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Abstract 

The rapidly rising industrial interest in hyperspectral imaging (HSI) has generated an 

increased demand for cost effective HSI devices. We are demonstrating a mobile and 

low-cost multispectral imaging system, enabled by time-multiplexed RGB Light 15 

Emitting Diodes (LED) illumination, which operates at video framerate. Critically, a 

deep Multi-Layer Perceptron (MLP) with HSI prior in the spectral range of 400 – 950 

nm is trained to reconstruct HSI data. We incorporate regularisation and dropout to 

compensate for overfitting in the largely ill-posed problem of reconstructing the HSI 

data. The MLP is characterised by a relatively simple design and low computational 20 

burden. Experimental results on 51 objects of various references and naturally occurring 

materials show the effectiveness of this approach in terms of reconstruction error and 

classification accuracy. We were also able to show that utilising additional colour 

channels to the three R, G and B channels adds increased value to the reconstruction. 

Keywords: Hyperspectral imaging (HSI), deep learning, spectral reconstruction, LED 25 

illumination 

 

1. Introduction 

In addition to the traditional applications of Hyperspectral Imaging (HSI) in remote 

sensing [1–3], the recent and rapid rise of interest for HSI was focused on various 30 

industrial applications, such as food quality monitoring [4–6], counterfeit detection [7] 



and artwork authentication [8,9]. Conventional HSI systems are, however, very cost 

intensive and require relatively complicated operation. Line scanning for HSI, 

frequently referred to as pushbrooming, is characterised by high spectral resolution due 

to the use of dispersive elements that split the incident light of a scanned line into 35 

hundreds of very narrow bands. Pushbrooming requires a linear translation of either the 

camera or the scanned objects, thus resulting in a lower spatial resolution. In contrast, 

area scanning is characterised by high spatial and low spectral resolution, determined 

by the number of filters utilised, and requires the objects to be static. Both technologies 

suffer from time consuming scanning processes and require careful operation to 40 

preserve geometric accuracy and minimise spectral smearing. A third approach that has 

overcome the issue of long integration period and found increasing interest in the last 

years is snapshot HSI. Recent advances in compressive sensing have led to technologies 

such as coded aperture [10], which even allows for Raman snapshot HSI [11]. Snapshot 

imaging, however, also suffers frequently from the requirement of very costly high 45 

precision optical components, as well as reduced spectral and spatial resolution and 

overwhelming amounts of data in a short timespan [12]. 

A recent and promising focus is the approximation of HSI data from Red, Green and 

Blue (RGB) or multispectral imaging (MSI). Light Emitting Diode (LED) technology 

is a very powerful and low-cost technology that is increasingly interesting for the 50 

development of multispectral devices [13]. Goel et al. [14] have proposed an MSI 

system that utilises a set of LEDs with 17 distinct peak wavelengths in the range of 450 

– 990 nm to realise time-multiplexed illumination, which shows good results in various 

applications. The use of LEDs makes the system very cost effective and flexible, 

however, the selection of peak wavelengths is hard-wired and lacks a generalised 55 

solution. Herrera-Ramirez et al. [15] proposes an LED based system with a considerable 

broader spectral range of 370 - 1630 nm, in which interpolation is used to recover 

hyperspectral information from 22 wavelengths. While the system is portable and low-

cost, interpolation runs the risk of overlooking specific spectral absorption peaks of 

materials not covered by the illumination source. Hyperspectral recovery from mere 60 

RGB images was proposed by Arad et al. [16], in which a sparse dictionary is trained 

on a database of hyperspectral prior. By matching CIE colour coordinates, a 

transformed RGB dictionary is generated to reconstruct the original HSI information 



from the RGB images. The system is, however, limited to RGB images and requires 

prior knowledge regarding the spectral sensitivity of the camera system, which is 65 

usually not available. Inspired by the concept of spatial super-resolution, Galliani et al. 

[17] have proposed a reconstruction algorithm from RGB images based on deep 

Convolutional Neural Networks (CNN). Can et al. [18] improved the reconstruction 

results by designing a simplified CNN with fewer layers which is less prone to 

overfitting and computationally less expensive. Recent developments in deep learning 70 

focus enable CNNs to be equally less prone to label noise [19] and the introduction of 

new architectures significantly reduces training complexity [20]. Nonetheless, CNNs 

evolve with an increasing complexity with respect to their design and often require 

GPUs to accommodate the excessive computation. Designing shallower networks can 

reduce the amount of GPU memory required, which, nevertheless, still poses a 75 

significant limit on the design. 

In this work, we are proposing an MSI system that is based on time-multiplexed 

RGB LED illumination. The advantages of the system are low-cost, high mobility, high 

framerate, and improved efficiency in hyperspectral data reconstruction. By mapping 

the collected MSI data to HSI prior to train a relatively shallow neural network, we aim 80 

to realise a computationally efficient algorithm for HSI data reconstruction. This work 

extends our presentation at the Hyperspectral Imaging and Applications Conference 

2018 [21]. This includes a more robust reconstruction algorithm as well as an extended 

evaluation of the reconstructed spectra for reference as well as organic materials with 

respect to both reconstruction error and classification accuracy.  85 

The main contributions of this paper entail the following: The proposed multi-

channel camera system poses a novel rapid, portable and low-cost imaging technique 

for effective data acquisition. A neural network based reconstruction proves the 

feasibility of using multi-colour data for hyperspectral reconstruction. It is also shown 

that using additional colour channels to common red, green and blue add valuable 90 

information and decrease noise.  



2. Proposed System 

The proposed system comprises of two main components. At first, multi-colour and 

hyperspectral data of the same objects are acquired. This is used to train a reconstruction 

algorithm, that is then able to reconstruct hyperspectral data from unknown input 95 

containing objects with the same spectral characteristics. This is visualized in Figure 1. 

The individual components are detailed in this section.  

2.1 Hardware architecture 

The architecture of the proposed system is schematically represented in Figure 2. It 

comprises a Basler ace U monochromatic camera with a spatial pixel resolution of 1280 100 

x 1024 pixel (HD), a framerate up to 200 fps and a USB 3.0 interface. The image 

integration is triggered by an Arduino Uno, which also controls an Adafruit Neopixel 

ring containing 24 WS2812B based RBG LEDs. The LEDs are programmed to produce 

eleven different colours in sequence and the image acquisition is triggered by the switch 

of colour, realising time-multiplexed illumination. The image data from the camera is 105 

recorded by the Single Board Computer Odroid X4U. Depending on the number of 

colour channels used, this allows for a recording speed from 18 (eleven channels) up to 

200 (one channel) images per second, which allows the system to operate in video 

framerate. Notably, the components amount to a cost less than GBP 1000.  

The selected eleven colours were chosen to emulate wavelengths between 400 - 650 110 

nm using colour emulation that match the CIE 1931 standard observer. The colours 

were selected to be approximately equally spaced at 25 nm in terms of wavelength in 

that region. The settings for the intensities of the three colour channels are illustrated in 

Figure 3. Note that RGB LEDs can only generate colours by mixing intensities of the 

three RGB lights with very distinct peak wavelengths at 465 – 467 nm (B), 522 - 525 115 

nm (G) and 620 - 625 nm (R) [22]. The irradiance of the generated colours was 

measured with a spectroscope and the results are shown in Figure 3.  It is apparent that 

the peak wavelengths remain the same, while the intensity combinations vary. We 

believe that varying the illumination colour (or intensity combinations), even without 



generating new wavelengths, increases variability within the data and therefore the 120 

accuracy of the predictive system. 

2.2 Hyperspectral reconstruction 

The reconstruction is performed by training a Multi-Layer Perceptron (MLP) defined 

as follows. An input matrix 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑛}𝑻  of the MSI vectors 𝐱𝑖 is mapped to 

an output matrix, 𝐘 = {𝐲1, 𝐲2, … , 𝐲𝑘}𝑻, where 𝑘 is the number of objects and 𝑛 is the 125 

number of MSI observations per object. The MLP consists of four fully connected (FC) 

hidden layers 𝐱𝑖+1 =  σ𝑖(𝐖𝑖𝐱𝑖 + 𝐛𝑖)  with activation function 𝜎𝑖, weight matrix 𝐖𝑖 and 

bias 𝐛𝑖. The detailed architecture is visualised in Figure 4. The fact that the input layer 

has no activation function, i.e. 𝜎1 =  𝑓(𝐱) = 𝐱 enforces the use of all MSI bands to 

further reduce fluctuations. For training, we define a loss function 𝒥(𝜃) of the 130 

parameter vector 𝜃 = {𝐖1, … , 𝐖𝑖 , 𝐛1, … , 𝐛𝑖}, 𝑖 𝜖 1, … 5. For the predicted output �̂�, a 

simple loss function can be defined as: 

𝒥(𝜃) =  
1

2𝑛
‖�̂� − 𝐘‖

𝐹
 

where ‖. ‖𝐹denotes the Frobenius norm. The problem, however, is highly ill-posed, as 

the input dimensionality is significantly lower than the output dimensionality and slight 135 

changes in the input can translate into a severe alteration at the output. Regularisation 

is a commonly used practice to compensate for these effects [23]. Introducing soft 

constraints on the parameters of the MLP can also help reduce the validation error and 

promote generalisation. Typically, regularisation is only applied onto the weights of the 

MLP [23], since the biases require less data to be fitted and regularising both may lead 140 

to significant underfitting. As the most common regularisation term, we introduce 𝐿2-

Norm regularisation on the weight, often referred to as weight decay, with 

hyperparameter 𝛽 that controls the impact of the regularisation: 

𝒥(𝜃) =  
1

2𝑛
‖�̂� − 𝐘‖

𝐹
+  

𝛽

2
∑‖𝐖𝑖‖𝐹
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For further regularisation, dropout is introduced here. Dropout is a computationally 145 

inexpensive way of approximating bagging, which describes the process of combining 

the results of several separately trained models [23]. It is achieved by effectively 



generating a binary mask of randomly sampled values multiplied with a non-output 

layer to remove certain nodes. The probability at which nodes are kept is called the keep 

rate and is another hyperparameter of the network. Dropout roughly doubles the 150 

number of iterations required for convergence [24]. 

2.3 Implementation details 

The implementation was done in the Tensorflow framework for Python, using the 

Adam Optimiser with the initial learning rate of 0.001. 𝛽 was set to 10−6 and a batch 

size of 128 was used for training. A keep rate of 0.6 for the dropout was used and in 155 

accordance with the definition of the popular AlexNet [24] only applied on the last 

hidden layer. Weight decay and dropout both minimise effects of overfitting and 

consequently enforce a relatively smooth output which satisfies smoothness 

characteristics of hyperspectral data. For optimally smooth results, we established 

empirically that 5,000,000 iterations are necessary. 160 

3. Experimental results 

To verify the system, the proposed camera was used to image 20 differently coloured 

fabrics such as cotton, wool and polyester in various shades including four different 

blacks, four very bright materials in white, grey, cream and bright yellow, two blue 

shades, turquoise and two green shades and seven different red, orange and pink shades. 165 

These fabrics were chosen to test for the discriminability between subtle changes in 

colour. Additionally, the Macbeth ColorChecker chart with 24 colour patches and seven 

different organic objects, including red and white grapes, bananas, apples, pears, 

spinach and tomatoes were imaged to include some naturally occurring materials. The 

imaged objects are illustrated in Figure 6. In total, 51 different objects were imaged 170 

with an HSI system covering the visible near infrared (VNIR) range from 400 - 950 nm 

in 256 bands. For each class, the mean spectrum was calculated and used to train the 

MLP. The same objects were imaged with the proposed MSI system, and equally 4000 

measurements were used to train and evaluate the system. The MSI images were 

acquired in a dark room to minimise the effects of ambient lighting. For production use 175 



of the system, an ambient light image can be acquired and subtracted from all successive 

images to realise calibration. Both datasets were radiometrically calibrated and 

converted to reflectance using white and dark reference images. In theory, the MSI 

system only needs to be calibrated once, as the illumination is always constant. Given 

the influence of ambient light and the variable sensor sensitivity and LED radiance, it 180 

is still advisable to repeat the calibration before every imaging session. 

In the first experiment, we tried to analyse the effect different numbers of bands have 

on the quality of reconstruction. The results for the Root Mean Squared Error (RMSE) 

achieved after 1,000,000 iterations with 5 repetitions are shown in Figure 5. The bands 

were chosen to be as equally spaced as possible out of the eleven totally recorded bands. 185 

Interestingly, it can be seen that at least 6 colour channels are required to minimise the 

reconstruction error. This leads us to the conclusion that adding more colour channels 

adds valuable information to the reconstruction. According to these results, we have 

compared the reconstructed spectrum profiles from three, six and eleven bands 

respectively in additional experiments, as both six and eleven channels produce an 190 

equally low RMSE but recording less bands also potentially increases the framerate of 

imaging. Both were compared with three channel reconstruction to highlight the 

additional information gain over RGB. The three channels that are closest to RGB were 

selected to highlight the information gain over plain RGB images. 

For quantitative evaluation, the 51 imaged objects were grouped in three groups; 195 

coloured fabrics, organic materials, and Macbeth chart patches. The reconstruction was 

evaluated using three different measures, The RMSE, Spectral Angular Mapper (SAM) 

and Spectral Information Divergence (SID) [25]. SAM is similar to the cosine distance 

as it measures the angle between spectra in an n-dimensional space and is therefore 

invariant to scaling. SID, in contrast, measures similarity by modelling the spectra as 200 

probability distributions, using information theory. A high SID value indicates great 

similarity. Reconstruction results after 5,000,000 iterations with three, six and eleven 

channels are given in Error! Reference source not found.. The reconstruction using 

eleven bands performs generally the best. The coloured fabrics produces a higher 

similarity to the original HSI data, whereas both the fruit and vegetable and the Macbeth 205 

chart generate very similar errors for both six and eleven channels. This shows that the 

fabrics can be reconstructed very accurately, even though some of them only vary 



slightly in the shade of the respective colour. What we can also observe is that both six 

and eleven channels produce a significantly lower reconstruction error than the three 

plain RGB channels. This leads to the conclusion that adding more colour channels 210 

reduces noise and likely adds new information to the MLP and therefore improves the 

reconstruction significantly.    
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The reconstruction is visualised in Figure 6. Only representative classes of objects 225 

were chosen that display certain attributes of the reconstruction. The coloured fabrics 

have relatively distinct spectral signatures, due to differences in material and colouring, 

and thus can be quite accurately reconstructed. For black fabrics, the initially low 

signals lead to a less accurate reconstruction, as shown by a less smooth curve. The 

linen and the polyester display almost exactly the same spectral characteristics in the 230 

spectral coverage of the illumination, despite their differences in the spectral range from 

700 nm upwards. our camera system is likely not to pick up on these features as the 

illumination does not cover this spectral range. Consequently, the reconstructed spectra 

of these two classes of objects are almost identical. The metrical differences to the 

 Fabric Organic Macbeth chart 

3 Channels 

RMSE 0.475 ± 0.500 0.947 ± 0.630 1.279 ± 0.279 

SAM 0.077 ± 0.028 0.114 ± 0.053 0.122 ± 0.011 

SID 14.808 ± 4.60 0.858 ± 0.386 0.435 ± 0.038 

6 Channels 

RMSE 0.277 ± 0.218 0.439 ± 0.211 0.502 ± 0.038 

SAM 0.065 ± 0.019 0.064 ± 0.021 0.075 ± 0.004 

SID 15.60 ± 3.420 3.594 ± 1.317 2.412 ± 0.405 

11 Channels 

RMSE 0.128 ± 0.095 0.228 ± 0.143 0.219 ± 0.032 

SAM 0.032 ± 0.015 0.034 ± 0.013 0.046 ± 0.003 

SID 20.14 ± 3.436 5.553 ± 1.732 3.508 ± 2.912 

       Table 1: Reconstruction errors for the object groups. For 3 channels, channels 2, 6 and 

11 were used according to Figure 3 and for 6 channels these are 1, 3, 5, 7, 9 and 11. 

 



original spectra are however still small, which leads to the high similarity in Error! 235 

Reference source not found.. 

For the fruit and vegetable, the input MSI data is more varied as the surfaces of the 

scanned materials are not homogeneous. As a result, the reconstruction shows some 

deviation from the original spectra but still adheres well to the HSI data. Specific 

features, such as the typical spike in reflectance from 680 - 730 nm caused by 240 

chlorophyll and referred to as the red-edge, is retained very well for the spinach. 

For the Macbeth chart, the colours show very distinct spectral reflectance and can 

therefore be reconstructed very accurately, reflecting the nature and the usage of the 

chart. Difficulties arise for the grey (neutral) and black patches, where the low intensity 

of the signal and their flatness leads to errors in the reconstruction. 245 

To further validate the quality of reconstruction, a Support Vector Machine (SVM) 

with a radial basis function (RBF) was trained to classify all 51 classes using 600 

samples of each object and 5% of each class trained and the rest to validate. The 

parameters C and 𝛾 of the SVM were trained using a grid search with 5-fold cross 

validation. The 51 classes were again grouped and the mean pixel-wise overall accuracy 250 

(OA) was calculated for each group and summarised in Table 2. 

 

 

 Original 3 Channels 6 Channels 11 Channels 

Fabrics 98.80 ± 2.89 86.84 ± 4.88 91.89 ± 3.28 93.10 ± 2.92 

Organic 99.81 ± 0.63 91.81 ± 1.78 98.62 ± 0.65 98.86 ± 0.57 

Macbeth chart 98.49 ± 2.89 98.55 ± 0.63 99.92 ± 0.08 99.91 ± 0.14 

OA 98.79 ± 2.58 93.22 ± 2.45 96.59 ± 1.41 97.45 ± 1.29 

Table 2: Comparison of classification using the original 256 bands; the reconstruction 

of these bands from 3, 6 and 11 channels. For 3 channels, channels 2, 6 and 11 were 255 

used according to Figure 3 and for 6 channels these were 1, 3, 5, 7, 9 and 11. 

SVMs were trained on the original 256 band HSI data and the reconstructed spectra 

using three, six and eleven channels from the MSI system. According to Table 2, we 

can again see that the reconstruction using eleven channels generates better results than 

the six-channel one. Specifically, the fabrics show the largest difference, 98.80% with 260 

the original data versus 86.84% with three channels, 91.89% with six-channel, and 



93.10% with eleven-channel. For the organic materials, the classification accuracy is 

almost the same for six and eleven channels but almost 7% lower with three channels. 

For the Macbeth chart, the classification seems to improve only by a small margin, even 

with three channels, a very high accuracy can be achieved. The decrease in 265 

classification accuracy for fabrics is likely attributed to the reduced intensity, as 

mentioned above, in the black fabrics. Even though the reconstructions are very close 

to the originals, they are almost identical to each other. Consequently, a low 

reconstruction error is achieved despite the decreased classification accuracy. When 

adding additional channels, subtler variances can be detected and signals with a low 270 

SNR can be better reconstructed. Likewise, for the organic materials, the surface of the 

objects is subject to more variation and simple RGB colour sensing does not seem to 

account for all the differences in the signals measured with an HSI system. For the 

Macbeth chart however, we see that the three RGB channels produce an almost identical 

classification after HSI reconstruction, which is likely due to the fact that the chart itself 275 

is designed to calibrate RGB imaging systems and therefore only displays spectra that 

are produced by primary colours. Using three RGB channels accounts for almost all 

variances, where adding additional channel only helps marginally improving the 

classification accuracy. 

4. Conclusion 280 

In conclusion, we have shown that customary and adaptive RGB LED illumination 

can be integrated with a monochromatic camera to achieve a very cost efficient and 

mobile MSI camera system. The training of a neural network that maps MSI data to 

HSI prior is conducted by reconstructing hyperspectral profiles of different objects. 

Despite RGB LEDs having only three distinct peak wavelengths, mixing them with 285 

various intensities allows the generation of sufficient variability to accurately 

reconstruct the HSI data and therefore adds additional information to the predictive 

system compared to only three-channel RGB illumination. The physical advantages in 

using RGB LED technology include its availability and maturity, cost effectiveness, 

and flexible configuration. Additionally, LED allows ring-shaped (or other 290 
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300 
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arrangement) illumination that enables uniform lighting for each colour channel with 

no additional measures to eliminate artefacts such as chromatic shadows that are caused 

by angular non-uniformity. For optimal reconstruction, eleven channels were used with 

a framerate of 18 MSIs per second and a high spatial pixel resolution. The integration 

rate can be further increased by sacrificing some of the reconstruction quality. It is also 

shown that a reconstruction with six channels and a framerate of 33 MSIs per second 

still generate very good results. The reconstruction is tested on 3 groups of objects, as 

detailed in the experimental results. It shows that a highly accurate reconstruction is 

possible when the original HSI spectra are sufficiently distinct. Errors occur when the 

measured signal is low in intensity and with high similarity in the spectral range (400-

650 nm) covered by the RGB LEDs, regardless of the differences in the spectral region 

outside. A remedy or improvement is to increase LEDs to cover a broader spectral 

range. Due to the nature of supervised machine learning, this system is reliant on HSI 

prior and requires pre-training on spectral signatures of imaged objects to be functional. 

Given that many HSI applications are very specific and limited in the number of 

occurring spectra, this poses not a major disadvantage. 

Importantly, this prototype system promises a cost effective and mobile 

hyperspectral imaging setup with a high spatial pixel resolution and framerate. The 

setup is flexible in configuration and can be trained for various applications. Future 

work will further improve the illumination design to cover broader spectral peaks, 

especially the range above 650 nm, to enable more applications. Additionally, 

designing LED illumination with distinct spectral peaks could potentially 

improve the reconstruction. Algorithms for hyperspectral band selection [26,27] can 

help identify relevant spectral bands to design such illumination systems.  
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