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Multi-objective optimization for sustainable turning Ti6Al4V alloy using Grey 
Relational Analysis (GRA) based on Analytic Hierarchy Process (AHP) 

 
Abstract 
 
Sustainable machining necessitates energy efficient processes, longer tool lifespan and greater surface integrity of the 
products in modern manufacturing. However, when considering Ti-6Al-4V alloy these objectives turn out to be 
difficult to achieve as titanium alloys pose serious machinability challenges, especially at elevated temperatures. In 
this research, we investigate the optimal machining parameters required for turning of Ti-6Al-4V alloy. Turning 
experiments were performed to optimize four response parameters i.e. specific cutting energy (SCE), wear rate (R), 
surface roughness (Ra) and material removal rate (MRR) with uncoated H13 carbide inserts in the dry cutting 
environment. Grey relational analysis (GRA) combined with the analytic hierarchy process (AHP) was performed to 
develop a multi-objective function. Response surface optimization was used to optimize the developed multi-objective 
function and determine the optimal cutting condition. As per the ANOVA, the interaction of feed rate and cutting 
speed (f × V) was found to be the most significant factor influencing the grey relational grade (GRG) of the multi-
objective function. The optimized machining conditions increased the MRR and tool life by 34 % and 7 %, whereas, 
reducing the specific cutting energy and surface roughness by 6 % and 2 % respectively. Using Taguchi based GRA 
by analytic hierarchy process (AHP) weights method, the benefits of high-speed machining Ti6Al4V through multi-
response optimization were achieved.  
 
Keywords Sustainable machining, Ti6Al4V alloy, multi-objective optimization, grey relational grade, analytic 
hierarchy process 
 
Abbreviations 

AHP Analytic hierarchy process 
ANOVA Analysis of Variance 
d Depth of cut 
f Feed  (mm/rev) 
GRA Grey relational analysis 
GRC Grey relational coefficients 
GRG Grey relational grade 
MOO Multi-objective optimization 
MRR Material removal rate 
R Wear rate 
Ra Surface roughness 
RSM Response surface methodology 
SCE Specific cutting energy 

TOPSIS The Technique for Order of Preference by 
Similarity to Ideal Solution 

V Cutting speed 
VB Flank wear 
HSM High-speed machining 

 
 
1 Introduction  
 
Machining processes requires careful utilization of resources in modern manufacturing. In aerospace products, high-
speed machining is preferred as opposed to conventional cutting speeds because of the numerous advantages 
associated with high-speed machining [1, 2]. Titanium is extensively used in key manufacturing applications such as 
aerospace, biomedical and automotive industries due to its attractive strength properties [3]. However, its machining 
is challenged by the tool wear at high speed that affects other machining characteristics. As compared with the 
machining of ferrous alloys where tool-workpiece interaction is more mechanical in nature, the chemical reactivity of 
titanium makes the tool-workpiece interaction more reactive and chemical in nature [4-6]. The high chemical reactivity 
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of titanium with most tool materials at a temperature over 500oC, high cutting temperature, work hardening, high 
cutting pressure, and vibrations make it a difficult to machine material [7]. Table 1 below summarizes the mechanical 
properties of other aerospace alloys in comparison vis-à-vis Ti6Al4V. Improvement in the machining features of 
titanium-based alloys is, therefore, a major concern for researchers worldwide. In modern sustainable manufacturing 
setup, the three uncompromising machining scopes include productivity, quality, and energy [8]. Economic and 
environmental benefits of machining can be achieved by reducing the energy consumption of the machine tool [9] and 
tool wear [10] as it is reported that 90% of the environmental burden is because of electrical energy consumption [11]. 
 
Table 1. Mechanical properties of Ti6Al4V in comparison with other aerospace alloys [12, 13] 

Property Material       

  

Titanium 

 

Ti6Al4V 

 

Ti-6Al-

6V-2Sn 

 

Ti-10V-

2Fe-3Al 

 

Inconel 

718 

 

Al 7075-T6  

 

Al6061-T6  

Density (g/cm3) 4.5 4.43 4.54 4.65 8.22 2.81 2.7 

Hardness (HV) 180–184  285–342  361  303  361–438  ~ 175  104  

Ultimate tensile strength (MPa) 220 950 1050 970 1350 572 310 

Yield strength (MPa) 140 880 980 900 1170 503 275 

Modulus of elasticity (GPa) 116 113.8 110 110 200 71.7 69 

Ductility (%) 54 14 14 9 16 11 12-14 

Fracture toughness (MPa m1/2) 70 75 60 - 96.4 20–29 - 

Thermal conductivity (W/mK) 17 6.7 6.6 7.8 11.4 130 167 

Max. operating temperature (°C) ~150 315 315 315 650 - - 

 
The sustainable goal of machining titanium (with longer tool life, minimum energy consumption, and higher 

material removal rate) can be attained using multi-objective optimization (MOO). Several MOO techniques have been 
used in optimizing the machining responses as it provides a tradeoff between multiple conflicting responses such as 
cutting energy, energy efficiency, material rate, surface roughness and machining time. Nevertheless, these approaches 
are mostly influenced by Taguchi’s method. For instance, Nguyen et al. [14] optimized multiple responses (micro-
hardness of machined surface, material removal rate and surface roughness) in electro-discharge machining using 
Taguchi and TOPSIS method. Camposeco-Negrete et al. [15] reported optimized results for energy consumption, 
MRR and Ra applying desirability analysis. Ramesh et al. [16] reported response surface optimization for surface 
roughness analysis in machining titanium alloys using a round tool under various cutting condition. The combined 
procedure with GRA, RSM and fuzzy TOPSIS were used by Gok` et al. [17] for minimizing surface roughness and 
cutting forces in the turning process. More recently, principal component and regression analysis were used to develop 
a trade-off model relating process time, energy consumption and carbon emission [18]. In another study for optimizing 
MRR, Ra and SCE in machining Al6061, Warsi et al. [19] employed Taguchi based RSM method. In his research, 
weights to the responses were assigned using the analytic hierarchy process (AHP). Some studies [20] have also 
reported notch wear, surface roughness and flank wear considering cutting fluid. Owing to the machinability 
challenges offered by titanium, research on energy consumption and wear optimization of hard to cut material like 
titanium alloys have not been considered by previous researchers. 

 
Many researchers have also reported analysis of optimizing various machining indices for titanium alloys in 

relation to different cutting conditions and machining environments. But dry machining is the most sustainable option 
because of its environment-friendliness as well as cost-effectiveness [21]. In a single objective study to optimize 
surface roughness during high-speed machining (HSM) of Ti6Al4V, better surface integrity was achieved with high 
MRR via HSM [22]. It was also reported that the depth of cut mostly influences Ra when machining at high speed. 
Techniques such as particle swarm optimization [23] for milling parameters, predictive modeling using neural 
networks for roughness and tool wear [24], GRA analysis for optimizing power and MRR in milling [25] and single 
objective as well as multi-objective optimization of wear, power and cutting temperature using Taguchi methods have 
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been reported [26-28] for machining Ti6Al4V alloy.  However, no analysis for relating tool life, specific cutting 
energy, MRR and surface roughness has reported in previous research to the author’s knowledge.  This research 
focuses on the detailed analysis of these four important responses in turning Ti6Al4V alloy, besides this investigation 
is critical as it helps to achieve sustainable goals of manufacturing products. Additionally, most multiobjective 
optimization studies have assigned equal weight to optimize the machining responses under study, however,  
practically weights can be assigned based on process or industry requirements [29]. While relating different methods 
of weight assignment to the machining responses, it has been reported that AHP process yield better results compared 
to equals weights and can provide a realistic approach for improving the material rate and optimizing energy 
consumption in turning process. Therefore, the AHP method was also used in this research to assign weights using 
response surface methodology and grey relational analysis to maximize MRR and minimize Ra, R and SCE. Using 
the proposed AHP method sustainable results were also achieved previously for optimization of MRR, Ra and SCE  
in turning Al 6061 [19]. 
 
2 Research motivation  
 
This research work is mainly focused on multi-response optimization of four responses (SCE, R, Ra and MRR) during 
machining Ti6Al4V at various cutting speeds. The methodology in this work is adapted from our previous work on 
Al 6061 [19], where, important response parameters (SCE, Ra and MRR) were improved using response surface 
methodology (RSM) together with analytic hierarchy method (AHP). The research reported a 5% reduction in energy 
consumption and a 33 % improvement in MRR by employing the ideal machine settings. On the other hand, unlike 
aluminum, titanium alloys present machinability challenges and tool life deteriorates as machining progresses, thus 
presenting a strong case for including wear rate into the multi-response study of titanium machining. Although wear 
maps for Ti6Al4V turning and milling have been developed by Jaffrey et al. [4-7] for various conditions, its 
machinability analysis in terms of other conflicting responses offers a research gap into the assessment of multi-
response study (SCE, MRR, R and Ra)  towards achieving sustainable machining goals in case of Ti6Al4V. The 
present research has also used AHP process for multi-objective optimization as it is promising in its decisive nature 
with regards to the energy consumption, productivity improvement (maximizing MRR and minimizing Ra) and 
meeting cleaner production (minimizing SCE and R) goals of benefiting the industry. While it may be argued that 
MRR may be calculated analytically, its inclusion in the factor analysis is necessary to incorporate the level of 
productivity while considering the effect of feed, speed and depth of cut on tool wear and energy. Thus not considering 
the effect of increasing MRR with increasing feed and speed will downplay the requirement towards enhanced 
productivity. Also since MRR has been widely considered as a reliable indicator for productivity by past researchers  
the current study incorporates MRR in factor analysis so that continuity with previous research is preserved [4-6]. 
Future research is being planned to aim at establishing a productivity term which is not dependent on feed speed and 
depth of cut during machining. 
 
3 Experimental details 
 
The Ti-6Al-4V bar was used as workpiece material in this study. Chemical compositions of the alloy are shown in 
Table 2. Experiments for turning were conducted under dry conditions using H13 grade uncoated plain inserts (CCMW 
09 T3 04 Rhombic in shape with 0° rake angle and without a chip breaker) provided by Sandvik. Fig. 1 shows the 
experimental arrangement for turning operation on a CNC machine (ML-300.) This machine had a spindle power of 
26 KW with a maximum rpm of 3300. The machining conditions with their levels are presented in Table 3. These 
levels of parameters (cutting speed, feed and depth of cut) were selected based on previous literature [30] and tool 
manufacturer recommended operating ranges (Depth of cut: 0.01-4.5mm, feedrate 0.01-0.26 mm/rev, cutting speed:) 
45-180 m/min) [31]. Experiments were repeated two times for data repeatability using a fresh insert in each 
experimental run. 
 
Table 2. Chemical composition of the alloy (Ti-6Al-4V). 
 

Ti V Al Fe Cu Cr 

89.44 4.2 5.7 0.15 0.003 0.0023 
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Table 3. Cutting parameters with their levels. 
Parameters Level 1 Level 2 Level 3 

Cutting speed 
(m/min) 50 100 150 

Feed (mm/rev) 0.12 0.16 0.2 
Depth of cut (mm) 1 1.5 2 

  

 
Fig. 1 Experimental setup used for turning 

 
3.1 Machining Responses  
 
Four responses parameters studied in this work includes specific cutting energy, wear rate, surface roughness and 
material removal rate of the workpiece material. For measuring the power consumed during machining, Yokogawa 
(CW – 240) Analyzer was used directly at the supply of the machine. The power analyzer can measure the power at 
an interval of 0.1 sec. SCE was measured by dividing the recorded power over the material removal rate (MRR) using 
Eq. (1) and (2). This methodology is adapted from previous work [13, 32, 33] for evaluating SCE during machining 
aluminum. 
 
SCE = P cut / material removal rate (v ×f ×d)       (1) 
 
Where, P cut = P actual - P air         (2) 
 
P actual is the power utilized during the actual cutting time and P air corresponds to the power when an air cut was made. 
It is important to mention here that that energy calculations that do not exclude machine-tool specific parameters 
would hamper the universal implementation of the research on energy consumption in machining. For this reason, 
SCE rather than cutting power was used in our analysis. It has earlier been established that SCE is independent of a 
particular machine tool being used as it is calculated by [30, 32], effectively discounting electrical and mechanical 
inefficiencies, temperature effects, etc. since the air cut and actual cut are carried out on the same machine at the same 
environmental conditions. Furthermore, machine tool independence was confirmed by repeating selected experiments 
on different machine tools. 

 
Optical microscope was used to measure the tool wear of the insert used in each cutting condition. The tool wear was 
measured according to ISO standard 3685-1993 [34] for single point turning, detailed in Fig. 2. The flank wear (VB) 
was normalized over the cutting length to estimate wear rate (R) using Eq. (3) as reported for the development of wear 
map [7]. A greater negative value of R represents low tool wear and vice versa. 
 

𝑅𝑅 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑉𝑉𝑉𝑉
𝑙𝑙𝑠𝑠
� =  �

𝑉𝑉𝑉𝑉
1000𝑡𝑡𝑉𝑉𝑐𝑐

�                                                                                                     (3) 

 

 

 
 

 

  

Work piece 

Tool insert 

SCE measurement 
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Fig. 2 Optical image showing flank wear measurement  

 
Here VB shows the flank wear, ls is the spiral length of the cut, t is the cutting time and Vc is the cutting velocity in 
m/min. The actual machining time (t) in turning can be related to the cutting conditions using Eq. (4) 

𝑡𝑡 =  �
𝜋𝜋𝜋𝜋𝑙𝑙

1000𝑓𝑓𝑉𝑉𝑐𝑐
�                                                                                                                        (4) 

 
Times TR 100, surface roughness tester was used to take three measurements of roughness value for each machining 
condition and material removal rate was measured using standard relationships. 
 
3.2 Design of Experiments 
Using Taguchi experimental design L9 (33) array with nine rows and three columns, turning experiments shown in 
Table 4 were carried out. The response for each cutting condition represents a mean value of each response repeated 
two times to minimize error in the experimental data. In this research, each response parameter is first individually 
analyzed from main effect plots and then response surface methodology is used to statistically optimize multiple 
responses under varying input parameters. Grey relational function was obtained using AHP weight method and a 
regression model was developed for the GRG. Lastly, the model is validated for the optimized condition obtained 
from the analysis. 
 
Table 4. Experiments using the L9 orthogonal array and their responses. 

 
Exp # 

 
f(mm/rev) 

 
V (m/min) d (mm) SCE(J/mm3) Wear rate, R Ra 

(μm) 

MRR 
(cm3/s) 

1 0.12 50 1 1.00 -6.14 1.113 0.09996 
2 0.12 100 1.5 1.33 -5.84 1.210 0.29988 
3 0.12 150 2 1.21 -5.58 1.023 0.59976 
4 0.16 50 1.5 0.95 -6.10 1.580 0.19992 
5 0.16 100 2 1.18 -5.83 1.237 0.53312 
6 0.16 150 1 1.20 -5.80 0.843 0.39984 
7 0.2 50 2 0.93 -5.58 2.290 0.3332 
8 0.2 100 1 0.99 -5.81 2.080 0.3332 
9 0.2 150 1.5 1.18 -5.29 1.220 0.7497 

 
3.3 Experimental data analysis 
 
The data obtained for the response parameters (SCE, R, Ra and MRR) was analyzed to assess the effect of cutting 
conditions (v, f and d) on these responses. Fig. 3 (a-d) shows the trend of each response parameter in the main effect 
plot. The trend observed for SCE is different from aluminum alloys [19] when plotted against the cutting speed. This 

 

100 µm 
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is because titanium, AISI 4340 steel and 718Plus Ni-based alloy at high-speed results in severe tool wear as opposed 
to aluminum machining, that affects the cutting forces and the corresponding cutting energies [35-37]. The progressive 
tool wear, the strain hardening at high speed as well as material adhesion at the cutting edge of the tool result in high 
values of SCE when machining at high speeds [30]. Titanium is well known to exibit these attributes [5, 38]. The 
effect of material adhesion was shown to have increased the value of SCE in the machining Al6061-T6 alloy in a 
specific region characterized by high SCE [33]. Although cutting forces analysis can be found in the literature [39], 
but the trend for SCE is unique and has not been reported earlier to the awareness of the authors. The detailed analysis 
of SCE regarding the mechanics of chip formation and cutting forces will be presented in the follow-up publication. 
From Fig. 3 it can be observed that the SCE, R and MRR increases and Ra decrease with an increase in the cutting 
speed. Whereas, increasing the feed rate decreases the SCE and increases Ra, R and MRR. The trend for the depth of 
cut for all the four responses is almost the same.  
 
 

  

  
Fig. 3 Main effect plots of response parameters a) Ra, b) R, c) SCE and d) MRR 

 
Best responses for Ra and MRR were achieved at high speed (150 m/min), whereas, at high depth of cut (2mm), best 
values of SCE, Ra, and MRR were attained. Worst values of Ra and R achieved at higher feed rates because the tool 
vibration increases at high feed rates resulting in high wear rate and surface roughness values [40]. The best and worst 
responses for all the experimental runs are given in Table 5. The tool flank wear in an SEM micrograph (shown in 
Fig. 4) represents the best and worst condition, where the wear remained within the limit of 0.3 mm as specified by 
ISO. It is evident that different settings of the machine are required to achieve the best response of SCE, R, Ra, and 
MRR. The wear rate and SCE are best at low speed whereas Ra and MRR are best at high speed. Since these settings 
are different to produce the best responses, therefore, there is a strong case for decision making using multi-objective 
optimization of these responses in turning titanium alloys.  
 

(a) (b) 

(c) (d) 
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Fig. 4 SEM micrographs showing the results for wear. a) Best condition and b) Worst condition 

 

Table 5. The best and worst responses obtained from cutting conditions 

   Cutting conditions and their levels 
Responses  Average f (mm/rev) V (m/min) d (mm) 
SCE (J/mm3) Worst 1.334 0.12 100 1.5 

 Best 1.023 0.20 50 2 
Wear rate, R Worst -5.29 0.2 150 1.5 

 Best -6.14 0.12 50 1 
Ra (µm) Worst 2.29 0.2 50 2 

 Best 0.843 0.16 150 1 
MRR (cm3) Worst 0.0999 0.12 50 1 
 Best 0.7497 0.2 150 2 

 

3.4 Grey Relational Analysis for Multi-objective optimization  

In machining processes, usually, an improvement in one response is not possible without lessening the other. Multi-
objective optimization is very helpful in making difficult decisions where contending responses are involved. The 
methodology used in this study is adopted from earlier research [41] on multi-objective optimization of three 
parameters (SCE, MRR and Ra) during turning Al6061 alloy as shown in Fig. 5. Optimization of the machining 
parameters was performed using grey relational analysis (GRA) together with the analytic hierarchy process (AHP).  
GRA based on Taguchi method transforms a multi-response problem into a single unique function [42]. 

From the literature [19, 29], various steps involved in performing GRA are given as follows: 

1. Data Preprocessing 
GRA starts by converting each response to a common scale (0-1) by normalizing all the responses. Normalization of 
the responses depends on the particular objective. Specific cutting energy (SCE), wear rate (R) and surface roughness 
(Ra) is to be minimized whereas material removal rate (MRR) is to be maximized in this research work. Thus, the 
experimental results for four responses (specific cutting energy, wear rate, surface roughness and material removal 
rate) were normalized for the target value. The values for SCE, R and Ra are estimated as “smaller the better” using 
Eq. 5 but for MRR the purpose was “larger the better” and the sequence is normalized using Eq. 6. 
 

𝑍𝑍𝑍𝑍𝑍𝑍 =  
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛) –  𝑦𝑦𝑍𝑍𝑍𝑍

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛) –  𝑚𝑚𝑍𝑍𝑛𝑛 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛)
                                             (5) 

(a) Flank wear, VB = 0.067 mm (b)    Flank wear, VB = 0.24 mm 
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𝑍𝑍𝑍𝑍𝑍𝑍 =  
𝑦𝑦𝑍𝑍𝑍𝑍 − 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛) 

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛) –  𝑚𝑚𝑍𝑍𝑛𝑛 (𝑦𝑦𝑍𝑍𝑍𝑍, 𝑍𝑍 =  1,2, … . .𝑛𝑛)
                                            (6) 

Where max (yij) and min (yij) represents the maximum and minimum values of the experimental data for each response.  
Yij and Zij represent the true and normalized values respectively. 
 

 
Fig. 5 Methodology for multi-objective optimization 

 
2. Calculation of Grey Relational Coefficients (GRC) 

The normalized values are then used to calculate the grey relational coefficients using Eq. 7. GRC relates the ideal 
value of the response to the experimental values. 
 

𝛾𝛾 (𝑍𝑍𝑙𝑙,𝑍𝑍𝑍𝑍𝑍𝑍) =  
∆𝑚𝑚𝑍𝑍𝑛𝑛 +  𝜉𝜉∆𝑚𝑚𝑚𝑚𝑚𝑚 
∆𝑙𝑙𝑍𝑍(𝑘𝑘) +  𝜉𝜉∆𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                           (7) 

0 < 𝛾𝛾(𝑍𝑍𝑙𝑙,𝑍𝑍𝑍𝑍𝑍𝑍) ≤ 1 

∆max and ∆min is the largest and smallest value of the deviation sequence. The deviation sequence, ∆oj(k) in the 
above equation can be estimated by  
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∆𝑙𝑙𝑍𝑍(𝑘𝑘) = |(𝑍𝑍𝑙𝑙 (𝑘𝑘) −  𝑍𝑍𝑍𝑍𝑍𝑍 (𝑘𝑘)| 

Where Zo (k) and Zij (k) represents the reference and comparability sequence respectively. In this study, the value of 
ξ (distinguishing coefficient) is considered 0.5, which can range between 0-1. The values of GRC estimated for the 
four responses are shown in Table 6. 
 

3. Calculation of GRG 
Grey relational grade (GRG) converts the multiple GRC into a combined factor using the assigned weight value of 
each response. Eq. (8) is used to compute weighted GRG. This research used a developed AHP method for weight 
assignment to four responses under study. 

𝐺𝐺𝐺𝐺𝑚𝑚𝐺𝐺𝐺𝐺 (𝑍𝑍𝑙𝑙,𝑍𝑍𝑍𝑍𝑍𝑍) =  �𝜔𝜔𝐾𝐾

𝑛𝑛

𝑘𝑘=1

 𝛾𝛾(𝑍𝑍𝑙𝑙,𝑍𝑍𝑍𝑍𝑍𝑍)                                                                                 (8) 

�𝜔𝜔𝐾𝐾

𝑛𝑛

𝑘𝑘=1

= 1                                                                                                                                                                  (9) 

 

Table 6. GRC and GRG Calculated from the responses 

 
 
Exp #  

f (mm/rev) 

 
V  

(m/min) 

 
d 

(mm) 

Grey Relational Coefficients 
 

  

  GRC (R) GRC(Ra) GRC 
(SCE) 

GRC 
(MRR) GRG  

1 0.12 50 1 1.0000 0.7282 0.7423 0.3333 0.568425887 

2 0.12 100 1.5 0.5864 0.6636 0.3333 0.4194 0.459698809 

3 0.12 150 2 0.4312 0.8007 0.4201 0.6842 0.597839368 

4 0.16 50 1.5 0.9152 0.4954 0.9098 0.3714 0.580347865 

5 0.16 100 2 0.5772 0.6478 0.4453 0.6000 0.574590477 

6 0.16 150 1 0.5564 1.0000 0.4276 0.4815 0.527577671 

7 0.2 50 2 0.4313 0.3333 1.0000 0.4382 0.516452827 

8 0.2 100 1 0.5672 0.3690 0.7707 0.4382 0.512326514 

9 0.2 150 1.5 0.3333 0.6576 0.4465 1.000 0.746295296 

 

4. Weight factors using the analytic hierarchy process (AHP) 

Weights in this study were assigned to the response variables using AHP method as reported by previous 
researchers. The various steps involved are described below. 

a) The decision maker using AHP method calculates the weight of each response. In the first step, a pairwise 
matrix (C m×m) [29, 43] is constructed with m attributes as shown in Eq. 10, where the Saaty’s 9 points scale 
(Table 7) is used to determine the comparative rank of each attribute with respect to the goal. After deciding 
the relative standing of each attribute pertinent to objective, the elements in the pairwise matrix are fixed as 
given in Table 8. Here values of the row attributes are compared with the column attributes. Value of 1 is 
assigned when an attribute is compared with itself (cij =1 for i = j) and when compared with another attribute 
a reciprocal value of the corresponding element is assigned (c12 = 1/c21).  Thus, in this matrix, the diagonal 
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values are all 1 and based on the relative importance of the respective attributes half of the values in the 
matrix are defined. The left behind half values in the matrix are the reciprocal of their corresponding entries.  

 
 
Table 7. 9-points Saaty’s scale 

Scale Definition Explanation 

1 Equally important Indifferent 

3 Weakly important Slightly better 

5 Strongly important Better 

7 Very strongly important Much better 

9 Extremely important Definitely much better 

2,4,6,8 Intermediate value When compromise needed 

 
   

 
 

   
 (10) 
 
 
 

 
The objective in this research was to improve the productivity as well as quality during turning Ti6Al4V without 
deteriorating tool life (within the limits of ISO tool life standard), and minimizing energy consumption. Since titanium 
alloys are considered as difficult to machine materials, maximization of productivity is of prime importance. Thus, 
MRR was assigned maximum weight. The second most important objective was tool life followed by SCE and Ra. 
As sustainable machining demand equilibrium between production quality and SCE [8] thus equal values of the 
attributes were assigned to SCE and R in comparison matrix. These attributes were ranked in accordance with the 
values reported in the literature [19, 29]. Table. 8 shows the ranking of these attributes in a pairwise matrix. 
 

Table 8. The Pairwise matrix comparing attributes 

Responses SCE R Ra 
 

MRR 

SCE 1 1 3 
 

1/7 
R 1 1 3 1/2 
Ra 1/3 1/3 1 1/5 

MRR 7 2 5 1 
 

b) The geometric mean method is used to calculate the normalized weight of the attributes. Table. 9 shows the 
geometric mean and normalized weight calculated from the pairwise matrix using Eq. 11 and Eq. 12. 

𝐺𝐺𝐺𝐺 =  ��𝑚𝑚𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�

1/𝑚𝑚

                                                                                      (11) 

 
 

 
C m×m  = 

C1  1 c12 c13 -- c1j -- c1m      
C2 c21 1 c23 -- c2j -- c2m 
C3 c31 c32 1 -- c3j -- c3m 
-- -- -- -- -- -- -- -- 
Ci ci1 ci2 ci3 -- 1 -- cim 
-- -- -- -- -- -- -- -- 
Cm cm1 cm2 cm3 -- cmj -- 1 
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𝑤𝑤𝑖𝑖 = 𝐺𝐺𝐺𝐺𝑖𝑖 �𝐺𝐺𝐺𝐺𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�                                                                                       (12) 

 

Table 9. Geometric mean and normalized weights of the attributes 

Responses 
Geometric 

mean 
Normalized 

weights 
SCE 0.8091 0.15 

R 1.1066 0.21 

Ra 0.3860 0.08 

MRR 2.892 0.55 

 

c) For the pairwise matrix, the consistency index (CI) is evaluated using Eq. (13). The value of λmax was 
estimated by the summation of relative score column-wise, multiplying with corresponding normalized 
weights of the attributes and summing the resultants. In this study, the value of λmax came out to be 4.2412 
and CI equal to 0.08037. 

𝐶𝐶𝐶𝐶 =
𝜆𝜆max  −𝑚𝑚
𝑚𝑚− 1

                                                                            (13) 

 

d) Finally, Eq. (14) was used to calculate the consistency ratio (CR) of the matrix. Table. 10 was used to select 
the random index (RI) for four attributes which is 0.89 for N=4. Thus, CR value in the present research was 
estimated to be 0.0903. The consistency of the judgment is based on the value of CR obtained from the 
pairwise matrix and a value of 0.1 or less is usually acceptable testifying a good investigation being made 
about the case in hand.  

𝐶𝐶𝑅𝑅 =
𝐶𝐶𝐶𝐶
𝑅𝑅𝐶𝐶

                                                                                      (14) 

Table 10. Attributes and their random consistency index (RI) 

N 1 2 3 4 5 6 7 8 9 10 
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49 

 

3.5 Grey relational grade calculation 

A grey relational function (Eq. 15) was determined from the normalized weights (Table 8) by means of AHP. These 
weights were used to find the GRG of each experimental run shown in Table 6.   

𝐺𝐺𝑅𝑅𝐺𝐺 = 0.15 𝐺𝐺𝑅𝑅𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 + 0.21𝐺𝐺𝑅𝑅𝐶𝐶𝑅𝑅 + 0.08𝐺𝐺𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅 + 0.55 𝐺𝐺𝑅𝑅𝐶𝐶𝑀𝑀𝑅𝑅𝑅𝑅                                            (15)   
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4 Results and discussion 

The best value of GRG obtained out of all the cutting conditions was observed for experiment # 9 corresponding to 
parameters (f = 0.20 mm/rev, V = 150 m/min and d = 1.5 mm). Optimal parameters were then identified by response 
surface optimization of the calculated GRG values (Table 6) and a regression equation was obtained.  

4.1 Regression model for GRG function 

A multi-objective function for GRG was developed using a second-order model of RSM, which well fits the GRG 
obtained from the experimental results. The model equation is shown in Eq. (16) with insignificant terms eliminated 
from the equation. 

𝐺𝐺𝑅𝑅𝐺𝐺 = 1.29567 − 2.63733 𝑓𝑓 − 0.0142705 𝑉𝑉 − 0.0874551 𝐺𝐺 + 0.0000296 𝑉𝑉 ∗ 𝑉𝑉 + 0.0385689 𝑓𝑓 ∗ 𝑉𝑉 +
0.00191444 𝑉𝑉 ∗ 𝐺𝐺                                                                                                                                         (16)   
                       

The applicability of the developed model is only limited to turning Ti-6Al-4V; using uncoated H13 tools, within the 
conditions (50 m/min ≤ V ≤ 150 m/min), (0.12 mm/rev ≤ f ≤ 0.24) and (1mm ≤ d ≤ 2mm), the machine tool and the 
cutting environment used. 

Contour and surface plots of GRG for machining conditions under study are shown in Fig. 6. The surface plots show 
the interaction of the cutting conditions on the value of GRG obtained. The GRG value in plots is maximum at the 
highest setting of all the cutting factors as evident from the figure below. 

Fig. 7 shows the comparison between the values of GRG obtained from the experiments and the developed regression 
model with a maximum error of 3 %.  The higher value of GRG for experiment # 9 is because of the higher feed rate 
and depth of cut at a high cutting speed that helped reduce the shear forces along the shear plane with improved MRR 
and R. The negative effect of high feed rate on Ra is countered by high cutting speed. 
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Fig. 6 Surface and contour plots for GRG 

 
 

Fig. 7 Evaluation of Grey Relational Grade obtained from experiments and calculated from the regression model 
 

4.2 ANOVA for GRG 

The statistical analysis was conducted using MINITAB® software where ANOVA was performed at the 95 % 
confidence level to investigate the significance of the cutting parameters (f, V and d) as shown in Table 11. The best 
fit obtained was a quadratic model indicating high accuracy with R2 = 96.8 %. From the Analysis of Variance, it was 
found that the interaction of parameters (f×V and V×V) is more important in affecting the machining responses and 
GRG as compared to the individual effect of these parameters (f, V and d). Among the machining conditions, cutting 
speed originates as the most influencing factor affecting GRG with contribution ratio of 13.5 % whereas among the 
interacting factor, (f×V) has the major contribution of 44.5 % followed by (V×V) with 21 %. Depth of cut and its 
interaction with other parameters has the least influence amongst all conditions. 
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Table 11. ANOVA of GRG 
 

 

 

 

 

 

 

 

 

 

 
DOF degrees of freedom, SS sum of squares, MS mean squares, F F value, CR contribution ratio (%), S standard deviation, R-
Sq.(pred.) predicted R2 
 

4.3 Optimization of the response surface model for GRG. 

Response surface optimization was used to get optimal cutting conditions from the model developed in Eq. (16). The 
optimized results in Fig. 8 shows the maximum GRG value obtained at the highest level of the machine settings (f = 
0.20 mm/rev, V = 150 m/min and d = 2.0 mm). This value is inline with the higher weightage assigned to MRR at 
55% as supported by previous researchers [19, 29]. 

 
Fig. 8 Responses optimized at maximum GRG 

Source DF Seq SS Adj SS Adj MS F CR 
Regression 6 0.101634 0.101634 0.016939 85.57 96.8% 
Linear 3 0.023786 0.056898 0.018966 95.81 22.3% 
F 1 0.007411 0.016658 0.016658 84.15 6.9% 
V 1 0.014212 0.014212 0.014212 71.79 13.5% 
D 1 0.002163 0.018924 0.018924 95.59 1.9% 
Square 1 0.021875 0.021875 0.021875 110.5 20.9% 
V*V 1 0.021875 0.021875 0.021875 110.5 20.9% 
Interaction 2 0.055972 0.055972 0.027986 141.37 53.5% 
f*V 1 0.046351 0.024991 0.024991 126.24 44.5% 
V*d 1 0.009621 0.009621 0.009621 48.6 9.1% 
Residual 11 0.002178 0.002178 0.000198 - 1.5% 
Lack-of-Fit 2 0.002178 0.002178 0.001089 - 1.7% 
Total 17 0.103811    100% 
S = 0.01407                   R. Sq. (pred) =95.9         R. Sq. (adj) = 96.8 
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4.4 Validation experiments 

Table. 12 shows the comparison of the optimized machining parameters with the best experimental run (Exp # 9) from 
the L9 array. The results obtained indicate a 34 % increase in MRR, reduction of 6 % in the values of specific cutting 
energy and 7 % increase in tool life, however, the surface roughness was found to be invariable.  

Comparing the best run (Exp # 9) with an optimized run, the only difference in both these conditions is the depth of 
cut; on the other hand, the cutting speed and feed rate have same values in both the runs. The analysis of machining 
responses regarding the cutting parameters has a key role in solving multi-objective problems. The MRR increased to 
34% in the optimized run because the machine setting is fixed at the highest level for V, f and d thus resulting in 
higher MRR.  Therefore, MRR is improved if any of the machining condition is increased. 

SCE for optimized run shows a 6% decrease in energy consumption compared to the best run. As the only difference 
in the two experimental runs (Table 12) is the increase in depth of cut which has resulted in a decrease in SCE values 
(Fig. 3c) thus endorsing the fact that lower depth of cut values increase the cutting forces and energy consumed at the 
tooltip [44].  The value of SCE decreases at higher feed rate and increases at high speed, but SCE reduces when both 
speed and feed is high as evident from ANOVA, (f×V) has the major contribution of 44.5 %. This is because at higher 
feed rate the mechanics of machining changes to effective shearing rather than rubbing mechanism, reducing the 
energy consumption at the tooltip [45, 46].  

Comparing the surface roughness Ra for the two experimental conditions, higher cutting speed improved the surface 
integrity of the work part because of fewer chances of BUE formation at high speed [47]. Increase in feed rate has 
also found to worsen the machined surface but higher feed combined with high speed counteracts this negativity. 
While the depth of cut has been widely reported to have a minor effect on Ra, thus increase in depth of cut from 1.5 
to 2.0 mm in the optimized run has not produced major variations in the values of Ra obtained in this research 
compared to Exp # 9.  

Wear rate, R for both Exp # 9 and optimized experimental run is shown in Table.12. A higher negative value of R 
means a longer tool life and vice versa. The tool life was improved by 7 % using the optimized conditions. This 
improvement can be attributed to the decrease in cutting time when machining at high speeds [7] under optimal 
machining conditions. The tool wear rate was monitored agreeing to the ISO tool life recommendations (flank wear, 
VB ≤ 0.3), therefore, in all the tests the maximum tool wear reached was under the ISO recommended values. Thus, 
the multi-objective optimization example presented here has compensated the tool life with a goal to achieve 
sustainability and economic production. 

Table 12. Optimized run in comparison with the best experimental run 

 
Machining 
conditions  Responses  

 

 f V d SCE R Ra MRR 
Best Run 0.2 150 1.5 1.180 -5.29 1.220 0.7497 
 
Optimized run 0.2 150 2 1.114 -5.67 1.201 

 
0.9996 

% change    

 
6% 

decrease 
7% 

decrease 
2% 

decrease 

 
 

34% 
increase 

 

Although changing the cutting parameters may have an adverse effect on some response because of their conflicting 
nature, but optimized multi responses can be achieved using the right combination of cutting condition, which is of 
utmost importance in machining industries.  

 

 



17 
 

5 Conclusions 

With regard to the machining of Ti6Al4V, the key responses that were considered in this study showed a conflicting 
trend with respect to the input cutting conditions. Optimal parameters were achieved using multi-objective 
optimization of all these responses to attain the sustainable goal of manufacturing products for aerospace and 
automotive applications. The following can be concluded from the investigation of the experimental results. 

• Multi-objective analysis using GRG helped identify optimal solution by means of AHP weight method. This 
resulted in a cutting condition that provides a tradeoff between the four conflicting responses. The optimum 
condition that resulted in maximum GRG has a speed of 150 m/min, feed of 0.20 mm/rev and depth of cut 
of 2.0 mm. An improvement of 34 % was attained in MRR and 7 % in tool life compared to the best run of 
the L9 array. Nevertheless, SCE reduced by 6% and Ra remained unaffected.  

• ANOVA results revealed that while machining hard to cut alloys like titanium, the interaction of the cutting 
conditions is more influential in affecting the machining responses as compared to the effect of the individual 
parameter. In this study, the interaction of (f×V) was found as the notable element producing variation in the 
output responses. 

• The study showed an improvement in important responses that affect product quality, energy and economic 
aspect of machining thus promoting sustainable manufacturing by using the right combination of feed, speed, 
and depth of cut. While tool life and productivity with minimum energy consumption are the major concerns 
in machining titanium-based alloys, variation in surface roughness can be compensated in the finish cuts. 

The outcome of this work can also be extended: - 

• To the analyses of chip morphology and the mechanics of machining Ti6Al4V with regard to the cutting 
energy/forces where a detailed process map can be developed to ascertain the right choice of machine 
settings used by mechanists at the shop floor.  

• To the machining of other titanium based and superalloys by introducing cutting fluid consumption, tool life 
under various cutting environments (dry, wet and cryogenic) as well as adding the cost of tooling.   
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