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Abstract: 

Band selection plays an important role in hyperspectral imaging for reducing the data and improving 

the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. 

Without the category labels, it is challenging to select an effective and low-redundancy band subset. In 

this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion 

and an improved Determinantal Point Processes (DPP). First, to preserve the original information of 

hyperspectral image, a novel band search criterion is designed for searching the bands with high 

information entropy and low noise. Unfortunately, finding the optimal solution based on the search 

criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider 

the correlation of bands from both original hyperspectral image and its spatial information to construct a 

double-graph model to describe the relationship between spectral bands. Besides, an improved DPP 

algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph 

model. Experiment results on several well-known datasets show that the proposed optical band selection 

algorithm achieves better performance than many other state-of-the-art methods. 
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1. Introduction 

With two-dimensional information in the spatial domain and one additional dimension in the spectral 

domain, hyperspectral images (HSI) contains a three-dimensional structure. At a given spectral frequency 

or wavelength, a grey-scale image can be formed namely a band image, corresponding to the reflectance 

response of the target objects. The reflectivity values of different wavelengths, namely the spectral 

signature or spectral profile, can effectively represent the properties of the objects in terms of temperature, 

moisture (water contents) and change of chemical components. These advantages have enabled 

hyperspectral images as a unique way for effective land-mapping in the field of earth observation and 

remote sensing [1-2]. Therefore, it’s essential to effectively utilize the spectral-spatial features for 

hyperspectral image analysis, especially for data classification [45-46]. Most of the recent works [47] 

have utilized all spectral bands for hyperspectral image classification and achieved good classification 

accuracy, where the redundancy of the spectral bands has not been considered. 

Although increasing the number of spectral bands can enhance the representation of ground objects, 

actually not all the bands are useful for charactering the objects in hyperspectral image processing [3]. 

High dimensional data in HSI may bring a series of problems, such as data redundancy in spectral domain, 

noise in certain spectral bands, heavy cost of the system, and lengthy process for data acquisition, 

transmission and analysis. Some redundant or noise bands may cause interference to the subsequent data 

processing, resulting in a reduction of accuracy. In addition, high dimensional data with limited sampling 

pixels may lead to the curse of dimensionality, or the Hughes phenomenon [4]. Therefore, dimensionality 

reduction has become one crucial task in HSI for effective data acquisition and analysis.  

Techniques for dimensionality reduction in HSI can be divided into two categories: (1) feature 

extraction [6-8]; (2) band selection [9-11]. Feature extraction [12] is the projection of the original high 

dimensional data onto a lower dimensional space to reveal the distinctive properties of the original data, 

and typical approaches include principal component analysis (PCA) and its variations [13-15]. Band 

selection, however, is to select a subset of bands from the original spectral band set whilst maximizing the 

performance of data analysis [5, 16-18] . Although the dimensionality of features can be reduced, the full 
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spectral data is still needed in feature extraction based methods. Band selection approaches, on the other 

hand, may only need a selected subset of spectral bands for the following data analysis. In comparison 

with feature extraction methods, band selection can better preserve the physical information and have 

better interpretation and expression ability of the original data [5]. 

In general, band selection techniques can be divided into two groups, i.e. supervised band selection 

[19-20] and unsupervised band selection[21-24], depending on whether the associated class labels of data 

are known or not. With known class labels, supervised band selection can be used to select spectral bands 

that have a strong correlation with the class labels. Therefore, compared with the unsupervised band 

selection methods, supervised band selection methods often have better performance [25]. However, the 

application of supervised band selection can be constrained due to lack of labelled information in 

practical cases. As a result, unsupervised band selection without labelling data becomes more feasible in 

such cases.  

Conventional unsupervised band selection has two main steps, i.e. i) establishing the selection criteria 

for selecting the band subsets, and ii) determining the search method to select the band subset from the 

original dataset. Some popular selection criteria are Spectral Inter-Band Discrimination Capacity [26] and 

maximum information and minimum redundancy [5]. Typical search approaches for selecting band subset 

include the ranking-based [38], the clustering-based [39], and the greedy-search based algorithms [17]. 

For ranking-based methods, all spectral bands are ranked based on the given evaluation criteria and then 

the spectral bands with top ranks are selected for the desired number of dimensions. In [38], Chang et al 

proposed a ranking-based method called CEM-BCM. All spectral bands are ranked based on their 

correlation with the entire hyperspectral image and highly correlated bands are preferred. For clustering-

based methods, spectral bands are divided into different clusters and similar bands fall into the same 

cluster. Then, the band subset is selected from different clusters to form a low-redundancy band subset. In 

[39], Sen et al proposed an Affinity Propagation-based clustering method for selecting representative 

spectral bands from the dataset after denoising. For greedy algorithms, the selected band subset satisfies 

the optimal criteria as much as possible by adding or removing spectral band. In [17], the SBS-MEV 
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algorithm was used to remove one band each time, which maximized the ellipsoid volume of the 

candidate band subset.  

Most existing rank-based band selection methods only assign a single score to each band whilst ignore 

the latent structure between spectral bands in a high dimensional space [3]. This will result in individually 

selecting of each band without global considerations. In addition, many band selection methods do not 

consider the band redundancy from the spectral-spatial information. The spectral-spatial information can 

have more comprehensive measurement of redundancy than spectral information only. In [3], Yuan et al 

proposed a multiple graph to describe the complex structure between spectral bands based on the spectral 

clustering method. However, constructing a multiple graph structure by the spectral clustering needs very 

high computational complexity and memory requirements. This will be tackled in our proposed approach, 

where a double-graph structure is utilized to reduce the computational complexity whilst maintaining high 

performance as discussed below.  

In conventional band search approaches, finding a low-redundancy band subset from a graph model is 

very challenging as it is a NP-hard problem [3]. As a probabilistic model, Determinantal Point Processes 

(DPP) [27] can be used as a search algorithm to choose the feature subset with high diversity and low 

redundancy. This has been widely used in tasks of image, video or texts summarization, image search and 

news threading [27]. As an extension to DPP, k-DPP [29] specifies the size of the selected subset to be k 

for efficiency. However, the original k-DPP can only be applied to a single graph model, and it only 

considers low-redundancy in selecting the bands rather than any other properties such as the quantity of 

noise in the band.  

In order to tackle the aforementioned problems, a double-graph based DPP model was proposed in this 

paper for unsupervised band selection, where both spectral and spatial information are used to measure 

the redundancy between the bands. A Maximum Information entropy and Minimum Noise (MIMN) 

criterion is introduced for determining the best band subset by preserving a rich amount of information in 

the band subset whilst minimizing noise level for achieving a high accuracy of data analysis i.e. 

classification.  
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The main contributions of this paper can be summarized as follows: 

1) To build a double-graph model using both the spectral and spatial information of pixels for 

effectively measuring the correlation between bands;  

2) To propose a new maximum information and minimum noise (MIMN) search criterion for 

determining the optimal band subset. As maximum entropy may be attributed to a high degree of noise, 

minimum noise constraint can supplement for robustness; 

3) By combining k-DPP with MIMN, a MIMN-DPP approach is proposed for selecting the band subset 

with not only low-redundancy and high diversity but also rich information and low noise. This will result 

in high classification accuracy and improved robustness despite of the random sampling in k-DPP.  

The rest of this paper is organized as follows: Section 2 briefly introduces the relevant techniques of 

the proposed approach, including information entropy and DPP. In Section 3, details of the proposed 

MIMN-DPP algorithm for unsupervised band selection are discussed. The experiment results and 

discussions in comparison with several state-of-the-art approaches are given in Section 4. Finally, some 

concluding remarks are drawn in Section 5. 

2. Related background 

2.1 Information entropy 

Information entropy is for quantitative measurement of the information as proposed by Shannon 

[28].Given a random variable X , its associated information entropy can be defined by: 

( ) ( ) log ( )
x

H X x x= −                                                           (1) 

where ( )P x  is the probability density function of X . The information entropy is only related to the 

probability distribution of the random variable X . The more uneven the variable X  is, the greater the 

information entropy is.  

In the field of image processing, the information entropy can be used to measure the information of an 

image, where higher information entropy means richer information and vice versa. In this paper, X  is 

used to denote an image, and the variable x  is a pixel point of the image. The information entropy of the 
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image only depends on the probability distribution of the pixel values. In a hyperspectral image, each 

spectral band can be regarded as a two-dimensional image, where its corresponding information entropy 

can be determined by Eq. (1). 

2.2 Determinantal Point Processes (DPP) 

DPPs are elegant probabilistic models of repulsion that arise from quantum physics and random matrix 

theory [27], which provides an effective sampling strategy for selecting features with diversity. DPP has 

been successfully applied in a wide range of applications, such as text summarization, image search and 

news threading [27].  

Given a discrete finite set 1 2{ , , , }Nb b b = with N elements, the number of total subsets of   is 2N . 

According to [27,30], DPP can be defined as follows: 

( ) det( )BB K  =                                                                 (2) 

where B  is an arbitrary subset of  , and ( )P B represents the probability density function of subset B . 

Let K  be a N N  symmetric matrix whose elements are indexed by the corresponding elements of  . 

BK is a symmetric matrix and its entries are indexed by the corresponding elements of B ; and det( )BK is 

one of the principal minor of the determinant det( )K . 

Assume 

11 12 1

21 22 2

1 2

N

N N N

N N NN

K K K

K K K
K R

K K K



 
 
 = 
 
 
 

 is a marginal probability kernel, indicating the possibility 

of the corresponding selected elements [27]. As Eq. (2) describes the probability of the subset B , 

the det( )BK must be positive,  i.e. K  must be a positive semidefinite matrix. 

When the subset B  contains only one element { }iB b= , the probability of selecting subset B  can be 

given by: 

( ) det( )ii

ii

B K

K

  =

=
                                                                 (3) 



7 
 

where the larger value of iiK  implies that the corresponding element 
ib   is more likely to be chosen by 

the DPP measure.  

For the case of two-elements as { , }
i j

B b b= , we have 

2

( ) det( )B

ii ij

ji jj

ii jj ij

P B K

K K

K K

K K K

 =

=

=  −

                                                         (4) 

Obviously, the larger value of iiK  and jj
K  indicates that the element 

ib  and j
b  are more likely selected 

in the subset B .  

The large value of ij
K  means that 

ib and j
b  are unlikely to co-occur. Eq. (4) shows the most important 

characteristic of ‘Diversity’ of the DPP. K can be used as a measure of correlation between elements in 

the ground set  . That is if the element 
ib  has a strong correlation with the element j

b , ij
K  will have a 

large value. In the new subset B , taking ij
K  as the characteristics of ‘diversity’, a larger value means that 

the two elements 
ib and j

b  have lower diversity. 

As elements in K are within the range of 0 and 1, it is challenging to construct the marginal kernel 

matrix for describing real data. In order to model real data, DPP is written in the form of L-ensembles 

[27]. Given a symmetric positive semidefinite matrix L  indexed by the elements of   , the L-ensembles 

representation of DPP is given by:  

( ) det( )L YP =Y LY                                                               (5) 

where L  is a metric matrix that indicates the similarity of any two elements in the   , Y  is an arbitrary 

subset of  , and ,[ ]
Y ij i j Y

L L   is a symmetric matrix indexed by the elements of  Y . For any pair of 

elements{ , }i j Y , ij
L  represents the degree of correlation between them. Eq. (5) actually indicates that 

the probability of any subset Y is proportional to the value of the determinant det( )YL .We use  

det( )YY
L

  to represent the sum of the determinants of all subsets of  . It can be proved that [27]: 
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det( ) det( )Y N

Y

L L I


= +                                                     (6) 

where I  is an N N   identity matrix. 

Combining Eqs. (5) and (6), the standard form of DPP can be obtained by: 

det( )
( )

det( )

det( )

det( )

Y
L

YY

Y

N

L
P Y

L

L

L I



= =

=
+


Y

                                                    (7) 

The larger LP  is, the greater the probability of the subset Y  being selected will be.  

3. The proposed MIMN-DPP framework 

In this section, we will discuss in detail the proposed MIMN-DPP method for unsupervised band 

selection. According to the flowchart shown in Fig.1, MIMN-DPP contains three main parts, including 

neighbourhood information extraction, double-graph model reconstruction and DPP-based optimal band 

selection. The technical details of these three parts as well as the notations of hyperspectral data are 

discussed as follows.  

Hyperspectral 

image B

Neighborhood 

information B̂

Adjacency 

matrix
B̂

L

Adjacency 

matrix B
L

Decomposition of 

matrices      and        

Candidate  

Band 

Criterion 

MIMN

Band subset

Extract neighborhood 

information

Construct double 

graph model

Select band subset with 

MIMN-DPP

B̂
L

B
L

Double-DPP        

 
 

Figure 1: Flowchart of the proposed method. 

3.1 Notations of Hyperspectral data 

Hyperspectral data sets can be represented as 1 2 3{ , , , , } n l

lB b b b b R
=  where n  represents the number 

of pixels in each spectral band, l  is the total number of spectral bands, and (1 )mb m l  indicates the m-th 

spectral band. As shown in Fig. 2, the red area represents the pixel point j

mp , and the green area is its 

neighbourhood. We use ˆ j

mp  to denote the mean spectrum of the neighbourhood of j

mp . For convenience, 

file:///D:/Program%20fire/Youdao/Dict/7.5.2.0/resultui/dict/
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we combine the means of the neighbourhood of all the pixels into a new data set and denote it by 

1 2 3
ˆ ˆ ˆ ˆ{ , , , , } n l

l
B b b b b R

=  . 

j

m
pˆ j

m
p

 

Figure 2: Neighbourhood information of j

mp . 

3.2 Double graph mode 

The graph model can effectively represent the relationship between vertices. In [3], a spectral 

clustering based multi-graph structure is proposed to represent the correlations between bands. However, 

the spectral clustering methods require high computational cost. In this section, considering the pixel and 

its neighbourhood information, we construct a double graph model for capturing the complex 

relationships between the pairwise spectral bands.  

An undirected graph model ( , )G V E=  contains a set of vertices V and a set of edges E . We consider 

the bands of hyperspectral data as a graph model, where each vertex represents a band 
ib  and each edge 

between two vertices corresponds to the correlation between the two bands. The correlation of vertices 

can be represented as an adjacency matrix. We use mutual information to define the adjacency matrix, 

which can effectively represent the correlation between pairwise bands. The adjacency matrix of bands is 

defined as follows: 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

l

l l l

B

l l l l

I b b I b b I b b

I b b I b b I b b
L R

I b b I b b I b b



 
 
 = 
 
 
 

                                        (8) 
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The mutual information between two bands 1(1 1 )mb m l  and 2(1 2 )mb m l  can be estimated by a 

fast calculation algorithm proposed in [41] as follows: 

2
2

2
1 21 2

2 2
1 21 22 2

1
)

2

1
1 2

1

1 1

(( ) ( )

1 1( ) ( )
2 2

1
( , ) log

j ji i
m mm m

j ji i
m mm m

n

h

n
j

m m
n n

i

j j

p p p p

p p p p
h h

n e

I b b
n

ee

−

=

=

= =

− + −

− − − −
=




 
                         (9) 

where h  is the kernel width which has been estimated properly in the reference [42]. 

Similarly, the adjacency matrix of neighbour data can also be calculated by using mutual information 

as: 

1 1 1 2 1

2 1 2 2 2
ˆ

1 2

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , )

l

l ll

B

l l l l

I b b I b b I b b

I b b I b b I b b
L R

I b b I b b I b b



 
 
 =  
 
  

                                     (10) 

where l̂
b  denotes the neighbourhood of 

ib . 

Let Y  be the selected band subset, according to Ref. [27] we have  

2det( ) ({ } )Y m m YL Vol b =                                                     (11) 

where det( )YL is equal to the squared k-dimensional volume of the parallelepiped spanned by the { }m m Yb   

of B  corresponding bands in the subset Y , and k  is the cardinal number of the subset Y  .  

An example is shown in Fig. 3, where Y contains two selected bands 1mb and 2mb . If the band vectors 

are more orthogonal, their span volumes are larger which means the band vectors are more diverse. In 

contrast, parallel band vectors have lowest span volumes, hence they are less likely to be selected in the 

same subset. This is the most important property of DPP: the more the diversity of the bands is, the 

greater the probability appearing in the same subset of the two bands will be. More details will be 

described in the following subsection. 
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Figure 3: Geometry structure of pairwise bands. 

3.3 Search criterion 

In order to preserve the information of the original data, the maximization information criterion [5] is 

used. The information entropy of the m -th band, mb , is defined by: 

     
1

( ) ( ) log ( )
n

j j

m m m

j

H b p p
=

= −                                                   (12) 

where j  is the index of the pixel, n  represents the total number of pixels in each spectral band and 

( )j

mp  denotes the probability density function of j

mp .  

Let , (1 )i
m dp d q   represent the set of the adjacent pixels of i

mp where q  denotes the size of the 

neighbourhood. The information entropy of each image block is used for estimating the noise level of the 

neighborhood. The level of noise of i -th image block in m -th band is obtained as: 

, ,
1

( ) ( ) log ( )
q

i i i

i m m d m d

d

N b p p
=

= −                                             (13) 

If all the adjacent pixels of i

mp  have the same value, ( )i

i mN b  will reach the minimal value. Conversely, 

if the values of all the adjacent pixels of i

mp  are randomly generated, i.e. the image block around i

mp is 

noisy, ( )i

i mN b will achieve the maximum. Therefore, the smaller ( )i

i mN b is, the smoother the local block 

and the lower the noise level is. 

As suggested in [43-44], the range of values from minimum to 1.2 multiplied by the mean of each 

block noise are equally divided into 150 intervals. The number of image block noise falling into each 

interval is counted. The noise values of image blocks in the interval, which contains most image blocks, 

are used to calculate their mean as the estimation noise of the whole band. The noise level of m  -th band 

is represented by ( )mN b . By combining Eqs. (12) and (13) , the MIMN search criteria is derived as: 
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max

( )

( )

m

m
m

m

H b

N b



 =
                                                          (14) 

Equation (14) can be actually used to rank the suitability of each band. We call the above search 

criteria as the maximum (band) information and minimum (local) noise criterion, denoted by MIMN for 

short. 

3.4 The proposed MIMN-DPP band selection model 

In DPP, the cardinality of the band subset cannot be set in advance. To solve this problem, the k-DPP 

model proposed by Kulesza et al [29] is utilized with the cardinality set as k. When directly using the k-

DPP for band selection, however, it can only select a band subset of highest diversity, rather than good 

performance of data analysis i.e. classification. Besides, k-DPP has some random operations which may 

lead to the selection of different band subsets and instability of following on data classification.  

To solve the aforementioned two drawbacks of k-DPP, we combine the MIMN criterion with improved 

k-DPP to form our proposed band selection method, MIMN-DPP. The proposed method can not only 

select the optimal band subset of high diversity and good performance of data analysis but also mitigating 

the randomness of k-DPP for robust and stable data classification. In the following, we will detail the 

proposed MIMN-DPP band selection method in three parts, i.e. model construction, selection of 

eigenvector subset and selection of band subset , respectively. 

3.4.1 Model construction of MIMN-DPP 

The proposed MIMN-DPP model can be represented as: 

' 'ˆ

ˆ

ˆ
' '

,

det( )det( )
(1 )

det( ) det( )
( )

B B

YY

B B

B B

k k

k
L L Y Y

Y Y

LL
u

L L
Y u

= =

 + −=
                                     (15) 

where Y is the selected band subset with a cardinality of k ; 'Y  represents the cardinality of '
Y ; u is an 

adjusting parameter to balance the impact of the hyperspectral image information and its neighbour 

information. 
BL  and 

B̂
L  are  adjacency matrices whose entries are indexed by the corresponding bands of 
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hyperspectral image B  and corresponding neighbourhood information B̂ , respectively. Similarly, Y

BL  and 

Y

B
L  are submatrices of 

BL  and 
B̂

L , where their entries are indexed by the corresponding bands of Y . In 

addition, 
'Y

BL and 
'

ˆ
Y

B
L  are submatrices of 

BL and 
B̂

L respectively and their entries are indexed by the 

corresponding bands of '
Y .  

As seen in Eq. (15), our model can be regarded as a mixture of two k-DPP models, one is applied to the 

hyperspectral imaging and the other to its neighborhood. The proposed model is to select a band subset Y  

with higher diversity both in the hyperspectral image and its neighbourhood information. The higher 

value of Eq. (15) means that bands in the selected subset Y are of high diversity and low-redundancy. In 

addition, in combination with the MIMN criterion, bands in the selected subset Y  are of low noise in the 

local area for high smoothness or consistency accordingly. 

According to the inference of [27], the denominator of the first term of Eq. (15) can be expressed as  

'

'

det( ) 
= =

=  B

B n

S k n Sk

Y

Y

L                                                 (16) 

Similarly, the denominator of the second term of Eq. (15) can be expressed as: 

' ˆ
ˆ

ˆˆ'

det( ) B

nB
n SS kk

Y

Y

L 
==

=                                                        (17) 

The eigenvalue polynomial in Eq. (16) is denoted by ,
N

B ke  and {1,2,3, , }S l  is the index of 

eigenvalue subset { }B

n n S  . The cardinality of S is k . Similarly, the eigenvalue polynomial in Eq. (17) is 

represented as ˆ ,

N

B k
e  . The cardinality of Ŝ is k , too. 

The determinants det( )Y

BL  and ˆdet( )Y

B
L  can be written as: 

det( ) det( ) ( )
B

Y k

B LL L I Y= +                                                    (18) 

ˆˆdet( ) det( ) ( )
B

Y k

LB
L L I Y= +                                                      (19) 
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( )
B

k

L Y is a mixture of elementary DPPs [27] and it can be expressed as 

{1,2, , }

1

det( )


 

 = 
+  

B
S

B

Vk B

L n

S N n SBL I
 where  B

n
 is the eigenvalue of matrix 

BL . B

SV  is a set of orthonormal 

vectors, and 
B

SV is called elementary DPP. 

Substituting Eqs. (16)-(19) into Eq. (15), we have 
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Y 



= 

=

 

−
+ 

=  

 
  .                                                 (20) 

Eq. (20) is actually one part of the final expression of our MIMN-DPP model, from which we will 

select a band subset Y with diversity from perspective of the image information and its neighbour 

information. The higher value of Eq. (20) means that the selected band subset Y is of high diversity and 

low-redundancy. The other part of our MIMN-DPP model is to apply the  proposed MIMN criterion to 

the sampling process which will be introduced in Section 3.4.3. 

In the following, we will introduce an improved sampling method to tackle the problem of random 

operations in k-DPP for improving the robustness/stability of data classification, referring to reference 

[29]. Similar to the k-DPP, our method also contains two main modules: the first is to select the 

eigenvector subset according to its eigenvalues, and the second is to sample the band indices from the 

eigenvector subset. However, some improved adjustments are adopted for our algorithm. Detailed 

descriptions of these two main modules are given subsections 3.4.2 and 3.4.3 below. 

3.4.2 Selection of eigenvector subset 

Unlike the original k-DPP [29], firstly, our proposed MIMN-DPP method needs to sample band subset 

Y  from both matrices 
BL  and 

B̂
L  instead of a single matrix. Therefore, as shown in Step 2 of Algorithm 

#1, both matrices 
BL  and 

B̂
L  are decomposed to obtain the corresponding eigenvectors and eigenvalues. 

Two subsets of eigenvectors, S and Ŝ , will be selected according to their corresponding eigenvalues 
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{ }B

n  and 
ˆ

{ }B

n , {1,2,3, , }n l . For selecting band subset, the information of two aspects S and Ŝ  are 

combined to determine the selected bands.  

Denote S  as the subset of eigenvector indexes where S k= . Assume that '
S n S = , so ' 1S k= − . 

The probability of selecting the k -th eigenvector index Bn  to add to S  is given by [29]: 

'

' ''

1
, 1

, ,1

( )
nB
B kB Bn

nn nn
n SB k B kS k

e
n S

e e

  
−
−

= −

  = =                                                    (21) 

Similarly, the probability of selecting the k-th eigenvector index n of the adjacent matrix 
B̂

L  to add to 

Ŝ  is given by:          

1
ˆˆ , 1

ˆ ,

ˆ( )
n

B kB

n n

B k

e
n S

e


−
−  =                                                         (22) 

Details of implementation are summarized in Algorithm 1. After some iterations, we can choose two 

eigenvector index subsets S and Ŝ with cardinality k . The eigenvector subsets of 
BL  and 

B̂
L  can be 

represented as { }B

n n S   and 
ˆ

ˆ{ }B

n n S



 respectively.    

3.4.3 Selection of band subset  

In Algorithm #2, a band subset Y of low-redundancy and high-diversity is selected based on 

eigenvector subsets  { }B

n n S   and 
ˆ

ˆ{ }B

n n S



. In the meantime, to select bands with high performance in data 

analysis, the MIMN criterion is applied in the process as detailed below.  

Let the band subset '
Y  with cardinality 1k −  satisfy '

Y i Y = . The probability of selecting band i  as 

the k -th band to add to Y can be defined as: 
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                                                  (23) 

where 
ie  is a column vector whose i -th element is one and all others are zero. The higher the probability 

ˆ,
( )

B B
i  is, more likely the band i  is selected for adding to Y .  
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Algorithm 1: Sampling eigenvector subset S and Ŝ  

Input: 

B : hyperspectral image 

B̂ : neighbour information 
k : number of selected eigenvectors 

Output: 

S , Ŝ : index of selected eigenvectors 
Step 1: Construct adjacency matrix 

BL  with Eq. (8) 

Construct adjacency matrix 
B̂

L  with Eq. (10) 

Step 2: Eigen decomposition: 

1

ˆ ˆ
ˆ 1

{ , }

{ , }

B B l

B n n n

B B l

n n nB

L

L

 

 
=

=

→

→
 

Step 3: ˆ,S S  ,
B

k k ,
B̂

k k  

Step 4: for , ,2,1n l= do 

if   0
B

k =  then 

break 
end if 

if 
1

, 1

,

[0,1]
n

B kB

n n

B k

e
u U

e


−
−  then 

{ }, 1B BS S n k k   −  

end if 
end for 

Step 5: for , ,2,1n l= do 

if   ˆ 0
B

k =  then 

break 
end if 

if 
1

ˆˆ , 1

ˆ ,

[0,1]
n

B kB

n n

B k

e
u U

e


−
− then 

ˆ ˆ
ˆ ˆ { }, 1

B B
S S n k k   −  

end if 
end for 

Output: S , Ŝ  

 

To preserve the diversity of band subset, minor adjustments are adopted according to [29] rather than 

selecting the band directly based on Eq. (23). This is clearly defined in Step 4 of Algorithm #2.  

In addition, when integrating the MIMN search criteria into the sampling process, the Step 4 of 

Algorithm #2 can sample the band that differs greatly from the selected band subset to maximize the 

diversity. We repeat this step   times to find   candidate bands to construct a temporary subset temp
Y . 

From temp
Y , we select the band that meets the maximum search criteria m  as defined in Eq. (14). This is 

to balance between diversity and performance of data analysis. Too large value of   will cause those 

bands with large m  to be always selected, resulting in a lack of diversity. When the value of   is too 
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large, it will lead to the band selection biased to those with large m , resulting in poor diversity of 

selected bands. Meanwhile, the larger the number of iterations   is, the more bands the subset temp
Y  will 

have. In each iteration, bands with a larger m is more likely selected from the subset temp
Y . Therefore, the 

band to be selected will gradually focus on the one with a large m . On the contrary, a too small   will 

result in a lack of high performance of data analysis. If the number of iterations  is too small, the 

number of bands in the subset temp
Y  will be small, hence the band with a large m  may be excluded and 

the high-performance band cannot be selected. We will discuss the impact of the parameter   in the 

following experiment Section 4.3. 

Algorithm 2: Select band subset  
Input: 

ˆ,S S  : index of selected eigenvectors 
  : number of iterations 

ˆ
1 1{ } ,{ }B l B l

n n n n = =  :eigenvectors of 
BL   and

B̂
L     

Output: 

Y : index of selected bands 
Step 1: Calculate 1{ }l

m m
 =   of all bands with equation (14) 

Step 2: 
ˆ ˆ

ˆ ˆ{ } , { }B B B B

S n n S nS n S
V V  

    

Step 3: Y    

Step 4: While 
ˆ

ˆ0, 0B B

S S
V V   do 

Calculate the probability ˆ,
{ ( )}l

iB B
i of bands with equation 

if 0    then 

if ˆ,
1

[0,1] ( )
g

B B
i

u U i
=

    then 

{ }
temp temp

Y Y g    

end if 
1  −   

end if 
max ( ( ))

i temp
Y Y Y    

ˆ ˆ
ˆ ˆ,B B B B

S S S S
V V V V⊥ ⊥

   orthonormal basis for subspace of 
ˆ

ˆ,B B

S S
V V  orthogonal to 

ie   

end while 
Output: Y   

 

4. Experimental Results and Discussions 

In this section, three well-known hyperspectral image datasets are used to evaluate the performance of 

the proposed algorithm. Eight state-of-the-art approaches including k-DPP [29], MVPCA [31], MIC [32], 
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Lscore [33], WaLuMI [40], MIMR-CSA [5], DSEBS [49] and SOP-SRL [48] are taken for benchmarking. 

We construct a 5 nearest neighbour graph for Lscore and using Cosine to calculate weights for each edge 

in the graph. As suggested in [5], the number of antibodies and cloned antibodies are set as 5 and 2500 

respectively in MIMR-CSA. Descriptions of the datasets and experimental results are discussed as 

follows.  

4.1. Hyperspectral Datasets 

The three HSI datasets used in our experiments include Indian Pines, Pavia University dataset, and 

Salinas. The Indian Pines dataset was obtained by the Airborne Visible/Infrared Imaging Spectrometer 

sensor (AVIRIS) in 1992 [36]. The image covers Indian Pines test site in North-western Indiana. It has 

220 spectral bands within the spectrum range of 0.2-2.4um. After removing 20 water absorption spectral 

bands [104-108] and [150-163], the remaining 200 spectral bands are used for classification. It has 

145 145  spatial pixels, including 10366 pixels labelled in 16 classes as the ground truth.  

Table 1: The numbers of training and test samples for each category of the Indian Pines image 

Class Training Test Samples 

1. Alfalfa 2 52 54 

2. Corn-notill 71 1363 1434 

3. Corn- mintill 42 792 834 

4. Corn 12 222 234 

5. Grass- pasture 24 473 497 

6. Grass-trees 37 710 747 

7. Grass-pas- turemowed 2 24 26 

8. Hay- windrowed 24 465 489 

9. Oats 2 18 20 

10. Soybean- notill 49 919 968 

11. Soybean- mintill 122 2346 2468 

12. Soybean- clean 30 584 614 

13. Wheat 10 202 212 

14. Woods 63 1231 1294 

15. Building- grass-trees 19 361 380 

16. Stone- steel-towers 5 90 95 

total 514 9852 10366 

 

The Pavia University dataset was acquired using the Reflective Optics System Imaging Spectrometer 

optical sensor covering the Pavia University, Italy [37]. It has 115 spectral bands within the spectrum 
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range of 0.43-0.86 um . After removing 12 noisy spectral bands in total 103 bands are remained in the 

dataset. The spatial dimension is 610 340  pixels, in which 42776 pixels are labelled in 9 classes as the 

ground truth. 

Table 2: The numbers of training and test samples for each category of the Pavia university image 

Class Training Test Samples 

1. Asphalt 66 6565 6631 

2. Meadows 186 18463 18649 

3. Gravel 21 2078 2099 

4. Trees 31 3033 3064 

5. Painted metal sheets 13 1332 1345 

6. Bare soil 50 4979 5029 

7. Bitumen 13 1317 1330 

8. Self-blocking bricks 37 3645 3682 

9. Shadows 10 937 947 

Total 427 42349 42776 

 

The Salinas dataset was also acquired by the AVIRIS sensor over Salinas Valley, California [37]. After 

eliminating 20 water absorption bands, 200 spectral bands are remained in the dataset. It contains 

512 214  spatial pixels, in which 54129 pixels are labelled in 16 classes as the ground truth.  

Table 3: The numbers of training and test samples for each category of the Salinas image 

Class Training Test Samples 

1.Brocoli_green_weeds_1 20 1989 2009 

2.Brocoli_green_weeds_2 37 3689 3726 

3.Fallow 19 1957 1976 

4.Fallow_rough_plow 14 1380 1394 

5.Fallow_smooth 26 2652 2678 

6.Stubble 39 3920 3959 

7.Celery 35 3544 3579 

8.Grapes_untrained 112 11159 11271 

9.Soil_vinyard_develop 62 6141 6203 

10.Corn_senesced_green 32 3246 3278 

11.Lettuce_romaine_4wk 10 1058 1068 

12.Lettuce_romaine_5w 19 1908 1927 

13.Lettuce_romaine_6wk 9 907 916 

14.Lettuce_romaine_7wk 10 1060 1070 

15.Vinyard_untrained 72 7196 7268 

16.Vinyard_vertical 18 1789 1807 

Total 534 53595 54129 
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4.2. Experimental parameter settings 

In this section, we will introduce the parameter settings. The weight parameter u  is set to be 0.5 

empirically. The size of the neighbour domain, d , is set to 3 for Indian Pines dataset, and 5 for both 

Pavia University and Salinas datasets. The number of iterations  will be discussed in Section 4.3. The 

number of selected bands varies from 10 to 100 with an interval of 10. The support vector machine (SVM) 

classifier with the radial-basis-function (RBF) kernel [34] is used for data classification to verify the 

performance of the selected band subsets. For SVM, the parameter C and   are determined by how-

many-folds cross validation. In Indian Pines dataset, about 5% samples are randomly selected for training 

and the remaining for testing. In Pavia University and Salinas datasets, about 1% samples are randomly 

selected for training and the rest for validation. 

 The number of training samples and test samples for each labelled class of the three datasets are shown 

in Tables 1-3, respectively. All experiments are repeated 10 times with the average classification results 

used for comparison. The results are quantitatively evaluated in terms of three metrics, i.e. overall 

accuracy (OA), average accuracy (AA) and kappa coefficient [35]. 

4.3 Analysis of the number of iterations    

The number of iterations,   , is an important parameter in the proposed  MIMN-DPP method as it 

balances the diversity and classification performance of the selected band subset. For credible evaluation, 

we repeat 20 times for each   in band selection, where each of the selected band subsets is tested 10 

times to obtain the average classification accuracy for comparison. The number of selected bands is set to 

20 for the Indian Pines and 10 for both the Pavia University and Salinas datasets. Fig. 4 shows the 

obtained average classification accuracy with the parameter   varying from 2 to 20. When   is set to be 

1, the criterion MIMN becomes void hence the model degrades to a double-DPP model. As seen from Fig. 

4, for the Indian Pines dataset the optimal   is 3, whilst for both the Pavia University and Salinas 

datasets this becomes 5. Under this optimal  , the proposed MIMN-DPP is able to select the band 

subsets with high diversity and high accuracy of classification. 
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4.4. Analysis of the selected band subset 

In this section, ten bands on each dataset selected using the proposed MIMN-DPP algorithm are 

analyzed in detail. For the Indian Pines dataset, the indexes of selected bands are  2, 7, 25, 34, 36, 44, 64, 

111, 120 and 175. For Pavia University, these are  21, 23, 43, 48, 69, 82, 91, 94, 100 and 103. For Salinas, 

these become 14, 22, 31, 40, 48, 54, 95, 148, 169 and 174.  

Selecting a band subset with high diversity and low redundancy is the most important characteristic of 

our MIMN-DPP algorithm. We construct the similarity matrices based on minimum mutual information 

to ensure the diversity of selected band subsets as shown in Fig. 5. In HSI, the adjacent bands are often 

highly correlated and of high redundancy. Therefore, selected bands must be of low redundancy to 

provide supplementary information from each other. 

 

 

 

 

 

 

 

 

Figure 5: Similarity matrix of selected bands with mutual information on (a) Indian Pines image (b) Pavia University image and 

(c) Salinas image. 

Figure 4: The parameter  analysis of MIMN-DPP on the datasets of  Indian Pines, Pavia University and 

Salinas image. 

(a) (b) (c) 



22 
 

As seen in Fig. 5, the selected bands have good coverage in terms of wide spectrum range and low 

similarity, thus high diversity information can be maintained from the selected bands. Besides, low 

mutual information with others means that the selected bands are less correlated to each other hence the 

low-redundancy among the selected bands.  

According to our MIMN criterion, we calculate the MIMN value for each band on the three datasets 

and plot the results in Fig. 6. As seen, most of the selected bands have the highest MIMN value in the 

neighbouring bands. To this end, they carry more information and relatively lower noise. Bands indexed 

in ranges of 100-108,140-160 and180-200 in Fig. 6(a) seem to have lower MIMN values, and this 

indicates why they are not selected. For the Pavia University dataset, the band-based MIMN value is 

shown in Fig. 6(b). The bands with higher MIMN values are mainly in the ranges of 80-103, where half 

of bands are selected. On the other hand, bands 1-10 are seldom selected due to their lower MIMN values. 

For the Salinas in Fig. 6(c), the bands with higher MIMN values dominant mainly in the range of 16-76 

and 160-180 where most selected bands fall within. Although a small number of bands with relatively 

low MIMN value are selected in Fig. 6, this is due to that our band selection considers both diversity and 

high-performance of the selected bands. 

 

 

In Fig. 7, we plot the average spectral profiles for each labelled class for the three datasets, along with 

the selected bands for analysis. According to [5], spectrums with large interval among classes mean that 

Figure 6: MIMN value of the selected subset of ten bands on (a) Indian Pines image (b) Pavia University image and (c) 

Salinas image. 

(c) (b) (a) 
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they have highly discriminative ability for these classes. As shown in Fig. 7(a), the bands in 1-50, 60-70 

and 110-130 for Indian Pines seem to have better discriminative ability as the intensity is large in these 

spectral ranges. As seen, most of selected bands cover these regions, indicating the good performance of 

data classification as well. Similar observations can also be found in Fig. 7(b) and Fig. 7(c) for the other 

two datasets. 

 

 

4.5. Computation time analysis and comparison  

Let N , k  and n denote respectively the number of total bands, the number of selected bands, and the 

number of similarity kernel matrices. In Algorithm #1, the computation complexity for Eigen-

decomposition of n similarity kernel matrices is 3( )nN . As suggested in [27], the computation 

complexity for the remaining part of Algorithm #1 is 2
O(nNk ) . In addition, Algorithm #2 also needs 

)3Ο( Nk , where   is the number of iterations. In total, the computational complexity for the search part 

of our algorithm becomes 3 2 )3
O(nN )+O(nNk )+Ο( Nk , where both n and   are scalars and their 

values are quite small (i.e. N  is set to 2, and   is less than 5 in our paper). Therefore, the overall 

computation complexity can be simplified to 3 3( ) ( )N O Nk + . As N  is a fixed scalar indicating the total 

number of bands, only the parameter k may affect the search time for a given dataset. 

For large k , the computational complexity of the algorithm will grow rapidly. However, in the band 

selection task, these number are generally small, especially for k . For the three datasets, the table of 

(c) (b) (a) 

Figure 7: Spectral profiles of different land-cover classes for the three datasets of (a) Indian Pines, 16 classes, (b) Pavia 

University, 9 classes and (c) Salinas, 16 classes. 
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MIMN evaluation criteria can be pre-established. To speed up the process, the similarity matrices with 

mutual information can also be pre-calculated and stored in lookup tables. 

All our experiments were conducted on Matlab 2016b using a computer with Inter CPU E5-

1620@3.5GHz and 32GB RAM. It should be noted that The MIMN-DPP algorithm obtains the value of 

m  from the pre-established lookup table. Therefore, when calculating the running time of the MIMN-

DPP, the time for establishing the lookup table is not added.  

In Fig. 8, the running times of MIMN-DPP and other algorithms on Indian Pines are shown with the 

number of selected spectral bands increasing from 10 to 150. As seen from Fig. 8, the computation 

complexity of our algorithm is only affected by the parameter k ,  which is the number of selected bands. 

The running time for MIMN-DPP and k-DPP is among the least, which increases slightly when selecting 

more bands. For MVPCA, MIC, Lscore, WaLuMI, SOP-SRL and DSEBS, however, the running time 

does not change significantly with the increasing number of selected bands. The running time of our 

algorithm is quite low when the parameter k  is less than 70. Although it increases with the increasing 

number of selected bands k , it remains low even when 100k  . Since the value of k  in practical 

applications is far below 100, our algorithm is advantageous in time with a small k . MIMN-DPP takes 

more time than k-DPP due to the extra time needed to select band subset with MIMN criteria.  

 

Figure 8: Running time comparisons of MIMN-DPP and other methods on Indian Pines. 

4.6. Classification performance 

In this subsection, the classification accuracy is used to evaluate the performance of the selected band 

subsets on Indian Pines, Pavia University and Salinas datasets. Due to the fact that SOP-SRL, k-DPP and 
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MIMN-DPP are random algorithm, to obtain credible result, we repeat 10 runs of band selection 

algorithm, where the number of selected bands increases from 10 to 100 on three datasets. For each 

selected band subset, the classification of HSI using SVM is implemented 10 times [34], where the 

average classification accuracy in terms of OA is obtained and compared in Fig. 9.  

As seen in Fig. 9, for all the three datasets, MIMN-DPP have outperformed all other state-of-the-art 

approaches, which have shown the superiority of the proposed algorithm. For k-DPP, it also produces 

quite good results in all the three datasets, although not the best, this validates again the advantage of the 

diversity criterion in band selection. Although MVPCA produces quite good results in Pavia University 

and Salinas just after MIMN-DPP, the result on Indiana Pines is quite poor, indicating the instability of 

the approach. WaLuMI and MIMR-CSA seem to supplement each other to some extent, where good 

results from one come with relatively poor results from another. MIC and Lscore are among the worst in 

the group, though Lscore may have very good results even beat all others when the number of selected 

bands is extremely, i.e. over 80. Compared to the more recent methods, such as SOP-SRL and DSEBS, 

our method is more effective in low-dimensional situations. When the selected band exceeds 60, our 

method still surpasses other methods in most cases, although the improvement of performance becomes 

less significant. This is because, when the number of bands leeps increasing, the accuracy of the 

classification is close to saturation. 

 

 

 

(c) (b) (a) 

Figure 9: Classification accuracy comparisons of MIMN-DPP and k-DPP on three datasets including (a) Indian Pines, (b) 

Pavia University and (c) Salinas. 
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In Tables 4-6, MIMN-DPP is compared with the original k-DPP and the DPP-double model without 

the MIMN criterion. This is to validate how different key components and improvements can affect the 

classification accuracy on the three datasets. The number of selected bands is set to 20 for Indian Pines 

and 10 for both Pavia University and Salinas datasets.  

As seen in Table 4, compared with k-DPP, DPP-double improves 0.65%, 1.18% and 0.64% in terms of 

OA, AA and Kappa, respectively. Meanwhile, the standard deviations for the three metrics all become 

lower, indicating a more robust solution from DPP-double than k-DPP. With the integration of the MIMN 

criterion, further improvements are achieved in terms of further increased OA, AA and Kappa of 1.58%, 

1.84% and 1.82% respectively as well as reduced standard deviations. This shows again the superiority of 

the MIMN-DPP approach for producing the robust solution in band selection.  

Table 4: Results compared on the Indian Pines dataset 

method k-DPP DPP-double MIMN-DPP 
OA(%) 74.17±1.51 74.72±1.10 75.75±0.95 

AA(%) 68.91±1.76 70.07±1.52 70.75±1.47 

Kappa(%) 70.38±1.77 71.02±1.28 72.20±1.10 

 

Table 5: Results compared on Pavia University dataset 

method k-DPP DPP-double MIMN-DPP 
OA(%) 83.99±1.40 84.76±1.26 85.59±0.97 

AA(%) 79.30±2.12 80.57±1.52 81.00±1.09 

Kappa(%) 78.41±1.91 79.46±1.74 80.59±1.34 

 

Table 6: Results compared on the Salinas dataset 

method k-DPP DPP-double MIMN-DPP 
OA(%) 88.13±0.91 88.29±0.77 88.75±0.40 

AA(%) 91.81±0.62 92.06±0.50 92.34±0.26 

Kappa(%) 86.74±1.02 86.91±0.86 87.43±0.45 

 

Similar observations can also be made from Table 5 and Table 6, which validates again the robustness 

of the proposed MIMN-DPP approach in another two datasets, i.e. Pavia University and Salinas. To 

intuitively show the advantages of MIMN-DPP in data classification and stableness, box-plots of the 

results are illustrated in Fig. 10 in comparison to k-DPP and MIMN-DPP. As seen, the median 

classification accuracy of MIMN-DPP is much higher than that of k-DPP which indicates MIMN-DPP is 
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generally better than k-DPP. In addition, MIMN-DPP has a smaller data fluctuation range, meaning that 

the result is more stable.  

MIMN-DPP is superior to k-DPP for two main reasons: One is the neighbourhood information used to 

construct adjacency matrix as a measure of band redundancy, which makes redundancy measure more 

accurate. The other is that the MIMN criterion integrated in the sampling process, which can avoid 

selecting bands with low information and high noise. What’s more, it can also effectively mitigate the 

randomness of the original k-DPP. 

 

 

To further demonstrate the advantages of MIMN-DPP in selecting low-dimension band subset, several 

band subsets selected by different methods are tested, as shown in Tables 7-9. Since SOP-SRL, k-DPP 

and MIMN-DPP are randomness method, we independently select ten band subsets and record a subset 

whose classification accuracy OA is closest to the mean. As shown in Tables 7-9, among all algorithms, 

Lscore and MIC obtain the worst results. MIMN-DPP and k-DPP generate better results as the selected 

band subsets are dispersed evenly and contain diverse information in different band wavelengths.  

Compared to other methods, the band subset selected by MIMN-DPP can obtain better classification in 

most regions of different classes. 

In summary, MIMN-DPP can be effectively applied to band selection for the reason that it is able to 

select a band subset of high diversity, low redundancy, and good performance in data classification. 

Figure 10: Comparing MIMN-DPP and k-DPP with OA on three datasets of (a) Indian Pines, (b) Pavia University and (c) 

Salinas. 

(c) (b) (a) 
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Table 7: Classification accuracy of the band set on the Indian Pines image selected by MVPCA, WaLuMI, MIMR-CSA, 

Lscore, MIC, DSEBS, SOP-SRL, k-DPP and the Proposed algorithm 

Class 
MVPCA 

[31] 

WaLuMI 

[40] 

MIMR-CSA 

[5] 

Lscore 

[33] 

MIC 

[32] 

DSEBS 

[49] 

SOP-SRL 

[48] 

k-DPP 

[29] 
Proposed 

1. 
26.15 

±19.34 
33.46 

±21.70 
40.38 

±15.44 

26.54 
±20.83 

4.62 
±7.60 

45.19 

±21.93 
25.77 

±19.51 
34.62 

±19.92 
36.54 

±22.06 

2. 
44.87 
±8.46 

67.45 
±4.71 

68.03 
±3.62 

53.97 
±4.92 

34.13 
±4.78 

67.29 
±3.25 

74.97 

±2.93 

69.51 
±4.18 

74.01 
±1.87 

3. 
38.60 
±4.87 

53.33 
±5.84 

56.67 
±7.34 

31.72 
±6.28 

44.52 
±4.16 

57.88 
±5.31 

47.68 
±6.71 

55.28 
±5.10 

58.62 

±5.15 

4. 
35.23 
±8.07 

43.92 
±12.90 

49.73 
±11.46 

41.49 
±8.26 

10.14 
±5.96 

46.31 
±12.48 

52.30 
±9.55 

40.36 
±10.54 

54.14 

±13.74 

5. 
87.99 
±3.90 

84.19 
±3.59 

90.02 

±2.46 

78.73 
±5.37 

31.06 
±16.11 

85.05 
±3.04 

85.64 
±3.25 

82.52 
±5.74 

83.32 
±4.01 

6. 
87.28 
±2.87 

88.31 
±2.63 

92.77 

±2.81 

90.41 
±3.31 

82.32 
±4.25 

87.10 
±2.89 

89.27 
±1.68 

88.55 
±1.94 

90.65 
±3.61 

7. 
68.75 

±24.00 
84.58 

±8.11 

75.00 
±15.47 

41.67 
±22.05 

2.92 
±5.57 

75.42 
±18.16 

73.75 
±15.35 

77.92 
±19.15 

74.17 
±12.08 

8. 
96.62 
±3.18 

96.45 
±2.15 

97.08 

±1.70 

92.17 
±4.39 

95.96 
±3.18 

93.85 
±2.99 

96.11 
±2.22 

96.60 
±2.10 

96.17 
±2.05 

9. 
18.89 

±13.91 
48.89 

±23.25 
61.67 

±27.27 
21.67 

±16.45 
7.78 

±11.17 
48.89 

±13.81 
48.33 

±13.62 
52.22 

±19.98 
65.00 

±20.63 

10. 
49.55 

±11.68 
67.12 

±4.14 

55.13 
±7.74 

55.14 
±6.65 

37.26 
±6.66 

63.00 
±3.61 

62.72 
±3.19 

62.73 
±5.35 

60.96 
±6.42 

11. 
80.46 

±3.41 

79.13 
±3.99 

77.81 
±2.91 

73.37 
±4.39 

70.75 
±4.40 

77.58 
±3.68 

78.62 
±2.87 

78.37 
±4.04 

78.96 
±2.90 

12. 
38.07 
±7.21 

57.35 
±10.40 

53.42 
±5.44 

27.00 
±6.08 

42.38 
±4.68 

63.12 

±6.38 
37.65 

±16.12 
56.11 
±6.54 

60.00 
±7.02 

13. 
94.90 
±4.19 

95.74 
±2.38 

96.88 
±1.48 

90.15 
±4.51 

67.77 
±15.93 

96.73 
±1.93 

95.50 
±3.51 

98.02 

±1.71 

96.83 
±1.78 

14. 
96.01 

±1.54 

94.11 
±2.42 

95.02 
±1.64 

93.95 
±1.82 

92.47 
±3.90 

93.40 
±2.16 

94.82 
±1.89 

93.24 
±2.75 

93.35 
±2.46 

15. 
17.67 
±6.18 

33.88 
±5.77 

37.12 
±4.24 

28.25 
±5.29 

14.93 
±6.31 

32.11 
±6.50 

38.48 
±7.36 

37.31 
±5.12 

41.50 

±7.10 

16. 
76.67 
±4.38 

80.44 
±7.93 

79.11 
±7.84 

78.33 
±10.17 

51.00 
±20.65 

81.11 
±4.48 

83.33 

±5.88 

82.89 
±2.68 

80.56 
±7.17 

OA 
(%) 

66.85 
±1.05 

74.24 
±0.86 

73.96 
±0.76 

65.43 
±1.05 

57.32 
±0.96 

73.97 
±0.91 

73.65 
±1.27 

73.96 
±0.68 

75.69 

±1.05 

AA 
(%) 

59.86 
±2.72 

69.27 
±2.20 

70.36 
±2.63 

57.78 
±2.03 

43.12 
±3.44 

69.63 
±2.66 

67.81 
±2.86 

69.14 
±2.22 

71.55 

±1.91 

Kappa 
(%) 

61.54 
±1.37 

70.43 
±1.00 

70.15 
±0.92 

60.21 
±1.14 

50.44 
±1.25 

70.17 
±0.98 

69.72 
±1.55 

70.13 
±0.86 

72.15 

±1.21 

 

Table 8: Classification accuracy of the band set on the Pavia university image selected by MVPCA, WaLuMI, MIMR-CSA, 

Lscore, MIC, DSEBS, SOP-SRL, k-DPP and the Proposed algorithm 

Class 
MVPCA 

[31] 

WaLuMI 

[40] 

MIMR-CSA 

[5] 

Lscore 

[33] 

MIC 

[32] 

DSEBS 

[49] 

SOP-SRL 

[48] 

k-DPP 

[29] 
Proposed 

1.  
88.51 

±4.31 

85.13 
±1.95 

87.28 
±5.39 

86.05 
±4.22 

74.07 
±3.36 

84.68 
±2.45 

85.19 
±2.34 

83.99 
±1.72 

85.81 
±3.25 

2. 
95.27 
±1.15 

95.19 
±1.61 

95.27 
±1.62 

95.52 

±2.73 

94.79 
±2.09 

93.82 
±2.56 

95.06 
±2.41 

93.96 
±1.17 

94.56 
±2.53 

3.  
41.15 

±12.73 
55.24 

±13.79 
49.38 

±12.45 
23.93 

±11.75 
16.17 
±8.56 

48.45 
±9.33 

54.67 
±11.77 

56.18 
±8.18 

64.56 

±7.48 

4.  
79.63 
±4.00 

82.61 

±3.65 

80.16 
±6.68 

63.70 
±8.33 

57.80 
±6.10 

74.86 
±4.91 

80.56 
±5.29 

80.76 
±4.03 

78.85 
±3.87 

5.  
98.00 
±1.07 

99.15 

±0.19 

97.86 
±0.77 

98.30 
±0.91 

97.66 
±0.79 

97.64 
±3.97 

97.43 
±4.39 

98.85 
±0.35 

99.03 
±0.23 
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6.  
59.40 
±8.08 

49.86 
±8.16 

84.80 

±6.11 

27.44 
±9.34 

14.03 
±1.95 

43.67 
±9.97 

46.53 
±4.39 

55.25 
±7.38 

67.72 
±3.82 

7.  
23.08 

±24.82 
65.96 

±11.50 

27.05 
±25.33 

35.70 
±30.34 

8.22 
±12.45 

70.06 
±4.90 

69.94 
±10.17 

67.51 
±10.86 

61.21 
±23.33 

8. 
80.03 
±8.88 

78.71 
±5.04 

77.63 
±6.15 

81.98 

±8.56 

79.94 
±7.86 

78.12 
±5.14 

79.30 
±5.03 

80.00 
±5.89 

80.65 
±5.21 

9.  
99.04 
±0.05 

99.81 
±0.14 

99.86 
±0.22 

99.87 
±0.08 

82.15 
±7.35 

99.56 
±0.31 

99.49 
±0.27 

99.88 

±0.09 

99.88 

±0.11 

OA 
(%) 

82.86 
±0.91 

83.34 
±0.68 

84.84 
±0.54 

77.42 
±0.74 

71.42 
±0.67 

81.08 
±1.05 

82.84 
±0.87 

83.32 
±0.87 

85.47 

±0.99 

AA 
(%) 

73.89 
±3.28 

79.08 
±1.93 

76.59 
±2.76 

68.05 
±4.23 

58.31 
±1.83 

76.76 
±1.79 

78.69 
±1.73 

79.60 
±1.56 

81.36 

±2.35 

Kappa 
(%) 

76.78 
±1.37 

77.43 
±0.99 

79.62 
±0.79 

68.73 
±1.39 

59.88 
±0.77 

74.31 
±1.47 

76.73 
±1.05 

77.53 
±1.13 

80.50 

±1.24 

 
 
 

Table 9: Classification accuracy of the band set on the Salinas image selected by MVPCA, WaLuMI, MIMR-CSA, Lscore, 

MIC, DSEBS, SOP-SRL, k-DPP and the Proposed algorithm  

 

Class 
MVPCA 

[31] 

WaLuMI 

[40] 

MIMR-CSA 

[5] 

Lscore 

[33] 

MIC 

[32] 

DSEBS 

[49] 

SOP-SRL 

[48] 

k-DPP 

[29] 
Proposed 

1. 
95.87 
±2.18 

97.78 

±1.33 

97.33 
±1.03 

93.12 
±4.04 

94.20 
±2.35 

94.09 
±5.06 

97.22 
±1.34 

95.48 
±3.95 

96.23 
±1.83 

2. 
96.47 
±1.50 

99.51 

±0.36 

98.34 
±1.13 

92.32 
±1.82 

98.65 
±0.70 

96.99 
±2.46 

98.92 
±0.87 

95.98 
±2.05 

98.47 
±1.55 

3. 
96.43 

±2.61 

93.79 
±3.43 

90.82 
±4.29 

77.18 
±8.15 

63.06 
±7.28 

90.31 
±5.34 

92.03 
±5.79 

96.23 
±3.40 

95.99 
±2.32 

4. 
99.03 

±1.11 

96.72 
±4.98 

98.68 
±1.32 

98.45 
±1.57 

96.72 
±2.89 

98.42 
±1.58 

98.51 
±1.50 

98.13 
±1.43 

98.85 
±1.66 

5. 
95.51 
±2.98 

95.94 
±1.48 

92.88 
±3.70 

91.60 
±3.83 

78.64 
±4.81 

96.95 
±1.17 

95.42 
±1.85 

97.53 

±0.66 

96.34 
±1.41 

6. 
97.85 
±1.05 

99.29 
±0.60 

98.98 
±1.14 

96.66 
±2.04 

97.56 
±1.24 

99.10 
±0.54 

99.41 

±0.25 

98.13 
±0.98 

99.13 
±0.53 

7. 
98.97 
±0.37 

99.31 

±0.21 

99.00 
±0.27 

94.41 
±1.72 

98.06 
±1.43 

98.81 
±1.11 

99.14 
±0.27 

98.55 
±1.11 

99.01 
±0.72 

8. 
86.64 

±2.42 

82.71 
±4.01 

79.99 
±4.66 

80.89 
±6.55 

79.39 
±5.96 

83.35 
±3.37 

82.74 
±5.04 

85.34 
±4.65 

84.42 
±2.75 

9. 
97.89 
±0.82 

97.66 
±0.99 

96.28 
±1.59 

94.44 
±2.02 

94.57 
±4.76 

99.13 

±0.81 

99.13 

±0.79 

98.89 
±1.03 

97.47 
±1.40 

10. 
84.46 
±4.06 

85.94 
±3.10 

80.37 
±5.95 

59.98 
±1.90 

83.11 
±3.98 

82.27 
±4.53 

85.10 
±3.72 

84.40 
±3.99 

87.08 

±3.38 

11. 
79.11 
±3.62 

78.61 
±6.94 

68.12 
±11.38 

56.68 
±21.30 

21.97±1
7.28 

85.93 
±4.57 

88.14 

±4.68 
85.04 
±3.93 

87.26 
±5.42 

12. 
93.28 
±4.14 

98.01 
±1.16 

98.92 
±0.85 

38.76 
±12.47 

83.04 
±5.64 

98.14 
±2.07 

97.94 
±2.01 

92.62 
±7.69 

99.56 

±0.46 

13. 
97.56 

±1.95 

96.41 
±2.99 

97.29 
±1.27 

87.68 
±5.98 

88.51 
±4.27 

93.74 
±4.65 

95.95 
±4.70 

94.31 
±6.94 

97.54 
±1.30 

14. 
88.20 
±5.71 

90.81 
±2.30 

91.76 
±3.78 

75.50 
±7.54 

77.77 
±3.32 

90.35 
±5.08 

91.61 

±2.01 
90.00 
±3.80 

91.06 
±3.92 

15. 
56.24 
±5.65 

58.75 
±6.77 

54.86 
±6.00 

35.19 
±13.92 

45.57 
±8.93 

59.89 
±5.05 

55.66 
±8.72 

57.10 
±6.78 

61.88 

±4.06 

16. 
89.11 
±4.50 

95.18 

±1.67 

93.16 
±4.59 

63.95 
±6.47 

85.40±2.
02 

94.02 
±1.97 

95.26 
±3.69 

90.59 
±6.69 

93.84 
±4.34 

OA (%) 
87.83 
±0.56 

88.07 
±0.68 

85.92 
±0.53 

76.63 
±1.26 

80.39±1.
05 

87.97 
±0.74 

87.86 
±1.40 

87.92 
±0.80 

89.09 

±0.54 

AA (%) 
90.79 
±0.66 

91.65 
±0.86 

89.80 
±0.93 

77.30 
±2.38 

80.39±1.
08 

91.34 
±0.73 

92.01 
±1.17 

91.14 
±0.93 

92.76 

±0.54 

Kappa 
(%) 

86.39 
±0.63 

86.67 
±0.77 

84.27 
±0.58 

73.76 
±1.50 

78.05±1.
13 

86.56 
±0.84 

86.43 
±1.58 

86.49 
±0.89 

87.82 

±0.60 
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5. Conclusion 

In this paper, a new unsupervised algorithm, MIMN-DPP, is proposed for band selection in 

hyperspectral images. First, by combining the hyperspectral image and its neighbour information, a 

double graph model is constructed to capture the correlation between bands. A new MIMN criterion is 

introduced to evaluate the spectral band performance, aiming to maximize the band information and 

minimize the local noise. Finally, combining with MIMN criterion, the original k-DPP is improved to 

select a band subset of high diversity and low-redundancy. Comparing with the original k-DPP, our 

approach has two advantages. First, MIMN-DPP contists of  a double graph structure for better use of the 

spatial information and improved accuracy of the measurement. Second, combining the search criteria of 

MIMN has helped MIMN-DPP to balance the diversity of band subsets with performance and 

significantly improve the stability and robustness of data classification. Experimental results on several 

hyperspectral datasets show that the proposed algorithm outperforms many well-known methods in band 

selection of HSI.  

Some further improvements for future study can be summarized as follows. First, the evaluation 

criteria for band performance assessment can be explored, such as using more integrated separability 

between classes for improved performance of band selection. In addition, some improved algorithms of 

DPP, such as Conditional DPPs and Structured DPPs [27], can also be applied for selecting a more 

diverse subset of bands. 
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