 6 

3.2. Performance Analysis of Acoustic Spectral Imaging (ASI) 

As explained in Section 1, the 1D signal reveals no distinguishable patterns regarding faults and almost no 

information about RPM variance, as can be seen in Figure 8. Therefore, we developed 2D-based ASI to represent 

the bearing health state. To visualize the effectiveness of ASI, this paper utilizes three datasets with four fault 

types (NC, IRC, ORC, and RRC) at various operating conditions (see Table 2). Figure 9 presents the results of 

the 2D-based ASI for bearing health state representation. According to the results in Figure 9, it is apparent that 

the frequency band as a function of time for different health conditions yields different patterns. In the 

considered dataset, though the rpm varies, the pattern remains identical and distinguishable for different health 

types. In short, the same type of health conditions generates the same kind of patterns where they remain 

identical to the others. This is because the 1D AE signal is proposed in a way so that all time information is 

stacked together for converting into a 2D image to utilize the distribution of energies in various frequency bands. 



 

Figure 8: Different raw signals for different health conditions: (a) NC, (b) IRC, (c) ORC, and (d) RRC. 

 

Figure 9: Different ASI for different health conditions: (a) NC, (b) IRC, (c) ORC, and (d) RRC. 

3.3. Diagnostic performance of the proposed method 

As our proposed ASI is highly effective to visualize the performance of bearing health representation, to 

further take full advantage of the 2D-CNN architecture, we used ASI as an input to the CNN for diagnosing 

bearing faults under variable speeds.  

To authenticate the performance of the proposed TL-based method, it is essential to divide the dataset into 

appropriate training and testing. In the first scenario, dataset 1 is used to train the network and store the 

knowledge, whereas datasets 2 and 3 utilize the stored knowledge to perform the classification test. From 

datasets 2 and 3, 20% of the data is used for adjusting the network to use the prior knowledge. In the second 

scenario, dataset 2 is used for gathering the knowledge and datasets 3 and 4 are used for TL-based testing. 

Similarly, in scenario 3, dataset 3 is used for knowledge gathering, whereas datasets 1 and 2 are used for 

classification. In each scenario, one dataset is known to the network and the other datasets utilize the learning 

knowledges to make the learning faster and efficient by maintaining the TL principle to archive the accuracy. 

Table 3 provides the classification results. In the results, it is seen that the proposed TL-based bearing fault 



diagnosis under variable RPMs is outperformed. The average classification accuracies of the different health 

types for target conditions are 99.73%, 88.14%,97.04% and 94.78% for NC, IRC, ORC, and RRC, respectively. 

The overall classification accuracy is 94.67%. For each scenario, the test dataset is 5 times higher than the 

training set which means that TL can work effectively even when the operation conditions change. To fine-tune 

the network and to obtain classification accuracy, 300 fine-tuned epochs are used.  

Table 3.  Diagnostic performance of the proposed model under different scenarios. 

Scenario Target 
Dataset 

Source 
Dataset 

Classification Accuracy (%) Average 
Classification 
Accuracy (%) 

Overall 
Classification 
Accuracy (%) NC IRC ORC RRC 

1 
 

Dataset 1 
 

Dataset 2 98.30 84.23 95.77 92.87 92.79 
93.995 

Dataset 3 99.81 89.37 96.28 95.34 95.20 

2 
 

Dataset 2 
 

Dataset 3 99.38 88.85 96.84 95.53 95.14 
95.615 

Dataset 1 97.68 90.27 98.87 97.58 96.09 

3 
 

Dataset 3 
 

Dataset 1 98.24 87.99 98.64 97.23 95.53 
94.4 

Dataset 2 98.97 88.12 95.86 90.13 93.27 

Average Accuracy 98.73 88.14 97.04 94.78 94.67 

 
To further investigate the performance, we analyzed the training and validation performance of our 

proposed TL method. For scenario 1, dataset 1 is used for training and saving knowledge, whereas datasets 2 

and 3 are utilized for testing. First, the CNN with the proposed architecture is trained with dataset 1. After 

achieving a training accuracy of 96% (see Figure 10(a)), the assembled knowledge is transferred to the target 

conditions. For this source task, 80% of the data is used for training and other 20% is used for validation. 

 

 

Figure 10: (a) The training and validation accuracy curve for the source task (dataset 1) and (b) the testing 

accuracy with transfer learning for the target task (datasets 2 and 3). 

    In Figure 10(b), datasets 2 and 3 achieve accuracies of 92.79% and 95.20%, respectively. We also provide 

the results of the confusion matrix. The confusion matrix is a robust technique which visualizes the classification 



performance in terms of actual vs. predicated[38]. Figure 11 provides the confusion metrics results for scenario 

1 where datasets 2 and 3 are targets, and dataset 1 is training. 

 

 

Figure 11: The confusion matrices for showing classification results for different health types of (a) dataset 2 

and (b) dataset 3. 

To establish the robustness of this approach, several comparisons are considered. First, we compare the 

performances with and without TL (conventional CNN). In this case, the network is trained and tested on dataset 

2, where 20% of the data is used for training and 80% for testing. Here, the ratio of training and testing is kept 

like TL-based scenarios to compare the performances. In Figure 12(a), we can observe that the conventional 

approach using 20% of the data for training, an overall classification accuracy of around 85% is achieved 

whereas our proposed approach can provide an overall accuracy of 92.79%. However, for further analysis, from 

the learning epochs, one obvious thing is that the TL-based approach can save time to achieve the desired 

accuracy (see Figure 12(b)). This clearly proves that the TL-based approach can yield the desired accuracy 

faster. 

 

Figure 12: (a) The classification accuracy of dataset 2 obtained conventionally (without TL, where train: test = 

20:80) and (b) classification accuracy comparison between the two approaches (with TL and without TL). 



Second, we compared our proposed method with a state-of-the-art TL-based method with a raw 1D 

signal[33]. Table 4 compares the results of the proposed scheme and the raw signal-based TL approach[33]. It 

is clearly seen that our ASI with the TL-based method outperforms its counterpart. Our proposed approach can 

yield at least an overall improvement of 23% of the final performance.  

 

Table 4. Comparison of the classification accuracy between the existing TL approach and the proposed 

ASI-based TL approach. 
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1 Raw+TL[33] 74.21 64.2 71.12 73.58 70.78 23.21 
Proposed 99.06 86.8 96.03 94.11 93.99 

2 Raw+TL[33] 72.56 63.62 70.59 74.22 70.23 25.39 
 Proposed 98.53 89.56 97.86 96.56 95.62 

3 
 

Raw+TL[33] 72.44 66.31 70.23 73.39 70.59 23.81 
Proposed 98.61 88.06 97.25 93.68 94.4 

 

4. Conclusions 

This study presents two-dimensional acoustic frequency spectral imaging with a transfer learning-based fault 

diagnosis method that adds a new dimension to bearing fault diagnosis, which is invariant to both random and 

deliberate differences of the shaft speed. In traditional approaches, the diagnosis of the bearing is mainly based 

on detecting defect frequencies. These techniques have certain challenges, for example, a non-stationary shaft 

speed creates an impact on defect frequencies, and variations of the shaft speeds bring significant and tiny 

variations on defect frequencies. In addition to this, the conventional feed-forward neural network mechanisms 

lack autonomous feature extraction for improving classification performance as in the CNN and TL. This study 

validated our proposed method by using the health images of four different health conditions for three different 

rotational speeds. The TL-based network yields an average accuracy of 94.67%, which establishes this proposed 

method as invariant to variations of shaft speed. A comparison with a recent TL trend clearly shows that the 

proposed method provides better accuracy. 
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